1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
|
/*
Title: Real number package.
Author: Dave Matthews, Cambridge University Computer Laboratory
Copyright (c) 2000
Cambridge University Technical Services Limited
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef WIN32
#include "winconfig.h"
#else
#include "config.h"
#endif
#ifdef HAVE_IEEEFP_H
/* Other operating systems include "finite" in math.h, but Solaris doesn't? */
#include <ieeefp.h>
#endif
#ifdef HAVE_FPU_CONTROL_H
#include <fpu_control.h>
#endif
#ifdef HAVE_FENV_H
#include <fenv.h>
#endif
#if (defined(WIN32))
#define finite _finite
#define isnan _isnan
#define copysign _copysign
#endif
#ifdef HAVE_FLOAT_H
#include <float.h>
#endif
#ifdef HAVE_MATH_H
#include <math.h>
#endif
#ifdef HAVE_STDIO_H
#include <stdio.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#include "globals.h"
#include "run_time.h"
#include "reals.h"
#include "arb.h"
#include "sys.h"
#include "realconv.h"
#include "polystring.h"
#include "save_vec.h"
#include "rts_module.h"
#include "machine_dep.h"
#include "processes.h"
/*
The Standard Basis Library assumes IEEE representation for reals. Among other
things it does not permit equality on reals. That simplifies things
considerably since we don't have to worry about there being two different
representations of zero as 0 and ~0. We also don't need to check that the
result is finite since NaN is allowed as a result.
This code could do with being checked by someone who really understands
IEEE floating point arithmetic.
The original real number functions all had separate entries in the interface
vector. Newly added functions all go through a single dispatch function.
DCJM: March 2000.
*/
double posInf, negInf, notANumber;
/* Real numbers are represented by the address of the value. */
#define DBLE sizeof(double)
union db { double dble; byte bytes[DBLE]; };
/* Assumes that there will be a separate handler for floating point overflow
and underflow. */
/* tidied up 27/10/93 SPF */
/* can't assume (double *) has same alignment as (PolyWord *), so all the */
/* parameters should be passed in as a Handle, not (double **). */
double real_arg(Handle x)
{
union db r_arg_x;
for (unsigned i = 0; i < DBLE; i++)
{
r_arg_x.bytes[i] = DEREFBYTEHANDLE(x)[i];
}
return r_arg_x.dble;
}
Handle real_result(TaskData *mdTaskData, double x)
{
union db argx;
argx.dble = x;
PolyObject *v = alloc(mdTaskData, DBLE/sizeof(PolyWord), F_BYTE_OBJ);
/* Copy as words in case the alignment is wrong. */
for(unsigned i = 0; i < DBLE; i++)
{
v->AsBytePtr()[i] = argx.bytes[i];
}
return mdTaskData->saveVec.push(v);
}
/* CALL_IO2(Real_add, REF, REF, NOIND) */
Handle Real_addc(TaskData *mdTaskData, Handle y, Handle x)
{
return real_result(mdTaskData, real_arg(x)+real_arg(y));
}
/* CALL_IO2(Real_sub, REF, REF, NOIND) */
Handle Real_subc(TaskData *mdTaskData, Handle y, Handle x)
{
return real_result(mdTaskData, real_arg(x)-real_arg(y));
}
/* CALL_IO2(Real_mul, REF, REF, NOIND) */
Handle Real_mulc(TaskData *mdTaskData, Handle y, Handle x)
{
return real_result(mdTaskData, real_arg(x)*real_arg(y));
}
/* CALL_IO2(Real_div, REF, REF, NOIND) */
Handle Real_divc(TaskData *mdTaskData, Handle y, Handle x)
{
double dx = real_arg(x);
double dy = real_arg(y);
return real_result(mdTaskData, dx/dy);
}
/* CALL_IO1(Real_neg, REF, NOIND) */
Handle Real_negc(TaskData *mdTaskData, Handle x)
{
return real_result(mdTaskData, -real_arg(x));
}
/* The old Real_comp function isn't right for IEEE arithmetic. These
functions were added to implement these correctly.
