File: processes.cpp

package info (click to toggle)
polyml 5.2.1-1.1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 19,692 kB
  • ctags: 17,567
  • sloc: cpp: 37,221; sh: 9,591; asm: 4,120; ansic: 428; makefile: 203; ml: 191; awk: 91; sed: 10
file content (1822 lines) | stat: -rw-r--r-- 64,844 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
/*
    Title:      Thread functions
    Author:     David C.J. Matthews

    Copyright (c) 2007,2008 David C.J. Matthews

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.
    
    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.
    
    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

*/

#ifdef WIN32
#include "winconfig.h"
#else
#include "config.h"
#endif

#ifdef HAVE_STDIO_H
#include <stdio.h>
#endif

#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif

#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif

#ifdef HAVE_STRING_H
#include <string.h>
#endif

#ifdef HAVE_LIMITS_H
#include <limits.h>
#endif

#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x)
#endif

#ifdef HAVE_PROCESS_H
#include <process.h>
#endif

#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif

#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif

#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif

#ifdef HAVE_UNISTD_H
#include <unistd.h> // Want unistd for _SC_NPROCESSORS_ONLN at least
#endif

#ifdef HAVE_SYS_SELECT_H
#include <sys/select.h>
#endif

#ifdef HAVE_WINDOWS_H
#include <windows.h>
#endif

#if (defined(HAVE_LIBPTHREAD) && defined(HAVE_PTHREAD_H))
#define HAVE_PTHREAD 1
#include <pthread.h>
#endif

#ifdef HAVE_SYS_SYSCTL_H
// Used determine number of processors in Mac OS X.
#include <sys/sysctl.h>
#endif

/************************************************************************
 *
 * Include runtime headers
 *
 ************************************************************************/

#include "globals.h"
#include "gc.h"
#include "mpoly.h"
#include "arb.h"
#include "machine_dep.h"
#include "diagnostics.h"
#include "processes.h"
#include "run_time.h"
#include "sys.h"
#include "sighandler.h"
#include "scanaddrs.h"
#include "save_vec.h"
#include "rts_module.h"
#include "noreturn.h"
#include "memmgr.h"
#include "locking.h"
#include "profiling.h"
#include "sharedata.h"
#include "exporter.h"

#ifdef WINDOWS_PC
#include "Console.h"
#endif

#define SAVE(x) taskData->saveVec.push(x)
#define SIZEOF(x) (sizeof(x)/sizeof(PolyWord))

// These values are stored in the second word of thread id object as
// a tagged integer.  They may be set and read by the thread in the ML
// code.  
#define PFLAG_BROADCAST     1   // If set, accepts a broadcast
// How to handle interrrupts
#define PFLAG_IGNORE        0   // Ignore interrupts completely
#define PFLAG_SYNCH         2   // Handle synchronously
#define PFLAG_ASYNCH        4   // Handle asynchronously
#define PFLAG_ASYNCH_ONCE   6   // First handle asynchronously then switch to synch.
#define PFLAG_INTMASK       6   // Mask of the above bits


// Other threads may make requests to a thread.
typedef enum {
    kRequestNone = 0, // Increasing severity
    kRequestInterrupt = 1,
    kRequestKill = 2
} ThreadRequests;

class ProcessTaskData: public TaskData
{
public:
    ProcessTaskData();
    ~ProcessTaskData();

    virtual void Lock(void) {}
    virtual void Unlock(void) {}

    virtual void GarbageCollect(ScanAddress *process);

    // If a thread has to block it will block on this.
    PCondVar threadLock;
    // External requests made are stored here until they
    // can be actioned.
    ThreadRequests requests;
    // Pointer to the mutex when blocked. Set to NULL when it doesn't apply.
    PolyObject *blockMutex;
    // This is set to false when a thread blocks or enters foreign code,
    // While it is true the thread can manipulate ML memory so no other
    // thread can garbage collect.
    bool inMLHeap;

    // In Linux, at least, we need to run a separate timer in each thread
    bool runningProfileTimer;

#ifdef HAVE_WINDOWS_H
    LONGLONG lastCPUTime; // Used for profiling
#endif
#ifdef HAVE_PTHREAD
    pthread_t pthreadId;
#endif
#ifdef HAVE_WINDOWS_H
    HANDLE threadHandle;
#endif
};

class Processes: public ProcessExternal, public RtsModule
{
public:
    Processes();
    virtual void Init(void);
    virtual void Uninit(void);
    virtual void Reinit(void);
    void GarbageCollect(ScanAddress *process);
public:
    void BroadcastInterrupt(void);
    void BeginRootThread(PolyObject *rootFunction);
    void Exit(int n); // Request all ML threads to exit and set the process result code.
    // Called when a thread has completed - doesn't return.
    virtual NORETURNFN(void ThreadExit(TaskData *taskData));

    void BlockAndRestart(TaskData *taskData, int fd, bool posixInterruptable, int ioCall);
    // Called when a thread may block.  Returns some time later when perhaps
    // the input is available.
    virtual void ThreadPauseForIO(TaskData *taskData, int fd);

    void SwitchSubShells(void);
    // Return the task data for the current thread.
    virtual TaskData *GetTaskDataForThread(void);
    // ForkFromRTS.  Creates a new thread from within the RTS.
    virtual bool ForkFromRTS(TaskData *taskData, Handle proc, Handle arg);
    // Create a new thread.  The "args" argument is only used for threads
    // created in the RTS by the signal handler.
    Handle ForkThread(ProcessTaskData *taskData, Handle threadFunction,
                    Handle args, PolyWord flags);
    // Process general RTS requests from ML.
    Handle ThreadDispatch(TaskData *taskData, Handle args, Handle code);

    virtual void ThreadUseMLMemory(TaskData *taskData); 
    virtual void ThreadReleaseMLMemory(TaskData *taskData);

    // If the schedule lock is already held we need to use these functions.
    void ThreadUseMLMemoryWithSchedLock(TaskData *taskData);
    void ThreadReleaseMLMemoryWithSchedLock(TaskData *taskData);

    // Requests from the threads for actions that need to be performed by
    // the root thread. Make the request and wait until it has completed.
    virtual void MakeRootRequest(TaskData *taskData, MainThreadRequest *request);

    // Deal with any interrupt or kill requests.
    virtual bool ProcessAsynchRequests(TaskData *taskData);
    // Process an interrupt request synchronously.
    virtual void TestSynchronousRequests(TaskData *taskData);

    // Set a thread to be interrupted or killed.  Wakes up the
    // thread if necessary.  MUST be called with taskArrayLock held.
    void MakeRequest(ProcessTaskData *p, ThreadRequests request);

    // Profiling control.
    virtual void StartProfiling(void);
    virtual void StopProfiling(void);

#ifdef HAVE_WINDOWS_H
    // Windows: Called every millisecond while profiling is on.
    void ProfileInterrupt(void);
#else
    // Unix: Start a profile timer for a thread.
    void StartProfilingTimer(void);
#endif
    // Memory allocation.  Tries to allocate space.  If the allocation succeeds it
    // may update the allocation values in the taskData object.  If the heap is exhausted
    // it may set this thread (or other threads) to raise an exception.
    PolyWord *FindAllocationSpace(TaskData *taskData, POLYUNSIGNED words, bool alwaysInSeg);

    // Find a task that matches the specified identifier and returns
    // it if it exists.  MUST be called with taskArrayLock held.
    ProcessTaskData *TaskForIdentifier(Handle taskId);

    // Signal handling support.  The ML signal handler thread blocks until it is
    // woken up by the signal detection thread.
    virtual bool WaitForSignal(TaskData *taskData, PLock *sigLock);
    virtual void SignalArrived(void);

    virtual void SetSingleThreaded(void) { singleThreaded = true; }


    // Generally, the system runs with multiple threads.  After a
    // fork, though, there is only one thread.
    bool singleThreaded;

    // Each thread has an entry in this array.
    ProcessTaskData **taskArray;
    unsigned taskArraySize; // Current size of the array.

