1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
|
/*
Title: Machine dependent code for Power architecture.
Copyright (c) 2000-7
Cambridge University Technical Services Limited
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef WIN32
#include "winconfig.h"
#else
#include "config.h"
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_SIGNAL_H
#include <signal.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef HAVE_STDIO_H
#include <stdio.h>
#endif
#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x)
#endif
#ifdef HAVE_MCONTEXT_T_REGS
// Linux
#define NIP(scp) (scp)->uc_mcontext.regs->nip
#define GPR27(scp) (scp)->uc_mcontext.regs->gpr[PT_R27]
#elif (defined(HAVE_STRUCT_MCONTEXT_SS) || defined(HAVE_STRUCT___DARWIN_MCONTEXT_SS))
/* Mac OS X 10.2, 10.3 and 10.4. */
#define NIP(scp) scp->uc_mcontext->ss.srr0
#define GPR27(scp) scp->uc_mcontext->ss.r27
#elif (defined(HAVE_STRUCT___DARWIN_MCONTEXT___SS))
// Mac OS X 10.5
#define NIP(scp) scp->uc_mcontext->__ss.__srr0
#define GPR27(scp) scp->uc_mcontext->__ss.__r27
#elif defined(HAVE_MCONTEXT_T_GREGS)
// Linux (new)
#define NIP(scp) (scp)->uc_mcontext.uc_regs->gregs[PT_NIP]
#define GPR27(scp) (scp)->uc_mcontext.uc_regs->gregs[PT_R27]
#else
/* Before OS X 10.2 signal handlers were given sigcontext structures. */
// This may need testing
#define NIP(scp) scp->sc_ir
#define GPR27(scp) (((int*)(scp)->sc_regs)[27+2])
#endif
// R27 is used as the ML stack pointer
#define GPSP(scp) GPR27(scp)
#include "globals.h"
#include "gc.h"
#include "run_time.h"
#include "mpoly.h"
#include "arb.h"
#include "int_opcodes.h"
#include "reals.h"
#include "diagnostics.h"
#include "processes.h"
#include "sighandler.h"
#include "machine_dep.h"
#include "profiling.h"
#include "save_vec.h"
#include "scanaddrs.h"
#include "sys.h"
#include "check_objects.h"
#include "memmgr.h"
// Values for the returnReason
enum RETURN_REASON {
RETURN_IO_CALL = 0,
RETURN_HEAP_OVERFLOW,
RETURN_STACK_OVERFLOW,
RETURN_STACK_OVERFLOWEX,
RETURN_RAISE_DIV,
RETURN_ARB_EMULATION
};
// Registers saved in taskData->stack.
#define NUMCHECKED 21 // Number of checked registers.
#define NUMUNCHECKED 3 // Number of unchecked registers
// These registers must contain valid PolyWord values. Any addresses
// may be updated as the result of a garbage collection.
#define PS_R3 p_reg[0] // First argument and function result - r3
#define PS_R4 p_reg[1] // Second argument - r4
#define PS_R5 p_reg[2] // Third argument - r5
#define PS_R6 p_reg[3] // Fourth argument - r6
#define PS_R7 p_reg[4] // r7
#define PS_R8 p_reg[5] // r8
#define PS_R9 p_reg[6] // r9
#define PS_R10 p_reg[7] // r10
#define PS_R14 p_reg[8] // r14
#define PS_R15 p_reg[9] // r15
#define PS_R16 p_reg[10] // r16
#define PS_R17 p_reg[11] // r17
#define PS_R18 p_reg[12] // r18
#define PS_R19 p_reg[13] // r19
#define PS_R20 p_reg[14] // r20
#define PS_R21 p_reg[15] // r21
#define PS_R22 p_reg[16] // r22
#define PS_R23 p_reg[17] // r23
#define PS_R24 p_reg[18] // r24 - Closure register
#define PS_R25 p_reg[19] // r25 - Return register
#define PS_LR p_reg[20] // lr - Link register
// These registers can contain values that are not valid PolyWord values.
// They are copied unchanged if the stack is moved so must not contain addresses.
#define PS_R11 p_reg[NUMCHECKED+1] // r11 - untagged register
#define PS_R12 p_reg[NUMCHECKED+2] // r12 - untagged register
#define PS_CR0 p_reg[NUMCHECKED+3] // Condition code register - untagged
#define EXTRA_STACK 0
/* the amount of ML stack space to reserve for registers,
C exception handling etc. The compiler requires us to
reserve 2 stack-frames worth (2 * 20 words) plus whatever
we require for the register save area. We actually reserve
slightly more than this. SPF 3/3/97
*/
#define OVERFLOW_STACK_SIZE \
(50 + \
sizeof(StackObject)/sizeof(PolyWord) + \
NUMCHECKED + \
NUMUNCHECKED + \
EXTRA_STACK)
// This vector is pointed to by r13
typedef struct MemRegisters {
int inRTS;
/* This is set when taskData->stack->p_pc and taskData->stack->p_sp are set */
int requestCode;
int returnReason;
PolyWord *heapPointer;
PolyWord *heapBase;
StackObject *polyStack;
PolyWord *stackLimit;
byte *heapOverflow;
byte *stackOverflow;
byte *stackOverflowEx;
byte *raiseException;
byte *ioEntry; /* Offset 44 */
byte *raiseDiv;
byte *arbEmulation;
PolyWord *stackTop; // Used in "raisex"
PolyObject *threadId;
} MemRegisters;
class PowerPCTaskData: public MDTaskData {
public:
PowerPCTaskData(): allocWords(0)
{
memRegisters.inRTS = 1; // We start off in the RTS.
}
POLYUNSIGNED allocWords; // The words to allocate.
MemRegisters memRegisters;
};
class PowerPCDependent: public MachineDependent {
public:
PowerPCDependent() {}
// Create a task data object.
virtual MDTaskData *CreateTaskData(void) { return new PowerPCTaskData(); }
virtual void InitStackFrame(TaskData *taskData, Handle stack, Handle proc, Handle arg);
virtual unsigned InitialStackSize(void) { return 128+OVERFLOW_STACK_SIZE; } // Initial size of a stack
virtual int SwitchToPoly(TaskData *taskData);
virtual void SetForRetry(TaskData *taskData, int ioCall);
virtual void InitInterfaceVector(void);
virtual void SetException(TaskData *taskData, poly_exn *exc);
virtual void ResetSignals(void);
virtual void ScanConstantsWithinCode(PolyObject *addr, PolyObject *oldAddr, POLYUNSIGNED length, ScanAddress *process);
virtual void InterruptCode(TaskData *taskData);
virtual int GetIOFunctionRegisterMask(int ioCall);
virtual bool GetPCandSPFromContext(TaskData *taskData, SIGNALCONTEXT *context, PolyWord *&sp, POLYCODEPTR &pc);
virtual void CallIO0(TaskData *taskData, Handle(*ioFun)(TaskData *));
virtual void CallIO1(TaskData *taskData, Handle(*ioFun)(TaskData *, Handle));
virtual void CallIO2(TaskData *taskData, Handle(*ioFun)(TaskData *, Handle, Handle));
virtual void CallIO3(TaskData *taskData, Handle(*ioFun)(TaskData *, Handle, Handle, Handle));
virtual void CallIO4(TaskData *taskData, Handle(*ioFun)(TaskData *, Handle, Handle, Handle, Handle));
virtual void CallIO5(TaskData *taskData, Handle(*ioFun)(TaskData *, Handle, Handle, Handle, Handle, Handle));
virtual Handle CallBackResult(TaskData *taskData);
virtual void SetExceptionTrace(TaskData *taskData);
virtual void CallCodeTupled(TaskData *taskData);
virtual void SetCodeConstant(TaskData *taskData, Handle data, Handle constant, Handle offseth, Handle base);
virtual void FlushInstructionCache(void *p, POLYUNSIGNED bytes);
virtual Architectures MachineArchitecture(void) { return MA_PPC; }
// Increment or decrement the first word of the object pointed to by the
// mutex argument and return the new value.
virtual Handle AtomicIncrement(TaskData *taskData, Handle mutexp);
virtual Handle AtomicDecrement(TaskData *taskData, Handle mutexp);
private:
void StartIOCall(TaskData *taskData);
void SetMemRegisters(TaskData *taskData);
void HeapOverflowTrap(TaskData *taskData);
void ArbitraryPrecisionTrap(TaskData *taskData);
Handle BuildCodeSegment(TaskData *taskData, const byte *code, unsigned codeWords, char functionName);
Handle BuildKillSelfCode(TaskData *taskData);
};
// Entry code sequences - copied to memRegisters before entering ML.