On Windows, at any rate, the comparison operations do not necessarily
return false on unordered arguments so we have to explicitly test for NaN.
*/
Handle Real_geqc(TaskData *mdTaskData, Handle y, Handle x)
{
double dx = real_arg(x), dy = real_arg(y);
if (isnan(dx) || isnan(dy)) return mdTaskData->saveVec.push(TAGGED(0));
return mdTaskData->saveVec.push(dx >= dy ? TAGGED(1) : TAGGED(0));
}
Handle Real_leqc(TaskData *mdTaskData, Handle y, Handle x)
{
double dx = real_arg(x), dy = real_arg(y);
if (isnan(dx) || isnan(dy)) return mdTaskData->saveVec.push(TAGGED(0));
return mdTaskData->saveVec.push(dx <= dy ? TAGGED(1) : TAGGED(0));
}
Handle Real_gtrc(TaskData *mdTaskData, Handle y, Handle x)
{
double dx = real_arg(x), dy = real_arg(y);
if (isnan(dx) || isnan(dy)) return mdTaskData->saveVec.push(TAGGED(0));
return mdTaskData->saveVec.push(dx > dy ? TAGGED(1) : TAGGED(0));
}
Handle Real_lssc(TaskData *mdTaskData, Handle y, Handle x)
{
double dx = real_arg(x), dy = real_arg(y);
if (isnan(dx) || isnan(dy)) return mdTaskData->saveVec.push(TAGGED(0));
return mdTaskData->saveVec.push(dx < dy ? TAGGED(1) : TAGGED(0));
}
Handle Real_eqc(TaskData *mdTaskData, Handle y, Handle x)
{
double dx = real_arg(x), dy = real_arg(y);
if (isnan(dx) || isnan(dy)) return mdTaskData->saveVec.push(TAGGED(0));
return mdTaskData->saveVec.push(dx == dy ? TAGGED(1) : TAGGED(0));
}
Handle Real_neqc(TaskData *mdTaskData, Handle y, Handle x)
{
double dx = real_arg(x), dy = real_arg(y);
if (isnan(dx) || isnan(dy)) return mdTaskData->saveVec.push(TAGGED(1));
return mdTaskData->saveVec.push(dx != dy ? TAGGED(1) : TAGGED(0));
}
/* CALL_IO1(Real_float, REF, NOIND) */
Handle Real_floatc(TaskData *mdTaskData, Handle x) /* SHORT int to real */
{
POLYSIGNED n = UNTAGGED(DEREFWORDHANDLE(x));
return real_result(mdTaskData, (double)n);
}
/* CALL_IO1(Real_int, REF, NOIND) */
Handle Real_intc(TaskData *mdTaskData, Handle x) /* real to SHORT int */
{
double dx = real_arg(x);
double di = floor(dx); /* Get the largest integer <= dx */
POLYSIGNED i = (POLYSIGNED) di ; /* Convert (truncate) this to integer */
/* Bug fix thanks to Mike Crawley at Brunel. */
if (di > (double)MAXTAGGED || di < -(double)MAXTAGGED -1)
{
raise_exception0(mdTaskData, EXC_size);
}
return mdTaskData->saveVec.push(TAGGED(i));
}
/* CALL_IO1(Real_sqrt, REF, NOIND) */
Handle Real_sqrtc(TaskData *mdTaskData, Handle arg)
{
double dx = real_arg(arg);
return real_result(mdTaskData, sqrt(dx));
}
/* CALL_IO1(Real_sin, REF, NOIND) */
Handle Real_sinc(TaskData *mdTaskData, Handle arg)
{
return real_result(mdTaskData, sin(real_arg(arg)));
}
/* CALL_IO1(Real_cos, REF, NOIND) */
Handle Real_cosc(TaskData *mdTaskData, Handle arg)
{
return real_result(mdTaskData, cos(real_arg(arg)));
}
/* CALL_IO1(Real_arctan, REF, NOIND) */
Handle Real_arctanc(TaskData *mdTaskData, Handle arg)
{
return real_result(mdTaskData, atan(real_arg(arg)));
}
