1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
|
/*
Title: Run-time system.
Author: Dave Matthews, Cambridge University Computer Laboratory
Copyright (c) 2000
Cambridge University Technical Services Limited
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* Contains most of the routines in the interface_map vector. Others are
in their own modules e.g. arb.c, reals.c and persistence.c */
#ifdef WIN32
#include "winconfig.h"
#else
#include "config.h"
#endif
/************************************************************************
*
* Include system headers
*
************************************************************************/
#ifdef HAVE_STDIO_H
#include <stdio.h>
#endif
#ifdef HAVE_SIGNAL_H
#include <signal.h>
#endif
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef HAVE_LIMITS_H
#include <limits.h>
#endif
#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x) 0
#endif
#ifdef HAVE_WINDOWS_H
#include <windows.h>
#endif
#ifdef HAVE_PROCESS_H
#include <process.h>
#endif
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#ifdef HAVE_IO_H
#include <io.h>
#endif
#ifdef HAVE_EXCPT_H
#include <excpt.h>
#endif
#ifdef HAVE_SYS_TIMES_H
#include <sys/times.h>
#endif
#ifdef HAVE_SYS_SYSTEMINFO_H
#include <sys/systeminfo.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
/************************************************************************
*
* Include runtime headers
*
************************************************************************/
#include "globals.h"
#include "gc.h"
#include "xwindows.h"
#include "mpoly.h"
#include "arb.h"
#include "machine_dep.h"
#include "objsize.h"
#include "foreign.h"
#include "diagnostics.h"
#include "processes.h"
#include "profiling.h"
#include "basicio.h"
#include "run_time.h"
#include "sys.h"
#include "process_env.h"
#include "timing.h"
#include "network.h"
#include "os_specific.h"
#include "sighandler.h"
#include "reals.h"
#include "scanaddrs.h"
#include "check_objects.h"
#include "polystring.h"
#include "poly_specific.h"
#include "save_vec.h"
#include "rts_module.h"
#include "memmgr.h"
#define SAVE(x) taskData->saveVec.push(x)
#define SIZEOF(x) (sizeof(x)/sizeof(PolyWord))
// used heavily by MD_init_interface_vector in machine_dep.c
void add_word_to_io_area (unsigned sysop, PolyWord val)
{
ASSERT (sysop > 0 && sysop < 256);
PolyWord *objAddr = IoEntry(sysop);
objAddr[0] = val;
}
/******************************************************************************/
/* */
/* STORAGE ALLOCATION */
/* */
/******************************************************************************/
// This is the storage allocator for allocating heap objects in the RTS.
PolyObject *alloc(TaskData *taskData, POLYUNSIGNED data_words, unsigned flags)
/* Allocate a number of words. */
{
POLYUNSIGNED words = data_words + 1;
if (profileMode == kProfileStoreAllocation)
{
StackObject *stack = taskData->stack;
add_count(taskData, stack->p_pc, stack->p_sp, words);
}
PolyWord *foundSpace = processes->FindAllocationSpace(taskData, words, false);
if (foundSpace == 0)
{
// Failed - the thread is set to raise an exception.
throw IOException(EXC_EXCEPTION);
}
PolyObject *pObj = (PolyObject*)(foundSpace + 1);
pObj->SetLengthWord(data_words, flags);
// Must initialise object here, because GC doesn't clean store.
// N.B. This sets the store to zero NOT TAGGED(0).
// This is particularly important for byte segments (e.g. strings) since the
// ML code may leave bytes at the end uninitialised. Structure equality
// checks all the bytes so for it to work properly we need to be sure that
// they always have the same value.
for (POLYUNSIGNED i = 0; i < data_words; i++) pObj->Set(i, PolyWord::FromUnsigned(0));
return pObj;
}
/******************************************************************************/
/* */
/* alloc_and_save - called by run-time system */
/* */
/******************************************************************************/
Handle alloc_and_save(TaskData *taskData, POLYUNSIGNED size, unsigned flags)
/* Allocate and save the result on the vector. */
{
return SAVE(alloc(taskData, size, flags));
}
/******************************************************************************/
/* */
/* full_gc_c - called by assembly code */
/* */
/******************************************************************************/
/* CALL_IO0(full_gc_, NOIND) */
Handle full_gc_c(TaskData *taskData)
{
FullGC(taskData);
return SAVE(TAGGED(0));
}
/******************************************************************************/
/* */
/* EXCEPTIONS */
/* */
/******************************************************************************/
Handle make_exn(TaskData *taskData, int id, Handle arg)
{
const char *exName;
switch (id) {
case EXC_interrupt: exName = "Interrupt"; break;
case EXC_syserr: exName = "SysErr"; break;
case EXC_size: exName = "Size"; break;
case EXC_overflow: exName = "Overflow"; break;
case EXC_underflow: exName = "Underflow"; break;
case EXC_divide: exName = "Div"; break;
case EXC_conversion: exName = "Conversion"; break;
case EXC_XWindows: exName = "XWindows"; break;
case EXC_subscript: exName = "Subscript"; break;
case EXC_foreign: exName = "Foreign"; break;
case EXC_Fail: exName = "Fail"; break;
case EXC_thread: exName = "Thread"; break;
default: ASSERT(0); exName = "Unknown"; // Shouldn't happen.