    /* schedLock: This lock must be held when making scheduling decisions.
       It must also be held before adding items to taskArray, removing
       them or scanning the array.
       It must also be held before deleting a TaskData object
       or using it in a thread other than the "owner"  */
    PLock schedLock;
#ifdef HAVE_PTHREAD
    pthread_key_t tlsId;
#elif defined(HAVE_WINDOWS_H)
    DWORD tlsId;
#endif

#ifdef HAVE_WINDOWS_H
    HANDLE hWakeupEvent; // Pulsed to wake up any threads waiting for IO.
#endif

    // We make an exception packet for Interrupt and store it here.
    // This exception can be raised if we run out of store so we need to
    // make sure we have the packet before we do.
    poly_exn *interrupt_exn;

    /* initialThreadWait: The initial thread waits on this for
       wake-ups from the ML threads requesting actions such as GC or
       close-down. */
    PCondVar initialThreadWait;
    // A requesting thread sets this to indicate the request.  This value
    // is only reset once the request has been satisfied.
    MainThreadRequest *threadRequest;

    PCondVar mlThreadWait;  // All the threads block on here until the request has completed.

    int exitResult;
    bool exitRequest;
    // Shutdown locking.
    void CrowBarFn(void);
    PLock shutdownLock;
    PCondVar crowbarLock, crowbarStopped;
    bool crowbarRunning;

#ifdef HAVE_WINDOWS_H
    // Used in profiling
    HANDLE hStopEvent; /* Signalled to stop all threads. */
    HANDLE profilingHd;
    HANDLE mainThreadHandle; // The same as hMainThread except on Cygwin
    LONGLONG lastCPUTime; // CPU used by main thread.
#endif

    ProcessTaskData *sigTask;  // Pointer to current signal task.
};

// Global process data.
static Processes processesModule;
ProcessExternal *processes = &processesModule;

Processes::Processes(): singleThreaded(false), taskArray(0), taskArraySize(0), interrupt_exn(0),
    threadRequest(0), exitResult(0), exitRequest(false),
    crowbarRunning(false), sigTask(0)
{
#ifdef HAVE_WINDOWS_H
    hWakeupEvent = NULL;
    hStopEvent = NULL;
    profilingHd = NULL;
    lastCPUTime = 0;
    mainThreadHandle = NULL;
#endif
}

// Get the attribute flags.
static POLYUNSIGNED ThreadAttrs(TaskData *taskData)
{
    return UNTAGGED_UNSIGNED(taskData->threadObject->Get(1));
}

// As far as possible we want locking and unlocking an ML mutex to be fast so
// we try to implement the code in the assembly code using appropriate
// interlocked instructions.  That does mean that if we need to lock and
// unlock an ML mutex in this code we have to use the same, machine-dependent,
// code to do it.  These are defaults that are used where there is no
// machine-specific code.

// Increment the value contained in the first word of the mutex.
// On most platforms this code will be done with a piece of assembly code.
PLock mutexLock;

Handle MachineDependent::AtomicIncrement(TaskData *taskData, Handle mutexp)
{
    mutexLock.Lock();
    PolyObject *p = DEREFHANDLE(mutexp);
    // A thread can only call this once so the values will be short
    PolyWord newValue = TAGGED(UNTAGGED(p->Get(0))+1);
    p->Set(0, newValue);
    mutexLock.Unlock();
    return SAVE(newValue);
}

// Decrement the value contained in the first word of the mutex.
Handle MachineDependent::AtomicDecrement(TaskData *taskData, Handle mutexp)
{
    mutexLock.Lock();
    PolyObject *p = DEREFHANDLE(mutexp);
    PolyWord newValue = TAGGED(UNTAGGED(p->Get(0))-1);
    p->Set(0, newValue);
    mutexLock.Unlock();
    return SAVE(newValue);
}

// Called from interface vector.  Generally the assembly code will be
// used instead of this.
Handle AtomicIncrement(TaskData *taskData, Handle mutexp)
{
    return machineDependent->AtomicIncrement(taskData, mutexp);
}

// Called from interface vector.  Generally the assembly code will be
// used instead of this.
Handle AtomicDecrement(TaskData *taskData, Handle mutexp)
{
    return machineDependent->AtomicDecrement(taskData, mutexp);
}

// Return the thread object for the current thread.
// On most platforms this will be done with a piece of assembly code.
Handle ThreadSelf(TaskData *taskData)
{
    return SAVE(taskData->threadObject);
}

// Called from interface vector.  This is the normal entry point for
// the thread functions.
Handle ThreadDispatch(TaskData *taskData, Handle args, Handle code)
{
    return processesModule.ThreadDispatch(taskData, args, code);
}

Handle Processes::ThreadDispatch(TaskData *taskData, Handle args, Handle code)
{
    int c = get_C_long(taskData, DEREFWORDHANDLE(code));
    ProcessTaskData *ptaskData = (ProcessTaskData *)taskData;
    switch (c)
    {
    case 1: /* A mutex was locked i.e. the count was ~1 or less.  We will have set it to
               ~1. This code blocks if the count is still ~1.  It does actually return
               if another thread tries to lock the mutex and hasn't yet set the value
               to ~1 but that doesn't matter since whenever we return we simply try to
               get the lock again. */
        {
            schedLock.Lock();
            // We have to check the value again with schedLock held rather than
            // simply waiting because otherwise the unlocking thread could have
            // set the variable back to 1 (unlocked) and signalled any waiters
            // before we actually got to wait.  
            if (UNTAGGED(DEREFHANDLE(args)->Get(0)) < 0)
            {
                // Set this so we can see what we're blocked on.
                ptaskData->blockMutex = DEREFHANDLE(args);
                // Now release the ML memory.  A GC can start.
                ThreadReleaseMLMemoryWithSchedLock(ptaskData);
                // Wait until we're woken up.  We mustn't block if we have been
                // interrupted, and are processing interrupts asynchronously, or
                // we've been killed.
                switch (ptaskData->requests)
                {
                case kRequestKill:
                    // We've been killed.  Handle this later.
                    break;
                case kRequestInterrupt:
                    {
                        // We've been interrupted.  
                        POLYUNSIGNED attrs = ThreadAttrs(ptaskData) & PFLAG_INTMASK;
                        if (attrs == PFLAG_ASYNCH || attrs == PFLAG_ASYNCH_ONCE)
                            break;
                        // If we're ignoring interrupts or handling them synchronously
                        // we don't do anything here.
                    }
                case kRequestNone:
                    ptaskData->threadLock.Wait(&schedLock);
                }
                ptaskData->blockMutex = 0; // No longer blocked.
                ThreadUseMLMemoryWithSchedLock(ptaskData);
            }
            // Return and try and get the lock again.
            schedLock.Unlock();
            // Test to see if we have been interrupted and if this thread
            // processes interrupts asynchronously we should raise an exception
            // immediately.  Perhaps we do that whenever we exit from the RTS.
            return SAVE(TAGGED(0));
       }

    case 2: /* Unlock a mutex.  Called after incrementing the count and discovering
               that at least one other thread has tried to lock it.  We may need
               to wake up threads that are blocked. */
        {
            // The caller has already set the variable to 1 (unlocked).
            // We need to acquire schedLock so that we can
            // be sure that any thread that is trying to lock sees either
            // the updated value (and so doesn't wait) or has successfully
            // waited on its threadLock (and so will be woken up).
            schedLock.Lock();
            // Unlock any waiters.
            for (unsigned i = 0; i < taskArraySize; i++)
            {
                ProcessTaskData *p = taskArray[i];
                // If the thread is blocked on this mutex we can signal the thread.
                if (p && p->blockMutex == DEREFHANDLE(args))
                    p->threadLock.Signal();
            }
            schedLock.Unlock();
            return SAVE(TAGGED(0));
       }

    case 3: // Atomically drop a mutex and wait for a wake up.  
        {
            // The argument is a pair of a mutex and the time to wake up.  The time
            // may be zero to indicate an infinite wait.  The return value is unit.
            // It WILL NOT RAISE AN EXCEPTION unless it is set to handle exceptions
            // asynchronously (which it shouldn't do if the ML caller code is correct).
            // It may return as a result of any of the following:
            //      an explicit wake up.
            //      an interrupt, either direct or broadcast
            //      a trap i.e. a request to handle an asynchronous event.
            Handle mutexH = SAVE(args->WordP()->Get(0));
            Handle wakeTime = SAVE(args->WordP()->Get(1));
            // We pass zero as the wake time to represent infinity.
            bool isInfinite = compareLong(taskData, wakeTime, SAVE(TAGGED(0))) == 0;