static byte *heapOverflow, *stackOverflow, *stackOverflowEx, *raiseDiv, *arbEmulation;
// Functions in the assembly code segment.
extern "C" {
extern int str_compare();
extern int teststreq();
extern int teststrneq();
extern int teststrgtr();
extern int teststrlss();
extern int teststrgeq();
extern int teststrleq();
extern int locksega();
extern int add_long();
extern int sub_long();
extern int mult_long();
extern int div_long();
extern int rem_long();
extern int neg_long();
extern int or_long();
extern int and_long();
extern int xor_long();
extern int equal_long();
extern int shift_right_word();
extern int word_neq();
extern int not_bool();
extern int string_length();
extern int int_eq();
extern int int_neq();
extern int int_geq();
extern int int_leq();
extern int int_gtr();
extern int int_lss();
extern int or_word();
extern int and_word();
extern int xor_word();
extern int shift_left_word();
extern int word_eq();
extern int load_byte();
extern int load_word();
extern int assign_byte();
extern int assign_word();
extern int kill_selfa();
extern int alloc_store();
extern int get_length_a();
extern int int_to_word();
extern int move_bytes();
extern int move_words();
extern int shift_right_arith_word();
extern int raisex();
extern int extrace_normal_return();
extern int offset_address();
extern int is_shorta();
extern int is_big_endian();
extern int bytes_per_word();
extern int mul_word();
extern int plus_word();
extern int minus_word();
extern int div_word();
extern int mod_word();
extern int word_geq();
extern int word_leq();
extern int word_gtr();
extern int word_lss();
extern int set_string_length_a();
extern int get_first_long_word_a();
extern int atomic_incr();
extern int atomic_decr();
extern int thread_self();
extern void PPCAsmSwitchToPoly(struct MemRegisters *);
extern void MD_flush_instruction_cache(void *p, POLYUNSIGNED bytes);
extern void PPCSaveStateAndReturn(void);
};
/******************************************************************************/
/* */
/* Stack Frame */
/* */
/******************************************************************************/
/*
What do we store in the ML stack object?
p_space
p_pc
p_sp (r30)
p_hr (r31)
p_nregs = 27
20 tagged registers (r3-r10, r14-r25)
the literal 3
3 untagged registers (r11, r12, CR)
the real ML stack
Register Usage
--------------
r0 scratch register (unsaved?)
r1 - don't touch - dedicated C register (stack - like SPARC %o6)
r2 - don't touch - dedicated C register (TOC) (Is the relevant now?)
r3 used for the first argument to a function, and for the result.
r4-r6 used for the next 3 args, any others being passed on the stack.
(We may later decide to use r7-r10 for parameters too).
r24 is the closure pointer or static link pointer
r25 (rr) is used as the compiler-visible link register
r26 is an RTS scratch register (unsaved).
r27 (rsp) is the ML stack pointer,
r28 is no longer used (formerly the stack limit reg)
r29 (rhp) is the heap pointer,
r30 (rhl) is the heap limit,
r31 (rhr) points to the top exception handler.
r7-r10 and r14-r23 (15 registers) are available as general work registers,
as are r3-r6 and r24-r25, when they are not fulfilling their specialised
duties. That's a total of 20 general-purpose registers (as opposed to
17 on the SPARC).
r11, r12 are used as code-generator visible untagged registers.
r26 is used as a compiler-invisible RTS scratch register for
handling traps.
LR is a semi-volatile register used to cache the return address.
Executing a trap can copy rr into LR, even if it wasn't
there before. Furthermore, it can change the tagged status of
LR - it may be tagged after the trap, even if it was untagged
before. What we do guarantee is that if LR cached rr before
the trap, then it caches it afterwards (modulo possible tag bit
discrepancies). Executing any function call (including an RTS
call) invalidates both rr and LR.
CTR is a volatile register - we use it to to return from traps
and normal RTS calls, and it is also used to implement tail-calls.
*/
#define ML_HR 31
#define ML_HL 30
#define ML_HP 29
#define ML_SL 28
#define ML_SP 27
/* The first instruction executed after native code returns
is the saved return address -2 */
#define RETURNOFFSET 2
/* The first instruction executed in a handler
is the stored address -2 */
#define HANDLEROFFSET 2
#ifndef NOISY
#define NOISY 0
#endif
#define NOTIFYGC 0
// InitStackFrame. Set up a stack frame for a new thread (process).
void PowerPCDependent::InitStackFrame(TaskData *taskData, Handle stackh, Handle proc, Handle arg)
/* Initialise stack frame. */
{
StackObject *stack = (StackObject *)DEREFWORDHANDLE(stackh);
POLYUNSIGNED stack_size = stack->Length();
stack->p_space = OVERFLOW_STACK_SIZE;
stack->p_pc = PC_RETRY_SPECIAL; /* As if we had called MD_set_for_retry. */
stack->p_nreg = NUMCHECKED; /* r3-r8, r13-r25, link */
stack->p_hr = stack->Offset(stack_size-3);
stack->p_sp = stack->Offset(stack_size-3); /* sp */
/* Reset all registers since this may be an old stack frame */
for (unsigned i = 0; i < NUMCHECKED; i++)
stack->p_reg[i] = TAGGED(0);
// Set the default handler and return address to point to this code.
// We have to offset the addresses by two bytes because the code to enter and a handler
// or return from a function always subtracts two.
Handle killCode = BuildKillSelfCode(taskData);
PolyWord killJump = PolyWord::FromUnsigned(killCode->Word().AsUnsigned() | HANDLEROFFSET);
stack = (StackObject *)DEREFWORDHANDLE(stackh); // In case it's moved
stack->PS_R24 = DEREFWORD(proc); /* Set r24 to the closure address. */
stack->PS_LR = killJump; /* Set link reg to code to kill process. */
stack->p_reg[NUMCHECKED] = PolyWord::FromUnsigned(NUMUNCHECKED); /* 3 unchecked registers. */
/* Since they're unchecked, they don't need to be initialised,
but set them to 0 anyway. */
stack->PS_R11 = PolyWord::FromUnsigned(0);
stack->PS_R12 = PolyWord::FromUnsigned(0);
stack->PS_CR0 = PolyWord::FromUnsigned(0);
/* If this function takes an argument store it in the argument register. */
if (arg != 0) stack->PS_R3 = DEREFWORD(arg);
/* No previous handler so point it at itself. */
stack->Set(stack_size-1, PolyWord::FromStackAddr(stack->Offset(stack_size-1)));
/* Default handler. */
stack->Set(stack_size-2, killJump);
/* Set up exception handler */
stack->Set(stack_size-3, TAGGED(0)); /* Default handler. */
}
// These are just for debugging. They record the last point before
// the memory was checked.
byte *lastPC;
int lastRequest, lastReason;
// SwitchToPoly - start running Poly code.
int PowerPCDependent::SwitchToPoly(TaskData *taskData)
/* (Re)-enter the Poly code from C. */
{
PowerPCTaskData *mdTask = (PowerPCTaskData*)taskData->mdTaskData;
Handle mark = taskData->saveVec.mark();
while (1)
{
taskData->saveVec.reset(mark); // Remove old data e.g. from arbitrary precision.
CheckMemory(); // Do any memory checking.
// Remember the position after the last time we checked
// the memory.
lastPC = taskData->stack->p_pc;
lastRequest = mdTask->memRegisters.requestCode;
lastReason = mdTask->memRegisters.returnReason;
SetMemRegisters(taskData);
PPCAsmSwitchToPoly(&mdTask->memRegisters); // Load registers. Returns as a result of an RTS call.
taskData->allocPointer = mdTask->memRegisters.heapPointer; // Get updated limit pointer.
mdTask->allocWords = 0;
switch (mdTask->memRegisters.returnReason)
{
case RETURN_IO_CALL:
// The ML code wants an IO call.
return mdTask->memRegisters.requestCode;
case RETURN_HEAP_OVERFLOW:
try {
// The heap has overflowed. Put the return address into the program counter.