}
Handle pushed_name = SAVE(C_string_to_Poly(taskData, exName));
Handle exnHandle = alloc_and_save(taskData, SIZEOF(poly_exn));
DEREFEXNHANDLE(exnHandle)->ex_id = TAGGED(id);
DEREFEXNHANDLE(exnHandle)->ex_name = DEREFWORD(pushed_name);
DEREFEXNHANDLE(exnHandle)->arg = DEREFWORDHANDLE(arg);
return exnHandle;
}
/******************************************************************************/
/* */
/* raise_exception - called by run-time system */
/* */
/******************************************************************************/
void raise_exception(TaskData *taskData, int id, Handle arg)
/* Raise an exception with no arguments. */
{
Handle exn = make_exn(taskData, id, arg);
/* N.B. We must create the packet first BEFORE dereferencing the
process handle just in case a GC while creating the packet
moves the process and/or the stack. */
machineDependent->SetException(taskData, DEREFEXNHANDLE(exn));
throw IOException(EXC_EXCEPTION); /* Return to Poly code immediately. */
/*NOTREACHED*/
}
/******************************************************************************/
/* */
/* raise_exception0 - called by run-time system */
/* */
/******************************************************************************/
void raise_exception0(TaskData *taskData, int id)
/* Raise an exception with no arguments. */
{
raise_exception(taskData, id, SAVE(TAGGED(0)));
/*NOTREACHED*/
}
/******************************************************************************/
/* */
/* raise_exception_string - called by run-time system */
/* */
/******************************************************************************/
void raise_exception_string(TaskData *taskData, int id, const char *str)
/* Raise an exception with a C string as the argument. */
{
raise_exception(taskData, id, SAVE(C_string_to_Poly(taskData, str)));
/*NOTREACHED*/
}
/******************************************************************************/
/* */
/* create_syscall_exception - called by run-time system */
/* */
/******************************************************************************/
// Create a syscall exception packet.
Handle create_syscall_exception(TaskData *taskData, const char *errmsg, int err)
{
/* exception SysErr of (string * syserror Option.option) */
/* If the argument is zero we don't have a suitable error number
so map this to NONE. Other values are mapped to SOME(n) */
/* Create a pair of the error message and the error number. */
Handle pushed_option, pushed_name, pair;
if (err == 0) pushed_option = SAVE(NONE_VALUE); /* NONE */
else
{ /* SOME err */
Handle errornum = Make_arbitrary_precision(taskData, err);
pushed_option = alloc_and_save(taskData, 1);
DEREFHANDLE(pushed_option)->Set(0, DEREFWORDHANDLE(errornum));
}
pushed_name = SAVE(C_string_to_Poly(taskData, errmsg));
pair = alloc_and_save(taskData, 2);
DEREFHANDLE(pair)->Set(0, DEREFWORDHANDLE(pushed_name));
DEREFHANDLE(pair)->Set(1, DEREFWORDHANDLE(pushed_option));
return pair;
}
/* Raises a Syserr exception. */
void raise_syscall(TaskData *taskData, const char *errmsg, int err)
{
raise_exception(taskData, EXC_syserr, create_syscall_exception(taskData, errmsg, err));
}
// Raises a Fail exception.
void raise_fail(TaskData *taskData, const char *errmsg)
{
raise_exception_string(taskData, EXC_Fail, errmsg);
}
/******************************************************************************/
/* */
/* TRACE FUNCTIONS */
/* */
/******************************************************************************/
bool trace_allowed = false; // Allows ^C to abort a trace.
/******************************************************************************/
/* */
/* give_stack_trace - utility function - doesn't allocate */
/* */
/******************************************************************************/
void give_stack_trace(TaskData *taskData, PolyWord *sp, PolyWord *finish)
{
/* Now search for the return addresses on the stack.
The values we find on the stack which are not PolyWord aligned may be
either return addresses or the addresses of handlers. */
trace_allowed = true; /* May be switch off by catchINT. */
// The exception handler is used to suppress the addresses of
// handlers which would otherwise look like return addresses.
// Since we don't pass that in we may find it is actually out of
// date if we are producing a trace as a result of pressing ^C.
StackObject *stack = taskData->stack;
PolyWord *exceptions = stack->p_hr;
PolyWord *endStack = stack->Offset(stack->Length());
#ifdef DEBUG
printf("starting trace: sp = %p, finish = %p, end_of_stack = %p\n",
sp, finish, endStack);
fflush(stdout);
#endif
if (finish > endStack) finish = endStack;
for(; trace_allowed && sp < finish-1; sp++)
{
PolyWord pc = *sp;
/* If this is an exception handler do not treat it as return
address, just get the next handler */
if (sp == exceptions)
{
/* Skip over the handlers until we find the next pointer up the
stack. */
while (sp < finish) {
exceptions = (*sp).AsStackAddr();
if (exceptions >= sp && exceptions <= endStack)
break;
sp++;
}
}
else if (pc.IsCodePtr())
{
/* A code pointer will be either a return address or a pointer
to the constant section. (Or an exception handler?) */
PolyWord *ptr;
// We used to have a check that this was not a constant area
// pointer but we don't have those any more.
/* Initialise ptr to points at the end-of-code marker */
OBJ_CODEPTR_TO_CONSTS_PTR(pc, ptr);
PolyWord p_name = ptr[3]; /* Get procedure name */
/* The name may be zero if it is anonymous */
if (p_name == TAGGED(0)) fputs("<anon>\n",stdout);
else {
print_string(p_name);
putc('\n',stdout);
}
}
}
fflush(stdout);
}
/******************************************************************************/
/* */
/* stack_trace_c - called from assembly code */
/* */
/******************************************************************************/
/* CALL_IO0(stack_trace_, NOIND) */
static Handle stack_trace_c(TaskData *taskData)
{
StackObject *stack = taskData->stack;
PolyWord *endStack = stack->Offset(stack->Length());
give_stack_trace (taskData, stack->p_sp, endStack);
return SAVE(TAGGED(0));
}
/******************************************************************************/
/* */
/* ex_tracec - called from assembly code */
/* */
/******************************************************************************/
/* CALL_IO2(ex_trace, REF, REF, NOIND) */
Handle ex_tracec(TaskData *taskData, Handle exnHandle, Handle handler_handle)
{
PolyWord *handler = DEREFWORD(handler_handle).AsStackAddr();
fputs("\nException trace for exception - ", stdout);
print_string(((poly_exn *)DEREFHANDLE(exnHandle))->ex_name);
putc('\n',stdout);
/* Trace down as far as the dummy handler on the stack. */
StackObject *stack = taskData->stack;
give_stack_trace(taskData, stack->p_sp, handler);
fputs("End of trace\n\n",stdout);
fflush(stdout);
/* Set up the next handler so we don't come back here when we raise
the exception again. */
taskData->stack->p_hr = (PolyWord*)(handler->AsStackAddr());
/* Set the exception data back again. */
machineDependent->SetException(taskData, (poly_exn *)DEREFHANDLE(exnHandle));
throw IOException(EXC_EXCEPTION); /* Reraise the exception. */
/*NOTREACHED*/
}
/* end of interrupt handling */
// Return the address of the iovec entry for a given index.
