1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
|
/*
Title: Thread functions
Author: David C.J. Matthews
Copyright (c) 2007,2008 David C.J. Matthews
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef WIN32
#include "winconfig.h"
#else
#include "config.h"
#endif
#ifdef HAVE_STDIO_H
#include <stdio.h>
#endif
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef HAVE_LIMITS_H
#include <limits.h>
#endif
#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x)
#endif
#ifdef HAVE_PROCESS_H
#include <process.h>
#endif
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h> // Want unistd for _SC_NPROCESSORS_ONLN at least
#endif
#ifdef HAVE_SYS_SELECT_H
#include <sys/select.h>
#endif
#ifdef HAVE_WINDOWS_H
#include <windows.h>
#endif
#if (defined(HAVE_LIBPTHREAD) && defined(HAVE_PTHREAD_H))
#define HAVE_PTHREAD 1
#include <pthread.h>
#endif
#ifdef HAVE_SYS_SYSCTL_H
// Used determine number of processors in Mac OS X.
#include <sys/sysctl.h>
#endif
/************************************************************************
*
* Include runtime headers
*
************************************************************************/
#include "globals.h"
#include "gc.h"
#include "mpoly.h"
#include "arb.h"
#include "machine_dep.h"
#include "diagnostics.h"
#include "processes.h"
#include "run_time.h"
#include "sys.h"
#include "sighandler.h"
#include "scanaddrs.h"
#include "save_vec.h"
#include "rts_module.h"
#include "noreturn.h"
#include "memmgr.h"
#include "locking.h"
#include "profiling.h"
#include "sharedata.h"
#include "exporter.h"
#ifdef WINDOWS_PC
#include "Console.h"
#endif
#define SAVE(x) taskData->saveVec.push(x)
#define SIZEOF(x) (sizeof(x)/sizeof(PolyWord))
// These values are stored in the second word of thread id object as
// a tagged integer. They may be set and read by the thread in the ML
// code.
#define PFLAG_BROADCAST 1 // If set, accepts a broadcast
// How to handle interrrupts
#define PFLAG_IGNORE 0 // Ignore interrupts completely
#define PFLAG_SYNCH 2 // Handle synchronously
#define PFLAG_ASYNCH 4 // Handle asynchronously
#define PFLAG_ASYNCH_ONCE 6 // First handle asynchronously then switch to synch.
#define PFLAG_INTMASK 6 // Mask of the above bits
// Other threads may make requests to a thread.
typedef enum {
kRequestNone = 0, // Increasing severity
kRequestInterrupt = 1,
kRequestKill = 2
} ThreadRequests;
class ProcessTaskData: public TaskData
{
public:
ProcessTaskData();
~ProcessTaskData();
virtual void Lock(void) {}
virtual void Unlock(void) {}
virtual void GarbageCollect(ScanAddress *process);
// If a thread has to block it will block on this.
PCondVar threadLock;
// External requests made are stored here until they
// can be actioned.
ThreadRequests requests;
// Pointer to the mutex when blocked. Set to NULL when it doesn't apply.
PolyObject *blockMutex;
// This is set to false when a thread blocks or enters foreign code,
// While it is true the thread can manipulate ML memory so no other
// thread can garbage collect.
bool inMLHeap;
// In Linux, at least, we need to run a separate timer in each thread
bool runningProfileTimer;
#ifdef HAVE_WINDOWS_H
LONGLONG lastCPUTime; // Used for profiling
#endif
#ifdef HAVE_PTHREAD
pthread_t pthreadId;
#endif
#ifdef HAVE_WINDOWS_H
HANDLE threadHandle;
#endif
};
class Processes: public ProcessExternal, public RtsModule
{
public:
Processes();
virtual void Init(void);
virtual void Uninit(void);
virtual void Reinit(void);
void GarbageCollect(ScanAddress *process);
public:
void BroadcastInterrupt(void);
void BeginRootThread(PolyObject *rootFunction);
void Exit(int n); // Request all ML threads to exit and set the process result code.
// Called when a thread has completed - doesn't return.
virtual NORETURNFN(void ThreadExit(TaskData *taskData));
void BlockAndRestart(TaskData *taskData, int fd, bool posixInterruptable, int ioCall);
// Called when a thread may block. Returns some time later when perhaps
// the input is available.
virtual void ThreadPauseForIO(TaskData *taskData, int fd);
void SwitchSubShells(void);
// Return the task data for the current thread.
virtual TaskData *GetTaskDataForThread(void);
// ForkFromRTS. Creates a new thread from within the RTS.
virtual bool ForkFromRTS(TaskData *taskData, Handle proc, Handle arg);
// Create a new thread. The "args" argument is only used for threads
// created in the RTS by the signal handler.
Handle ForkThread(ProcessTaskData *taskData, Handle threadFunction,
Handle args, PolyWord flags);
// Process general RTS requests from ML.
Handle ThreadDispatch(TaskData *taskData, Handle args, Handle code);
virtual void ThreadUseMLMemory(TaskData *taskData);
virtual void ThreadReleaseMLMemory(TaskData *taskData);
// If the schedule lock is already held we need to use these functions.
void ThreadUseMLMemoryWithSchedLock(TaskData *taskData);
void ThreadReleaseMLMemoryWithSchedLock(TaskData *taskData);
// Requests from the threads for actions that need to be performed by
// the root thread. Make the request and wait until it has completed.
virtual void MakeRootRequest(TaskData *taskData, MainThreadRequest *request);
// Deal with any interrupt or kill requests.
virtual bool ProcessAsynchRequests(TaskData *taskData);
// Process an interrupt request synchronously.
virtual void TestSynchronousRequests(TaskData *taskData);
// Set a thread to be interrupted or killed. Wakes up the
// thread if necessary. MUST be called with taskArrayLock held.
void MakeRequest(ProcessTaskData *p, ThreadRequests request);
// Profiling control.
virtual void StartProfiling(void);
virtual void StopProfiling(void);
#ifdef HAVE_WINDOWS_H
// Windows: Called every millisecond while profiling is on.
void ProfileInterrupt(void);
#else
// Unix: Start a profile timer for a thread.
void StartProfilingTimer(void);
#endif
// Memory allocation. Tries to allocate space. If the allocation succeeds it
// may update the allocation values in the taskData object. If the heap is exhausted
// it may set this thread (or other threads) to raise an exception.
PolyWord *FindAllocationSpace(TaskData *taskData, POLYUNSIGNED words, bool alwaysInSeg);
// Find a task that matches the specified identifier and returns
// it if it exists. MUST be called with taskArrayLock held.
ProcessTaskData *TaskForIdentifier(Handle taskId);
// Signal handling support. The ML signal handler thread blocks until it is
// woken up by the signal detection thread.
virtual bool WaitForSignal(TaskData *taskData, PLock *sigLock);
virtual void SignalArrived(void);
virtual void SetSingleThreaded(void) { singleThreaded = true; }
// Generally, the system runs with multiple threads. After a
// fork, though, there is only one thread.
bool singleThreaded;
// Each thread has an entry in this array.
ProcessTaskData **taskArray;
unsigned taskArraySize; // Current size of the array.
/* schedLock: This lock must be held when making scheduling decisions.
It must also be held before adding items to taskArray, removing
them or scanning the array.
It must also be held before deleting a TaskData object
or using it in a thread other than the "owner" */
PLock schedLock;
#ifdef HAVE_PTHREAD
pthread_key_t tlsId;
#elif defined(HAVE_WINDOWS_H)
DWORD tlsId;
#endif
#ifdef HAVE_WINDOWS_H
HANDLE hWakeupEvent; // Pulsed to wake up any threads waiting for IO.