// It may well not be a valid code address anyway.
taskData->stack->p_pc = (byte*)taskData->stack->PS_LR.AsUnsigned();
taskData->stack->PS_LR = TAGGED(0); // Clobber this
HeapOverflowTrap(taskData);
}
catch (IOException) {
// We may get an exception while handling this if we run out of store
}
break;
case RETURN_STACK_OVERFLOW:
try {
// The stack check has failed. This may either be because we really have
// overflowed the stack or because the stack limit value has been adjusted
// to result in a call here.
taskData->stack->p_pc = (byte*)taskData->stack->PS_LR.AsUnsigned();
// Restore the original value from the link register (with the
// +2 byte tagging). This enables the link register caching to work.
taskData->stack->PS_LR = taskData->stack->PS_R25;
CheckAndGrowStack(taskData, taskData->stack->p_sp);
}
catch (IOException) {
// We may get an exception while handling this if we run out of store
}
return -1; // We're in a safe state to handle any interrupts.
case RETURN_STACK_OVERFLOWEX:
try {
// Stack limit overflow. If the required stack space is larger than
// the fixed overflow size the code will calculate the limit in rtemp1
PolyWord *stackP = taskData->stack->PS_R11.AsStackAddr();
taskData->stack->p_pc = (byte*)taskData->stack->PS_LR.AsUnsigned();
taskData->stack->PS_LR = taskData->stack->PS_R25; // Restore LR
CheckAndGrowStack(taskData, stackP);
}
catch (IOException) {
// We may get an exception while handling this if we run out of store
}
return -1; // We're in a safe state to handle any interrupts.
case RETURN_RAISE_DIV:
try {
// Generally arithmetic operations don't raise exceptions. Overflow
// is either ignored, for Word operations, or results in a call to
// the abitrary precision emulation code. This is the exception
// (no pun intended).
taskData->stack->p_pc = (byte*)taskData->stack->PS_LR.AsUnsigned();
taskData->stack->PS_LR = TAGGED(0);
// Set all the registers to a safe value here. We will almost certainly
// have shifted a value in one of the registers before testing it for zero.
// This may not actually be needed on the PPC
for (POLYUNSIGNED i = 0; i < taskData->stack->p_nreg; i++)
taskData->stack->p_reg[i] = TAGGED(0);
raise_exception0(taskData, EXC_divide);
}
catch (IOException) {
// Handle the C++ exception.
}
break;
case RETURN_ARB_EMULATION:
try {
taskData->stack->p_pc = (byte*)taskData->stack->PS_LR.AsUnsigned();
taskData->stack->PS_LR = TAGGED(0);
ArbitraryPrecisionTrap(taskData);
}
catch (IOException) {
// We may get an exception in the trap handler e.g. if we run out of store.
}
break;
}
}
}
void PowerPCDependent::SetMemRegisters(TaskData *taskData)
{
PowerPCTaskData *mdTask = (PowerPCTaskData*)taskData->mdTaskData;
mdTask->memRegisters.requestCode = 0;
mdTask->memRegisters.returnReason = RETURN_IO_CALL;
// If we haven't yet set the allocation area or we don't have enough we need
// to create one (or a new one).
if (taskData->allocPointer <= taskData->allocLimit + mdTask->allocWords ||
(userOptions.debug & DEBUG_FORCEGC))
{
if (taskData->allocPointer < taskData->allocLimit)
Crash ("Bad length in heap overflow trap");
// Find some space to allocate in. Updates taskData->allocPointer and
// returns a pointer to the newly allocated space (if allocWords != 0)
(void)processes->FindAllocationSpace(taskData, mdTask->allocWords, true);
}
else if (mdTask->allocWords != 0) // May just be store profiling.
taskData->allocPointer -= mdTask->allocWords;
mdTask->memRegisters.polyStack = taskData->stack;
mdTask->memRegisters.stackTop = taskData->stack->Offset(taskData->stack->Length());
// Set the raiseException entry to point to the assembly code.
mdTask->memRegisters.raiseException = (byte*)raisex;
// Entry point to save the state for an IO call. This is the common entry
// point for all the return and IO-call cases.
mdTask->memRegisters.ioEntry = (byte*)PPCSaveStateAndReturn;
mdTask->memRegisters.heapOverflow = heapOverflow;
mdTask->memRegisters.stackOverflow = stackOverflow;
mdTask->memRegisters.stackOverflowEx = stackOverflowEx;
mdTask->memRegisters.raiseDiv = raiseDiv;
mdTask->memRegisters.arbEmulation = arbEmulation;
// If we have run out of store, either just above or while allocating in the RTS,
// allocPointer and allocLimit will have been set to zero as part of the GC. We will
// now be raising an exception which may free some store but we need to come back here
// before we allocate anything. The compiled code uses unsigned arithmetic to check for
// heap overflow but only after subtracting the space required. We need to make sure
// that the values are still non-negative after substracting any object size.
if (taskData->allocPointer == 0) taskData->allocPointer += MAX_OBJECT_SIZE;
if (taskData->allocLimit == 0) taskData->allocLimit += MAX_OBJECT_SIZE;
mdTask->memRegisters.heapPointer = taskData->allocPointer;
// If we want heap profiling set the size to zero otherwise to the free space.
// Setting this to zero may result in the heap size register becoming negative.
// The code to allocate memory generated by the code generator tests for space,
// traps if it is negative and afterwards subtracts the allocated space from
// the space available. If we set it to zero here it will then become negative.
if (profileMode == kProfileStoreAllocation || (userOptions.debug & DEBUG_REGION_CHECK))
mdTask->memRegisters.heapBase = taskData->allocPointer;
else
mdTask->memRegisters.heapBase = taskData->allocLimit;
// Whenever the ML code enters a function it checks that the stack pointer is above
// this value. The default is to set it to the top of the reserved area
// but if we've had an interrupt we set it to the end of the stack.
// InterruptCode may be called either when the thread is in the RTS or in ML code.
if (taskData->pendingInterrupt)
mdTask->memRegisters.stackLimit = taskData->stack->Offset(taskData->stack->Length()-1);
else mdTask->memRegisters.stackLimit = taskData->stack->Offset(taskData->stack->p_space);
mdTask->memRegisters.threadId = taskData->threadObject;
if (taskData->stack->p_pc == PC_RETRY_SPECIAL)
// We need to retry the call. The entry point should be the
// first word of the closure which is in r24.
taskData->stack->p_pc = taskData->stack->PS_R24.AsObjPtr()->Get(0).AsCodePtr();
}
// Called as part of the call of an IO function.
void PowerPCDependent::StartIOCall(TaskData *taskData)
{
// Set the return address to be the contents of the link register.
// This is a real return address which is safe for the p_pc field but
// not allowed to remain in a register field. We have to add the
// return offset there. Because this may be a retry of the call we may
// already have put in the offset in which case we have to remove it before we
// put it into the pc.
taskData->stack->p_pc = (byte*)(taskData->stack->PS_LR.AsUnsigned() & ~RETURNOFFSET);
taskData->stack->PS_LR = PolyWord::FromUnsigned(taskData->stack->PS_LR.AsUnsigned() | RETURNOFFSET);
}
// IO Functions called indirectly from assembly code.