Handle io_operation_c(TaskData *taskData, Handle entry)
{
POLYUNSIGNED entryNo = get_C_ulong(taskData, DEREFWORD(entry));
if (entryNo >= POLY_SYS_vecsize)
raise_exception0(taskData, EXC_subscript);
return SAVE((PolyObject*)IoEntry(entryNo));
}
/******************************************************************************/
/* */
/* INITIALISATION */
/* */
/******************************************************************************/
/******************************************************************************/
/* */
/* re_init_run_time_system - called from mpoly.c */
/* */
/******************************************************************************/
void re_init_run_time_system(void)
{
ReinitModules();
}
/******************************************************************************/
/* */
/* init_run_time_system - called from mpoly.c */
/* */
/******************************************************************************/
void init_run_time_system(void)
{
InitModules(); // Initialise other modules.
}
/******************************************************************************/
/* */
/* uninit_run_time_system - called from ??? */
/* */
/******************************************************************************/
/* Release all resources.
This is really only needed with Windows when running as a DLL within
the address space of another process. */
void uninit_run_time_system(void)
{
UninitModules();
#if (0)
uninit_xwindow_system(); /* Probably needs to be done. */
#endif
}
/******************************************************************************/
/* */
/* get_flags_c - called from machine_assembly.s */
/* */
/******************************************************************************/
/* CALL_IO1(get_flags_,REF,NOIND) */
static Handle get_flags_c(TaskData *taskData, Handle addr_handle)
{
PolyObject *pt = DEREFWORDHANDLE(addr_handle);
PolyWord *addr = (PolyWord*)pt;
/* This is for backwards compatibility only. Previously this
was used to test for an IO address. Instead an entry has
been added to process_env to test for an IO address. */
if (gMem.IsIOPointer(addr))
{
return SAVE(TAGGED(256));
}
else
{
const POLYUNSIGNED old_word = pt->LengthWord();
const POLYUNSIGNED old_flags =
((old_word & OBJ_PRIVATE_USER_FLAGS_MASK) >> OBJ_PRIVATE_FLAGS_SHIFT);
return SAVE(TAGGED(old_flags));
}
}
// This is called twice when constructing a piece of code. The first
// time is to convert a mutable byte segment into a mutable code segment and
// the second call is to freeze the mutable code segment. The reason for the
// two calls is that we first have to make sure we have a validly formatted code
// segment with the "number of constants" value set before we can make it a code
// segment and actually store the constants in it.
Handle CodeSegmentFlags(TaskData *taskData, Handle flags_handle, Handle addr_handle)
{
PolyObject *pt = DEREFWORDHANDLE(addr_handle);
unsigned short newFlags = get_C_ushort(taskData, DEREFWORD(flags_handle));
if (newFlags >= 256)
raise_exception_string(taskData, EXC_Fail, "FreezeCodeSegment flags must be less than 256");
if (! pt->IsMutable())
raise_exception_string(taskData, EXC_Fail, "FreezeCodeSegment must be applied to a mutable segment");
const POLYUNSIGNED objLength = pt->Length();
pt->SetLengthWord(objLength, (byte)newFlags);
// Flush the cache on architectures that need it.
if (pt->IsCodeObject() && ! pt->IsMutable())
machineDependent->FlushInstructionCache(pt, objLength * sizeof(PolyWord));
return SAVE(TAGGED(0));
}
/******************************************************************************/
/* */
/* BadOpCode_c - called from machine_assembly.s */
/* */
/******************************************************************************/
Handle BadOpCode_c(TaskData *taskData)
{
raise_exception_string(taskData, EXC_Fail, "Bad RunTime OpCode");
return SAVE(TAGGED(1));
}
/* CALL_IO3(assign_byte_long_, REF, REF, REF, NOIND) */
static Handle assign_byte_long_c(TaskData *taskData, Handle value_handle, Handle byte_no, Handle vector)
{
PolyWord value = DEREFHANDLE(value_handle);
POLYUNSIGNED offset = get_C_ulong(taskData, DEREFWORDHANDLE(byte_no)); /* SPF 31/10/93 */
byte *pointer = DEREFBYTEHANDLE(vector);
byte v = (byte)UNTAGGED(value);
pointer[offset] = v;
return taskData->saveVec.push(TAGGED(0));
}
/* CALL_IO3(assign_word_long_, REF, REF, REF, NOIND) */
static Handle assign_word_long_c(TaskData *taskData, Handle value_handle, Handle word_no, Handle vector)
{
PolyWord value = DEREFHANDLE(value_handle);
POLYUNSIGNED offset = get_C_ulong(taskData, DEREFWORDHANDLE(word_no)); /* SPF 31/10/93 */
PolyObject *pointer = DEREFWORDHANDLE(vector);
pointer->Set(offset, value);
return taskData->saveVec.push(TAGGED(0));
}
/* CALL_IO5(move_bytes_long_, REF, REF, REF, REF, REF, NOIND) */
/* Move a segment of bytes, typically a string. */
