1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
/*
Title: Export memory as a PE/COFF object
Author: David C. J. Matthews.
Copyright (c) 2006 David C. J. Matthews
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR H PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef WIN32
#include "winconfig.h"
#else
#include "config.h"
#endif
#include <stdio.h>
#include <time.h>
#ifdef HAVE_STDDEF_H
#include <stddef.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_ASSERT_H
#include <assert.h>
#endif
#include <windows.h>
#include "globals.h"
#include "pecoffexport.h"
#include "machine_dep.h"
#include "scanaddrs.h"
#include "run_time.h"
#include "polyexports.h"
#include "version.h"
#include "polystring.h"
#ifdef _DEBUG
/* MS C defines _DEBUG for debug builds. */
#define DEBUG
#endif
#ifdef DEBUG
#define ASSERT(x) assert(x)
#else
#define ASSERT(x)
#endif
// Generate the address relative to the start of the segment.
void PECOFFExport::setRelocationAddress(void *p, DWORD *reloc)
{
unsigned area = findArea(p);
POLYUNSIGNED offset = (char*)p - (char*)memTable[area].mtAddr;
*reloc = offset;
}
// Create a relocation entry for an address at a given location.
PolyWord PECOFFExport::createRelocation(PolyWord p, void *relocAddr)
{
IMAGE_RELOCATION reloc;
// Set the offset within the section we're scanning.
setRelocationAddress(relocAddr, &reloc.VirtualAddress);
void *addr = p.AsAddress();
unsigned addrArea = findArea(addr);
POLYUNSIGNED offset = (char*)addr - (char*)memTable[addrArea].mtAddr;
reloc.SymbolTableIndex = addrArea;
reloc.Type = IMAGE_REL_I386_DIR32;
fwrite(&reloc, sizeof(reloc), 1, exportFile);
relocationCount++;
return PolyWord::FromUnsigned(offset);
}
void PECOFFExport::writeSymbol(const char *symbolName, __int32 value, int section, bool isExtern)
{
IMAGE_SYMBOL symbol;
memset(&symbol, 0, sizeof(symbol)); // Zero the unused part of the string
// Short symbol names go in the entry, longer ones go in the string table.
if (strlen(symbolName) <= 8)
strcpy((char*)symbol.N.ShortName, symbolName);
else {
symbol.N.Name.Short = 0;
// We have to add 4 bytes because the first word written to the file is a length word.
symbol.N.Name.Long = stringTable.makeEntry(symbolName) + sizeof(unsigned);
}
symbol.Value = value;
symbol.SectionNumber = section;
symbol.Type = IMAGE_SYM_TYPE_NULL;
symbol.StorageClass = isExtern ? IMAGE_SYM_CLASS_EXTERNAL : IMAGE_SYM_CLASS_STATIC;
fwrite(&symbol, sizeof(symbol), 1, exportFile);
symbolCount++;
}
/* This is called for each constant within the code.
Print a relocation entry for the word and return a value that means
that the offset is saved in original word. */
void PECOFFExport::ScanConstant(byte *addr, ScanRelocationKind code)
{
IMAGE_RELOCATION reloc;
PolyWord p = GetConstantValue(addr, code);
if (IS_INT(p) || p == PolyWord::FromUnsigned(0))
return;
void *a = p.AsAddress();
unsigned aArea = findArea(a);
// We don't need a relocation if this is relative to the current segment
// since the relative address will already be right.
if (code == PROCESS_RELOC_I386RELATIVE && aArea == findArea(addr))
return;
setRelocationAddress(addr, &reloc.VirtualAddress);
// Set the value at the address to the offset relative to the symbol.
POLYUNSIGNED offset = (char*)a - (char*)memTable[aArea].mtAddr;
reloc.SymbolTableIndex = aArea;
// The value we store here is the offset whichever relocation method
// we're using.
for (unsigned i = 0; i < sizeof(PolyWord); i++)
{
addr[i] = (byte)(offset & 0xff);
offset >>= 8;
}
if (code == PROCESS_RELOC_I386RELATIVE)
reloc.Type = IMAGE_REL_I386_REL32;
else
reloc.Type = IMAGE_REL_I386_DIR32;
fwrite(&reloc, sizeof(reloc), 1, exportFile);
relocationCount++;
}
// Set the file alignment.