#endif
// We make an exception packet for Interrupt and store it here.
// This exception can be raised if we run out of store so we need to
// make sure we have the packet before we do.
poly_exn *interrupt_exn;
/* initialThreadWait: The initial thread waits on this for
wake-ups from the ML threads requesting actions such as GC or
close-down. */
PCondVar initialThreadWait;
// A requesting thread sets this to indicate the request. This value
// is only reset once the request has been satisfied.
MainThreadRequest *threadRequest;
PCondVar mlThreadWait; // All the threads block on here until the request has completed.
int exitResult;
bool exitRequest;
// Shutdown locking.
void CrowBarFn(void);
PLock shutdownLock;
PCondVar crowbarLock, crowbarStopped;
bool crowbarRunning;
#ifdef HAVE_WINDOWS_H
// Used in profiling
HANDLE hStopEvent; /* Signalled to stop all threads. */
HANDLE profilingHd;
HANDLE mainThreadHandle; // The same as hMainThread except on Cygwin
LONGLONG lastCPUTime; // CPU used by main thread.
#endif
ProcessTaskData *sigTask; // Pointer to current signal task.
};
// Global process data.
static Processes processesModule;
ProcessExternal *processes = &processesModule;
Processes::Processes(): singleThreaded(false), taskArray(0), taskArraySize(0), interrupt_exn(0),
threadRequest(0), exitResult(0), exitRequest(false),
crowbarRunning(false), sigTask(0)
{
#ifdef HAVE_WINDOWS_H
hWakeupEvent = NULL;
hStopEvent = NULL;
profilingHd = NULL;
lastCPUTime = 0;
mainThreadHandle = NULL;
#endif
}
// Get the attribute flags.
static POLYUNSIGNED ThreadAttrs(TaskData *taskData)
{
return UNTAGGED_UNSIGNED(taskData->threadObject->Get(1));
}
// As far as possible we want locking and unlocking an ML mutex to be fast so
// we try to implement the code in the assembly code using appropriate
// interlocked instructions. That does mean that if we need to lock and
// unlock an ML mutex in this code we have to use the same, machine-dependent,
// code to do it. These are defaults that are used where there is no
// machine-specific code.
// Increment the value contained in the first word of the mutex.
// On most platforms this code will be done with a piece of assembly code.
PLock mutexLock;
Handle MachineDependent::AtomicIncrement(TaskData *taskData, Handle mutexp)
{
mutexLock.Lock();
PolyObject *p = DEREFHANDLE(mutexp);
// A thread can only call this once so the values will be short
PolyWord newValue = TAGGED(UNTAGGED(p->Get(0))+1);
p->Set(0, newValue);
mutexLock.Unlock();
return SAVE(newValue);
}
// Decrement the value contained in the first word of the mutex.
Handle MachineDependent::AtomicDecrement(TaskData *taskData, Handle mutexp)
{
mutexLock.Lock();
PolyObject *p = DEREFHANDLE(mutexp);
PolyWord newValue = TAGGED(UNTAGGED(p->Get(0))-1);
p->Set(0, newValue);
mutexLock.Unlock();
return SAVE(newValue);
}
// Called from interface vector. Generally the assembly code will be
// used instead of this.
Handle AtomicIncrement(TaskData *taskData, Handle mutexp)
{
return machineDependent->AtomicIncrement(taskData, mutexp);
}
// Called from interface vector. Generally the assembly code will be
// used instead of this.
Handle AtomicDecrement(TaskData *taskData, Handle mutexp)
{
return machineDependent->AtomicDecrement(taskData, mutexp);
}
// Return the thread object for the current thread.
// On most platforms this will be done with a piece of assembly code.
Handle ThreadSelf(TaskData *taskData)
{
return SAVE(taskData->threadObject);
}
// Called from interface vector. This is the normal entry point for
// the thread functions.
Handle ThreadDispatch(TaskData *taskData, Handle args, Handle code)
{
return processesModule.ThreadDispatch(taskData, args, code);
}
Handle Processes::ThreadDispatch(TaskData *taskData, Handle args, Handle code)
{
int c = get_C_long(taskData, DEREFWORDHANDLE(code));
ProcessTaskData *ptaskData = (ProcessTaskData *)taskData;
switch (c)
{
case 1: /* A mutex was locked i.e. the count was ~1 or less. We will have set it to
~1. This code blocks if the count is still ~1. It does actually return
if another thread tries to lock the mutex and hasn't yet set the value
to ~1 but that doesn't matter since whenever we return we simply try to
get the lock again. */
{
schedLock.Lock();
// We have to check the value again with schedLock held rather than
// simply waiting because otherwise the unlocking thread could have
// set the variable back to 1 (unlocked) and signalled any waiters
// before we actually got to wait.
if (UNTAGGED(DEREFHANDLE(args)->Get(0)) < 0)
{
// Set this so we can see what we're blocked on.
ptaskData->blockMutex = DEREFHANDLE(args);
// Now release the ML memory. A GC can start.
ThreadReleaseMLMemoryWithSchedLock(ptaskData);
// Wait until we're woken up. We mustn't block if we have been
// interrupted, and are processing interrupts asynchronously, or
// we've been killed.
switch (ptaskData->requests)
{
case kRequestKill:
// We've been killed. Handle this later.
break;
case kRequestInterrupt:
{
// We've been interrupted.
POLYUNSIGNED attrs = ThreadAttrs(ptaskData) & PFLAG_INTMASK;
if (attrs == PFLAG_ASYNCH || attrs == PFLAG_ASYNCH_ONCE)
break;
// If we're ignoring interrupts or handling them synchronously
// we don't do anything here.
}
case kRequestNone:
ptaskData->threadLock.Wait(&schedLock);
}
ptaskData->blockMutex = 0; // No longer blocked.
ThreadUseMLMemoryWithSchedLock(ptaskData);
}
// Return and try and get the lock again.
schedLock.Unlock();
// Test to see if we have been interrupted and if this thread
// processes interrupts asynchronously we should raise an exception
// immediately. Perhaps we do that whenever we exit from the RTS.
return SAVE(TAGGED(0));
}
case 2: /* Unlock a mutex. Called after incrementing the count and discovering
that at least one other thread has tried to lock it. We may need
to wake up threads that are blocked. */
{
// The caller has already set the variable to 1 (unlocked).
// We need to acquire schedLock so that we can
// be sure that any thread that is trying to lock sees either
// the updated value (and so doesn't wait) or has successfully
// waited on its threadLock (and so will be woken up).
schedLock.Lock();
// Unlock any waiters.
for (unsigned i = 0; i < taskArraySize; i++)
{
ProcessTaskData *p = taskArray[i];
// If the thread is blocked on this mutex we can signal the thread.
if (p && p->blockMutex == DEREFHANDLE(args))
p->threadLock.Signal();
}
schedLock.Unlock();
return SAVE(TAGGED(0));
}
case 3: // Atomically drop a mutex and wait for a wake up.
{
// The argument is a pair of a mutex and the time to wake up. The time
// may be zero to indicate an infinite wait. The return value is unit.
// It WILL NOT RAISE AN EXCEPTION unless it is set to handle exceptions
// asynchronously (which it shouldn't do if the ML caller code is correct).
// It may return as a result of any of the following:
// an explicit wake up.
// an interrupt, either direct or broadcast
// a trap i.e. a request to handle an asynchronous event.