static Handle move_bytes_long_c(TaskData *taskData, Handle len, Handle dest_offset_handle, Handle dest_handle,
Handle src_offset_handle, Handle src_handle)
{
unsigned src_offset = get_C_ulong(taskData, DEREFWORDHANDLE(src_offset_handle));
byte *source = DEREFBYTEHANDLE(src_handle) + src_offset;
unsigned dest_offset = get_C_ulong(taskData, DEREFWORDHANDLE(dest_offset_handle));
byte *destination = DEREFBYTEHANDLE(dest_handle);
byte *dest = destination + dest_offset;
unsigned bytes = get_C_ulong(taskData, DEREFWORDHANDLE(len));
PolyObject *obj = DEREFHANDLE(dest_handle);
ASSERT(obj->IsByteObject());
memmove(dest, source, bytes); /* must work for overlapping segments. */
return taskData->saveVec.push(TAGGED(0));
}
/* CALL_IO5(move_words_long_, REF, REF, REF, REF, REF, NOIND) */
/* Move a segment of words. Similar to move_bytes_long_ except that
it is used for PolyWord segments. */
static Handle move_words_long_c(TaskData *taskData, Handle len, Handle dest_offset_handle, Handle dest_handle,
Handle src_offset_handle, Handle src_handle)
{
POLYUNSIGNED src_offset = get_C_ulong(taskData, DEREFWORDHANDLE(src_offset_handle));
PolyObject *sourceObj = DEREFWORDHANDLE(src_handle);
PolyWord *source = sourceObj->Offset(src_offset);
POLYUNSIGNED dest_offset = get_C_ulong(taskData, DEREFWORDHANDLE(dest_offset_handle));
PolyObject *destObject = DEREFWORDHANDLE(dest_handle);
PolyWord *dest = destObject->Offset(dest_offset);
POLYUNSIGNED words = get_C_ulong(taskData, DEREFWORDHANDLE(len));
ASSERT(! destObject->IsByteObject());
memmove(dest, source, words*sizeof(PolyWord)); /* must work for overlapping segments. */
return taskData->saveVec.push(TAGGED(0));
}
static Handle vec_length_c(TaskData *taskData, Handle vector) /* Length of a vector */
{
POLYUNSIGNED length = vector->WordP()->Length();
return Make_arbitrary_precision(taskData, length);
}
static Handle load_byte_long_c(TaskData *taskData, Handle byte_no /* offset in BYTES */, Handle addr)
{
POLYUNSIGNED offset = get_C_ulong(taskData, DEREFWORDHANDLE(byte_no));
return taskData->saveVec.push(TAGGED(DEREFBYTEHANDLE(addr)[offset]));
}
static Handle load_word_long_c(TaskData *taskData, Handle word_no /* offset in WORDS */, Handle addr)
{
POLYUNSIGNED offset = get_C_ulong(taskData, DEREFWORDHANDLE(word_no));
return taskData->saveVec.push(addr->Word().AsObjPtr()->Get(offset));
}
// In most cases the assembly coded version of this will handle the
// allocation. The function can be called by the assembly code
// when it finds it has run out. Using it avoids us having a
// return address into the assembly code.
static Handle alloc_store_long_c(TaskData *taskData, Handle initial, Handle flags_handle, Handle size )
{
POLYUNSIGNED flags = get_C_ulong(taskData, DEREFWORD(flags_handle));
POLYUNSIGNED usize = get_C_ulong(taskData, DEREFWORD(size));
if (usize == 0) usize = 1;
if (usize >= MAX_OBJECT_SIZE) raise_exception0(taskData, EXC_size);
PolyObject *vector = alloc(taskData, usize, flags| F_MUTABLE_BIT);
PolyWord value = DEREFWORD(initial);
if (vector->IsByteObject()) {
// Byte segments are supposed to be initialised only with zero
if (value != TAGGED(0))
raise_exception_string(taskData, EXC_Fail, "non-zero byte segment");
}
else if (value != PolyWord::FromUnsigned(0)) {
for (POLYUNSIGNED i = 0; i < usize; i++)
vector->Set(i, value);
}
return taskData->saveVec.push(vector);
}
/* Word functions. These functions assume that their arguments are tagged
integers and treat them as unsigned values.
These functions will almost always be implemented directly in the code
generator with back-up versions in the machine-dependent assembly code
section. They are included here for completeness. */
static Handle mul_word_c(TaskData *taskData, Handle y, Handle x)
{
POLYUNSIGNED wx = UNTAGGED_UNSIGNED(DEREFWORD(x));
POLYUNSIGNED wy = UNTAGGED_UNSIGNED(DEREFWORD(y));
return taskData->saveVec.push(TAGGED(wx*wy));
}
static Handle plus_word_c(TaskData *taskData, Handle y, Handle x)
{
POLYUNSIGNED wx = UNTAGGED_UNSIGNED(DEREFWORD(x));
POLYUNSIGNED wy = UNTAGGED_UNSIGNED(DEREFWORD(y));
return taskData->saveVec.push(TAGGED(wx+wy));
}
static Handle minus_word_c(TaskData *taskData, Handle y, Handle x)
{
POLYUNSIGNED wx = UNTAGGED_UNSIGNED(DEREFWORD(x));
POLYUNSIGNED wy = UNTAGGED_UNSIGNED(DEREFWORD(y));
return taskData->saveVec.push(TAGGED(wx-wy));
}
static Handle div_word_c(TaskData *taskData, Handle y, Handle x)
{
POLYUNSIGNED wx = UNTAGGED_UNSIGNED(DEREFWORD(x));
POLYUNSIGNED wy = UNTAGGED_UNSIGNED(DEREFWORD(y));
if (wy == 0) raise_exception0(taskData, EXC_divide);
return taskData->saveVec.push(TAGGED(wx/wy));
}
static Handle mod_word_c(TaskData *taskData, Handle y, Handle x)
{
// In most cases it doesn't matter whether we use UNTAGGED or UNTAGGED_UNSIGNED
// but in mod we will get the wrong answer if we use UNTAGGED here.