            // Convert the time into the correct format for WaitUntil before acquiring
            // schedLock.  div_longc could do a GC which requires schedLock.
#ifdef HAVE_PTHREAD
            struct timespec tWake;
            if (! isInfinite)
            {
                // On Unix we represent times as a number of microseconds.
                Handle hMillion = Make_arbitrary_precision(taskData, 1000000);
                tWake.tv_sec =
                    get_C_ulong(taskData, DEREFWORDHANDLE(div_longc(taskData, hMillion, wakeTime)));
                tWake.tv_nsec =
                    1000*get_C_ulong(taskData, DEREFWORDHANDLE(rem_longc(taskData, hMillion, wakeTime)));
            }
#elif defined(HAVE_WINDOWS_H)
            // On Windows it is the number of 100ns units since the epoch
            FILETIME tWake;
            if (! isInfinite)
            {
                get_C_pair(taskData, DEREFWORDHANDLE(wakeTime),
                    (unsigned long*)&tWake.dwHighDateTime, (unsigned long*)&tWake.dwLowDateTime);
            }
#endif
            schedLock.Lock();
            // Atomically release the mutex.  This is atomic because we hold schedLock
            // so no other thread can call signal or broadcast.
            Handle decrResult = machineDependent->AtomicIncrement(taskData, mutexH);
            if (UNTAGGED(decrResult->Word()) != 1)
            {
                DEREFHANDLE(mutexH)->Set(0, TAGGED(1)); // Set this to released.
                // The mutex was locked so we have to release any waiters.
                // Unlock any waiters.
                for (unsigned i = 0; i < taskArraySize; i++)
                {
                    ProcessTaskData *p = taskArray[i];
                    // If the thread is blocked on this mutex we can signal the thread.
                    if (p && p->blockMutex == DEREFHANDLE(mutexH))
                        p->threadLock.Signal();
                }
            }
            // Wait until we're woken up.  Don't block if we have been interrupted
            // or killed.
            if (ptaskData->requests == kRequestNone)
            {
                // Now release the ML memory.  A GC can start.
                ThreadReleaseMLMemoryWithSchedLock(ptaskData);
                // We pass zero as the wake time to represent infinity.
                if (isInfinite)
                    ptaskData->threadLock.Wait(&schedLock);
                else (void)ptaskData->threadLock.WaitUntil(&schedLock, &tWake);
                // We want to use the memory again.
                ThreadUseMLMemoryWithSchedLock(ptaskData);
            }
            schedLock.Unlock();
            return SAVE(TAGGED(0));
        }

    case 4: // Wake up the specified thread.  Returns false (0) if the thread has
        // already been interrupted and is not ignoring interrupts or if the thread
        // does not exist (i.e. it's been killed while waiting).  Returns true
        // if it successfully woke up the thread.  The thread may subsequently
        // receive an interrupt but we need to know whether we woke the thread
        // up before that happened.
        {
            int result = 0; // Default to failed.
            // Acquire the schedLock first.  This ensures that this is
            // atomic with respect to waiting.
            schedLock.Lock();
            ProcessTaskData *p = TaskForIdentifier(args);
            if (p && p->threadObject == args->WordP())
            {
                POLYUNSIGNED attrs = ThreadAttrs(p) & PFLAG_INTMASK;
                if (p->requests == kRequestNone ||
                    (p->requests == kRequestInterrupt && attrs == PFLAG_IGNORE))
                {
                    p->threadLock.Signal();
                    result = 1;
                }
            }
            schedLock.Unlock();
            return SAVE(TAGGED(result));
        }

        // 5 and 6 are no longer used.

    case 7: // Fork a new thread.  The arguments are the function to run and the attributes.
            return ForkThread(ptaskData, SAVE(args->WordP()->Get(0)),
                        (Handle)0, args->WordP()->Get(1));

    case 8: // Test if a thread is active
        {
            schedLock.Lock();
            ProcessTaskData *p = TaskForIdentifier(args);
            schedLock.Unlock();
            return SAVE(TAGGED(p != 0));
        }

    case 9: // Send an interrupt to a specific thread
        {
            schedLock.Lock();
            ProcessTaskData *p = TaskForIdentifier(args);
            if (p) MakeRequest(p, kRequestInterrupt);
            schedLock.Unlock();
            if (p == 0)
                raise_exception_string(taskData, EXC_thread, "Thread does not exist");
            return SAVE(TAGGED(0));
        }

    case 10: // Broadcast an interrupt to all threads that are interested.
        BroadcastInterrupt();
        return SAVE(TAGGED(0));

    case 11: // Interrupt this thread now if it has been interrupted
        TestSynchronousRequests(taskData);
        return SAVE(TAGGED(0));

    case 12: // Kill a specific thread
        {
            schedLock.Lock();
            ProcessTaskData *p = TaskForIdentifier(args);
            if (p) MakeRequest(p, kRequestKill);
            schedLock.Unlock();
            if (p == 0)
                raise_exception_string(taskData, EXC_thread, "Thread does not exist");
            return SAVE(TAGGED(0));
        }

    case 13: // Return the number of processors.
        // Returns 1 if there is any problem.
        {
#ifdef WIN32
            SYSTEM_INFO info;
            memset(&info, 0, sizeof(info));
            GetSystemInfo(&info);
            if (info.dwNumberOfProcessors == 0) // Just in case
                info.dwNumberOfProcessors = 1;
            return Make_unsigned(taskData, info.dwNumberOfProcessors);
#elif(defined(_SC_NPROCESSORS_ONLN))
            long res = sysconf(_SC_NPROCESSORS_ONLN);
            if (res <= 0) res = 1;
            return Make_arbitrary_precision(taskData, res);
#elif(defined(HAVE_SYSCTL) && defined(CTL_HW) && defined(HW_NCPU))
            static int mib[2] = { CTL_HW, HW_NCPU };
            int nCPU = 1;
            size_t len = sizeof(nCPU);
            if (sysctl(mib, 2, &nCPU, &len, NULL, 0) == 0 && len == sizeof(nCPU))
                 return Make_unsigned(taskData, nCPU);
            else return Make_unsigned(taskData, 1);
#else
            // Can't determine.
            return Make_unsigned(taskData, 1);
#endif
        }

    default:
        {
            char msg[100];
            sprintf(msg, "Unknown thread function: %d", c);
            raise_fail(taskData, msg);
			return 0;
        }
    }
}

TaskData::TaskData(): allocPointer(0), allocLimit(0), allocSize(MIN_HEAP_SIZE), allocCount(0),
        stack(0), threadObject(0), signalStack(0), pendingInterrupt(false)
{
    // Initialise the dummy save vec entries used to extend short precision arguments.
    // This is a bit of a hack.
    x_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(x_extend[1])));
    y_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(y_extend[1])));
    x_ehandle = &x_extend_addr;
    y_ehandle = &y_extend_addr;
}

TaskData::~TaskData()
{
    if (signalStack) free(signalStack);
}


// Fill unused allocation space with a dummy object to preserve the invariant
// that memory is always valid.
void TaskData::FillUnusedSpace(void)
{
    if (allocPointer > allocLimit)
        gMem.FillUnusedSpace(allocLimit, allocPointer-allocLimit); 
}

ProcessTaskData::ProcessTaskData(): requests(kRequestNone), blockMutex(0), inMLHeap(false),
        runningProfileTimer(false)
{
#ifdef HAVE_WINDOWS_H
    lastCPUTime = 0;
#endif
#ifdef HAVE_PTHREAD
    pthreadId = 0;
#endif
#ifdef HAVE_WINDOWS_H
    threadHandle = 0;
#endif
}