/* CALL_IO1(Real_exp, REF, NOIND) */
Handle Real_expc(TaskData *mdTaskData, Handle arg)
{
return real_result(mdTaskData, exp(real_arg(arg)));
}
/* CALL_IO1(Real_ln, REF, NOIND) */
Handle Real_lnc(TaskData *mdTaskData, Handle arg)
{
double x = real_arg(arg);
/* Make sure the result conforms to the definition. */
if (x < 0.0)
return real_result(mdTaskData, notANumber); /* Nan. */
else if (x == 0.0) /* x may be +0.0 or -0.0 */
return real_result(mdTaskData, negInf); /* -infinity. */
else return real_result(mdTaskData, log(x));
}
/* Real_Rep and Real_reprc are redundant. This is now dealt with by a function within the
basis library. DCJM June 2002.*/
static void Real_Rep(TaskData *mdTaskData, double val, char *string_buffer)
/* Puts the string representation into ``string_buffer'' and edits it into
the Poly representation. i.e. replacing '-' by '~' and removing '+', and
putting in a ".0" if the number does not have an E or a decimal point. */
{
int dot_or_e = 0, digits = 0;
char *sptr;
/* First handle the special cases. We can't rely on sprintf doing
them in the way we want. */
if (isnan(val))
{
strcpy(string_buffer, "nan");
}
else if (! finite(val))
{
if (val > 0.0) strcpy(string_buffer, "inf");
else strcpy(string_buffer, "~inf");
}
else if (val == 0.0)
{
if (copysign(1.0, val) < 0.0)
strcpy(string_buffer, "~0.0");
else strcpy(string_buffer, "0.0");
}
else
{
sprintf(string_buffer, "%.10G", val);
for(sptr = string_buffer; *sptr != '\0'; sptr++)
{
if (*sptr == '-') *sptr = '~';
else if (*sptr == '+')
{
/* Shift the rest up to cover the '+' */
strcpy(sptr, sptr+1);
sptr--;
}
else if (*sptr == '.' || *sptr == 'E')
{
if (! digits)
{
/* Must have a digit before the decimal point
- shift down and put in a zero. */
register char *p;
for (p = sptr; *p != '\0'; p++);
for (; p >= sptr; p--) p[1] = *p;
*sptr = '0';
digits = 1;
}
dot_or_e = 1;
}
else if (*sptr >= '0' && *sptr <= '9') digits = 1;
}
if (!dot_or_e) strcat(string_buffer, ".0");
}
} /* Real_Rep */
/* CALL_IO1(Real_repr, REF, NOIND) */
Handle Real_reprc(TaskData *mdTaskData, Handle val) /* real to string */
{
char string_buffer[30];
Real_Rep(mdTaskData, real_arg(val), string_buffer);
return mdTaskData->saveVec.push(C_string_to_Poly(mdTaskData, string_buffer));
} /* Real_reprc */
/* CALL_IO1(Real_conv, REF, NOIND) */
Handle Real_convc(TaskData *mdTaskData, Handle str) /* string to real */
{
double result;
int i;
char *finish;
char *string_buffer = Poly_string_to_C_alloc(DEREFHANDLE(str));
/* Scan the string turning '~' into '-' */
for(i = 0; string_buffer[i] != '\0'; i ++)
{
if (string_buffer[i] == '~') string_buffer[i] = '-';
}
/* Now convert it */
result = strtod(string_buffer, &finish);
bool isError = *finish != '\0'; // Test before deallocating
free(string_buffer);
// We no longer detect overflow and underflow and instead return
// (signed) zeros for underflow and (signed) infinities for overflow.