Handle mutexH = SAVE(args->WordP()->Get(0));
Handle wakeTime = SAVE(args->WordP()->Get(1));
// We pass zero as the wake time to represent infinity.
bool isInfinite = compareLong(taskData, wakeTime, SAVE(TAGGED(0))) == 0;
// Convert the time into the correct format for WaitUntil before acquiring
// schedLock. div_longc could do a GC which requires schedLock.
#ifdef HAVE_PTHREAD
struct timespec tWake;
if (! isInfinite)
{
// On Unix we represent times as a number of microseconds.
Handle hMillion = Make_arbitrary_precision(taskData, 1000000);
tWake.tv_sec =
get_C_ulong(taskData, DEREFWORDHANDLE(div_longc(taskData, hMillion, wakeTime)));
tWake.tv_nsec =
1000*get_C_ulong(taskData, DEREFWORDHANDLE(rem_longc(taskData, hMillion, wakeTime)));
}
#elif defined(HAVE_WINDOWS_H)
// On Windows it is the number of 100ns units since the epoch
FILETIME tWake;
if (! isInfinite)
{
get_C_pair(taskData, DEREFWORDHANDLE(wakeTime),
(unsigned long*)&tWake.dwHighDateTime, (unsigned long*)&tWake.dwLowDateTime);
}
#endif
schedLock.Lock();
// Atomically release the mutex. This is atomic because we hold schedLock
// so no other thread can call signal or broadcast.
Handle decrResult = machineDependent->AtomicIncrement(taskData, mutexH);
if (UNTAGGED(decrResult->Word()) != 1)
{
DEREFHANDLE(mutexH)->Set(0, TAGGED(1)); // Set this to released.
// The mutex was locked so we have to release any waiters.
// Unlock any waiters.
for (unsigned i = 0; i < taskArraySize; i++)
{
ProcessTaskData *p = taskArray[i];
// If the thread is blocked on this mutex we can signal the thread.
if (p && p->blockMutex == DEREFHANDLE(mutexH))
p->threadLock.Signal();
}
}
// Wait until we're woken up. Don't block if we have been interrupted
// or killed.
if (ptaskData->requests == kRequestNone)
{
// Now release the ML memory. A GC can start.
ThreadReleaseMLMemoryWithSchedLock(ptaskData);
// We pass zero as the wake time to represent infinity.
if (isInfinite)
ptaskData->threadLock.Wait(&schedLock);
else (void)ptaskData->threadLock.WaitUntil(&schedLock, &tWake);
// We want to use the memory again.
ThreadUseMLMemoryWithSchedLock(ptaskData);
}
schedLock.Unlock();
return SAVE(TAGGED(0));
}
case 4: // Wake up the specified thread. Returns false (0) if the thread has
// already been interrupted and is not ignoring interrupts or if the thread
// does not exist (i.e. it's been killed while waiting). Returns true
// if it successfully woke up the thread. The thread may subsequently
// receive an interrupt but we need to know whether we woke the thread
// up before that happened.
{
int result = 0; // Default to failed.
// Acquire the schedLock first. This ensures that this is
// atomic with respect to waiting.
schedLock.Lock();
ProcessTaskData *p = TaskForIdentifier(args);
if (p && p->threadObject == args->WordP())
{
POLYUNSIGNED attrs = ThreadAttrs(p) & PFLAG_INTMASK;
if (p->requests == kRequestNone ||
(p->requests == kRequestInterrupt && attrs == PFLAG_IGNORE))
{
p->threadLock.Signal();
result = 1;
}
}
schedLock.Unlock();
return SAVE(TAGGED(result));
}
// 5 and 6 are no longer used.
case 7: // Fork a new thread. The arguments are the function to run and the attributes.
return ForkThread(ptaskData, SAVE(args->WordP()->Get(0)),
(Handle)0, args->WordP()->Get(1));
case 8: // Test if a thread is active
{
schedLock.Lock();
ProcessTaskData *p = TaskForIdentifier(args);
schedLock.Unlock();
return SAVE(TAGGED(p != 0));
}
case 9: // Send an interrupt to a specific thread
{
schedLock.Lock();
ProcessTaskData *p = TaskForIdentifier(args);
if (p) MakeRequest(p, kRequestInterrupt);
schedLock.Unlock();
if (p == 0)
raise_exception_string(taskData, EXC_thread, "Thread does not exist");
return SAVE(TAGGED(0));
}
case 10: // Broadcast an interrupt to all threads that are interested.
BroadcastInterrupt();
return SAVE(TAGGED(0));
case 11: // Interrupt this thread now if it has been interrupted
TestSynchronousRequests(taskData);
return SAVE(TAGGED(0));
case 12: // Kill a specific thread
{
schedLock.Lock();
ProcessTaskData *p = TaskForIdentifier(args);
if (p) MakeRequest(p, kRequestKill);
schedLock.Unlock();
if (p == 0)
raise_exception_string(taskData, EXC_thread, "Thread does not exist");
return SAVE(TAGGED(0));
}
case 13: // Return the number of processors.
// Returns 1 if there is any problem.
{
#ifdef WIN32
SYSTEM_INFO info;
memset(&info, 0, sizeof(info));
GetSystemInfo(&info);
if (info.dwNumberOfProcessors == 0) // Just in case
info.dwNumberOfProcessors = 1;
return Make_unsigned(taskData, info.dwNumberOfProcessors);
#elif(defined(_SC_NPROCESSORS_ONLN))
long res = sysconf(_SC_NPROCESSORS_ONLN);
if (res <= 0) res = 1;
return Make_arbitrary_precision(taskData, res);
#elif(defined(HAVE_SYSCTL) && defined(CTL_HW) && defined(HW_NCPU))
static int mib[2] = { CTL_HW, HW_NCPU };
int nCPU = 1;
size_t len = sizeof(nCPU);
if (sysctl(mib, 2, &nCPU, &len, NULL, 0) == 0 && len == sizeof(nCPU))
return Make_unsigned(taskData, nCPU);
else return Make_unsigned(taskData, 1);
#else
// Can't determine.
return Make_unsigned(taskData, 1);
#endif
}
default:
{
char msg[100];
sprintf(msg, "Unknown thread function: %d", c);
raise_fail(taskData, msg);
return 0;
}
}
}
TaskData::TaskData(): allocPointer(0), allocLimit(0), allocSize(MIN_HEAP_SIZE), allocCount(0),
stack(0), threadObject(0), signalStack(0), pendingInterrupt(false)
{
// Initialise the dummy save vec entries used to extend short precision arguments.
// This is a bit of a hack.
x_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(x_extend[1])));
y_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(y_extend[1])));
x_ehandle = &x_extend_addr;
y_ehandle = &y_extend_addr;
}
TaskData::~TaskData()
{
if (signalStack) free(signalStack);
}
// Fill unused allocation space with a dummy object to preserve the invariant
// that memory is always valid.
void TaskData::FillUnusedSpace(void)
{
if (allocPointer > allocLimit)
gMem.FillUnusedSpace(allocLimit, allocPointer-allocLimit);
}
ProcessTaskData::ProcessTaskData(): requests(kRequestNone), blockMutex(0), inMLHeap(false),
runningProfileTimer(false)
{
#ifdef HAVE_WINDOWS_H
lastCPUTime = 0;
#endif
#ifdef HAVE_PTHREAD
pthreadId = 0;
#endif
#ifdef HAVE_WINDOWS_H
threadHandle = 0;
#endif
}
ProcessTaskData::~ProcessTaskData()
{
#ifdef HAVE_WINDOWS_H
if (threadHandle) CloseHandle(threadHandle);
#endif
}
// Find a task that matches the specified identifier and returns
// it if it exists. MUST be called with taskArrayLock held.