ProcessTaskData::~ProcessTaskData()
{
#ifdef HAVE_WINDOWS_H
    if (threadHandle) CloseHandle(threadHandle);
#endif
}


// Find a task that matches the specified identifier and returns
// it if it exists.  MUST be called with taskArrayLock held.
ProcessTaskData *Processes::TaskForIdentifier(Handle taskId)
{
    // The index is in the first word of the thread object.
    unsigned index = UNTAGGED_UNSIGNED(taskId->WordP()->Get(0));
    // Check the index is valid and matches the object stored in the table.
    if (index < taskArraySize)
    {
        ProcessTaskData *p = taskArray[index];
        if (p && p->threadObject == taskId->WordP())
            return p;
    }
    return 0;
}
// Broadcast an interrupt to all relevant threads.
void Processes::BroadcastInterrupt(void)
{
    // If a thread is set to accept broadcast interrupts set it to
    // "interrupted".
    schedLock.Lock();
    for (unsigned i = 0; i < taskArraySize; i++)
    {
        ProcessTaskData *p = taskArray[i];
        if (p)
        {
            POLYUNSIGNED attrs = ThreadAttrs(p);
            if (attrs & PFLAG_BROADCAST)
                MakeRequest(p, kRequestInterrupt);
        }
    }
    schedLock.Unlock();
}

// Set the asynchronous request variable for the thread.  Must be called
// with the schedLock held.  Tries to wake the thread up if possible.
void Processes::MakeRequest(ProcessTaskData *p, ThreadRequests request)
{
    // We don't override a request to kill by an interrupt request.
    if (p->requests < request)
    {
        p->requests = request;
        machineDependent->InterruptCode(p);
        p->threadLock.Signal();
        // Set the value in the ML object as well so the ML code can see it
        p->threadObject->Set(3, TAGGED(request));
    }
#ifdef HAVE_WINDOWS_H
    // Wake any threads waiting for IO
    PulseEvent(hWakeupEvent);
#endif
}

void Processes::ThreadExit(TaskData *taskData)
{
    if (singleThreaded) finish(0);

    schedLock.Lock();
    ThreadReleaseMLMemoryWithSchedLock(taskData); // Allow a GC if it was waiting for us.
    // Remove this from the taskArray
    unsigned index = UNTAGGED(taskData->threadObject->Get(0));
    if (index < taskArraySize && taskArray[index] == taskData)
        taskArray[index] = 0;
    delete(taskData);
    initialThreadWait.Signal(); // Tell it we've finished.
    schedLock.Unlock();
#ifdef HAVE_PTHREAD
    pthread_exit(0);
#elif defined(HAVE_WINDOWS_H)
    ExitThread(0);
#endif
}

// These two functions are used for calls from outside where
// the lock has not yet been acquired.
void Processes::ThreadUseMLMemory(TaskData *taskData)
{
    // Trying to acquire the lock here may block if a GC is in progress
    schedLock.Lock();
    ThreadUseMLMemoryWithSchedLock(taskData);
    schedLock.Unlock();
}

void Processes::ThreadReleaseMLMemory(TaskData *taskData)
{
    schedLock.Lock();
    ThreadReleaseMLMemoryWithSchedLock(taskData);
    schedLock.Unlock();
}

// Called when a thread wants to resume using the ML heap.  That could
// be after a wait for some reason or after executing some foreign code.
// Since there could be a GC in progress already at this point we may either
// be blocked waiting to acquire schedLock or we may need to wait until
// we are woken up at the end of the GC.
void Processes::ThreadUseMLMemoryWithSchedLock(TaskData *taskData)
{
    ProcessTaskData *ptaskData = (ProcessTaskData *)taskData;
    // If there is a request outstanding we have to wait for it to
    // complete.  We notify the root thread and wait for it.
    while (threadRequest != 0)
    {
        initialThreadWait.Signal();
        // Wait for the GC to happen
        mlThreadWait.Wait(&schedLock);
    }
    ASSERT(! ptaskData->inMLHeap);
    ptaskData->inMLHeap = true;
}

// Called to indicate that the thread has temporarily finished with the
// ML memory either because it is going to wait for something or because
// it is going to run foreign code.  If there is an outstanding GC request
// that can proceed.
void Processes::ThreadReleaseMLMemoryWithSchedLock(TaskData *taskData)
{
    ProcessTaskData *ptaskData = (ProcessTaskData *)taskData;
    ASSERT(ptaskData->inMLHeap);
    ptaskData->inMLHeap = false;
    // Put a dummy object in any unused space.  This maintains the
    // invariant that the allocated area is filled with valid objects.
    ptaskData->FillUnusedSpace();
    //
    if (threadRequest != 0)
        initialThreadWait.Signal();
}


// Make a request to the root thread.
void Processes::MakeRootRequest(TaskData *taskData, MainThreadRequest *request)
{
    if (singleThreaded)
        request->Perform();
    else
    {
        PLocker locker(&schedLock);

        // Wait for any other requests. 
        while (threadRequest != 0)
        {
            // Deal with any pending requests.
            ThreadReleaseMLMemoryWithSchedLock(taskData);
            ThreadUseMLMemoryWithSchedLock(taskData); // Drops schedLock while waiting.
        }
        // Now the other requests have been dealt with (and we have schedLock).
        request->completed = false;
        threadRequest = request;
        // Wait for it to complete.
        while (! request->completed)
        {
            ThreadReleaseMLMemoryWithSchedLock(taskData);
            ThreadUseMLMemoryWithSchedLock(taskData); // Drops schedLock while waiting.
        }
    }
}

// Find space for an object.  Returns a pointer to the start.  "words" must include
// the length word and the result points at where the length word will go.
PolyWord *Processes::FindAllocationSpace(TaskData *taskData, POLYUNSIGNED words, bool alwaysInSeg)
{
    bool triedInterrupt = false;

    if (userOptions.debug & DEBUG_FORCEGC) // Always GC when allocating?
        QuickGC(taskData, words);

    while (1)
    {
        // After a GC allocPointer and allocLimit are zero and when allocating the
        // heap segment we request a minimum of zero words.
        if (taskData->allocPointer != 0 && taskData->allocPointer >= taskData->allocLimit + words)
        {
            // There's space in the current segment,
            taskData->allocPointer -= words;
            return taskData->allocPointer;
        }
        else // Insufficient space in this area. 
        {
            if (words > taskData->allocSize && ! alwaysInSeg)
            {
                // If the object we want is larger than the heap segment size
                // we allocate it separately rather than in the segment.
                PolyWord *foundSpace = gMem.AllocHeapSpace(words);
                if (foundSpace) return foundSpace;
            }
            else
            {
                // Fill in any unused space in the existing segment
                taskData->FillUnusedSpace();
                // Get another heap segment with enough space for this object.
                POLYUNSIGNED spaceSize = taskData->allocSize+words;
                // Get the space and update spaceSize with the actual size.
                PolyWord *space = gMem.AllocHeapSpace(words, spaceSize);
                if (space)
                {
                    // Double the allocation size for the next time.
                    taskData->IncrementAllocationCount();
                    taskData->allocLimit = space;
                    taskData->allocPointer = space+spaceSize;
                    // Actually allocate the object
                    taskData->allocPointer -= words;
                    return taskData->allocPointer;
                }
            }

            // Try garbage-collecting.  If this failed return 0.
            if (! QuickGC(taskData, words))
            {
                if (! triedInterrupt)
                {
                    triedInterrupt = true;
                    fprintf(stderr,"Run out of store - interrupting threads\n");
                    BroadcastInterrupt();
                    if (ProcessAsynchRequests(taskData))
                        return 0; // Has been interrupted.
                    // Not interrupted: pause this thread to allow for other
                    // interrupted threads to free something.
#if defined(WINDOWS_PC)
                    Sleep(5000);
#else
                    sleep(5);
#endif
                    // Try again.
                }
                else {
                    // That didn't work.  Exit.
                    fprintf(stderr,"Failed to recover - exiting\n");
                    Exit(1);
                }
             }
            // Try again.  There should be space now.
        }
    }
}