POLYUNSIGNED wx = UNTAGGED_UNSIGNED(DEREFWORD(x));
POLYUNSIGNED wy = UNTAGGED_UNSIGNED(DEREFWORD(y));
if (wy == 0) raise_exception0(taskData, EXC_divide);
return taskData->saveVec.push(TAGGED(wx%wy));
}
static Handle word_eq_c(TaskData *taskData, Handle y, Handle x)
{
POLYUNSIGNED wx = UNTAGGED_UNSIGNED(DEREFWORD(x));
POLYUNSIGNED wy = UNTAGGED_UNSIGNED(DEREFWORD(y));
return taskData->saveVec.push(wx==wy ? TAGGED(1) : TAGGED(0));
}
static Handle word_neq_c(TaskData *taskData, Handle y, Handle x)
{
POLYUNSIGNED wx = UNTAGGED_UNSIGNED(DEREFWORD(x));
POLYUNSIGNED wy = UNTAGGED_UNSIGNED(DEREFWORD(y));
return taskData->saveVec.push(wx!=wy ? TAGGED(1) : TAGGED(0));
}
static Handle word_geq_c(TaskData *taskData, Handle y, Handle x)
{
POLYUNSIGNED wx = UNTAGGED_UNSIGNED(DEREFWORD(x));
POLYUNSIGNED wy = UNTAGGED_UNSIGNED(DEREFWORD(y));
return taskData->saveVec.push(wx>=wy ? TAGGED(1) : TAGGED(0));
}
static Handle word_leq_c(TaskData *taskData, Handle y, Handle x)
{
POLYUNSIGNED wx = UNTAGGED_UNSIGNED(DEREFWORD(x));
POLYUNSIGNED wy = UNTAGGED_UNSIGNED(DEREFWORD(y));
return taskData->saveVec.push(wx<=wy ? TAGGED(1) : TAGGED(0));
}
static Handle word_gtr_c(TaskData *taskData, Handle y, Handle x)
{
POLYUNSIGNED wx = UNTAGGED_UNSIGNED(DEREFWORD(x));
POLYUNSIGNED wy = UNTAGGED_UNSIGNED(DEREFWORD(y));
return taskData->saveVec.push(wx>wy ? TAGGED(1) : TAGGED(0));
}
static Handle word_lss_c(TaskData *taskData, Handle y, Handle x)
{
POLYUNSIGNED wx = UNTAGGED_UNSIGNED(DEREFWORD(x));
POLYUNSIGNED wy = UNTAGGED_UNSIGNED(DEREFWORD(y));
return taskData->saveVec.push(wx<wy ? TAGGED(1) : TAGGED(0));
}
static Handle and_word_c(TaskData *taskData, Handle y, Handle x)
{
/* Normally it isn't necessary to remove the tags and put them
back on again. We leave this code as it is just in case some
architecture does it differently. */
POLYUNSIGNED wx = UNTAGGED_UNSIGNED(DEREFWORD(x));
POLYUNSIGNED wy = UNTAGGED_UNSIGNED(DEREFWORD(y));
return taskData->saveVec.push(TAGGED(wx & wy));
}
static Handle or_word_c(TaskData *taskData, Handle y, Handle x)
{
/* Normally it isn't necessary to remove the tags and put them
back on again. We leave this code as it is just in case some
architecture does it differently. */
POLYUNSIGNED wx = UNTAGGED_UNSIGNED(DEREFWORD(x));
POLYUNSIGNED wy = UNTAGGED_UNSIGNED(DEREFWORD(y));
return taskData->saveVec.push(TAGGED(wx | wy));
}
static Handle xor_word_c(TaskData *taskData, Handle y, Handle x)
{
POLYUNSIGNED wx = UNTAGGED_UNSIGNED(DEREFWORD(x));
POLYUNSIGNED wy = UNTAGGED_UNSIGNED(DEREFWORD(y));
return taskData->saveVec.push(TAGGED(wx ^ wy));
}
static Handle not_bool_c(TaskData *taskData, Handle x)
{
return taskData->saveVec.push(DEREFWORD(x) == TAGGED(0) ? TAGGED(1) : TAGGED(0));
}
static Handle shift_left_word_c(TaskData *taskData, Handle y, Handle x)
{
POLYUNSIGNED wx = UNTAGGED_UNSIGNED(DEREFWORD(x));
POLYUNSIGNED wy = UNTAGGED_UNSIGNED(DEREFWORD(y));
/* It is defined to return 0 if the shift is greater than the
number of bits in the PolyWord. The shift instructions on many
architectures don't get that right. */
if (wy > sizeof(PolyWord)*8)
return taskData->saveVec.push(TAGGED(0));
return taskData->saveVec.push(TAGGED(wx<<wy));
}
static Handle shift_right_word_c(TaskData *taskData, Handle y, Handle x)
{
POLYUNSIGNED wx = UNTAGGED_UNSIGNED(DEREFWORD(x));
POLYUNSIGNED wy = UNTAGGED_UNSIGNED(DEREFWORD(y));
/* It is defined to return 0 if the shift is greater than the
number of bits in the word. The shift instructions on many
architectures don't get that right. */
if (wy > sizeof(PolyWord)*8)
return taskData->saveVec.push(TAGGED(0));
return taskData->saveVec.push(TAGGED(wx>>wy));
}
static Handle shift_right_arith_word_c(TaskData *taskData, Handle y, Handle x)
{
POLYUNSIGNED wx = UNTAGGED_UNSIGNED(DEREFWORD(x)); /* Treat as a signed quantity. */
POLYUNSIGNED wy = UNTAGGED_UNSIGNED(DEREFWORD(y));
/* It is defined to return 0 or ~1 if the shift is greater than the
number of bits in the word. The shift instructions on many
architectures don't get that right. */
if (wy > sizeof(PolyWord)*8)
return taskData->saveVec.push(wx < 0 ? TAGGED(-1) : TAGGED(0));
return taskData->saveVec.push(TAGGED(wx>>wy));
}
static Handle set_code_constant(TaskData *taskData, Handle data, Handle constant, Handle offseth, Handle base)
{
machineDependent->SetCodeConstant(taskData, data, constant, offseth, base);
return taskData->saveVec.push(TAGGED(0));
}
void CheckAndGrowStack(TaskData *taskData, PolyWord *lower_limit)
/* Expands the current stack if it has grown. We cannot shrink a stack segment
when it grows smaller because the frame is checked only at the beginning of
a procedure to ensure that there is enough space for the maximum that can
be allocated. */
{
/* Get current size of new stack segment. */
POLYUNSIGNED old_len = OBJECT_LENGTH(taskData->stack);
/* The minimum size must include the reserved space for the registers. */
POLYUNSIGNED min_size = ((PolyWord*)taskData->stack) + old_len - lower_limit + taskData->stack->p_space;
if (old_len >= min_size) return; /* Ok with present size. */
// If it is too small double its size.