ProcessTaskData *Processes::TaskForIdentifier(Handle taskId)
{
// The index is in the first word of the thread object.
unsigned index = UNTAGGED_UNSIGNED(taskId->WordP()->Get(0));
// Check the index is valid and matches the object stored in the table.
if (index < taskArraySize)
{
ProcessTaskData *p = taskArray[index];
if (p && p->threadObject == taskId->WordP())
return p;
}
return 0;
}
// Broadcast an interrupt to all relevant threads.
void Processes::BroadcastInterrupt(void)
{
// If a thread is set to accept broadcast interrupts set it to
// "interrupted".
schedLock.Lock();
for (unsigned i = 0; i < taskArraySize; i++)
{
ProcessTaskData *p = taskArray[i];
if (p)
{
POLYUNSIGNED attrs = ThreadAttrs(p);
if (attrs & PFLAG_BROADCAST)
MakeRequest(p, kRequestInterrupt);
}
}
schedLock.Unlock();
}
// Set the asynchronous request variable for the thread. Must be called
// with the schedLock held. Tries to wake the thread up if possible.
void Processes::MakeRequest(ProcessTaskData *p, ThreadRequests request)
{
// We don't override a request to kill by an interrupt request.
if (p->requests < request)
{
p->requests = request;
machineDependent->InterruptCode(p);
p->threadLock.Signal();
// Set the value in the ML object as well so the ML code can see it
p->threadObject->Set(3, TAGGED(request));
}
#ifdef HAVE_WINDOWS_H
// Wake any threads waiting for IO
PulseEvent(hWakeupEvent);
#endif
}
void Processes::ThreadExit(TaskData *taskData)
{
if (singleThreaded) finish(0);
schedLock.Lock();
ThreadReleaseMLMemoryWithSchedLock(taskData); // Allow a GC if it was waiting for us.
// Remove this from the taskArray
unsigned index = UNTAGGED(taskData->threadObject->Get(0));
if (index < taskArraySize && taskArray[index] == taskData)
taskArray[index] = 0;
delete(taskData);
initialThreadWait.Signal(); // Tell it we've finished.
schedLock.Unlock();
#ifdef HAVE_PTHREAD
pthread_exit(0);
#elif defined(HAVE_WINDOWS_H)
ExitThread(0);
#endif
}
// These two functions are used for calls from outside where
// the lock has not yet been acquired.
void Processes::ThreadUseMLMemory(TaskData *taskData)
{
// Trying to acquire the lock here may block if a GC is in progress
schedLock.Lock();
ThreadUseMLMemoryWithSchedLock(taskData);
schedLock.Unlock();
}
void Processes::ThreadReleaseMLMemory(TaskData *taskData)
{
schedLock.Lock();
ThreadReleaseMLMemoryWithSchedLock(taskData);
schedLock.Unlock();
}
// Called when a thread wants to resume using the ML heap. That could
// be after a wait for some reason or after executing some foreign code.
// Since there could be a GC in progress already at this point we may either
// be blocked waiting to acquire schedLock or we may need to wait until
// we are woken up at the end of the GC.
void Processes::ThreadUseMLMemoryWithSchedLock(TaskData *taskData)
{
ProcessTaskData *ptaskData = (ProcessTaskData *)taskData;
// If there is a request outstanding we have to wait for it to
// complete. We notify the root thread and wait for it.
while (threadRequest != 0)
{
initialThreadWait.Signal();
// Wait for the GC to happen
mlThreadWait.Wait(&schedLock);
}
ASSERT(! ptaskData->inMLHeap);
ptaskData->inMLHeap = true;
}
// Called to indicate that the thread has temporarily finished with the
// ML memory either because it is going to wait for something or because
// it is going to run foreign code. If there is an outstanding GC request
// that can proceed.
void Processes::ThreadReleaseMLMemoryWithSchedLock(TaskData *taskData)
{
ProcessTaskData *ptaskData = (ProcessTaskData *)taskData;
ASSERT(ptaskData->inMLHeap);
ptaskData->inMLHeap = false;
// Put a dummy object in any unused space. This maintains the
// invariant that the allocated area is filled with valid objects.
ptaskData->FillUnusedSpace();
//
if (threadRequest != 0)
initialThreadWait.Signal();
}
// Make a request to the root thread.
void Processes::MakeRootRequest(TaskData *taskData, MainThreadRequest *request)
{
if (singleThreaded)
request->Perform();
else
{
PLocker locker(&schedLock);
// Wait for any other requests.
while (threadRequest != 0)
{
// Deal with any pending requests.
ThreadReleaseMLMemoryWithSchedLock(taskData);
ThreadUseMLMemoryWithSchedLock(taskData); // Drops schedLock while waiting.
}
// Now the other requests have been dealt with (and we have schedLock).
request->completed = false;
threadRequest = request;
// Wait for it to complete.
while (! request->completed)
{
ThreadReleaseMLMemoryWithSchedLock(taskData);
ThreadUseMLMemoryWithSchedLock(taskData); // Drops schedLock while waiting.
}
}
}
// Find space for an object. Returns a pointer to the start. "words" must include
// the length word and the result points at where the length word will go.
PolyWord *Processes::FindAllocationSpace(TaskData *taskData, POLYUNSIGNED words, bool alwaysInSeg)
{
bool triedInterrupt = false;
if (userOptions.debug & DEBUG_FORCEGC) // Always GC when allocating?
QuickGC(taskData, words);
while (1)
{
// After a GC allocPointer and allocLimit are zero and when allocating the
// heap segment we request a minimum of zero words.
if (taskData->allocPointer != 0 && taskData->allocPointer >= taskData->allocLimit + words)
{
// There's space in the current segment,
taskData->allocPointer -= words;
return taskData->allocPointer;
}
else // Insufficient space in this area.
{
if (words > taskData->allocSize && ! alwaysInSeg)
{
// If the object we want is larger than the heap segment size
// we allocate it separately rather than in the segment.
PolyWord *foundSpace = gMem.AllocHeapSpace(words);
if (foundSpace) return foundSpace;
}
else
{
// Fill in any unused space in the existing segment
taskData->FillUnusedSpace();
// Get another heap segment with enough space for this object.
POLYUNSIGNED spaceSize = taskData->allocSize+words;
// Get the space and update spaceSize with the actual size.
PolyWord *space = gMem.AllocHeapSpace(words, spaceSize);
if (space)
{
// Double the allocation size for the next time.
taskData->IncrementAllocationCount();
taskData->allocLimit = space;
taskData->allocPointer = space+spaceSize;
// Actually allocate the object
taskData->allocPointer -= words;
return taskData->allocPointer;
}
}
// Try garbage-collecting. If this failed return 0.
if (! QuickGC(taskData, words))
{
if (! triedInterrupt)
{
triedInterrupt = true;
fprintf(stderr,"Run out of store - interrupting threads\n");
BroadcastInterrupt();
if (ProcessAsynchRequests(taskData))
return 0; // Has been interrupted.
// Not interrupted: pause this thread to allow for other
// interrupted threads to free something.
#if defined(WINDOWS_PC)
Sleep(5000);
#else
sleep(5);
#endif
// Try again.