if (isError) raise_exception_string(mdTaskData, EXC_conversion, "");
return real_result(mdTaskData, result);
}/* Real_conv */
static double real_arg1(Handle x)
{
union db r_arg_x;
for(unsigned i = 0; i < DBLE; i++)
{
r_arg_x.bytes[i] = DEREFHANDLE(x)->Get(0).AsObjPtr()->AsBytePtr()[i];
}
return r_arg_x.dble;
}
static double real_arg2(Handle x)
{
union db r_arg_x;
for(unsigned i = 0; i < DBLE; i++)
{
r_arg_x.bytes[i] = DEREFHANDLE(x)->Get(1).AsObjPtr()->AsBytePtr()[i];
}
return r_arg_x.dble;
}
static Handle powerOf(TaskData *mdTaskData, Handle args)
{
double x = real_arg1(args), y = real_arg2(args);
/* Some of the special cases are defined and don't seem to match
the C pow function (at least as implemented in MS C). */
/* Maybe handle all this in ML? */
if (isnan(x))
{
if (y == 0.0) return real_result(mdTaskData, 1.0);
else return real_result(mdTaskData, notANumber);
}
else if (isnan(y)) return real_result(mdTaskData, y); /* i.e. nan. */
else if (x == 0.0 && y < 0.0)
{
/* This case is not handled correctly in Solaris. It always
returns -infinity. */
int iy = (int)floor(y);
/* If x is -0.0 and y is an odd integer the result is -infinity. */
if (copysign(1.0, x) < 0.0 && (double)iy == y && (iy & 1))
return real_result(mdTaskData, negInf); /* -infinity. */
else return real_result(mdTaskData, posInf); /* +infinity. */
}
return real_result(mdTaskData, pow(x, y));
}
// It would be nice to be able to use autoconf to test for these as functions
// but they are frequently inlined
#if defined(HAVE_FENV_H)
// C99 version. This is becoming the most common.
static PolyWord getrounding(TaskData *)
{
switch (fegetround())
{
case FE_TONEAREST: return TAGGED(0);
case FE_DOWNWARD: return TAGGED(1);
case FE_UPWARD: return TAGGED(2);
case FE_TOWARDZERO: return TAGGED(3);
}
return TAGGED(0); // Keep the compiler happy
}
static void setrounding(TaskData *taskData, Handle args)
{
switch (get_C_long(taskData, DEREFWORDHANDLE(args)))
{
case 0: fesetround(FE_TONEAREST); break; // Choose nearest
case 1: fesetround(FE_DOWNWARD); break; // Towards negative infinity
case 2: fesetround(FE_UPWARD); break; // Towards positive infinity
case 3: fesetround(FE_TOWARDZERO); break; // Truncate towards zero
}
}
#elif (defined(HAVE_IEEEFP_H) && ! defined(__CYGWIN__))
// Older FreeBSD. Cygwin has the ieeefp.h header but not the functions!
