1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
|
/*
Title: savestate.cpp - Save and Load state
Copyright (c) 2007 David C.J. Matthews
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef WIN32
#include "winconfig.h"
#else
#include "config.h"
#endif
#ifdef HAVE_STDIO_H
#include <stdio.h>
#endif
#ifdef HAVE_WINDOWS_H
#include <windows.h> // For MAX_PATH
#endif
#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h> // For MAX_PATH
#endif
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_TIME_H
#include <time.h>
#endif
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x)
#endif
#include "globals.h"
#include "savestate.h"
#include "processes.h"
#include "run_time.h"
#include "polystring.h"
#include "scanaddrs.h"
#include "arb.h"
#include "memmgr.h"
#include "polyexports.h"
#include "mpoly.h" // For exportTimeStamp
#include "exporter.h" // For CopyScan
#include "machine_dep.h"
#include "osmem.h"
#if(!defined(MAXPATHLEN) && defined(MAX_PATH))
#define MAXPATHLEN MAX_PATH
#endif
// Helper class to close files on exit.
class AutoClose {
public:
AutoClose(FILE *f = 0): m_file(f) {}
~AutoClose() { if (m_file) ::fclose(m_file); }
operator FILE*() { return m_file; }
private:
FILE *m_file;
};
// This is probably generally useful so may be moved into
// a general header file.
template<typename BASE> class AutoFree
{
public:
AutoFree(BASE p = 0): m_value(p) {}
~AutoFree() { free(m_value); }
// Automatic conversions to the base type.
operator BASE() { return m_value; }
BASE operator = (BASE p) { return (m_value = p); }
private:
BASE m_value;
};
/*
* Structure definitions for the saved state files.
*/
#define SAVEDSTATESIGNATURE "POLYSAVE"
#define SAVEDSTATEVERSION 1
// File header for a saved state file. This appears as the first entry
// in the file.
typedef struct _savedStateHeader
{
// These entries are primarily to check that we have a valid
// saved state file before we try to interpret anything else.
char headerSignature[8]; // Should contain SAVEDSTATESIGNATURE
unsigned headerVersion; // Should contain SAVEDSTATEVERSION
unsigned headerLength; // Number of bytes in the header
unsigned segmentDescrLength; // Number of bytes in a descriptor
// These entries contain the real data.
off_t segmentDescr; // Position of segment descriptor table
unsigned segmentDescrCount; // Number of segment descriptors in the table
off_t stringTable; // Pointer to the string table (zero if none)
size_t stringTableSize; // Size of string table
unsigned parentNameEntry; // Position of parent name in string table (0 if top)
UNSIGNEDADDR timeStamp; // The time stamp for this file.
UNSIGNEDADDR fileSignature; // The signature for this file.
UNSIGNEDADDR parentTimeStamp; // The time stamp for the parent.
UNSIGNEDADDR parentSignature; // The signature for the parent.
} SavedStateHeader;
// Entry for segment table. This describes the segments on the disc that
// need to be loaded into memory.
typedef struct _savedStateSegmentDescr
{
off_t segmentData; // Position of the segment data
size_t segmentSize; // Size of the segment data
off_t relocations; // Position of the relocation table
unsigned relocationCount; // Number of entries in relocation table
unsigned relocationSize; // Size of a relocation entry
unsigned segmentFlags; // Segment flags (see SSF_ values)
unsigned segmentIndex; // The index of this segment or the segment it overwrites
void *originalAddress; // The base address when the segment was written.
} SavedStateSegmentDescr;
#define SSF_WRITABLE 1 // The segment contains mutable data
#define SSF_OVERWRITE 2 // The segment overwrites the data (mutable) in a parent.
#define SSF_NOOVERWRITE 4 // The segment must not be further overwritten
typedef struct _relocationEntry
{
// Each entry indicates a location that has to be set to an address.
// The location to be set is determined by adding "relocAddress" to the base address of
// this segment (the one to which these relocations apply) and the value to store
// by adding "targetAddress" to the base address of the segment indicated by "targetSegment".
POLYUNSIGNED relocAddress; // The (byte) offset in this segment that we will set
POLYUNSIGNED targetAddress; // The value to add to the base of the destination segment
unsigned targetSegment; // The base segment. 0 is IO segment.