Handle exitThread(TaskData *taskData)
/* A call to this is put on the stack of a new thread so when the
   thread function returns the thread goes away. */  
{
    processesModule.ThreadExit(taskData);
}

/* Called when a thread is about to block, usually because of IO.
   fd may be negative if the file descriptor value is not relevant.
   If this is interruptable (currently only used for Posix functions)
   the process will be set to raise an exception if any signal is handled.
   It may also raise an exception if another thread has called
   broadcastInterrupt. */
void Processes::ThreadPauseForIO(TaskData *taskData, int fd)
{
    TestSynchronousRequests(taskData); // Consider this a blocking call that may raise Interrupt
    ThreadReleaseMLMemory(taskData);
#ifdef WINDOWS_PC
    /* It's too complicated in Windows to try and wait for a stream.
       We simply wait for half a second or until a Windows message
       arrives. */

    /* We seem to need to reset the queue before calling
       MsgWaitForMultipleObjects otherwise it frequently returns
       immediately, often saying there is a message with a message ID
       of 0x118 which doesn't correspond to any listed message.
       While calling PeekMessage afterwards might be better this doesn't
       seem to work properly.  We need to use MsgWaitForMultipleObjects
       here so that we get a reasonable response with the Windows GUI. */
    MSG msg;
    // N.B.  It seems that calling PeekMessage may result in a callback
    // to a window proc directly without a call to DispatchMessage.  That
    // could result in a recursive call here if we have installed an ML
    // window proc.
    PeekMessage(&msg, 0, 0, 0, PM_NOREMOVE);

    // Wait until we get input or we're woken up.
    MsgWaitForMultipleObjects(1, &hWakeupEvent, FALSE, 100, QS_ALLINPUT);
#else
    fd_set read_fds, write_fds, except_fds;
    struct timeval toWait = { 0, 100000 }; /* 100ms. */

    FD_ZERO(&read_fds);
    if (fd >= 0) FD_SET(fd, &read_fds);
    FD_ZERO(&write_fds);
    FD_ZERO(&except_fds);
    select(FD_SETSIZE, &read_fds, &write_fds, &except_fds, &toWait);
#endif
    ThreadUseMLMemory(taskData);
    TestSynchronousRequests(taskData); // Check if we've been interrupted.
    if (ProcessAsynchRequests(taskData))
        throw IOException(EXC_EXCEPTION);
}

// This is largely a legacy of the old single-thread version.  In that version there
// was only a single C thread managing multiple ML threads (processes) so if an ML
// thread blocked it was necessary to switch the thread and then for the C function
// call to raise an exception to get back to ML.  
// TODO: There's actually a race here if we have posixInterruptible set.  We
// repeatedly come back here and if a signal happens while we're in
// ThreadPauseForIO we will raise the exception.  If the signal happens at
// another point we won't.
void Processes::BlockAndRestart(TaskData *taskData, int fd, bool posixInterruptable, int ioCall)
{
    machineDependent->SetForRetry(taskData, ioCall);
    unsigned lastSigCount = receivedSignalCount;
    ThreadPauseForIO(taskData, fd);
    // If this is an interruptible Posix function we raise an exception if
    // there has been a signal.
    if (posixInterruptable && lastSigCount != receivedSignalCount)
        raise_syscall(taskData, "Call interrupted by signal", EINTR);
    throw IOException(EXC_EXCEPTION);
    /* NOTREACHED */
}

// Get the task data for the current thread.  This is held in
// thread-local storage.  Normally this is passed in taskData but
// in a few cases this isn't available.
TaskData *Processes::GetTaskDataForThread(void)
{
#ifdef HAVE_PTHREAD
    return (TaskData *)pthread_getspecific(tlsId);
#elif defined(HAVE_WINDOWS_H)
    return (TaskData *)TlsGetValue(tlsId);
#else
    // If there's no threading.
    return taskArray[0];
#endif
}

// This function is run when a new thread has been forked.  The
// parameter is the taskData value for the new thread.  This function
// is also called directly for the main thread.
#ifdef HAVE_PTHREAD
static void *NewThreadFunction(void *parameter)
{
    ProcessTaskData *taskData = (ProcessTaskData *)parameter;
#ifdef HAVE_WINDOWS_H
    // Cygwin: Get the Windows thread handle in case it's needed for profiling.
    HANDLE thisProcess = GetCurrentProcess();
    DuplicateHandle(thisProcess, GetCurrentThread(), thisProcess, 
        &(taskData->threadHandle), THREAD_ALL_ACCESS, FALSE, 0);
#endif
    initThreadSignals(taskData);
    pthread_setspecific(processesModule.tlsId, taskData);
    taskData->saveVec.init(); // Removal initial data
    processes->ThreadUseMLMemory(taskData);
    try {
        (void)EnterPolyCode(taskData); // Will normally (always?) call ExitThread.
    }
    catch (KillException) {
        processesModule.ThreadExit(taskData);
    }

    return 0;
}
#elif defined(HAVE_WINDOWS_H)
static DWORD WINAPI NewThreadFunction(void *parameter)
{
    ProcessTaskData *taskData = (ProcessTaskData *)parameter;
    TlsSetValue(processesModule.tlsId, taskData);
    taskData->saveVec.init(); // Removal initial data
    processes->ThreadUseMLMemory(taskData);
    try {
        (void)EnterPolyCode(taskData);
    }
    catch (KillException) {
        processesModule.ThreadExit(taskData);
    }
    return 0;
}
#else
static void NewThreadFunction(void *parameter)
{
    ProcessTaskData *taskData = (ProcessTaskData *)parameter;
    initThreadSignals(taskData);
    taskData->saveVec.init(); // Removal initial data
    processes->ThreadUseMLMemory(taskData);
    try {
        (void)EnterPolyCode(taskData);
    }
    catch (KillException) {
        processesModule.ThreadExit(taskData);
    }
}
#endif

// Sets up the initial thread from the root function.  This is run on
// the initial thread of the process so it will work if we don't
// have pthreads.
// When multithreading this thread also deals with all garbage-collection
// and similar operations and the ML threads send it requests to deal with
// that.  These require all the threads to pause until the operation is complete
// since they affect all memory but they are also sometimes highly recursive.
// On Mac OS X and on Linux if the stack limit is set to unlimited only the
// initial thread has a large stack and newly created threads have smaller
// stacks.  We need to make sure that any significant stack usage occurs only
// on the inital thread.
void Processes::BeginRootThread(PolyObject *rootFunction)
{
    if (taskArraySize < 1)
    {
        taskArray = (ProcessTaskData **)realloc(taskArray, sizeof(ProcessTaskData *));
        taskArraySize = 1;
    }
    // We can't use ForkThread because we don't have a taskData object before we start
    ProcessTaskData *taskData = new ProcessTaskData;
    taskData->mdTaskData = machineDependent->CreateTaskData();
    taskData->threadObject = (ThreadObject*)alloc(taskData, 4, F_MUTABLE_BIT);
    taskData->threadObject->index = TAGGED(0); // Index 0
    // The initial thread is set to accept broadcast interrupt requests
    // and handle them synchronously.  This is for backwards compatibility.
    taskData->threadObject->flags = TAGGED(PFLAG_BROADCAST|PFLAG_ASYNCH); // Flags
    taskData->threadObject->threadLocal = TAGGED(0); // Empty thread-local store
    taskData->threadObject->requestCopy = TAGGED(0); // Cleared interrupt state
#ifdef HAVE_PTHREAD
    taskData->pthreadId = pthread_self();
#elif defined(HAVE_WINDOWS_H)
    taskData->threadHandle = hMainThread;
#endif
    taskArray[0] = taskData;