static PolyWord getrounding(TaskData *)
{
switch (fpgetround())
{
case FP_RN: return TAGGED(0);
case FP_RM: return TAGGED(1);
case FP_RP: return TAGGED(2);
case FP_RZ: return TAGGED(3);
default: return TAGGED(0); /* Shouldn't happen. */
}
}
static void setrounding(TaskData *taskData, Handle args)
{
switch (get_C_long(taskData, DEREFWORDHANDLE(args)))
{
case 0: fpsetround(FP_RN); break; /* Choose nearest */
case 1: fpsetround(FP_RM); break; /* Towards negative infinity */
case 2: fpsetround(FP_RP); break; /* Towards positive infinity */
case 3: fpsetround(FP_RZ); break; /* Truncate towards zero */
}
}
#elif defined(WINDOWS_PC)
// Windows version
static PolyWord getrounding(TaskData *)
{
switch (_controlfp(0,0) & _MCW_RC)
{
case _RC_NEAR: return TAGGED(0);
case _RC_DOWN: return TAGGED(1);
case _RC_UP: return TAGGED(2);
case _RC_CHOP: return TAGGED(3);
}
return TAGGED(0); // Keep the compiler happy
}
static void setrounding(TaskData *mdTaskData, Handle args)
{
switch (get_C_long(mdTaskData, DEREFWORDHANDLE(args)))
{
case 0: _controlfp(_RC_NEAR, _MCW_RC); break; // Choose nearest
case 1: _controlfp(_RC_DOWN, _MCW_RC); break; // Towards negative infinity
case 2: _controlfp(_RC_UP, _MCW_RC); break; // Towards positive infinity
case 3: _controlfp(_RC_CHOP, _MCW_RC); break; // Truncate towards zero
}
}
#elif defined(_FPU_GETCW) && defined(_FPU_SETCW)
// Older Linux version
static PolyWord getrounding(TaskData *)
{
fpu_control_t ctrl;
_FPU_GETCW(ctrl);
switch (ctrl & _FPU_RC_ZERO)
{
case _FPU_RC_NEAREST: return TAGGED(0);
case _FPU_RC_DOWN: return TAGGED(1);
case _FPU_RC_UP: return TAGGED(2);
case _FPU_RC_ZERO: return TAGGED(4);
}
return TAGGED(0); /* Never reached but this avoids warning message. */
}
static void setrounding(TaskData *taskData, Handle args)
{
fpu_control_t ctrl;
_FPU_GETCW(ctrl);
ctrl &= ~_FPU_RC_ZERO; /* Mask off any existing rounding. */
switch (get_C_long(taskData, DEREFWORDHANDLE(args)))
{
case 0: ctrl |= _FPU_RC_NEAREST;
case 1: ctrl |= _FPU_RC_DOWN;
case 2: ctrl |= _FPU_RC_UP;
case 3: ctrl |= _FPU_RC_ZERO;
}
_FPU_SETCW(ctrl);
}
#elif (defined(HOSTARCHITECTURE_PPC) && defined(MACOSX))
// Older versions of the Mac OS X didn't have a suitable function.
static void getround(union db *res)
{
__asm__ ("mffs f0");
__asm__ ("stfd f0,0(r3)");
}
static PolyWord getrounding(TaskData *)
{
union db roundingRes;
getround(&roundingRes);
switch (roundingRes.wrd[1] & 3)
{
case 0: return TAGGED(0); /* Choose nearest */
case 1: return TAGGED(3); /* Round towards zero */
case 2: return TAGGED(2); /* Towards positive infinity */
case 3: return TAGGED(1); /* Towards negative infinity */
}
return TAGGED(0); /* Never reached but this avoids warning message. */
}
static void setrounding(TaskData *taskData, Handle args)
{
switch (get_C_long(taskData, DEREFWORDHANDLE(args)))
{
case 0: __asm__("mtfsfi 7,0"); break; /* Choose nearest */
case 1: __asm__("mtfsfi 7,3"); break; /* Towards negative infinity */
case 2: __asm__("mtfsfi 7,2"); break; /* Towards positive infinity */
case 3: __asm__("mtfsfi 7,1"); break; /* Truncate towards zero */
}
}
#else
// Give up.