}
else {
// That didn't work. Exit.
fprintf(stderr,"Failed to recover - exiting\n");
Exit(1);
}
}
// Try again. There should be space now.
}
}
}
Handle exitThread(TaskData *taskData)
/* A call to this is put on the stack of a new thread so when the
thread function returns the thread goes away. */
{
processesModule.ThreadExit(taskData);
}
/* Called when a thread is about to block, usually because of IO.
fd may be negative if the file descriptor value is not relevant.
If this is interruptable (currently only used for Posix functions)
the process will be set to raise an exception if any signal is handled.
It may also raise an exception if another thread has called
broadcastInterrupt. */
void Processes::ThreadPauseForIO(TaskData *taskData, int fd)
{
TestSynchronousRequests(taskData); // Consider this a blocking call that may raise Interrupt
ThreadReleaseMLMemory(taskData);
#ifdef WINDOWS_PC
/* It's too complicated in Windows to try and wait for a stream.
We simply wait for half a second or until a Windows message
arrives. */
/* We seem to need to reset the queue before calling
MsgWaitForMultipleObjects otherwise it frequently returns
immediately, often saying there is a message with a message ID
of 0x118 which doesn't correspond to any listed message.
While calling PeekMessage afterwards might be better this doesn't
seem to work properly. We need to use MsgWaitForMultipleObjects
here so that we get a reasonable response with the Windows GUI. */
MSG msg;
// N.B. It seems that calling PeekMessage may result in a callback
// to a window proc directly without a call to DispatchMessage. That
// could result in a recursive call here if we have installed an ML
// window proc.
PeekMessage(&msg, 0, 0, 0, PM_NOREMOVE);
// Wait until we get input or we're woken up.
MsgWaitForMultipleObjects(1, &hWakeupEvent, FALSE, 100, QS_ALLINPUT);
#else
fd_set read_fds, write_fds, except_fds;
struct timeval toWait = { 0, 100000 }; /* 100ms. */
FD_ZERO(&read_fds);
if (fd >= 0) FD_SET(fd, &read_fds);
FD_ZERO(&write_fds);
FD_ZERO(&except_fds);
select(FD_SETSIZE, &read_fds, &write_fds, &except_fds, &toWait);
#endif
ThreadUseMLMemory(taskData);
TestSynchronousRequests(taskData); // Check if we've been interrupted.
if (ProcessAsynchRequests(taskData))
throw IOException(EXC_EXCEPTION);
}
// This is largely a legacy of the old single-thread version. In that version there
// was only a single C thread managing multiple ML threads (processes) so if an ML
// thread blocked it was necessary to switch the thread and then for the C function
// call to raise an exception to get back to ML.
// TODO: There's actually a race here if we have posixInterruptible set. We
// repeatedly come back here and if a signal happens while we're in
// ThreadPauseForIO we will raise the exception. If the signal happens at
// another point we won't.
void Processes::BlockAndRestart(TaskData *taskData, int fd, bool posixInterruptable, int ioCall)
{
machineDependent->SetForRetry(taskData, ioCall);
unsigned lastSigCount = receivedSignalCount;
ThreadPauseForIO(taskData, fd);
// If this is an interruptible Posix function we raise an exception if
// there has been a signal.
if (posixInterruptable && lastSigCount != receivedSignalCount)
raise_syscall(taskData, "Call interrupted by signal", EINTR);
throw IOException(EXC_EXCEPTION);
/* NOTREACHED */
}
// Get the task data for the current thread. This is held in
// thread-local storage. Normally this is passed in taskData but
// in a few cases this isn't available.
TaskData *Processes::GetTaskDataForThread(void)
{
#ifdef HAVE_PTHREAD
return (TaskData *)pthread_getspecific(tlsId);
#elif defined(HAVE_WINDOWS_H)
return (TaskData *)TlsGetValue(tlsId);
#else
// If there's no threading.
return taskArray[0];
#endif
}
// This function is run when a new thread has been forked. The
// parameter is the taskData value for the new thread. This function
// is also called directly for the main thread.
#ifdef HAVE_PTHREAD
static void *NewThreadFunction(void *parameter)
{
ProcessTaskData *taskData = (ProcessTaskData *)parameter;
#ifdef HAVE_WINDOWS_H
// Cygwin: Get the Windows thread handle in case it's needed for profiling.
HANDLE thisProcess = GetCurrentProcess();
DuplicateHandle(thisProcess, GetCurrentThread(), thisProcess,
&(taskData->threadHandle), THREAD_ALL_ACCESS, FALSE, 0);
#endif
initThreadSignals(taskData);
pthread_setspecific(processesModule.tlsId, taskData);
taskData->saveVec.init(); // Removal initial data
processes->ThreadUseMLMemory(taskData);
try {
(void)EnterPolyCode(taskData); // Will normally (always?) call ExitThread.
}
catch (KillException) {
processesModule.ThreadExit(taskData);
}
return 0;
}
#elif defined(HAVE_WINDOWS_H)
static DWORD WINAPI NewThreadFunction(void *parameter)
{
ProcessTaskData *taskData = (ProcessTaskData *)parameter;
TlsSetValue(processesModule.tlsId, taskData);
taskData->saveVec.init(); // Removal initial data
processes->ThreadUseMLMemory(taskData);
try {
(void)EnterPolyCode(taskData);
}
catch (KillException) {
processesModule.ThreadExit(taskData);
}
return 0;
}
#else
static void NewThreadFunction(void *parameter)
{
ProcessTaskData *taskData = (ProcessTaskData *)parameter;
initThreadSignals(taskData);
taskData->saveVec.init(); // Removal initial data
processes->ThreadUseMLMemory(taskData);
try {
(void)EnterPolyCode(taskData);
}
catch (KillException) {
processesModule.ThreadExit(taskData);
}
}
#endif
// Sets up the initial thread from the root function. This is run on
// the initial thread of the process so it will work if we don't
// have pthreads.
// When multithreading this thread also deals with all garbage-collection
// and similar operations and the ML threads send it requests to deal with
// that. These require all the threads to pause until the operation is complete
// since they affect all memory but they are also sometimes highly recursive.
// On Mac OS X and on Linux if the stack limit is set to unlimited only the
// initial thread has a large stack and newly created threads have smaller
// stacks. We need to make sure that any significant stack usage occurs only
// on the inital thread.
void Processes::BeginRootThread(PolyObject *rootFunction)
{
if (taskArraySize < 1)
{
taskArray = (ProcessTaskData **)realloc(taskArray, sizeof(ProcessTaskData *));
taskArraySize = 1;
}
// We can't use ForkThread because we don't have a taskData object before we start
ProcessTaskData *taskData = new ProcessTaskData;
taskData->mdTaskData = machineDependent->CreateTaskData();
taskData->threadObject = (ThreadObject*)alloc(taskData, 4, F_MUTABLE_BIT);
taskData->threadObject->index = TAGGED(0); // Index 0
// The initial thread is set to accept broadcast interrupt requests
// and handle them synchronously. This is for backwards compatibility.
taskData->threadObject->flags = TAGGED(PFLAG_BROADCAST|PFLAG_ASYNCH); // Flags
taskData->threadObject->threadLocal = TAGGED(0); // Empty thread-local store
taskData->threadObject->requestCopy = TAGGED(0); // Cleared interrupt state
#ifdef HAVE_PTHREAD
taskData->pthreadId = pthread_self();
#elif defined(HAVE_WINDOWS_H)
taskData->threadHandle = hMainThread;
#endif
taskArray[0] = taskData;
Handle stack =
alloc_and_save(taskData, machineDependent->InitialStackSize(), F_MUTABLE_BIT|F_STACK_OBJ);
taskData->stack = (StackObject *)DEREFHANDLE(stack);
machineDependent->InitStackFrame(taskData, stack,
taskData->saveVec.push(rootFunction), (Handle)0);
// Create a packet for the Interrupt exception once so that we don't have to
// allocate when we need to raise it.