void PowerPCDependent::CallIO0(TaskData *taskData, Handle (*ioFun)(TaskData *))
{
StartIOCall(taskData);
try {
Handle result = (*ioFun)(taskData);
taskData->stack->PS_R3 = result->Word();
}
catch (IOException exc) {
switch (exc.m_reason)
{
case EXC_EXCEPTION:
return;
case EXC_RETRY:
return;
}
}
}
void PowerPCDependent::CallIO1(TaskData *taskData, Handle (*ioFun)(TaskData *, Handle))
{
StartIOCall(taskData);
Handle saved1 = taskData->saveVec.push(taskData->stack->PS_R3);
try {
Handle result = (*ioFun)(taskData, saved1);
taskData->stack->PS_R3 = result->Word();
}
catch (IOException exc) {
switch (exc.m_reason)
{
case EXC_EXCEPTION:
return;
case EXC_RETRY:
return;
}
}
}
void PowerPCDependent::CallIO2(TaskData *taskData, Handle (*ioFun)(TaskData *, Handle, Handle))
{
StartIOCall(taskData);
Handle saved1 = taskData->saveVec.push(taskData->stack->PS_R3);
Handle saved2 = taskData->saveVec.push(taskData->stack->PS_R4);
try {
Handle result = (*ioFun)(taskData, saved2, saved1);
taskData->stack->PS_R3 = result->Word();
}
catch (IOException exc) {
switch (exc.m_reason)
{
case EXC_EXCEPTION:
return;
case EXC_RETRY:
return;
}
}
}
void PowerPCDependent::CallIO3(TaskData *taskData, Handle (*ioFun)(TaskData *, Handle, Handle, Handle))
{
StartIOCall(taskData);
Handle saved1 = taskData->saveVec.push(taskData->stack->PS_R3);
Handle saved2 = taskData->saveVec.push(taskData->stack->PS_R4);
Handle saved3 = taskData->saveVec.push(taskData->stack->PS_R5);
try {
Handle result = (*ioFun)(taskData, saved3, saved2, saved1);
taskData->stack->PS_R3 = result->Word();
}
catch (IOException exc) {
switch (exc.m_reason)
{
case EXC_EXCEPTION:
return;
case EXC_RETRY:
return;
}
}
}
void PowerPCDependent::CallIO4(TaskData *taskData, Handle (*ioFun)(TaskData *, Handle, Handle, Handle, Handle))
{
StartIOCall(taskData);
Handle saved1 = taskData->saveVec.push(taskData->stack->PS_R3);
Handle saved2 = taskData->saveVec.push(taskData->stack->PS_R4);
Handle saved3 = taskData->saveVec.push(taskData->stack->PS_R5);
Handle saved4 = taskData->saveVec.push(taskData->stack->PS_R6);
try {
Handle result = (*ioFun)(taskData, saved4, saved3, saved2, saved1);
taskData->stack->PS_R3 = result->Word();
}
catch (IOException exc) {
switch (exc.m_reason)
{
case EXC_EXCEPTION:
return;
case EXC_RETRY:
return;
}
}
}
// The only functions with 5 args are move_bytes/word_long
void PowerPCDependent::CallIO5(TaskData *taskData, Handle (*ioFun)(TaskData *, Handle, Handle, Handle, Handle, Handle))
{
StartIOCall(taskData);
Handle saved1 = taskData->saveVec.push(taskData->stack->PS_R3);
Handle saved2 = taskData->saveVec.push(taskData->stack->PS_R4);
Handle saved3 = taskData->saveVec.push(taskData->stack->PS_R5);
Handle saved4 = taskData->saveVec.push(taskData->stack->PS_R6);
Handle saved5 = taskData->saveVec.push(taskData->stack->p_sp[0]);
try {
Handle result = (*ioFun)(taskData, saved5, saved4, saved3, saved2, saved1);
taskData->stack->PS_R3 = result->Word();
taskData->stack->p_sp++; // Pop the final argument now we're returning.
}
catch (IOException exc) {
switch (exc.m_reason)
{
case EXC_EXCEPTION:
return;
case EXC_RETRY:
return;
}
}
}
// Return the callback result. The current ML process (thread) terminates.
Handle PowerPCDependent::CallBackResult(TaskData *taskData)
{
return taskData->saveVec.push(taskData->stack->PS_R3); // Argument to return is in r3.
}
bool PowerPCDependent::GetPCandSPFromContext(TaskData *taskData, SIGNALCONTEXT *scp, PolyWord *&sp, POLYCODEPTR &pc)
{
PowerPCTaskData *mdTask = (PowerPCTaskData*)taskData->mdTaskData;
if (mdTask->memRegisters.inRTS)
{
sp = taskData->stack->p_sp;
pc = taskData->stack->p_pc;
return true;
}
else {
sp = (PolyWord *)(GPSP(scp));
pc = (byte *)(NIP(scp));
return true;
}
}
void PowerPCDependent::InterruptCode(TaskData *taskData)
{
PowerPCTaskData *mdTask = (PowerPCTaskData*)taskData->mdTaskData;
// Set the stack limit pointer to the top of the stack to cause
// a trap when we next check for stack overflow.
// SetMemRegisters actually does this anyway if "pendingInterrupt" is set but
// it's safe to do this repeatedly.
if (taskData->stack != 0)
mdTask->memRegisters.stackLimit = taskData->stack->Offset(taskData->stack->Length()-1);
taskData->pendingInterrupt = true;
}
void PowerPCDependent::SetForRetry(TaskData *taskData, int ioCall)
{
taskData->stack->p_pc = PC_RETRY_SPECIAL; /* This value is treated specially. */
}
static PolyWord *get_reg(TaskData *taskData, int rno)
/* Returns a pointer to the register given by the 5 bit value rno. */
{
/* Registers r0, r1, r2, r26, ML_SL, ML_HL and ML_HP should not be
needed by the emulation code. */
switch (rno)
{
case 3: return &taskData->stack->PS_R3;
case 4: return &taskData->stack->PS_R4;
case 5: return &taskData->stack->PS_R5;
case 6: return &taskData->stack->PS_R6;
case 7: return &taskData->stack->PS_R7;
case 8: return &taskData->stack->PS_R8;
case 9: return &taskData->stack->PS_R9;
case 10: return &taskData->stack->PS_R10;
case 11: return &taskData->stack->PS_R11;
case 12: return &taskData->stack->PS_R12;
case 14: return &taskData->stack->PS_R14;
case 15: return &taskData->stack->PS_R15;
case 16: return &taskData->stack->PS_R16;
case 17: return &taskData->stack->PS_R17;
case 18: return &taskData->stack->PS_R18;
case 19: return &taskData->stack->PS_R19;
case 20: return &taskData->stack->PS_R20;
case 21: return &taskData->stack->PS_R21;
case 22: return &taskData->stack->PS_R22;
case 23: return &taskData->stack->PS_R23;
case 24: return &taskData->stack->PS_R24;
case 25: return &taskData->stack->PS_R25;
case ML_SP: return (PolyWord*)&taskData->stack->p_sp;
case ML_HR: return (PolyWord*)&taskData->stack->p_hr;
default:
Crash("Unknown register %d at 0x%8x\n", rno, (int)(taskData->stack->p_pc));
}
}
static void set_CR0(TaskData *taskData, int CR0)
{
/* insert CR0 into condition register */
taskData->stack->PS_CR0 =
PolyWord::FromUnsigned(
(taskData->stack->PS_CR0.AsUnsigned() & 0x0fffffff) | (CR0 << 28));
}
// Get the next instruction in the sequence, skipping over any
// branch-forwarding jumps that the code-generator may have inserted.
static POLYUNSIGNED getNextInstr(TaskData *taskData)
{
while (1) {
POLYUNSIGNED instr = *(POLYUNSIGNED*)taskData->stack->p_pc;
if ((instr & 0xfc000000) == 0x48000000)
{
POLYUNSIGNED offset = (instr >> 2) & 0xffffff;
ASSERT((offset & 0x800000) == 0); // Shouldn't be a jump back.
taskData->stack->p_pc += offset*sizeof(PolyWord);
}
else
{
taskData->stack->p_pc += sizeof(PolyWord); // Skip this instr
return instr;
}
}
}
static void emulate_trap(TaskData *taskData, POLYUNSIGNED instr)
/* Emulate an "addo.", "subfco.", "cmpw" or "cmpwi" instruction */
{
unsigned opcode = (instr >> 26) & 0x3f; /* 6 bits */
unsigned RT = (instr >> 21) & 0x1f; /* 5 bits */
unsigned RA = (instr >> 16) & 0x1f; /* 5 bits */
/* added 19/12/95 SPF */
if (profileMode == kProfileEmulation)
{
add_count(taskData, taskData->stack->p_pc, taskData->stack->p_sp, 1);
}
#define OPCODE2_addodot ((1 << 10) | (266 << 1) | 1)
#define OPCODE2_subfcodot ((1 << 10) | (8 << 1) | 1)
#define OPCODE2_cmp ((0 << 10) | (0 << 1) | 0)
#define OPCODE2_srawi ((824 << 1) | 0)
/* We emulate comparisons only if they use CR field 0 */
if (opcode == 11 && RT == 0)
{
/* cmpwi RA,SI */
int UI = instr & 0xffff; /* 16 bits */
/* signed comparisons sign-extend the immediate. */
int exp2_15 = 1 << 15;
int exp2_16 = 1 << 16;
int SI = (UI < exp2_15) ? UI : UI - exp2_16;
Handle arg1 = taskData->saveVec.push(*get_reg(taskData, RA));
Handle arg2 = taskData->saveVec.push(PolyWord::FromSigned(SI));
{
/* arguments to comp_longc are backwards */
int res = compareLong(taskData, arg2,arg1);
switch (res)
{
case 1: /* arg1 > arg2 */
set_CR0(taskData, 0x4); /* not LT; GT; not EQ; not SO */
break;
case 0: /* arg1 = arg2 */
set_CR0(taskData, 0x2); /* not LT; not GT; EQ; not SO */
break;
case -1: /* arg1 < arg2 */
set_CR0(taskData, 0x8); /* LT; not GT; not EQ; not SO */
break;
default:
Crash("Bad return value 0x%08x from comp_longc\n", res);
break;
}
}
} /* opcode == 11 */
else if (opcode == 31)
{
unsigned RB = (instr >> 11) & 0x1f; /* 5 bits */
unsigned opcode2 = instr & 0x7ff; /* 11 bits */
if (opcode2 == OPCODE2_addodot)
{
PolyWord a1 = *get_reg(taskData, RA);
PolyWord a2 = *get_reg(taskData, RB);
/* We may have trapped either because one of the arguments
was long or because of overflow. In the latter case
we may well have modified the destination register already.