static PolyWord getrounding(TaskData *mdTaskData)
{
raise_exception_string(mdTaskData, EXC_Fail, "Unable to get flaoting point rounding control");
}
static void setrounding(TaskData *mdTaskData, Handle)
{
raise_exception_string(mdTaskData, EXC_Fail, "Unable to set flaoting point rounding control");
}
#endif
Handle Real_strc(TaskData *mdTaskData, Handle hDigits, Handle hMode, Handle arg)
{
double dx = real_arg(arg);
int decpt, sign;
int mode = get_C_long(mdTaskData, DEREFWORDHANDLE(hMode));
int digits = get_C_long(mdTaskData, DEREFWORDHANDLE(hDigits));
/* Compute the shortest string which gives the required value. */
/* N.B. dtoa uses static buffers and is NOT thread-safe. */
char *chars = dtoa(dx, mode, digits, &decpt, &sign, NULL);
/* We have to be careful in case an allocation causes a
garbage collection. */
PolyWord pStr = C_string_to_Poly(mdTaskData, chars);
Handle ppStr = mdTaskData->saveVec.push(pStr);
/* Allocate a triple for the results. */
PolyObject *result = alloc(mdTaskData, 3);
result->Set(0, DEREFWORDHANDLE(ppStr));
result->Set(1, TAGGED(decpt));
result->Set(2, TAGGED(sign));
return mdTaskData->saveVec.push(result);
}
/* Functions added for Standard Basis Library are all indirected through here. */
Handle Real_dispatchc(TaskData *mdTaskData, Handle args, Handle code)
{
int c = get_C_long(mdTaskData, DEREFWORDHANDLE(code));
switch (c)
{
case 0: /* tan */ return real_result(mdTaskData, tan(real_arg(args)));
case 1: /* asin */
{
double x = real_arg(args);
if (x < -1.0 || x > 1.0)
return real_result(mdTaskData, notANumber);
else return real_result(mdTaskData, asin(x));
}
case 2: /* acos */
{
double x = real_arg(args);
if (x < -1.0 || x > 1.0)
return real_result(mdTaskData, notANumber);
else return real_result(mdTaskData, acos(x));
}
case 3: /* atan2 */ return real_result(mdTaskData, atan2(real_arg1(args), real_arg2(args)));
case 4: /* pow */ return powerOf(mdTaskData, args);
case 5: /* log10 */
{
double x = real_arg(args);
/* Make sure the result conforms to the definition. */
if (x < 0.0)
return real_result(mdTaskData, notANumber); /* Nan. */
else if (x == 0.0) /* x may be +0.0 or -0.0 */
return real_result(mdTaskData, negInf); /* -infinity. */
else return real_result(mdTaskData, log10(x));
}
case 6: /* sinh */ return real_result(mdTaskData, sinh(real_arg(args)));
case 7: /* cosh */ return real_result(mdTaskData, cosh(real_arg(args)));
case 8: /* tanh */ return real_result(mdTaskData, tanh(real_arg(args)));
case 9: /* setroundingmode */
setrounding(mdTaskData, args);
return mdTaskData->saveVec.push(TAGGED(0)); /* Unit */
case 10: /* getroundingmode */
return mdTaskData->saveVec.push(getrounding(mdTaskData));
/* Floating point representation queries. */
#ifdef _DBL_RADIX
case 11: /* Value of radix */ return mdTaskData->saveVec.push(TAGGED(_DBL_RADIX));
#else
case 11: /* Value of radix */ return mdTaskData->saveVec.push(TAGGED(FLT_RADIX));
#endif
case 12: /* Value of precision */ return mdTaskData->saveVec.push(TAGGED(DBL_MANT_DIG));
case 13: /* Maximum number */ return real_result(mdTaskData, DBL_MAX);
/* float.h describes DBL_MIN as the minimum positive number.