    Handle stack =
        alloc_and_save(taskData, machineDependent->InitialStackSize(), F_MUTABLE_BIT|F_STACK_OBJ);
    taskData->stack = (StackObject *)DEREFHANDLE(stack);
    machineDependent->InitStackFrame(taskData, stack,
            taskData->saveVec.push(rootFunction), (Handle)0);

    // Create a packet for the Interrupt exception once so that we don't have to
    // allocate when we need to raise it.
    // We can only do this once the taskData object has been created.
    if (interrupt_exn == 0)
        interrupt_exn =
            DEREFEXNHANDLE(make_exn(taskData, EXC_interrupt, taskData->saveVec.push(TAGGED(0))));


    if (singleThreaded)
    {
        // If we don't have threading enter the code as if this were a new thread.
        // This will call finish so will never return.
        NewThreadFunction(taskData);
    }

    schedLock.Lock();
    bool success = false;
#ifdef HAVE_PTHREAD
    // Create a thread that isn't joinable since we don't want to wait
    // for it to finish.
    pthread_attr_t attrs;
    pthread_attr_init(&attrs);
    pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED);
    success = pthread_create(&taskData->pthreadId, &attrs, NewThreadFunction, taskData) == 0;
    pthread_attr_destroy(&attrs);
#elif defined(HAVE_WINDOWS_H)
    DWORD dwThrdId; // Have to provide this although we don't use it.
    taskData->threadHandle =
        CreateThread(NULL, 0, NewThreadFunction, taskData, 0, &dwThrdId);
    success = taskData->threadHandle != NULL;
#endif
    if (! success)
    {
        // Thread creation failed.
        taskArray[0] = 0;
        delete(taskData);
    }
    // Wait until the threads terminate or make a request.
    // We only release schedLock while waiting.
    while (1)
    {
        // Look at the threads to see if they are running.
        bool allStopped = true;
        bool allDied = true;
        for (unsigned i = 0; i < taskArraySize; i++)
        {
            ProcessTaskData *p = taskArray[i];
            // If the only thread left is the signal thread assume we're finished.
            if (p && p != sigTask) allDied = false;
            if (p && p->inMLHeap)
            {
                allStopped = false;
                // It must be running - interrupt it if we are waiting.
                if (threadRequest != 0)
                    machineDependent->InterruptCode(p);
            }
        }
        if (allDied)
            break; // All threads have died: exit.

        if (allStopped && threadRequest != 0)
        {
            threadRequest->Perform();
            threadRequest->completed = true;
            threadRequest = 0; // Allow a new request.
            mlThreadWait.Signal();
        }

        // Have we had a request to stop?  This may have happened while in the GC.
        if (exitRequest)
        {
            // Set this to kill the threads.
            for (unsigned i = 0; i < taskArraySize; i++)
            {
                ProcessTaskData *taskData = taskArray[i];
                if (taskData)
                    MakeRequest(taskData, kRequestKill);
            }
            exitRequest = false; // Don't need to repeat this.
        }

        // Now release schedLock and wait for a thread
        // to wake us up.  Use a timed wait to avoid the race with
        // setting exitRequest.
        initialThreadWait.WaitFor(&schedLock, 2000);
    }
    schedLock.Unlock();
    // We are about to return normally.  Stop any crowbar function
    // and wait until it stops.
    shutdownLock.Lock();
    if (crowbarRunning)
    {
        crowbarLock.Signal();
        crowbarStopped.Wait(&shutdownLock);
    }
    finish(exitResult); // Close everything down and exit.
}

// Create a new thread.  Returns the ML thread identifier object if it succeeds.
// May raise an exception.
Handle Processes::ForkThread(ProcessTaskData *taskData, Handle threadFunction,
                           Handle args, PolyWord flags)
{
    if (singleThreaded)
        raise_exception_string(taskData, EXC_thread, "Threads not available");

    // Create a taskData object for the new thread
    ProcessTaskData *newTaskData = new ProcessTaskData;
    newTaskData->mdTaskData = machineDependent->CreateTaskData();
    // We allocate the thread object in the PARENT's space
    Handle threadId = alloc_and_save(taskData, 4, F_MUTABLE_BIT);
    newTaskData->threadObject = (ThreadObject*)DEREFHANDLE(threadId);
    newTaskData->threadObject->index = TAGGED(0);
    newTaskData->threadObject->flags = flags; // Flags
    newTaskData->threadObject->threadLocal = TAGGED(0); // Empty thread-local store
    newTaskData->threadObject->requestCopy = TAGGED(0); // Cleared interrupt state

    unsigned thrdIndex;
    schedLock.Lock();
    // Before forking a new thread check to see whether we have been asked
    // to exit.  Processes::Exit sets the current set of threads to exit but won't
    // see a new thread.
    if (taskData->requests == kRequestKill)
    {
        schedLock.Unlock();
        // Raise an exception although the thread may exit before we get there.
        raise_exception_string(taskData, EXC_thread, "Thread is exiting");
    }

    // See if there's a spare entry in the array.
    for (thrdIndex = 0;
         thrdIndex < taskArraySize && taskArray[thrdIndex] != 0;
         thrdIndex++);

    if (thrdIndex == taskArraySize) // Need to expand the array
    {
        ProcessTaskData **newArray =
            (ProcessTaskData **)realloc(taskArray, sizeof(ProcessTaskData *)*(taskArraySize+1));
        if (newArray)
        {
            taskArray = newArray;
            taskArraySize++;
        }
        else
        {
            delete(newTaskData);
            schedLock.Unlock();
            raise_exception_string(taskData, EXC_thread, "Too many threads");
        }
    }
    // Add into the new entry
    taskArray[thrdIndex] = newTaskData;
    newTaskData->threadObject->Set(0, TAGGED(thrdIndex)); // Set to the index
    schedLock.Unlock();

    Handle stack = // Allocate the stack in the parent's heap.
        alloc_and_save(taskData, machineDependent->InitialStackSize(), F_MUTABLE_BIT|F_STACK_OBJ);
    newTaskData->stack = (StackObject *)DEREFHANDLE(stack);
    // Also allocate anything needed for the new stack in the parent's heap.
    // The child still has inMLHeap set so mustn't GC.
    machineDependent->InitStackFrame(taskData, stack, threadFunction, args);

    // Now actually fork the thread.
    bool success = false;
    schedLock.Lock();
#ifdef HAVE_PTHREAD
    // Create a thread that isn't joinable since we don't want to wait
    // for it to finish.
    pthread_attr_t attrs;
    pthread_attr_init(&attrs);
    pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED);
    success = pthread_create(&newTaskData->pthreadId, &attrs, NewThreadFunction, newTaskData) == 0;
    pthread_attr_destroy(&attrs);
#elif defined(HAVE_WINDOWS_H)
    DWORD dwThrdId; // Have to provide this although we don't use it.
    newTaskData->threadHandle =
        CreateThread(NULL, 0, NewThreadFunction, newTaskData, 0, &dwThrdId);
    success = newTaskData->threadHandle != NULL;
#endif
    if (success)
    {
        schedLock.Unlock();
        return threadId;
    }
    // Thread creation failed.
    taskArray[thrdIndex] = 0;
    delete(newTaskData);
    schedLock.Unlock();
    raise_exception_string(taskData, EXC_thread, "Thread creation failed");

}

// ForkFromRTS.  Creates a new thread from within the RTS.  This is currently used
// only to run a signal function.
bool Processes::ForkFromRTS(TaskData *taskData, Handle proc, Handle arg)
{
    try {
        (void)ForkThread((ProcessTaskData*)taskData, proc, arg, TAGGED(PFLAG_SYNCH));
        return true;
    } catch (IOException)
    {
        // If it failed
        return false;
    }
}