That's fine unless RT == RA. */
if (RB != 12) Crash("RB != regtemp2");
a2 = PolyWord::FromUnsigned(a2.AsUnsigned() + 1); /* We've removed the tag from this. */
/* printf("Emulating addition rt=%d, ra=%d, rb=%d\n", RT, RA, RB); */
if (IS_INT(a1) && IS_INT(a2))
{
/* Must have been overflow. May have to undo the addition. */
if (RT == RA) a1 = PolyWord::FromUnsigned(a1.AsUnsigned() - (a2.AsUnsigned()-1));
}
Handle arg1 = taskData->saveVec.push(a1);
Handle arg2 = taskData->saveVec.push(a2);
Handle res = add_longc(taskData, arg2, arg1);
/* store result in RT */
*(get_reg(taskData, RT)) = DEREFWORD(res);
/* we don't emulate the condition codes properly,
but we MUST ensure that we reset the SO flag,
because the compiled code tests this flag.
If we left it set, the compiled code would loop
back to re-emulate the instruction, giving us an
endless succession of traps. SPF 11/8/95
*/
set_CR0(taskData, 0x0); /* not LT; not GT; not EQ; not SO */
}
else if (opcode2 == OPCODE2_subfcodot)
{
/* We may have trapped either because one of the arguments
was long or because of overflow. In the latter case
we may well have modified the destination register already.
That's fine unless RT == RA or RT == RB. */
PolyWord a1 = *get_reg(taskData, RA);
PolyWord a2 = *get_reg(taskData, RB);
/* printf("Emulating subtraction rt=%d, ra=%d, rb=%d\n", RT, RA, RB); */
if (RA == 12) a1 = PolyWord::FromUnsigned(a1.AsUnsigned() + 1);
else if (RB == 12) a2 = PolyWord::FromUnsigned(a2.AsUnsigned() - 1);
else Crash("RA != regtemp2 and RB != regtemp2");
if (IS_INT(a1) && IS_INT(a2))
{
/* Must have been overflow. May have to undo the
subtraction. */
if (RT == RB)
a2 = PolyWord::FromUnsigned(a2.AsUnsigned() + (a1.AsUnsigned()-1));
else if (RT == RB)
a1 = PolyWord::FromUnsigned((a2.AsUnsigned()+1) - a1.AsUnsigned());
}
Handle arg1 = taskData->saveVec.push(a1);
Handle arg2 = taskData->saveVec.push(a2);
/* subf is *reversed* subtraction, but sub_longc
(currently) expects reversed arguments, so the
following call ought to be correct. */
Handle res = sub_longc(taskData, arg1, arg2);
/* store result in RT */
*(get_reg(taskData, RT)) = DEREFWORD(res);
/* we don't emulate the condition codes properly,
but we MUST ensure that we reset the SO flag.
*/
set_CR0(taskData, 0x0); /* not LT; not GT; not EQ; not SO */
}
/* We emulate comparisons only if they use CR field 0 */
else if (opcode2 == OPCODE2_cmp && RT == 0)
{
/* arguments to comp_longc are backwards */
PolyWord a1 = *get_reg(taskData, RA);
PolyWord a2 = *get_reg(taskData, RB);
Handle arg1 = taskData->saveVec.push(a1);
Handle arg2 = taskData->saveVec.push(a2);
int res = compareLong(taskData, arg2,arg1);
switch (res)
{
case 1: /* arg1 > arg2 */
set_CR0(taskData, 0x4); /* not LT; GT; not EQ; not SO */
break;
case 0: /* arg1 = arg2 */
set_CR0(taskData, 0x2); /* not LT; not GT; EQ; not SO */
break;
case -1: /* arg1 < arg2 */
set_CR0(taskData, 0x8); /* LT; not GT; not EQ; not SO */
break;
default:
Crash("Bad return value 0x%08x from comp_longc\n", res);
break;
}
}
else if (opcode2 == OPCODE2_srawi)
{
/* Start of multiply sequence. taskData->stack->p_pc now
points at the multiply. */
PolyWord a1 = *get_reg(taskData, RT); /* srawi has regs reversed. */
PolyWord a2 = *get_reg(taskData, 12); /* The second arg is in regtemp2. */
POLYUNSIGNED mullwInstr = getNextInstr(taskData);
assert(RA == 11); /* destination of srawi. */
/* Should be mullwo. rt,r12,r11 */
assert((mullwInstr & 0xfc1fffff) == 0x7C0C5DD7);
RT = (mullwInstr >> 21) & 0x1f;
Handle arg1 = taskData->saveVec.push(a1);
Handle arg2 = taskData->saveVec.push(PolyWord::FromUnsigned(a2.AsUnsigned()+1)); /* This has been untagged. */
Handle res = mult_longc(taskData, arg2, arg1);
*(get_reg(taskData, RT)) = PolyWord::FromUnsigned(DEREFWORD(res).AsUnsigned() - 1); /* Next instr will tag it. */
set_CR0(taskData, 0x0); /* Clear overflow bit. */
}
else
{
Crash("Can't emulate instruction: 0x%08x\n",instr);
}
} /* opcode == 31 */
else /* opcode != 11 && opcode != 31 */
{
Crash("Can't emulate instruction: 0x%08x\n",instr);
}
}
void PowerPCDependent::ArbitraryPrecisionTrap(TaskData *taskData)
{
emulate_trap(taskData, getNextInstr(taskData));
}
void PowerPCDependent::HeapOverflowTrap(TaskData *taskData)
{
PowerPCTaskData *mdTask = (PowerPCTaskData*)taskData->mdTaskData;
// When we come here we have attempted to allocate some memory by
// decrementing the heap pointer register. We have compared it against
// the heap base and found there is insufficient space. That may be a
// fake trap for heap profiling or it may be a real trap.
// R12 should contain the length word.
POLYUNSIGNED lengthWord = taskData->stack->PS_R12.AsUnsigned();
// We need one extra word for the length word itself.
POLYUNSIGNED wordsNeeded = OBJ_OBJECT_LENGTH(lengthWord) + 1;
if (profileMode == kProfileStoreAllocation)
add_count(taskData, taskData->stack->p_pc, taskData->stack->p_sp, wordsNeeded);
else if (taskData->allocPointer >= taskData->allocLimit && ! (userOptions.debug & DEBUG_REGION_CHECK))
Crash ("Spurious heap-limit trap");
taskData->allocPointer += wordsNeeded; // Adjust the heap pointer back
mdTask->allocWords = wordsNeeded; // Actually allocate it in SetMemRegisters.
}
// This is the number of words in the call sequence
#define MAKE_CALL_SEQUENCE_WORDS 5
#ifdef MACOSX
// Mac OS X uses an older assembler syntax.