void PECOFFExport::alignFile(int align)
{
char pad[32]; // Maximum alignment
int offset = ftell(exportFile);
memset(pad, 0, sizeof(pad));
if ((offset % align) == 0) return;
fwrite(&pad, align - (offset % align), 1, exportFile);
}
void PECOFFExport::exportStore(void)
{
PolyWord *p;
IMAGE_FILE_HEADER fhdr;
IMAGE_SECTION_HEADER *sections = 0;
IMAGE_RELOCATION reloc;
unsigned i;
// These are written out as the description of the data.
exportDescription exports;
time_t now;
time(&now);
sections = new IMAGE_SECTION_HEADER [memTableEntries+1]; // Plus one for the tables.
// Write out initial values for the headers. These are overwritten at the end.
// File header
memset(&fhdr, 0, sizeof(fhdr));
fhdr.Machine = IMAGE_FILE_MACHINE_I386; // i386
fhdr.NumberOfSections = memTableEntries+1; // One for each area plus one for the tables.
(void)time((time_t*)&fhdr.TimeDateStamp);
//fhdr.NumberOfSymbols = memTableEntries+1; // One for each area plus "poly_exports"
fwrite(&fhdr, sizeof(fhdr), 1, exportFile); // Write it for the moment.
// Section headers.
for (i = 0; i < memTableEntries; i++)
{
memset(§ions[i], 0, sizeof(IMAGE_SECTION_HEADER));
sprintf((char*)sections[i].Name, "poly%1u", i);
sections[i].SizeOfRawData = memTable[i].mtLength;
// We always include write access at the moment.
sections[i].Characteristics =
IMAGE_SCN_MEM_WRITE | IMAGE_SCN_MEM_READ |
IMAGE_SCN_ALIGN_8BYTES | IMAGE_SCN_CNT_INITIALIZED_DATA;
if (memTable[i].mtFlags & MTF_EXECUTABLE)
sections[i].Characteristics |= IMAGE_SCN_MEM_EXECUTE;
}
// Extra section for the tables.
memset(§ions[memTableEntries], 0, sizeof(IMAGE_SECTION_HEADER));
sprintf((char*)sections[memTableEntries].Name, "polyT");
sections[memTableEntries].SizeOfRawData = sizeof(exports) + (memTableEntries+1)*sizeof(memoryTableEntry);
// Don't need write or execute access here
sections[memTableEntries].Characteristics =
IMAGE_SCN_MEM_READ | IMAGE_SCN_ALIGN_8BYTES | IMAGE_SCN_CNT_INITIALIZED_DATA;
fwrite(sections, sizeof(IMAGE_SECTION_HEADER), memTableEntries+1, exportFile); // Write it for the moment.
for (i = 0; i < memTableEntries; i++)
{
if (i != ioMemEntry) // Don't relocate the IO area
{
// Relocations. The first entry is special and is only used if
// we have more than 64k relocations. It contains the number of relocations but is
// otherwise ignored.
sections[i].PointerToRelocations = ftell(exportFile);
memset(&reloc, 0, sizeof(reloc));
fwrite(&reloc, sizeof(reloc), 1, exportFile);
relocationCount = 1;
// Create the relocation table and turn all addresses into offsets.
char *start = (char*)memTable[i].mtAddr;
char *end = start + memTable[i].mtLength;
for (p = (PolyWord*)start; p < (PolyWord*)end; )
{
p++;
PolyObject *obj = (PolyObject*)p;
POLYUNSIGNED length = obj->Length();
relocateObject(obj);
if (length != 0 && obj->IsCodeObject())
machineDependent->ScanConstantsWithinCode(obj, this);
p += length;
}
// If there are more than 64k relocations set this bit and set the value to 64k-1.
if (relocationCount >= 65535) {
sections[i].NumberOfRelocations = 65535;
sections[i].Characteristics |= IMAGE_SCN_LNK_NRELOC_OVFL;
// We have to go back and patch up the first (dummy) relocation entry
// which contains the count.
fseek(exportFile, sections[i].PointerToRelocations, SEEK_SET);
memset(&reloc, 0, sizeof(reloc));
reloc.VirtualAddress = relocationCount;
fwrite(&reloc, sizeof(reloc), 1, exportFile);
fseek(exportFile, 0, SEEK_END); // Return to the end of the file.