// BUT, the maximum size is 2^24-1 words (on 32 bit) or 2^56-1 on 64 bit.
if (old_len == MAX_OBJECT_SIZE)
{
/* Cannot expand the stack any further. */
fprintf(stderr, "Warning - Stack limit reached - interrupting process\n");
// We really should do this only if the thread is handling interrupts
// asynchronously. On the other hand what else do we do?
Handle exn = make_exn(taskData, EXC_interrupt, SAVE(TAGGED(0)));
machineDependent->SetException(taskData, DEREFEXNHANDLE(exn));
return;
}
POLYUNSIGNED new_len; /* New size */
for (new_len = old_len; new_len < min_size; new_len *= 2);
if (new_len > MAX_OBJECT_SIZE) new_len = MAX_OBJECT_SIZE;
/* Must make a new frame and copy the data over. */
StackObject *new_stack = // N.B. May throw a C++ exception.
(StackObject *)alloc(taskData, new_len, F_MUTABLE_BIT|F_STACK_OBJ);
CopyStackFrame(taskData->stack, new_stack);
taskData->stack = new_stack;
}
// This is used after executing each top-level command to minimise the
// heap size. It's fairly dubious and there ought to be a better way to do this.
static Handle shrink_stack_c(TaskData *taskData, Handle reserved_space)
/* Shrinks the current stack. */
{
int reserved = get_C_long(taskData, DEREFWORDHANDLE(reserved_space));
int old_len; /* Current size of stack segment. */
int new_len; /* New size */
int min_size;
StackObject *new_stack;
if (reserved < 0)
{
raise_exception0(taskData, EXC_size);
}
/* Get current size of new stack segment. */
old_len = OBJECT_LENGTH(taskData->stack);
/* The minimum size must include the reserved space for the registers. */
min_size = (((PolyWord*)taskData->stack) + old_len - (PolyWord*)taskData->stack->p_sp) + taskData->stack->p_space + reserved;
for (new_len = machineDependent->InitialStackSize(); new_len < min_size; new_len *= 2);
if (old_len <= new_len) return SAVE(TAGGED(0)); /* OK with present size. */
/* Must make a new frame and copy the data over. */
new_stack = (StackObject *)alloc(taskData, new_len, F_MUTABLE_BIT|F_STACK_OBJ);
CopyStackFrame(taskData->stack, new_stack);
taskData->stack = new_stack;
return SAVE(TAGGED(0));
}
Handle EnterPolyCode(TaskData *taskData)
/* Called from "main" to enter the code. */
{
Handle hOriginal = taskData->saveVec.mark(); // Set this up for the IO calls.
while (1)
{
taskData->saveVec.reset(hOriginal); // Remove old RTS arguments and results.
// Run the ML code and return with the function to call.
int ioFunction = machineDependent->SwitchToPoly(taskData);
try {
switch (ioFunction)
{
case -1:
// We've been interrupted. This usually involves simulating a
// stack overflow so we could come here because of a genuine
// stack overflow.
// Previously this code was executed on every RTS call but there
// were problems on Mac OS X at least with contention on schedLock.
taskData->pendingInterrupt = false; // Clear this before we handle these
// Process any asynchronous events i.e. interrupts or kill
processes->ProcessAsynchRequests(taskData);
// Release and re-acquire use of the ML memory to allow another thread
// to GC.
processes->ThreadReleaseMLMemory(taskData);
processes->ThreadUseMLMemory(taskData);
break;
case -2: // A callback has returned.
return machineDependent->CallBackResult(taskData);
case POLY_SYS_exit:
machineDependent->CallIO1(taskData, &finishc);
break;
case POLY_SYS_alloc_store:
machineDependent->CallIO3(taskData, &alloc_store_long_c);
break;
case POLY_SYS_chdir:
machineDependent->CallIO1(taskData, &change_dirc);
break;
case POLY_SYS_get_length:
machineDependent->CallIO1(taskData, &vec_length_c);
break;
case POLY_SYS_get_flags:
machineDependent->CallIO1(taskData, &get_flags_c);
break;
case POLY_SYS_str_compare:
machineDependent->CallIO2(taskData, compareStrings);
break;
case POLY_SYS_teststreq:
machineDependent->CallIO2(taskData, &testStringEqual);
break;
case POLY_SYS_teststrneq:
machineDependent->CallIO2(taskData, &testStringNotEqual);
break;
case POLY_SYS_teststrgtr:
machineDependent->CallIO2(taskData, &testStringGreater);
break;
case POLY_SYS_teststrlss:
machineDependent->CallIO2(taskData, &testStringLess);
break;
case POLY_SYS_teststrgeq:
machineDependent->CallIO2(taskData, &testStringGreaterOrEqual);
break;
case POLY_SYS_teststrleq:
machineDependent->CallIO2(taskData, &testStringLessOrEqual);
break;
case POLY_SYS_exception_trace: // Special case.