// Deal with any interrupt or kill requests.
bool Processes::ProcessAsynchRequests(TaskData *taskData)
{
    bool wasInterrupted = false;
    ProcessTaskData *ptaskData = (ProcessTaskData *)taskData;

    schedLock.Lock();

    switch (ptaskData->requests)
    {
    case kRequestNone:
        schedLock.Unlock();
        break;

    case kRequestInterrupt:
        {
            // Handle asynchronous interrupts only.
            // We've been interrupted.  
            POLYUNSIGNED attrs = ThreadAttrs(ptaskData);
            POLYUNSIGNED intBits = attrs & PFLAG_INTMASK;
            if (intBits == PFLAG_ASYNCH || intBits == PFLAG_ASYNCH_ONCE)
            {
                if (intBits == PFLAG_ASYNCH_ONCE)
                {
                    // Set this so from now on it's synchronous.
                    // This word is only ever set by the thread itself so
                    // we don't need to synchronise.
                    attrs = (attrs & (~PFLAG_INTMASK)) | PFLAG_SYNCH;
                    ptaskData->threadObject->Set(1, TAGGED(attrs));
                }
                ptaskData->requests = kRequestNone; // Clear this
                ptaskData->threadObject->Set(3, TAGGED(0)); // And in the ML copy
                schedLock.Unlock();
                // Don't actually throw the exception here.
                machineDependent->SetException(taskData, interrupt_exn);
                wasInterrupted = true;
            }
            else schedLock.Unlock();
        }
        break;

    case kRequestKill: // The thread has been asked to stop.
        schedLock.Unlock();
        throw KillException();
        // Doesn't return.
    }

#ifndef HAVE_WINDOWS_H
    // Start the profile timer if needed.
    if (profileMode == kProfileTime)
    {
        if (! ptaskData->runningProfileTimer)
        {
            ptaskData->runningProfileTimer = true;
            StartProfilingTimer();
        }
    }
    else ptaskData->runningProfileTimer = false;
    // The timer will be stopped next time it goes off.
#endif
    return wasInterrupted;
}

// If this thread is processing interrupts synchronously and has been
// interrupted clear the interrupt and raise the exception.  This is
// called from IO routines which may block.
void Processes::TestSynchronousRequests(TaskData *taskData)
{
    ProcessTaskData *ptaskData = (ProcessTaskData *)taskData;
    schedLock.Lock();
    switch (ptaskData->requests)
    {
    case kRequestNone:
        schedLock.Unlock();
        break;

    case kRequestInterrupt:
        {
            // Handle synchronous interrupts only.
            // We've been interrupted.  
            POLYUNSIGNED attrs = ThreadAttrs(ptaskData);
            POLYUNSIGNED intBits = attrs & PFLAG_INTMASK;
            if (intBits == PFLAG_SYNCH)
            {
                ptaskData->requests = kRequestNone; // Clear this
                ptaskData->threadObject->Set(3, TAGGED(0));
                schedLock.Unlock();
                machineDependent->SetException(taskData, interrupt_exn);
                throw IOException(EXC_EXCEPTION);
            }
            else schedLock.Unlock();
        }
        break;

    case kRequestKill: // The thread has been asked to stop.
        schedLock.Unlock();
        throw KillException();
        // Doesn't return.
    }
}

// Stop.  Usually called by one of the threads but
// in the Windows version can also be called by the GUI or
// it can be called from the default console interrupt handler.
// This is more complicated than it seems.  We must avoid
// calling exit while there are other threads running because
// exit will finalise the modules and deallocate memory etc.
// However some threads may be deadlocked or we may be in the
// middle of a very slow GC and we just want it to stop.
void Processes::CrowBarFn(void)
{
#if (defined(HAVE_PTHREAD) || defined(HAVE_WINDOWS_H))
    shutdownLock.Lock();
    crowbarRunning = true;
    if (crowbarLock.WaitFor(&shutdownLock, 20000)) // Wait for 20s
    {
        // We've been woken by the main thread.  Let it do the shutdown.
        crowbarStopped.Signal();
        shutdownLock.Unlock();
    }
    else
    {
#if defined(HAVE_WINDOWS_H)
        ExitProcess(1);
#else
        _exit(1); // Something is stuck.  Get out without calling destructors.
#endif
    }
#endif
}

#ifdef HAVE_PTHREAD
static void *crowBarFn(void*)
{
    processesModule.CrowBarFn();
    return 0;
}
#elif defined(HAVE_WINDOWS_H)
static DWORD WINAPI crowBarFn(LPVOID arg)
{
    processesModule.CrowBarFn();
    return 0;
}
#endif

void Processes::Exit(int n)
{
    if (singleThreaded)
        finish(n);

    // Start a crowbar thread.  This will stop everything if the main thread
    // does not reach the point of stopping within 5 seconds.
#if (defined(HAVE_PTHREAD))
    // Create a thread that isn't joinable since we don't want to wait
    // for it to finish.
    pthread_attr_t attrs;
    pthread_attr_init(&attrs);
    pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED);
    pthread_t threadId;
    (void)pthread_create(&threadId, &attrs, crowBarFn, 0);
    pthread_attr_destroy(&attrs);
#elif defined(HAVE_WINDOWS_H)
    DWORD dwThrdId;
    HANDLE hCrowBarThread = CreateThread(NULL, 0, crowBarFn, 0, 0, &dwThrdId);
    CloseHandle(hCrowBarThread); // Not needed
#endif
    // We may be in an interrupt handler with schedLock held.
    // Just set the exit request and go.
    exitResult = n;
    exitRequest = true;
    initialThreadWait.Signal(); // Wake it if it's sleeping.
}

/******************************************************************************/
/*                                                                            */
/*      catchVTALRM - handler for alarm-clock signal                          */
/*                                                                            */
/******************************************************************************/
#if !defined(HAVE_WINDOWS_H)
// N.B. This may be called either by an ML thread or by the main thread.
// On the main thread taskData will be null.
static void catchVTALRM(SIG_HANDLER_ARGS(sig, context))
{
    ASSERT(sig == SIGVTALRM);
    if (profileMode != kProfileTime)
    {
        // We stop the timer for this thread on the next signal after we end profile
        static struct itimerval stoptime = {{0, 0}, {0, 0}};
        /* Stop the timer */
        setitimer(ITIMER_VIRTUAL, & stoptime, NULL);
    }
    else {
        TaskData *taskData = processes->GetTaskDataForThread();
        handleProfileTrap(taskData, (SIGNALCONTEXT*)context);
    }
}

#else /* Windows including Cygwin */
// This runs as a separate thread.  Every millisecond it checks the CPU time used
// by each ML thread and increments the count for each thread that has used a
// millisecond of CPU time.

static bool testCPUtime(HANDLE hThread, LONGLONG &lastCPUTime)
{
    FILETIME cTime, eTime, kTime, uTime;
    // Try to get the thread CPU time if possible.  This isn't supported
    // in Windows 95/98 so if it fails we just include this thread anyway.
    if (GetThreadTimes(hThread, &cTime, &eTime, &kTime, &uTime))
    {
        LONGLONG totalTime = 0;
        LARGE_INTEGER li;
        li.LowPart = kTime.dwLowDateTime;
        li.HighPart = kTime.dwHighDateTime;
        totalTime += li.QuadPart;
        li.LowPart = uTime.dwLowDateTime;
        li.HighPart = uTime.dwHighDateTime;
        totalTime += li.QuadPart;
        if (totalTime - lastCPUTime >= 10000)
        {
            lastCPUTime = totalTime;
            return true;
        }
        return false;
    }
    else return true; // Failed to get thread time, maybe Win95.
 }


void Processes::ProfileInterrupt(void)
{               
    // Wait for millisecond or until the stop event is signalled.
    while (WaitForSingleObject(hStopEvent, 1) == WAIT_TIMEOUT)        
    {
        // We need to hold schedLock to examine the taskArray but
        // that is held during garbage collection.
        if (schedLock.Trylock())
        {
            for (unsigned i = 0; i < taskArraySize; i++)
            {
                ProcessTaskData *p = taskArray[i];
                if (p && p->threadHandle)
                {
                    if (testCPUtime(p->threadHandle, p->lastCPUTime))
                    {
                        CONTEXT context;
                        SuspendThread(p->threadHandle);
                        context.ContextFlags = CONTEXT_CONTROL; /* Get Eip and Esp */
                        if (GetThreadContext(p->threadHandle, &context))
                        {
                            handleProfileTrap(p, &context);
                        }
                        ResumeThread(p->threadHandle);
                    }
                }
            }
            schedLock.Unlock();
        }
        // Check the CPU time used by the main thread.  This is used for GC
        // so we need to check that as well.
        if (testCPUtime(mainThreadHandle, lastCPUTime))
            handleProfileTrap(NULL, NULL);
    }
}