// We can only do this once the taskData object has been created.
if (interrupt_exn == 0)
interrupt_exn =
DEREFEXNHANDLE(make_exn(taskData, EXC_interrupt, taskData->saveVec.push(TAGGED(0))));
if (singleThreaded)
{
// If we don't have threading enter the code as if this were a new thread.
// This will call finish so will never return.
NewThreadFunction(taskData);
}
schedLock.Lock();
bool success = false;
#ifdef HAVE_PTHREAD
// Create a thread that isn't joinable since we don't want to wait
// for it to finish.
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED);
success = pthread_create(&taskData->pthreadId, &attrs, NewThreadFunction, taskData) == 0;
pthread_attr_destroy(&attrs);
#elif defined(HAVE_WINDOWS_H)
DWORD dwThrdId; // Have to provide this although we don't use it.
taskData->threadHandle =
CreateThread(NULL, 0, NewThreadFunction, taskData, 0, &dwThrdId);
success = taskData->threadHandle != NULL;
#endif
if (! success)
{
// Thread creation failed.
taskArray[0] = 0;
delete(taskData);
}
// Wait until the threads terminate or make a request.
// We only release schedLock while waiting.
while (1)
{
// Look at the threads to see if they are running.
bool allStopped = true;
bool allDied = true;
for (unsigned i = 0; i < taskArraySize; i++)
{
ProcessTaskData *p = taskArray[i];
// If the only thread left is the signal thread assume we're finished.
if (p && p != sigTask) allDied = false;
if (p && p->inMLHeap)
{
allStopped = false;
// It must be running - interrupt it if we are waiting.
if (threadRequest != 0)
machineDependent->InterruptCode(p);
}
}
if (allDied)
break; // All threads have died: exit.
if (allStopped && threadRequest != 0)
{
threadRequest->Perform();
threadRequest->completed = true;
threadRequest = 0; // Allow a new request.
mlThreadWait.Signal();
}
// Have we had a request to stop? This may have happened while in the GC.
if (exitRequest)
{
// Set this to kill the threads.
for (unsigned i = 0; i < taskArraySize; i++)
{
ProcessTaskData *taskData = taskArray[i];
if (taskData)
MakeRequest(taskData, kRequestKill);
}
exitRequest = false; // Don't need to repeat this.
}
// Now release schedLock and wait for a thread
// to wake us up. Use a timed wait to avoid the race with
// setting exitRequest.
initialThreadWait.WaitFor(&schedLock, 2000);
}
schedLock.Unlock();
// We are about to return normally. Stop any crowbar function
// and wait until it stops.
shutdownLock.Lock();
if (crowbarRunning)
{
crowbarLock.Signal();
crowbarStopped.Wait(&shutdownLock);
}
finish(exitResult); // Close everything down and exit.
}
// Create a new thread. Returns the ML thread identifier object if it succeeds.
// May raise an exception.
Handle Processes::ForkThread(ProcessTaskData *taskData, Handle threadFunction,
Handle args, PolyWord flags)
{
if (singleThreaded)
raise_exception_string(taskData, EXC_thread, "Threads not available");
// Create a taskData object for the new thread
ProcessTaskData *newTaskData = new ProcessTaskData;
newTaskData->mdTaskData = machineDependent->CreateTaskData();
// We allocate the thread object in the PARENT's space
Handle threadId = alloc_and_save(taskData, 4, F_MUTABLE_BIT);
newTaskData->threadObject = (ThreadObject*)DEREFHANDLE(threadId);
newTaskData->threadObject->index = TAGGED(0);
newTaskData->threadObject->flags = flags; // Flags
newTaskData->threadObject->threadLocal = TAGGED(0); // Empty thread-local store
newTaskData->threadObject->requestCopy = TAGGED(0); // Cleared interrupt state
unsigned thrdIndex;
schedLock.Lock();
// Before forking a new thread check to see whether we have been asked
// to exit. Processes::Exit sets the current set of threads to exit but won't
// see a new thread.
if (taskData->requests == kRequestKill)
{
schedLock.Unlock();
// Raise an exception although the thread may exit before we get there.
raise_exception_string(taskData, EXC_thread, "Thread is exiting");
}
// See if there's a spare entry in the array.
for (thrdIndex = 0;
thrdIndex < taskArraySize && taskArray[thrdIndex] != 0;
thrdIndex++);
if (thrdIndex == taskArraySize) // Need to expand the array
{
ProcessTaskData **newArray =
(ProcessTaskData **)realloc(taskArray, sizeof(ProcessTaskData *)*(taskArraySize+1));
if (newArray)
{
taskArray = newArray;
taskArraySize++;
}
else
{
delete(newTaskData);
schedLock.Unlock();
raise_exception_string(taskData, EXC_thread, "Too many threads");
}
}
// Add into the new entry
taskArray[thrdIndex] = newTaskData;
newTaskData->threadObject->Set(0, TAGGED(thrdIndex)); // Set to the index
schedLock.Unlock();
Handle stack = // Allocate the stack in the parent's heap.
alloc_and_save(taskData, machineDependent->InitialStackSize(), F_MUTABLE_BIT|F_STACK_OBJ);
newTaskData->stack = (StackObject *)DEREFHANDLE(stack);
// Also allocate anything needed for the new stack in the parent's heap.
// The child still has inMLHeap set so mustn't GC.
machineDependent->InitStackFrame(taskData, stack, threadFunction, args);
// Now actually fork the thread.
bool success = false;
schedLock.Lock();
#ifdef HAVE_PTHREAD
// Create a thread that isn't joinable since we don't want to wait
// for it to finish.
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED);
success = pthread_create(&newTaskData->pthreadId, &attrs, NewThreadFunction, newTaskData) == 0;
pthread_attr_destroy(&attrs);
#elif defined(HAVE_WINDOWS_H)
DWORD dwThrdId; // Have to provide this although we don't use it.
newTaskData->threadHandle =
CreateThread(NULL, 0, NewThreadFunction, newTaskData, 0, &dwThrdId);
success = newTaskData->threadHandle != NULL;
#endif
if (success)
{
schedLock.Unlock();
return threadId;
}
// Thread creation failed.
taskArray[thrdIndex] = 0;
delete(newTaskData);
schedLock.Unlock();
raise_exception_string(taskData, EXC_thread, "Thread creation failed");
}
// ForkFromRTS. Creates a new thread from within the RTS. This is currently used
// only to run a signal function.
bool Processes::ForkFromRTS(TaskData *taskData, Handle proc, Handle arg)
{
try {
(void)ForkThread((ProcessTaskData*)taskData, proc, arg, TAGGED(PFLAG_SYNCH));
return true;
} catch (IOException)
{
// If it failed
return false;
}
}
// Deal with any interrupt or kill requests.
bool Processes::ProcessAsynchRequests(TaskData *taskData)
{
bool wasInterrupted = false;
ProcessTaskData *ptaskData = (ProcessTaskData *)taskData;
schedLock.Lock();
switch (ptaskData->requests)
{
case kRequestNone:
schedLock.Unlock();
break;
case kRequestInterrupt:
{
// Handle asynchronous interrupts only.