machineDependent->SetExceptionTrace(taskData);
break;
// case POLY_SYS_lockseg: machineDependent->CallIO1(taskData, &locksegc); break;
case POLY_SYS_profiler:
machineDependent->CallIO1(taskData, &profilerc);
break;
// case POLY_SYS_is_short: machineDependent->CallIO1(taskData, &is_shortc); break;
case POLY_SYS_aplus:
machineDependent->CallIO2(taskData, &add_longc);
break;
case POLY_SYS_aminus:
machineDependent->CallIO2(taskData, &sub_longc);
break;
case POLY_SYS_amul:
machineDependent->CallIO2(taskData, &mult_longc);
break;
case POLY_SYS_adiv:
machineDependent->CallIO2(taskData, &div_longc);
break;
case POLY_SYS_amod:
machineDependent->CallIO2(taskData, &rem_longc);
break;
case POLY_SYS_aneg:
machineDependent->CallIO1(taskData, &neg_longc);
break;
case POLY_SYS_equala:
machineDependent->CallIO2(taskData, &equal_longc);
break;
case POLY_SYS_ora:
machineDependent->CallIO2(taskData, &or_longc);
break;
case POLY_SYS_anda:
machineDependent->CallIO2(taskData, &and_longc);
break;
case POLY_SYS_xora:
machineDependent->CallIO2(taskData, &xor_longc);
break;
case POLY_SYS_Real_str:
machineDependent->CallIO3(taskData, &Real_strc);
break;
case POLY_SYS_Real_geq:
machineDependent->CallIO2(taskData, &Real_geqc);
break;
case POLY_SYS_Real_leq:
machineDependent->CallIO2(taskData, &Real_leqc);
break;
case POLY_SYS_Real_gtr:
machineDependent->CallIO2(taskData, &Real_gtrc);
break;
case POLY_SYS_Real_lss:
machineDependent->CallIO2(taskData, &Real_lssc);
break;
case POLY_SYS_Real_eq:
machineDependent->CallIO2(taskData, &Real_eqc);
break;
case POLY_SYS_Real_neq:
machineDependent->CallIO2(taskData, &Real_neqc);
break;
case POLY_SYS_Real_Dispatch:
machineDependent->CallIO2(taskData, &Real_dispatchc);
break;
case POLY_SYS_Add_real:
machineDependent->CallIO2(taskData, &Real_addc);
break;
case POLY_SYS_Sub_real:
machineDependent->CallIO2(taskData, &Real_subc);
break;
case POLY_SYS_Mul_real:
machineDependent->CallIO2(taskData, &Real_mulc);
break;
case POLY_SYS_Div_real:
machineDependent->CallIO2(taskData, &Real_divc);
break;
case POLY_SYS_Neg_real:
machineDependent->CallIO1(taskData, &Real_negc);
break;
case POLY_SYS_Repr_real:
machineDependent->CallIO1(taskData, &Real_reprc);
break;
case POLY_SYS_conv_real:
machineDependent->CallIO1(taskData, &Real_convc);
break;
case POLY_SYS_real_to_int:
machineDependent->CallIO1(taskData, &Real_intc);
break;
case POLY_SYS_int_to_real:
machineDependent->CallIO1(taskData, &Real_floatc);
break;
case POLY_SYS_sqrt_real:
machineDependent->CallIO1(taskData, &Real_sqrtc);
break;
case POLY_SYS_sin_real:
machineDependent->CallIO1(taskData, &Real_sinc);
break;
case POLY_SYS_cos_real:
machineDependent->CallIO1(taskData, &Real_cosc);
break;
case POLY_SYS_arctan_real:
machineDependent->CallIO1(taskData, &Real_arctanc);
break;
case POLY_SYS_exp_real:
machineDependent->CallIO1(taskData, &Real_expc);
break;
case POLY_SYS_ln_real:
machineDependent->CallIO1(taskData, &Real_lnc);
break;
case POLY_SYS_io_operation:
machineDependent->CallIO1(taskData, &io_operation_c);
break;
case POLY_SYS_atomic_incr:
machineDependent->CallIO1(taskData, &AtomicIncrement);
break;
case POLY_SYS_atomic_decr:
machineDependent->CallIO1(taskData, &AtomicDecrement);
break;
case POLY_SYS_thread_self:
machineDependent->CallIO0(taskData, &ThreadSelf);
break;
case POLY_SYS_thread_dispatch:
machineDependent->CallIO2(taskData, &ThreadDispatch);
break;
// case POLY_SYS_offset_address: machineDependent->CallIO2(taskData, &offset_addressc); break;
case POLY_SYS_shift_right_word:
machineDependent->CallIO2(taskData, &shift_right_word_c);
break;
case POLY_SYS_word_neq:
machineDependent->CallIO2(taskData, &word_neq_c);
break;
case POLY_SYS_not_bool:
machineDependent->CallIO1(taskData, ¬_bool_c);
break;
case POLY_SYS_string_length:
machineDependent->CallIO1(taskData, &string_length_c);
break;
case POLY_SYS_int_eq:
machineDependent->CallIO2(taskData, &equal_longc);
break;
case POLY_SYS_int_neq:
machineDependent->CallIO2(taskData, ¬_equal_longc);
break;
case POLY_SYS_int_geq:
machineDependent->CallIO2(taskData, &ge_longc);
break;
case POLY_SYS_int_leq:
machineDependent->CallIO2(taskData, &le_longc);
break;
case POLY_SYS_int_gtr:
machineDependent->CallIO2(taskData, >_longc);
break;
case POLY_SYS_int_lss:
machineDependent->CallIO2(taskData, &ls_longc);
break;
case POLY_SYS_or_word:
machineDependent->CallIO2(taskData, &or_word_c);
break;
case POLY_SYS_and_word:
machineDependent->CallIO2(taskData, &and_word_c);
break;
case POLY_SYS_xor_word:
machineDependent->CallIO2(taskData, &xor_word_c);
break;
case POLY_SYS_shift_left_word:
machineDependent->CallIO2(taskData, &shift_left_word_c);
break;
case POLY_SYS_word_eq:
machineDependent->CallIO2(taskData, &word_eq_c);
break;
case POLY_SYS_load_byte:
machineDependent->CallIO2(taskData, &load_byte_long_c);
break;
case POLY_SYS_load_word:
machineDependent->CallIO2(taskData, &load_word_long_c);
break;
// case POLY_SYS_is_big_endian: machineDependent->CallIO0(taskData, &is_big_endianc); break;
// case POLY_SYS_bytes_per_word: machineDependent->CallIO0(taskData, &bytes_per_wordc); break;
case POLY_SYS_assign_byte:
machineDependent->CallIO3(taskData, &assign_byte_long_c);
break;
case POLY_SYS_assign_word:
machineDependent->CallIO3(taskData, &assign_word_long_c);
break;
// ObjSize and ShowSize are now in the poly_specific functions and
// probably should be removed from here.