In fact this is the minimum NORMALISED number. The smallest
number which can be represented is DBL_MIN*2**(-DBL_MANT_DIG) */
case 14: /* Minimum normalised number. */
return real_result(mdTaskData, DBL_MIN);
case 15: /* Is finite */
return mdTaskData->saveVec.push(finite(real_arg(args)) ? TAGGED(1) : TAGGED(0));
case 16: /* Is Nan */
return mdTaskData->saveVec.push(isnan(real_arg(args)) ? TAGGED(1) : TAGGED(0));
case 17: /* Get sign bit. There may be better ways to find this. */
return mdTaskData->saveVec.push(copysign(1.0, real_arg(args)) < 0.0 ? TAGGED(1) : TAGGED(0));
case 18: /* Copy sign. */
return real_result(mdTaskData, copysign(real_arg1(args), real_arg2(args)));
case 19: /* Return largest integral value (as a real) <= x. */
return real_result(mdTaskData, floor(real_arg(args)));
case 20: /* Return smallest integral value (as a real) >= x */
return real_result(mdTaskData, ceil(real_arg(args)));
case 21:
{ /* Truncate towards zero */
double dx = real_arg(args);
if (dx >= 0.0) return real_result(mdTaskData, floor(dx));
else return real_result(mdTaskData, ceil(dx));
}
case 22: /* Round to nearest integral value. */
{
double dx = real_arg(args);
double drem = fmod(dx, 2.0);
if (drem == 0.5 || drem == -1.5)
/* If the value was exactly positive even + 0.5 or
negative odd -0.5 round it down, otherwise round it up. */
return real_result(mdTaskData, ceil(dx-0.5));
else return real_result(mdTaskData, floor(dx+0.5));
}
case 23: /* Compute ldexp */
{
int exp = get_C_long(mdTaskData, DEREFHANDLE(args)->Get(1));
return real_result(mdTaskData, ldexp(real_arg1(args), exp));
}
case 24: /* Get mantissa. */
{
int exp;
return real_result(mdTaskData, frexp(real_arg(args), &exp));
}
case 25: /* Get exponent. */
{
int exp;
(void)frexp(real_arg(args), &exp);
return mdTaskData->saveVec.push(TAGGED(exp));
}
case 26: /* Return the mantissa from a Nan as a real number. */
// I think this is no longer used.
{
union db r_arg_x, r_arg_y;
/* We want to simply replace the exponent by the exponent
value for 0.5<=x<1.
I think there may be a more portable way of doing this. */
r_arg_x.dble = posInf; /* Positive infinity. */
r_arg_y.dble = 0.5;
/* Use the infinity value as a mask, removing any bits set
and replace by the exponent from 0.5. */
byte *barg = DEREFBYTEHANDLE(args);
for(unsigned i = 0; i < DBLE; i++)
{
r_arg_x.bytes[i] = (barg[i] & ~r_arg_x.bytes[i]) | r_arg_y.bytes[i];
}
return real_result(mdTaskData, r_arg_x.dble);
}
case 27: /* Construct a Nan from a given mantissa. */
// I think this is no longer used.
{
union db r_arg;
r_arg.dble = posInf; /* Positive infinity. */
/* OR in the exponent. */
byte *barg = DEREFBYTEHANDLE(args);
for(unsigned i = 0; i < DBLE; i++)
{
r_arg.bytes[i] = r_arg.bytes[i] | barg[i];
}
return real_result(mdTaskData, r_arg.dble);
}
case 28: /* Return the number of bytes for a real. */
return mdTaskData->saveVec.push(TAGGED(sizeof(double)));
default:
{
char msg[100];
sprintf(msg, "Unknown real arithmetic function: %d", c);
raise_exception_string(mdTaskData, EXC_Fail, msg);
return 0;
}
}
}
class RealArithmetic: public RtsModule
{
public:
virtual void Init(void);
};
// Declare this. It will be automatically added to the table.
static RealArithmetic realModule;
void RealArithmetic::Init(void)
{
/* Some compilers object to overflow in constants so
we compute the values here. */
double zero = 0.0;
#if(defined(HAVE_IEEEFP_H) && ! defined(__CYGWIN__))
/* In FreeBSD 3.4 at least, we sometimes get floating point
exceptions if we don't clear the mask. Maybe need to do
this on other platforms as well just to be sure. */
fpsetmask(0);
#endif
posInf = 1.0 / zero;
negInf = -1.0 / zero;
notANumber = zero / zero;
}
|