// We've been interrupted.
POLYUNSIGNED attrs = ThreadAttrs(ptaskData);
POLYUNSIGNED intBits = attrs & PFLAG_INTMASK;
if (intBits == PFLAG_ASYNCH || intBits == PFLAG_ASYNCH_ONCE)
{
if (intBits == PFLAG_ASYNCH_ONCE)
{
// Set this so from now on it's synchronous.
// This word is only ever set by the thread itself so
// we don't need to synchronise.
attrs = (attrs & (~PFLAG_INTMASK)) | PFLAG_SYNCH;
ptaskData->threadObject->Set(1, TAGGED(attrs));
}
ptaskData->requests = kRequestNone; // Clear this
ptaskData->threadObject->Set(3, TAGGED(0)); // And in the ML copy
schedLock.Unlock();
// Don't actually throw the exception here.
machineDependent->SetException(taskData, interrupt_exn);
wasInterrupted = true;
}
else schedLock.Unlock();
}
break;
case kRequestKill: // The thread has been asked to stop.
schedLock.Unlock();
throw KillException();
// Doesn't return.
}
#ifndef HAVE_WINDOWS_H
// Start the profile timer if needed.
if (profileMode == kProfileTime)
{
if (! ptaskData->runningProfileTimer)
{
ptaskData->runningProfileTimer = true;
StartProfilingTimer();
}
}
else ptaskData->runningProfileTimer = false;
// The timer will be stopped next time it goes off.
#endif
return wasInterrupted;
}
// If this thread is processing interrupts synchronously and has been
// interrupted clear the interrupt and raise the exception. This is
// called from IO routines which may block.
void Processes::TestSynchronousRequests(TaskData *taskData)
{
ProcessTaskData *ptaskData = (ProcessTaskData *)taskData;
schedLock.Lock();
switch (ptaskData->requests)
{
case kRequestNone:
schedLock.Unlock();
break;
case kRequestInterrupt:
{
// Handle synchronous interrupts only.
// We've been interrupted.
POLYUNSIGNED attrs = ThreadAttrs(ptaskData);
POLYUNSIGNED intBits = attrs & PFLAG_INTMASK;
if (intBits == PFLAG_SYNCH)
{
ptaskData->requests = kRequestNone; // Clear this
ptaskData->threadObject->Set(3, TAGGED(0));
schedLock.Unlock();
machineDependent->SetException(taskData, interrupt_exn);
throw IOException(EXC_EXCEPTION);
}
else schedLock.Unlock();
}
break;
case kRequestKill: // The thread has been asked to stop.
schedLock.Unlock();
throw KillException();
// Doesn't return.
}
}
// Stop. Usually called by one of the threads but
// in the Windows version can also be called by the GUI or
// it can be called from the default console interrupt handler.
// This is more complicated than it seems. We must avoid
// calling exit while there are other threads running because
// exit will finalise the modules and deallocate memory etc.
// However some threads may be deadlocked or we may be in the
// middle of a very slow GC and we just want it to stop.
void Processes::CrowBarFn(void)
{
#if (defined(HAVE_PTHREAD) || defined(HAVE_WINDOWS_H))
shutdownLock.Lock();
crowbarRunning = true;
if (crowbarLock.WaitFor(&shutdownLock, 20000)) // Wait for 20s
{
// We've been woken by the main thread. Let it do the shutdown.
crowbarStopped.Signal();
shutdownLock.Unlock();
}
else
{
#if defined(HAVE_WINDOWS_H)
ExitProcess(1);
#else
_exit(1); // Something is stuck. Get out without calling destructors.
#endif
}
#endif
}
#ifdef HAVE_PTHREAD
static void *crowBarFn(void*)
{
processesModule.CrowBarFn();
return 0;
}
#elif defined(HAVE_WINDOWS_H)
static DWORD WINAPI crowBarFn(LPVOID arg)
{
processesModule.CrowBarFn();
return 0;
}
#endif
void Processes::Exit(int n)
{
if (singleThreaded)
finish(n);
// Start a crowbar thread. This will stop everything if the main thread
// does not reach the point of stopping within 5 seconds.
#if (defined(HAVE_PTHREAD))
// Create a thread that isn't joinable since we don't want to wait
// for it to finish.
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED);
pthread_t threadId;
(void)pthread_create(&threadId, &attrs, crowBarFn, 0);
pthread_attr_destroy(&attrs);
#elif defined(HAVE_WINDOWS_H)
DWORD dwThrdId;
HANDLE hCrowBarThread = CreateThread(NULL, 0, crowBarFn, 0, 0, &dwThrdId);
CloseHandle(hCrowBarThread); // Not needed
#endif
// We may be in an interrupt handler with schedLock held.
// Just set the exit request and go.
exitResult = n;
exitRequest = true;
initialThreadWait.Signal(); // Wake it if it's sleeping.
}
/******************************************************************************/
/* */
/* catchVTALRM - handler for alarm-clock signal */
/* */
/******************************************************************************/
#if !defined(HAVE_WINDOWS_H)
// N.B. This may be called either by an ML thread or by the main thread.
// On the main thread taskData will be null.
static void catchVTALRM(SIG_HANDLER_ARGS(sig, context))
{
ASSERT(sig == SIGVTALRM);
if (profileMode != kProfileTime)
{
// We stop the timer for this thread on the next signal after we end profile
static struct itimerval stoptime = {{0, 0}, {0, 0}};
/* Stop the timer */
setitimer(ITIMER_VIRTUAL, & stoptime, NULL);
}
else {
TaskData *taskData = processes->GetTaskDataForThread();
handleProfileTrap(taskData, (SIGNALCONTEXT*)context);
}
}
#else /* Windows including Cygwin */
// This runs as a separate thread. Every millisecond it checks the CPU time used
// by each ML thread and increments the count for each thread that has used a
// millisecond of CPU time.
static bool testCPUtime(HANDLE hThread, LONGLONG &lastCPUTime)
{
FILETIME cTime, eTime, kTime, uTime;
// Try to get the thread CPU time if possible. This isn't supported
// in Windows 95/98 so if it fails we just include this thread anyway.
if (GetThreadTimes(hThread, &cTime, &eTime, &kTime, &uTime))
{
LONGLONG totalTime = 0;
LARGE_INTEGER li;
li.LowPart = kTime.dwLowDateTime;
li.HighPart = kTime.dwHighDateTime;
totalTime += li.QuadPart;
li.LowPart = uTime.dwLowDateTime;
li.HighPart = uTime.dwHighDateTime;
totalTime += li.QuadPart;
if (totalTime - lastCPUTime >= 10000)
{
lastCPUTime = totalTime;
return true;
}
return false;
}
else return true; // Failed to get thread time, maybe Win95.