case POLY_SYS_objsize:
machineDependent->CallIO1(taskData, &ObjSize);
break;
case POLY_SYS_showsize:
machineDependent->CallIO1(taskData, &ShowSize);
break;
case POLY_SYS_timing_dispatch:
machineDependent->CallIO2(taskData, &timing_dispatch_c);
break;
case POLY_SYS_XWindows:
machineDependent->CallIO1(taskData, &XWindows_c);
break;
case POLY_SYS_full_gc:
machineDependent->CallIO0(taskData, &full_gc_c);
break;
case POLY_SYS_stack_trace:
machineDependent->CallIO0(taskData, & stack_trace_c);
break;
case POLY_SYS_foreign_dispatch:
machineDependent->CallIO2(taskData, &foreign_dispatch_c);
break;
case POLY_SYS_callcode_tupled:
machineDependent->CallCodeTupled(taskData);
break;
case POLY_SYS_process_env: machineDependent->CallIO2(taskData, &process_env_dispatch_c); break;
// case POLY_SYS_set_string_length: machineDependent->CallIO2(taskData, &set_string_length_c); break;
case POLY_SYS_shrink_stack:
machineDependent->CallIO1(taskData, &shrink_stack_c);
break;
case POLY_SYS_code_flags:
machineDependent->CallIO2(taskData, &CodeSegmentFlags);
break;
case POLY_SYS_shift_right_arith_word:
machineDependent->CallIO2(taskData, &shift_right_arith_word_c);
break;
case POLY_SYS_get_first_long_word:
case POLY_SYS_int_to_word:
// POLY_SYS_int_to_word has generally been replaced by POLY_SYS_get_first_long_word.
// The reason is that POLY_SYS_int_to_word may be applied to either a long or
// a short argument whereas POLY_SYS_get_first_long_word must be applied to a
// long argument and can be implemented very easily in the code-generator, at
// least on a little-endian machine.
machineDependent->CallIO1(taskData, &int_to_word_c);
break;
case POLY_SYS_poly_specific:
machineDependent->CallIO2(taskData, &poly_dispatch_c);
break;
case POLY_SYS_set_code_constant:
machineDependent->CallIO4(taskData, &set_code_constant);
break;
case POLY_SYS_move_bytes:
machineDependent->CallIO5(taskData, &move_bytes_long_c);
break;
case POLY_SYS_move_words:
machineDependent->CallIO5(taskData, &move_words_long_c);
break;
case POLY_SYS_mul_word:
machineDependent->CallIO2(taskData, &mul_word_c);
break;
case POLY_SYS_plus_word:
machineDependent->CallIO2(taskData, &plus_word_c);
break;
case POLY_SYS_minus_word:
machineDependent->CallIO2(taskData, &minus_word_c);
break;
case POLY_SYS_div_word:
machineDependent->CallIO2(taskData, &div_word_c);
break;
case POLY_SYS_mod_word:
machineDependent->CallIO2(taskData, &mod_word_c);
break;
case POLY_SYS_word_geq:
machineDependent->CallIO2(taskData, &word_geq_c);
break;
case POLY_SYS_word_leq:
machineDependent->CallIO2(taskData, &word_leq_c);
break;
case POLY_SYS_word_gtr:
machineDependent->CallIO2(taskData, &word_gtr_c);
break;
case POLY_SYS_word_lss:
machineDependent->CallIO2(taskData, &word_lss_c);
break;
case POLY_SYS_io_dispatch:
machineDependent->CallIO3(taskData, &IO_dispatch_c);
break;
case POLY_SYS_network:
machineDependent->CallIO2(taskData, &Net_dispatch_c);
break;
case POLY_SYS_os_specific:
machineDependent->CallIO2(taskData, &OS_spec_dispatch_c);
break;
case POLY_SYS_signal_handler:
machineDependent->CallIO2(taskData, &Sig_dispatch_c);
break;
case POLY_SYS_kill_self:
machineDependent->CallIO0(taskData, exitThread);
break;
// This is called from assembly code and doesn't actually have an entry in the
// io vector.
case POLY_SYS_give_ex_trace:
machineDependent->CallIO2(taskData, ex_tracec);
break;
default:
Crash("Unknown io operation %d\n", ioFunction);
}
}
catch (IOException) {
}
}
}
|