ScanRelocationKind relKind; // The kind of relocation (processor dependent).
} RelocationEntry;
#define SAVE(x) taskData->saveVec.push(x)
/*
* Hierarchy table: contains information about last loaded or saved state.
*/
// Pointer to list of files loaded in last load.
// There's no need for a lock since the update is only made when all
// the ML threads have stopped.
class HierarchyTable
{
public:
HierarchyTable(const char *file, UNSIGNEDADDR time):
fileName(strdup(file)), timeStamp(time) { }
AutoFree<char*> fileName;
UNSIGNEDADDR timeStamp;
};
HierarchyTable **hierarchyTable;
static unsigned hierarchyDepth;
static bool AddHierarchyEntry(const char *fileName, UNSIGNEDADDR timeStamp)
{
// Add an entry to the hierarchy table for this file.
HierarchyTable *newEntry = new HierarchyTable(fileName, timeStamp);
if (newEntry == 0) return false;
HierarchyTable **newTable =
(HierarchyTable **)realloc(hierarchyTable, sizeof(HierarchyTable *)*(hierarchyDepth+1));
if (newTable == 0) return false;
hierarchyTable = newTable;
hierarchyTable[hierarchyDepth++] = newEntry;
return true;
}
/*
* Saving state.
*/
// This class is used to create the relocations. It uses Exporter
// for this but this may perhaps be too heavyweight.
class SaveStateExport: public Exporter, public ScanAddress
{
public:
SaveStateExport(): relocationCount(0) {}
public:
virtual void exportStore(void) {} // Not used.
private:
// ScanAddress overrides
virtual void ScanConstant(byte *addrOfConst, ScanRelocationKind code);
// At the moment we should only get calls to ScanConstant.
virtual PolyObject *ScanObjectAddress(PolyObject *base) { return base; }
private:
void setRelocationAddress(void *p, POLYUNSIGNED *reloc);
PolyWord createRelocation(PolyWord p, void *relocAddr);
unsigned relocationCount;
friend class SaveRequest;
};
// Generate the address relative to the start of the segment.
void SaveStateExport::setRelocationAddress(void *p, POLYUNSIGNED *reloc)
{
unsigned area = findArea(p);
POLYUNSIGNED offset = (char*)p - (char*)memTable[area].mtAddr;
*reloc = offset;
}
// Create a relocation entry for an address at a given location.
PolyWord SaveStateExport::createRelocation(PolyWord p, void *relocAddr)
{
RelocationEntry reloc;
// Set the offset within the section we're scanning.
setRelocationAddress(relocAddr, &reloc.relocAddress);
void *addr = p.AsAddress();
unsigned addrArea = findArea(addr);
reloc.targetAddress = (char*)addr - (char*)memTable[addrArea].mtAddr;
reloc.targetSegment = memTable[addrArea].mtIndex;
reloc.relKind = PROCESS_RELOC_DIRECT;
fwrite(&reloc, sizeof(reloc), 1, exportFile);
relocationCount++;
return p; // Don't change the contents
}
/* This is called for each constant within the code.
Print a relocation entry for the word and return a value that means
that the offset is saved in original word. */
void SaveStateExport::ScanConstant(byte *addr, ScanRelocationKind code)
{
PolyWord p = GetConstantValue(addr, code);
if (IS_INT(p) || p == PolyWord::FromUnsigned(0))
return;
void *a = p.AsAddress();
unsigned aArea = findArea(a);
// We don't need a relocation if this is relative to the current segment
// since the relative address will already be right.
if (code == PROCESS_RELOC_I386RELATIVE && aArea == findArea(addr))
return;
// Set the value at the address to the offset relative to the symbol.
RelocationEntry reloc;
setRelocationAddress(addr, &reloc.relocAddress);
reloc.targetAddress = (char*)a - (char*)memTable[aArea].mtAddr;
reloc.targetSegment = memTable[aArea].mtIndex;
reloc.relKind = code;
fwrite(&reloc, sizeof(reloc), 1, exportFile);
relocationCount++;
}
// Request to the main thread to save data.
class SaveRequest: public MainThreadRequest
{
public:
SaveRequest(const char *name, unsigned h): fileName(name), newHierarchy(h),
errorMessage(0), errCode(0) {}
virtual void Perform();
const char *fileName;
unsigned newHierarchy;
const char *errorMessage;
int errCode;
};
// This class is used to update references to objects that have moved. If
// we have copied an object into the area to be exported we may still have references
// to it from the stack or from RTS data structures. We have to ensure that these
// are updated.