#define MAKE_IO_CALL_SEQUENCE(ioNum, result) \
{ \
__asm__ __volatile__ ( "bl 1f \n" \
"li r0,%1 \n" \
"stw r0,4(r13) \n" \
"lwz r0,44(r13) \n" \
"mtctr r0 \n" \
"bctr \n" \
"1: mflr r0 \n" \
"stw r0,%0" \
:"=m"(result) \
:"i"(ioNum) \
: "lr","r0" \
); \
}
#else
// Linux
#define MAKE_IO_CALL_SEQUENCE(ioNum, result) \
{ \
__asm__ __volatile__ ( "bl 1f;" \
"li 0,%1;" \
"stw 0,4(13);" \
"lwz 0,44(13);" \
"mtctr 0;" \
"bctr;" \
"1: mflr 0;" \
"stw 0,%0" \
:"=m"(result) \
:"i"(ioNum) \
:"lr","0" \
); \
}
#endif
#ifdef MACOSX
// Mac OS X uses an older assembler syntax.
#define MAKE_EXTRA_CALL_SEQUENCE(exNum, result) \
{ \
__asm__ __volatile__ ( "bl 1f \n" \
"li r0,%1 \n" \
"stw r0,8(r13) \n" \
"lwz r0,44(r13) \n" \
"mtctr r0 \n" \
"bctr \n" \
"1: mflr r0 \n" \
"stw r0,%0" \
:"=m"(result) \
:"i"(exNum) \
:"lr","r0" \
); \
}
#else
// Linux
#define MAKE_EXTRA_CALL_SEQUENCE(exNum, result) \
{ \
__asm__ __volatile__ ( "bl 1f;" \
"li 0,%1;" \
"stw 0,8(13);" \
"lwz 0,44(13);" \
"mtctr 0;" \
"bctr;" \
"1: mflr 0;" \
"stw 0,%0" \
:"=m"(result) \
:"i"(exNum) \
:"lr","0" \
); \
}
#endif
static void add_function_to_io_area(int x, int (*y)())
{
add_word_to_io_area(x, PolyWord::FromUnsigned((POLYUNSIGNED)y));
}
void PowerPCDependent::InitInterfaceVector(void)
{
unsigned char *codeAddr;
MAKE_IO_CALL_SEQUENCE(POLY_SYS_exit, codeAddr);
add_word_to_io_area(POLY_SYS_exit, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_alloc_store, alloc_store);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_chdir, codeAddr);
add_word_to_io_area(POLY_SYS_chdir, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_get_length, get_length_a);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_get_flags, codeAddr);
add_word_to_io_area(POLY_SYS_get_flags, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_str_compare, str_compare);
add_function_to_io_area(POLY_SYS_teststreq, teststreq);
add_function_to_io_area(POLY_SYS_teststrneq, teststrneq);
add_function_to_io_area(POLY_SYS_teststrgtr, teststrgtr);
add_function_to_io_area(POLY_SYS_teststrlss, teststrlss);
add_function_to_io_area(POLY_SYS_teststrgeq, teststrgeq);
add_function_to_io_area(POLY_SYS_teststrleq, teststrleq);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_exception_trace, codeAddr);
add_word_to_io_area(POLY_SYS_exception_trace, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_lockseg, locksega);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_profiler, codeAddr);
add_word_to_io_area(POLY_SYS_profiler, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_is_short, is_shorta);
add_function_to_io_area(POLY_SYS_aplus, add_long);
add_function_to_io_area(POLY_SYS_aminus, sub_long);
add_function_to_io_area(POLY_SYS_amul, mult_long);
add_function_to_io_area(POLY_SYS_adiv, div_long);
add_function_to_io_area(POLY_SYS_amod, rem_long);
add_function_to_io_area(POLY_SYS_aneg, neg_long);
add_function_to_io_area(POLY_SYS_equala, equal_long);
add_function_to_io_area(POLY_SYS_ora, or_long);
add_function_to_io_area(POLY_SYS_anda, and_long);
add_function_to_io_area(POLY_SYS_xora, xor_long);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_Real_str, codeAddr);
add_word_to_io_area(POLY_SYS_Real_str, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_Real_geq, codeAddr);
add_word_to_io_area(POLY_SYS_Real_geq, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_Real_leq, codeAddr);
add_word_to_io_area(POLY_SYS_Real_leq, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_Real_gtr, codeAddr);
add_word_to_io_area(POLY_SYS_Real_gtr, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_Real_lss, codeAddr);
add_word_to_io_area(POLY_SYS_Real_lss, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_Real_eq, codeAddr);
add_word_to_io_area(POLY_SYS_Real_eq, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_Real_neq, codeAddr);
add_word_to_io_area(POLY_SYS_Real_neq, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_Real_Dispatch, codeAddr);
add_word_to_io_area(POLY_SYS_Real_Dispatch, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_Add_real, codeAddr);
add_word_to_io_area(POLY_SYS_Add_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_Sub_real, codeAddr);
add_word_to_io_area(POLY_SYS_Sub_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_Mul_real, codeAddr);
add_word_to_io_area(POLY_SYS_Mul_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_Div_real, codeAddr);
add_word_to_io_area(POLY_SYS_Div_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_Neg_real, codeAddr);
add_word_to_io_area(POLY_SYS_Neg_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_Repr_real, codeAddr);
add_word_to_io_area(POLY_SYS_Repr_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_conv_real, codeAddr);
add_word_to_io_area(POLY_SYS_conv_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_real_to_int, codeAddr);
add_word_to_io_area(POLY_SYS_real_to_int, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_int_to_real, codeAddr);
add_word_to_io_area(POLY_SYS_int_to_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_sqrt_real, codeAddr);
add_word_to_io_area(POLY_SYS_sqrt_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_sin_real, codeAddr);
add_word_to_io_area(POLY_SYS_sin_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_cos_real, codeAddr);
add_word_to_io_area(POLY_SYS_cos_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_arctan_real, codeAddr);
add_word_to_io_area(POLY_SYS_arctan_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_exp_real, codeAddr);
add_word_to_io_area(POLY_SYS_exp_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_ln_real, codeAddr);
add_word_to_io_area(POLY_SYS_ln_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_io_operation, codeAddr);
add_word_to_io_area(POLY_SYS_io_operation, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_atomic_incr, atomic_incr);
add_function_to_io_area(POLY_SYS_atomic_decr, atomic_decr);
add_function_to_io_area(POLY_SYS_thread_self, thread_self);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_thread_dispatch, codeAddr);
add_word_to_io_area(POLY_SYS_thread_dispatch, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_offset_address, offset_address);
add_function_to_io_area(POLY_SYS_shift_right_word, shift_right_word);
add_function_to_io_area(POLY_SYS_word_neq, word_neq);
add_function_to_io_area(POLY_SYS_not_bool, not_bool);
add_function_to_io_area(POLY_SYS_string_length, string_length);
add_function_to_io_area(POLY_SYS_int_eq, int_eq);
add_function_to_io_area(POLY_SYS_int_neq, int_neq);
add_function_to_io_area(POLY_SYS_int_geq, int_geq);
add_function_to_io_area(POLY_SYS_int_leq, int_leq);
add_function_to_io_area(POLY_SYS_int_gtr, int_gtr);
add_function_to_io_area(POLY_SYS_int_lss, int_lss);
add_function_to_io_area(POLY_SYS_or_word, or_word);
add_function_to_io_area(POLY_SYS_and_word, and_word);
add_function_to_io_area(POLY_SYS_xor_word, xor_word);
add_function_to_io_area(POLY_SYS_shift_left_word, shift_left_word);
add_function_to_io_area(POLY_SYS_word_eq, word_eq);
add_function_to_io_area(POLY_SYS_load_byte, load_byte);
add_function_to_io_area(POLY_SYS_load_word, load_word);
add_function_to_io_area(POLY_SYS_is_big_endian, is_big_endian);
add_function_to_io_area(POLY_SYS_bytes_per_word, bytes_per_word);
add_function_to_io_area(POLY_SYS_assign_byte, assign_byte);
add_function_to_io_area(POLY_SYS_assign_word, assign_word);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_objsize, codeAddr);
add_word_to_io_area(POLY_SYS_objsize, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_showsize, codeAddr);
add_word_to_io_area(POLY_SYS_showsize, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_timing_dispatch, codeAddr);
add_word_to_io_area(POLY_SYS_timing_dispatch, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_XWindows, codeAddr);
add_word_to_io_area(POLY_SYS_XWindows, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_full_gc, codeAddr);
add_word_to_io_area(POLY_SYS_full_gc, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_stack_trace, codeAddr);
add_word_to_io_area(POLY_SYS_stack_trace, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_foreign_dispatch, codeAddr);
add_word_to_io_area(POLY_SYS_foreign_dispatch, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_callcode_tupled, codeAddr);
add_word_to_io_area(POLY_SYS_callcode_tupled, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_process_env, codeAddr);
add_word_to_io_area(POLY_SYS_process_env, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_set_string_length, &set_string_length_a); /* DCJM 28/2/01 */
add_function_to_io_area(POLY_SYS_get_first_long_word, &get_first_long_word_a); /* DCJM 28/2/01 */
MAKE_IO_CALL_SEQUENCE(POLY_SYS_shrink_stack, codeAddr);
add_word_to_io_area(POLY_SYS_shrink_stack, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_code_flags, codeAddr);
add_word_to_io_area(POLY_SYS_code_flags, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_shift_right_arith_word, shift_right_arith_word); /* DCJM 10/10/99 */
add_function_to_io_area(POLY_SYS_int_to_word, int_to_word); /* DCJM 10/10/99 */
MAKE_IO_CALL_SEQUENCE(POLY_SYS_set_code_constant, codeAddr); /* DCJM 2/1/01 */
add_word_to_io_area(POLY_SYS_set_code_constant, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_poly_specific, codeAddr); /* DCJM 19/6/06 */
add_word_to_io_area(POLY_SYS_poly_specific, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_move_bytes, move_bytes); /* DCJM 10/10/99 */
add_function_to_io_area(POLY_SYS_move_words, move_words); /* DCJM 10/10/99 */
add_function_to_io_area(POLY_SYS_mul_word, mul_word); /* DCJM 10/10/99 */
add_function_to_io_area(POLY_SYS_plus_word, plus_word); /* DCJM 10/10/99 */
add_function_to_io_area(POLY_SYS_minus_word, minus_word); /* DCJM 10/10/99 */
add_function_to_io_area(POLY_SYS_div_word, div_word); /* DCJM 10/10/99 */
add_function_to_io_area(POLY_SYS_mod_word, mod_word); /* DCJM 10/10/99 */
add_function_to_io_area(POLY_SYS_word_geq, word_geq);
add_function_to_io_area(POLY_SYS_word_leq, word_leq);
add_function_to_io_area(POLY_SYS_word_gtr, word_gtr);
add_function_to_io_area(POLY_SYS_word_lss, word_lss);
// This is now a "closure" like all the other entries.