DWORD WINAPI ProfilingTimer(LPVOID parm)
{
    processesModule.ProfileInterrupt();
    return 0;
}

#endif

// Profiling control.  Called by the root thread.
void Processes::StartProfiling(void)
{
#ifdef HAVE_WINDOWS_H
    DWORD threadId;
    if (profilingHd)
        return;
    ResetEvent(hStopEvent);
    profilingHd = CreateThread(NULL, 0, ProfilingTimer, NULL, 0, &threadId);
    if (profilingHd == NULL)
        fputs("Creating ProfilingTimer thread failed.\n", stdout); 
    /* Give this a higher than normal priority so it pre-empts the main
       thread.  Without this it will tend only to be run when the main
       thread blocks for some reason. */
    SetThreadPriority(profilingHd, THREAD_PRIORITY_ABOVE_NORMAL);
#else
    // In Linux, at least, we need to run a timer in each thread.
    // We request each to enter the RTS so that it will start the timer.
    // Since this is being run by the main thread while all the ML threads
    // are paused this may not actually be necessary.
    for (unsigned i = 0; i < taskArraySize; i++)
    {
        ProcessTaskData *taskData = taskArray[i];
        if (taskData)
        {
            machineDependent->InterruptCode(taskData);
        }
    }
    StartProfilingTimer(); // Start the timer in the root thread.
#endif
}

void Processes::StopProfiling(void)
{
#ifdef HAVE_WINDOWS_H
    if (hStopEvent) SetEvent(hStopEvent);
    // Wait for the thread to stop
    if (profilingHd) WaitForSingleObject(profilingHd, 10000);
    CloseHandle(profilingHd);
    profilingHd = NULL;
#endif
}

// Called by the ML signal handling thread.  It blocks until a signal
// arrives.  There should only be a single thread waiting here.
bool Processes::WaitForSignal(TaskData *taskData, PLock *sigLock)
{
    ProcessTaskData *ptaskData = (ProcessTaskData *)taskData;
    // We need to hold the signal lock until we have acquired schedLock.
    schedLock.Lock();
    sigLock->Unlock();
    if (sigTask != 0)
    {
        schedLock.Unlock();
        return false;
    }
    sigTask = ptaskData;

    if (ptaskData->requests == kRequestNone)
    {
        // Now release the ML memory.  A GC can start.
        ThreadReleaseMLMemoryWithSchedLock(ptaskData);
        ptaskData->threadLock.Wait(&schedLock);
        // We want to use the memory again.
        ThreadUseMLMemoryWithSchedLock(ptaskData);
    }

    sigTask = 0;
    schedLock.Unlock();
    return true;
}

// Called by the signal detection thread to wake up the signal handler
// thread.  Must be called AFTER releasing sigLock.
void Processes::SignalArrived(void)
{
    PLocker locker(&schedLock);
    if (sigTask)
        sigTask->threadLock.Signal();
}


void Processes::Init(void)
{
#ifdef HAVE_WINDOWS_H
    // Create event to wake up from IO sleeping.
    hWakeupEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
#endif

#ifdef HAVE_PTHREAD
    pthread_key_create(&tlsId, NULL);
#elif defined(HAVE_WINDOWS_H)
    tlsId = TlsAlloc();
#else
    singleThreaded = true;
#endif

#if defined(HAVE_WINDOWS_H) /* Windows including Cygwin. */
    // Create stop event for time profiling.
    hStopEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
    // Get the thread handle for this thread.  It's the same as
    // hMainThread except that we don't have that in the Cygwin version.
    HANDLE thisProcess = GetCurrentProcess();
    DuplicateHandle(thisProcess, GetCurrentThread(), thisProcess, 
        &mainThreadHandle, THREAD_ALL_ACCESS, FALSE, 0);
#else
    // Set up a signal handler.  This will be the same for all threads.
    markSignalInuse(SIGVTALRM);
    setSignalHandler(SIGVTALRM, catchVTALRM);
#endif
}

#ifndef HAVE_WINDOWS_H
// On Linux, at least, each thread needs to run this.
void Processes::StartProfilingTimer(void)
{
    // set virtual timer to go off every millisecond
    struct itimerval starttime;
    starttime.it_interval.tv_sec = starttime.it_value.tv_sec = 0;
    starttime.it_interval.tv_usec = starttime.it_value.tv_usec = 1000;
    setitimer(ITIMER_VIRTUAL,&starttime,NULL);
}
#endif

void Processes::Reinit(void)
{
}

void Processes::Uninit(void)
{     
#ifdef HAVE_WINDOWS_H
    if (hWakeupEvent) SetEvent(hWakeupEvent);
#endif

#ifdef HAVE_WINDOWS_H
    if (hWakeupEvent) CloseHandle(hWakeupEvent);
    hWakeupEvent = NULL;
#endif

#ifdef HAVE_PTHREAD
    pthread_key_delete(tlsId);
#elif defined(HAVE_WINDOWS_H)
    TlsFree(tlsId);
#endif

#if defined(HAVE_WINDOWS_H)
    /* Stop the timer and profiling threads. */
    if (hStopEvent) SetEvent(hStopEvent);
    if (profilingHd)
    {
        WaitForSingleObject(profilingHd, 10000);
        CloseHandle(profilingHd);
        profilingHd = NULL;
    }
    if (hStopEvent) CloseHandle(hStopEvent);
    hStopEvent = NULL;
    if (mainThreadHandle) CloseHandle(mainThreadHandle);
    mainThreadHandle = NULL;
#else
    profileMode = kProfileOff;
    // Make sure the timer is not running
    struct itimerval stoptime;
    memset(&stoptime, 0, sizeof(stoptime));
    setitimer(ITIMER_VIRTUAL, &stoptime, NULL);
#endif
}

void Processes::GarbageCollect(ScanAddress *process)
/* Ensures that all the objects are retained and their addresses updated. */
{   
    /* The interrupt exn */
    if (interrupt_exn != 0) {
        PolyObject *p = interrupt_exn;
        process->ScanRuntimeAddress(&p, ScanAddress::STRENGTH_STRONG);
        interrupt_exn = (PolyException*)p;
    }
    for (unsigned i = 0; i < taskArraySize; i++)
    {
        if (taskArray[i])
            taskArray[i]->GarbageCollect(process);
    }
}

void ProcessTaskData::GarbageCollect(ScanAddress *process)
{
    saveVec.gcScan(process);
    if (stack != 0)
    {
        PolyObject *p = stack;
        process->ScanRuntimeAddress(&p, ScanAddress::STRENGTH_STRONG);
        stack = (StackObject*)p;
    }
    if (threadObject != 0)
    {
        PolyObject *p = threadObject;
        process->ScanRuntimeAddress(&p, ScanAddress::STRENGTH_STRONG);
        threadObject = (ThreadObject*)p;
    }
    if (blockMutex != 0)
        process->ScanRuntimeAddress(&blockMutex, ScanAddress::STRENGTH_STRONG);
    // The allocation spaces are no longer valid.
    allocPointer = 0;
    allocLimit = 0;
    // Divide the allocation size by four. If we have made a single allocation
    // since the last GC the size will have been doubled after the allocation.
    // On average for each thread, apart from the one that ran out of space
    // and requested the GC, half of the space will be unused so reducing by
    // four should give a good estimate for next time.
    if (allocCount != 0)
    { // Do this only once for each GC.
        allocCount = 0;
        allocSize = allocSize/4;
        if (allocSize < MIN_HEAP_SIZE)
            allocSize = MIN_HEAP_SIZE;
    }
}