}
void Processes::ProfileInterrupt(void)
{
// Wait for millisecond or until the stop event is signalled.
while (WaitForSingleObject(hStopEvent, 1) == WAIT_TIMEOUT)
{
// We need to hold schedLock to examine the taskArray but
// that is held during garbage collection.
if (schedLock.Trylock())
{
for (unsigned i = 0; i < taskArraySize; i++)
{
ProcessTaskData *p = taskArray[i];
if (p && p->threadHandle)
{
if (testCPUtime(p->threadHandle, p->lastCPUTime))
{
CONTEXT context;
SuspendThread(p->threadHandle);
context.ContextFlags = CONTEXT_CONTROL; /* Get Eip and Esp */
if (GetThreadContext(p->threadHandle, &context))
{
handleProfileTrap(p, &context);
}
ResumeThread(p->threadHandle);
}
}
}
schedLock.Unlock();
}
// Check the CPU time used by the main thread. This is used for GC
// so we need to check that as well.
if (testCPUtime(mainThreadHandle, lastCPUTime))
handleProfileTrap(NULL, NULL);
}
}
DWORD WINAPI ProfilingTimer(LPVOID parm)
{
processesModule.ProfileInterrupt();
return 0;
}
#endif
// Profiling control. Called by the root thread.
void Processes::StartProfiling(void)
{
#ifdef HAVE_WINDOWS_H
DWORD threadId;
if (profilingHd)
return;
ResetEvent(hStopEvent);
profilingHd = CreateThread(NULL, 0, ProfilingTimer, NULL, 0, &threadId);
if (profilingHd == NULL)
fputs("Creating ProfilingTimer thread failed.\n", stdout);
/* Give this a higher than normal priority so it pre-empts the main
thread. Without this it will tend only to be run when the main
thread blocks for some reason. */
SetThreadPriority(profilingHd, THREAD_PRIORITY_ABOVE_NORMAL);
#else
// In Linux, at least, we need to run a timer in each thread.
// We request each to enter the RTS so that it will start the timer.
// Since this is being run by the main thread while all the ML threads
// are paused this may not actually be necessary.
for (unsigned i = 0; i < taskArraySize; i++)
{
ProcessTaskData *taskData = taskArray[i];
if (taskData)
{
machineDependent->InterruptCode(taskData);
}
}
StartProfilingTimer(); // Start the timer in the root thread.
#endif
}
void Processes::StopProfiling(void)
{
#ifdef HAVE_WINDOWS_H
if (hStopEvent) SetEvent(hStopEvent);
// Wait for the thread to stop
if (profilingHd) WaitForSingleObject(profilingHd, 10000);
CloseHandle(profilingHd);
profilingHd = NULL;
#endif
}
// Called by the ML signal handling thread. It blocks until a signal
// arrives. There should only be a single thread waiting here.
bool Processes::WaitForSignal(TaskData *taskData, PLock *sigLock)
{
ProcessTaskData *ptaskData = (ProcessTaskData *)taskData;
// We need to hold the signal lock until we have acquired schedLock.
schedLock.Lock();
sigLock->Unlock();
if (sigTask != 0)
{
schedLock.Unlock();
return false;
}
sigTask = ptaskData;
if (ptaskData->requests == kRequestNone)
{
// Now release the ML memory. A GC can start.
ThreadReleaseMLMemoryWithSchedLock(ptaskData);
ptaskData->threadLock.Wait(&schedLock);
// We want to use the memory again.
ThreadUseMLMemoryWithSchedLock(ptaskData);
}
sigTask = 0;
schedLock.Unlock();
return true;
}
// Called by the signal detection thread to wake up the signal handler
// thread. Must be called AFTER releasing sigLock.
void Processes::SignalArrived(void)
{
PLocker locker(&schedLock);
if (sigTask)
sigTask->threadLock.Signal();
}
void Processes::Init(void)
{
#ifdef HAVE_WINDOWS_H
// Create event to wake up from IO sleeping.
hWakeupEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
#endif
#ifdef HAVE_PTHREAD
pthread_key_create(&tlsId, NULL);
#elif defined(HAVE_WINDOWS_H)
tlsId = TlsAlloc();
#else
singleThreaded = true;
#endif
#if defined(HAVE_WINDOWS_H) /* Windows including Cygwin. */
// Create stop event for time profiling.
hStopEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
// Get the thread handle for this thread. It's the same as
// hMainThread except that we don't have that in the Cygwin version.
HANDLE thisProcess = GetCurrentProcess();
DuplicateHandle(thisProcess, GetCurrentThread(), thisProcess,
&mainThreadHandle, THREAD_ALL_ACCESS, FALSE, 0);
#else
// Set up a signal handler. This will be the same for all threads.
markSignalInuse(SIGVTALRM);
setSignalHandler(SIGVTALRM, catchVTALRM);
#endif
}
#ifndef HAVE_WINDOWS_H
// On Linux, at least, each thread needs to run this.
void Processes::StartProfilingTimer(void)
{
// set virtual timer to go off every millisecond
struct itimerval starttime;
starttime.it_interval.tv_sec = starttime.it_value.tv_sec = 0;
starttime.it_interval.tv_usec = starttime.it_value.tv_usec = 1000;
setitimer(ITIMER_VIRTUAL,&starttime,NULL);
}
#endif
void Processes::Reinit(void)
{
}
void Processes::Uninit(void)
{
#ifdef HAVE_WINDOWS_H
if (hWakeupEvent) SetEvent(hWakeupEvent);
#endif
#ifdef HAVE_WINDOWS_H
if (hWakeupEvent) CloseHandle(hWakeupEvent);
hWakeupEvent = NULL;
#endif
#ifdef HAVE_PTHREAD
pthread_key_delete(tlsId);
#elif defined(HAVE_WINDOWS_H)
TlsFree(tlsId);
#endif
#if defined(HAVE_WINDOWS_H)
/* Stop the timer and profiling threads. */
if (hStopEvent) SetEvent(hStopEvent);
if (profilingHd)
{
WaitForSingleObject(profilingHd, 10000);
CloseHandle(profilingHd);
profilingHd = NULL;
}
if (hStopEvent) CloseHandle(hStopEvent);
hStopEvent = NULL;
if (mainThreadHandle) CloseHandle(mainThreadHandle);
mainThreadHandle = NULL;
#else
profileMode = kProfileOff;
// Make sure the timer is not running
struct itimerval stoptime;
memset(&stoptime, 0, sizeof(stoptime));
setitimer(ITIMER_VIRTUAL, &stoptime, NULL);
#endif
}
void Processes::GarbageCollect(ScanAddress *process)
/* Ensures that all the objects are retained and their addresses updated. */
{
/* The interrupt exn */
if (interrupt_exn != 0) {
PolyObject *p = interrupt_exn;
process->ScanRuntimeAddress(&p, ScanAddress::STRENGTH_STRONG);
interrupt_exn = (PolyException*)p;
}
for (unsigned i = 0; i < taskArraySize; i++)
{
if (taskArray[i])
taskArray[i]->GarbageCollect(process);
}
}
void ProcessTaskData::GarbageCollect(ScanAddress *process)
{
saveVec.gcScan(process);
if (stack != 0)
{
PolyObject *p = stack;
process->ScanRuntimeAddress(&p, ScanAddress::STRENGTH_STRONG);
stack = (StackObject*)p;
}
if (threadObject != 0)
{
PolyObject *p = threadObject;
process->ScanRuntimeAddress(&p, ScanAddress::STRENGTH_STRONG);
threadObject = (ThreadObject*)p;
}
if (blockMutex != 0)
process->ScanRuntimeAddress(&blockMutex, ScanAddress::STRENGTH_STRONG);
// The allocation spaces are no longer valid.
allocPointer = 0;
allocLimit = 0;
// Divide the allocation size by four. If we have made a single allocation
// since the last GC the size will have been doubled after the allocation.
// On average for each thread, apart from the one that ran out of space
// and requested the GC, half of the space will be unused so reducing by
// four should give a good estimate for next time.
if (allocCount != 0)
{ // Do this only once for each GC.
allocCount = 0;
allocSize = allocSize/4;
if (allocSize < MIN_HEAP_SIZE)
allocSize = MIN_HEAP_SIZE;
}
}
|