add_function_to_io_area(POLY_SYS_raisex, raisex);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_io_dispatch, codeAddr);
add_word_to_io_area(POLY_SYS_io_dispatch, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_network, codeAddr);
add_word_to_io_area(POLY_SYS_network, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_os_specific, codeAddr);
add_word_to_io_area(POLY_SYS_os_specific, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_signal_handler, codeAddr);
add_word_to_io_area(POLY_SYS_signal_handler, PolyWord::FromCodePtr(codeAddr));
// Entries for special cases. These are generally, but not always, called from
// compiled code.
MAKE_EXTRA_CALL_SEQUENCE(RETURN_HEAP_OVERFLOW, heapOverflow);
MAKE_EXTRA_CALL_SEQUENCE(RETURN_STACK_OVERFLOW, stackOverflow);
MAKE_EXTRA_CALL_SEQUENCE(RETURN_STACK_OVERFLOWEX, stackOverflowEx);
MAKE_EXTRA_CALL_SEQUENCE(RETURN_RAISE_DIV, raiseDiv);
MAKE_EXTRA_CALL_SEQUENCE(RETURN_ARB_EMULATION, arbEmulation);
}
// Build an ML code segment on the heap to hold a copy of a piece of code
Handle PowerPCDependent::BuildCodeSegment(TaskData *taskData, const byte *code, unsigned codeWords, char functionName)
{
POLYUNSIGNED words = codeWords + 6;
Handle codeHandle = alloc_and_save(taskData, words, F_CODE_OBJ);
byte *cp = codeHandle->Word().AsCodePtr();
memcpy(cp, code, codeWords*sizeof(PolyWord));
codeHandle->WordP()->Set(codeWords++, PolyWord::FromUnsigned(0)); // Marker word
codeHandle->WordP()->Set(codeWords, PolyWord::FromUnsigned(codeWords*sizeof(PolyWord))); // Bytes to the start
codeWords++;
codeHandle->WordP()->Set(codeWords++, PolyWord::FromUnsigned(0)); // Profile count
codeHandle->WordP()->Set(codeWords++, TAGGED(functionName)); // Name of function - single character
codeHandle->WordP()->Set(codeWords++, TAGGED(0)); // Register set
codeHandle->WordP()->Set(codeWords++, PolyWord::FromUnsigned(2)); // Number of constants
FlushInstructionCache(cp, codeWords*sizeof(PolyWord));
return codeHandle;
}
// We need the kill-self code in a little function.
Handle PowerPCDependent::BuildKillSelfCode(TaskData *taskData)
{
byte *codeAddr;
MAKE_IO_CALL_SEQUENCE(POLY_SYS_kill_self, codeAddr);
return BuildCodeSegment(taskData, codeAddr, MAKE_CALL_SEQUENCE_WORDS, 'K');
}
void PowerPCDependent::SetException(TaskData *taskData, poly_exn *exc)
/* Set up the stack of a process to raise an exception. */
{
// This IO entry has changed from being the code to being a closure
// like all the other entries.
taskData->stack->PS_R24 = (PolyObject*)IoEntry(POLY_SYS_raisex);
taskData->stack->p_pc = PC_RETRY_SPECIAL;
taskData->stack->PS_R3 = (PolyWord)exc; /* r3 to exception data */
}
void PowerPCDependent::ResetSignals(void)
{
/* restore default signal handling in child process after a "fork". */
signal(SIGFPE, SIG_DFL);
#ifdef SIGEMT
signal(SIGEMT, SIG_DFL);
#endif
signal(SIGTRAP, SIG_DFL);
signal(SIGILL, SIG_DFL);
/* "just in case" */
signal(SIGBUS, SIG_DFL);
signal(SIGSEGV, SIG_DFL);
}
// Call a piece of compiled code. Note: this doesn't come via CallIO1
// so StartIOCall has not been called.
void PowerPCDependent::CallCodeTupled(TaskData *taskData)
{
// The eventual return address is in the link register - leave it there
// but call StartIOCall to make sure it's tagged before any possible G.C.
StartIOCall(taskData);
PolyObject *argTuple = taskData->stack->PS_R3.AsObjPtr();
Handle closure = taskData->saveVec.push(argTuple->Get(0));
Handle argvec = taskData->saveVec.push(argTuple->Get(1));
if (! IS_INT(DEREFWORD(argvec))) // May be nil if there are no args.
{
PolyObject *argv = DEREFHANDLE(argvec);
POLYUNSIGNED argCount = argv->Length();
if (argCount > 4)
{
// Check we have space for the arguments. This may result in a GC which
// in turn may throw a C++ exception.
try {
CheckAndGrowStack(taskData, taskData->stack->p_sp - (argCount - 4));
}
catch (IOException exc)
{
ASSERT(exc.m_reason == EXC_EXCEPTION); // This should be the only one
return; // Will have been set up to raise an exception.
}
}
// First argument is in r3
taskData->stack->PS_R3 = argv->Get(0);
// Second arg, if there is one, goes into r4 etc.
if (argCount > 1)
taskData->stack->PS_R4 = argv->Get(1);
if (argCount > 2)
taskData->stack->PS_R5 = argv->Get(2);
if (argCount > 3)
taskData->stack->PS_R6 = argv->Get(3);
// Remaining args go on the stack.
for (POLYUNSIGNED i = 4; i < argCount; i++)
*(--taskData->stack->p_sp) = argv->Get(i+2);
}
// The closure goes into the closure reg.
taskData->stack->PS_R24 = DEREFWORD(closure);
// First word of closure is entry point.
taskData->stack->p_pc = DEREFHANDLE(closure)->Get(0).AsCodePtr(); // pc points to the start of the code
}
// Set up a special handler that will trace any uncaught exception within a function.
void PowerPCDependent::SetExceptionTrace(TaskData *taskData)
{
// Save the return address for when we've called the function.
*(--taskData->stack->p_sp) =
PolyWord::FromUnsigned(taskData->stack->PS_LR.AsUnsigned() | RETURNOFFSET);
*(--taskData->stack->p_sp) = PolyWord::FromStackAddr(taskData->stack->p_hr); // Save previous handler.