}
else sections[i].NumberOfRelocations = relocationCount;
}
}
// We don't need to handle relocation overflow here.
sections[memTableEntries].PointerToRelocations = ftell(exportFile);
relocationCount = 0;
// Relocations for "exports" and "memTable";
// Address of "memTable" within "exports". We can't use createRelocation because
// the position of the relocation is not in either the mutable or the immutable area.
reloc.Type = IMAGE_REL_I386_DIR32;
reloc.SymbolTableIndex = memTableEntries; // Relative to poly_exports
reloc.VirtualAddress = offsetof(exportDescription, memTable);
fwrite(&reloc, sizeof(reloc), 1, exportFile);
relocationCount++;
// Address of "rootFunction" within "exports"
reloc.Type = IMAGE_REL_I386_DIR32;
unsigned rootAddrArea = findArea(rootFunction);
reloc.SymbolTableIndex = rootAddrArea;
reloc.VirtualAddress = offsetof(exportDescription, rootFunction);
fwrite(&reloc, sizeof(reloc), 1, exportFile);
relocationCount++;
for (i = 0; i < memTableEntries; i++)
{
reloc.Type = IMAGE_REL_I386_DIR32;
reloc.SymbolTableIndex = i; // Relative to base symbol
reloc.VirtualAddress =
sizeof(exportDescription) + i * sizeof(memoryTableEntry) + offsetof(memoryTableEntry, mtAddr);
fwrite(&reloc, sizeof(reloc), 1, exportFile);
relocationCount++;
}
ASSERT(relocationCount < 65535); // Shouldn't get overflow!!
sections[memTableEntries].NumberOfRelocations = relocationCount;
// Now the binary data.
for (i = 0; i < memTableEntries; i++)
{
sections[i].PointerToRawData = ftell(exportFile);
fwrite(memTable[i].mtAddr, 1, memTable[i].mtLength, exportFile);
}
sections[memTableEntries].PointerToRawData = ftell(exportFile);
memset(&exports, 0, sizeof(exports));
memset(memTable, 0, sizeof(memTable));
exports.structLength = sizeof(exportDescription);
exports.memTableSize = sizeof(memoryTableEntry);
exports.memTableEntries = memTableEntries;
exports.ioIndex = 0; // The io entry is the first in the memory table
exports.memTable = (memoryTableEntry *)sizeof(exports); // It follows immediately after this.
exports.rootFunction = (void*)((char*)rootFunction - (char*)memTable[rootAddrArea].mtAddr);
exports.timeStamp = now;
exports.ioSpacing = ioSpacing;
exports.architecture = machineDependent->MachineArchitecture();
exports.rtsVersion = POLY_version_number;
// Set the address values to zero before we write. They will always
// be relative to their base symbol.
for (i = 0; i < memTableEntries; i++)
memTable[i].mtAddr = 0;
fwrite(&exports, sizeof(exports), 1, exportFile);
fwrite(memTable, sizeof(memoryTableEntry), memTableEntries, exportFile);
// First the symbol table. We have one entry for the exports and an additional
// entry for each of the sections.
fhdr.PointerToSymbolTable = ftell(exportFile);
// The section numbers are one-based. Zero indicates the "common" area.
// First write symbols for each section and for poly_exports.
for (i = 0; i < memTableEntries; i++)
{
if (i == ioMemEntry)
writeSymbol("ioarea", 0, i+1, false);
else {
char buff[50];
sprintf(buff, "area%0d", i);
writeSymbol(buff, 0, i+1, false);
}
}
// This is the only "real" symbol.
writeSymbol("_poly_exports", 0, memTableEntries+1, true);
fhdr.NumberOfSymbols = symbolCount;
// The string table is written immediately after the symbols.
// The length is included as the first word.
unsigned strSize = stringTable.stringSize + sizeof(unsigned);
fwrite(&strSize, sizeof(strSize), 1, exportFile);
fwrite(stringTable.strings, stringTable.stringSize, 1, exportFile);
// Rewind to rewrite the headers.
fseek(exportFile, 0, SEEK_SET);
fwrite(&fhdr, sizeof(fhdr), 1, exportFile);
fwrite(sections, sizeof(IMAGE_SECTION_HEADER), memTableEntries+1, exportFile);
fclose(exportFile); exportFile = NULL;
delete[](sections);
}
|