*(--taskData->stack->p_sp) = TAGGED(0); // Push special handler address.
*(--taskData->stack->p_sp) = TAGGED(0); // Push "catch all" exception id.
taskData->stack->p_hr = taskData->stack->p_sp; // This is the new handler.
Handle fun = taskData->saveVec.push(taskData->stack->PS_R3); // Argument - function to call and trace
taskData->stack->PS_R24 = DEREFWORD(fun); // r24 must contain the closure
taskData->stack->p_pc = DEREFHANDLE(fun)->Get(0).AsCodePtr(); // pc points to the start of the code
// We have to use a special entry here that can be recognised by the exception
// unwinding code because we want to know the stack pointer that is in effect
// at the time the exception is raised. If we simply put a normal handler in here
// that handler would be called after the stack was unwound.
byte *codeAddr;
#ifdef MACOSX
__asm__ __volatile__ (
"bl 1f \n"
"lwz r0,12(r27)\n" // Restore old return address
"lwz r31,8(r27)\n" // Restore old handler
"mtlr r0\n"
"addi r27,r27,16\n" // Pop stack
"blr\n" // Return to exception_trace's caller
"1: mflr r0\n"
"stw r0,%0"
:"=m"(codeAddr)
:
: "lr","r0"
);
#else
__asm__ __volatile__ (
"bl 1f; "
"lwz 0,12(27); " // Restore old return address
"lwz 31,8(27); " // Restore old handler
"mtlr 0; "
"addi 27,27,16; " // Pop stack
"blr; " // Return to exception_trace's caller
"1: mflr 0; "
"stw 0,%0"
:"=m"(codeAddr)
:
:"lr","0"
);
#endif
Handle retCode = BuildCodeSegment(taskData, codeAddr, 5 /* Code is 5 words */, 'R');
// Set the link register so that if the traced function returns normally (i.e. without
// raising an exception) it will enter the "return" code which will remove this handler.
taskData->stack->PS_LR = PolyWord::FromUnsigned(retCode->Word().AsUnsigned() | RETURNOFFSET);
taskData->stack->PS_R3 = TAGGED(0); // Give the function we're calling a unit argument.
}
void PowerPCDependent::ScanConstantsWithinCode(PolyObject *addr, PolyObject */*old*/,
POLYUNSIGNED length, ScanAddress *process)
{
PolyWord *pt = (PolyWord*)addr;
PolyWord *end;
POLYUNSIGNED unused;
/* Find the end of the code (before the constants). */
addr->GetConstSegmentForCode(length, end, unused);
/* Find the end of the code (before the constants). */
end -= 3;
assert(end->AsUnsigned() == 0); /* This should be the marker word. */
while (pt != end)
{
POLYUNSIGNED instr = (*pt).AsUnsigned();
pt++;
if ((instr & 0xfc1f0000) == 0x3c000000) /* addis rd,r0. */
{
POLYUNSIGNED reg = (instr >> 21) & 31;
/* Ignore the unchecked registers. */
if (reg == 11 || reg == 12) continue;
/* Next must be an ADD or OR instruction. */
POLYUNSIGNED instr2 = (*pt).AsUnsigned();
assert((instr2 & 0xfc000000) == 0x38000000 || (instr2 & 0xfc000000) == 0x60000000);
bool isSigned = (instr2 & 0xfc000000) == 0x38000000; /* Add instruction. */
process->ScanConstant((byte*)(pt-1),
isSigned ? PROCESS_RELOC_PPCDUAL16SIGNED : PROCESS_RELOC_PPCDUAL16UNSIGNED);
pt++;
}
}
}
/* Store a constant at a specific address in the code. This is used by
the code generator. It needs to be built into the RTS because we
have to split the value in order to store it into two instructions.
Separately the two values might well be invalid addresses. */
void PowerPCDependent::SetCodeConstant(TaskData *taskData, Handle/*data*/, Handle constant, Handle offseth, Handle base)
{
/* The offset is a byte count. */
POLYUNSIGNED offset = get_C_ulong(taskData, DEREFWORD(offseth));
PolyWord *pointer = DEREFHANDLE(base)->Offset(offset/sizeof(PolyWord));
POLYUNSIGNED c = DEREFWORD(constant).AsUnsigned(); // N.B. This may well really be an address.
unsigned hi = c >> 16, lo = c & 0xffff;
POLYUNSIGNED instr1 = pointer[0].AsUnsigned();
POLYUNSIGNED instr2 = pointer[1].AsUnsigned();
bool isSigned = (instr2 & 0xfc000000) == 0x38000000; /* Add instruction. */
if (isSigned && (lo & 0x8000)) hi++; /* Adjust the for sign extension */
assert((offset & 3) == 0);
// The first word must be addis rd,r0,0.
assert((instr1 & 0xfc1fffff) == 0x3c000000);
// and the next must be addi rd,rd,1 or ori rd,rd,1
assert((instr2 & 0xfc00ffff) == 0x38000001 || (instr2 & 0xfc00ffff) == 0x60000001);
pointer[0] = PolyWord::FromUnsigned(pointer[0].AsUnsigned() | hi);
pointer[1] = PolyWord::FromUnsigned((pointer[1].AsUnsigned() & 0xffff0000) | lo);
}
// We have assembly code versions of atomic increment and decrement and it's
// important that if we use the same method of locking a mutex whether it's
// done in the assembly code or the RTS.
// Increment the value contained in the first word of the mutex.
Handle PowerPCDependent::AtomicIncrement(TaskData *taskData, Handle mutexp)
{
PolyObject *p = DEREFHANDLE(mutexp);
POLYUNSIGNED result;
__asm__ __volatile__ (
"1: lwarx %0,0,%1\n" // Load value at 0(r3) with reservation.
"addi %0,%0,2\n" // 2 is TAGGED(1)-TAG
"stwcx. %0,0,%1\n" // Store the updated value unless someone else did.
"bne- 1b\n" // Repeat if we couldn't do the store
:"=&r"(result) // %0 - Output - updated value. Must not be same as input reg.
:"r"(p) // %1 - Input - address of mutex
: "cc", "memory" // Modifies cc and memory
);
return taskData->saveVec.push(PolyWord::FromUnsigned(result));
}
// Decrement the value contained in the first word of the mutex.
Handle PowerPCDependent::AtomicDecrement(TaskData *taskData, Handle mutexp)
{
PolyObject *p = DEREFHANDLE(mutexp);
POLYUNSIGNED result;
__asm__ __volatile__ (
"1: lwarx %0,0,%1\n" // Load value at 0(r3) with reservation.
"subi %0,%0,2\n" // 2 is TAGGED(1)-TAG
"stwcx. %0,0,%1\n" // Store the updated value unless someone else did.
"bne- 1b\n" // Repeat if we couldn't do the store
:"=&r"(result) // %0 - Output - updated value. Must not be same as input reg.
:"r"(p) // %1 - Input - address of mutex
: "cc", "memory" // Modifies cc and memory
);
return taskData->saveVec.push(PolyWord::FromUnsigned(result));
}
// On the PPC it's important to flush the cache. The PPC has separate data and instruction
// caches and there is no internal synchronisation. This actually does two things: it
// flushes the data cache to memory and also clears the instruction prefetch cache.
void PowerPCDependent::FlushInstructionCache(void *p, POLYUNSIGNED bytes)
{
#if (1)
byte *q = (byte*)p;
// Apparently some processors have 16 byte cache lines and others 32.
#define CACHE_LINE_SIZE 16
while (bytes > 0)
{
// Flush the data cache
__asm__ __volatile("dcbf 0,%0" :: "r"(q));
__asm__ __volatile("sync");
__asm__ __volatile("icbi 0,%0" :: "r"(q));
q += CACHE_LINE_SIZE;
if (bytes <= CACHE_LINE_SIZE)
break;
bytes -= CACHE_LINE_SIZE;
}
__asm__ __volatile("sync");
__asm__ __volatile("isync");
#else
MD_flush_instruction_cache(p, bytes);
#endif
}
extern "C" int registerMaskVector[];
int PowerPCDependent::GetIOFunctionRegisterMask(int ioCall)
{
return registerMaskVector[ioCall];
}
static PowerPCDependent ppcDependent;
MachineDependent *machineDependent = &ppcDependent;
|