// This is very similar to ProcessFixupAddress in sharedata.cpp
class SaveFixupAddress: public ScanAddress
{
protected:
virtual POLYUNSIGNED ScanAddressAt(PolyWord *pt);
virtual PolyObject *ScanObjectAddress(PolyObject *base)
{ return GetNewAddress(base).AsObjPtr(); }
PolyWord GetNewAddress(PolyWord old);
};
POLYUNSIGNED SaveFixupAddress::ScanAddressAt(PolyWord *pt)
{
*pt = GetNewAddress(*pt);
return 0;
}
// Returns the new address if the argument is the address of an object that
// has moved, otherwise returns the original.
PolyWord SaveFixupAddress::GetNewAddress(PolyWord old)
{
if (old.IsTagged() || old == PolyWord::FromUnsigned(0) || gMem.IsIOPointer(old.AsAddress()))
return old; // Nothing to do.
// When we are updating addresses in the stack or in code segments we may have
// code pointers.
if (old.IsCodePtr())
{
// Find the start of the code segment
PolyObject *oldObject = ObjCodePtrToPtr(old.AsCodePtr());
// Calculate the byte offset of this value within the code object.
POLYUNSIGNED offset = old.AsCodePtr() - (byte*)oldObject;
PolyWord newObject = GetNewAddress(oldObject);
return PolyWord::FromCodePtr(newObject.AsCodePtr() + offset);
}
ASSERT(old.IsDataPtr());
PolyObject *obj = old.AsObjPtr();
if (obj->ContainsForwardingPtr()) // tombstone is a pointer to a moved object
{
PolyObject *newp = obj->GetForwardingPtr();
ASSERT (newp->ContainsNormalLengthWord());
return newp;
}
ASSERT (obj->ContainsNormalLengthWord()); // object is not moved
return old;
}
// Called by the root thread to actually save the state and write the file.
void SaveRequest::Perform()
{
SaveStateExport exports;
// Open the file. This could quite reasonably fail if the path is wrong.
exports.exportFile = fopen(fileName, "wb");
if (exports.exportFile == NULL)
{
errorMessage = "Cannot open save file";
errCode = errno;
return;
}
// Scan over the permanent mutable area copying all reachable data that is
// not in a lower hierarchy into new permanent segments.
CopyScan copyScan(newHierarchy);
bool success = true;
try {
for (unsigned i = 0; i < gMem.npSpaces; i++)
{
PermanentMemSpace *space = gMem.pSpaces[i];
if (space->isMutable && ! space->noOverwrite)
copyScan.ScanAddressesInRegion(space->bottom, space->top);
}
}
catch (MemoryException)
{
success = false;
}
// Copy the areas into the export object. Make sufficient space for
// the largest possible number of entries.
exports.memTable = new memoryTableEntry[gMem.neSpaces+gMem.npSpaces+1];
exports.ioMemEntry = 0;
// The IO vector.
unsigned memTableCount = 0;
MemSpace *ioSpace = gMem.IoSpace();
exports.memTable[0].mtAddr = ioSpace->bottom;
exports.memTable[0].mtLength = (char*)ioSpace->top - (char*)ioSpace->bottom;
exports.memTable[0].mtFlags = 0;
exports.memTable[0].mtIndex = 0;
memTableCount++;
// Permanent spaces at higher level. These have to have entries although
// only the mutable entries will be written.
for (unsigned w = 0; w < gMem.npSpaces; w++)
{
PermanentMemSpace *space = gMem.pSpaces[w];
if (space->hierarchy < newHierarchy)
{
memoryTableEntry *entry = &exports.memTable[memTableCount++];
entry->mtAddr = space->bottom;
entry->mtLength = (space->topPointer-space->bottom)*sizeof(PolyWord);
entry->mtIndex = space->index;
if (space->isMutable)
{
entry->mtFlags = MTF_WRITEABLE;
if (space->noOverwrite) entry->mtFlags |= MTF_NO_OVERWRITE;
}
else
entry->mtFlags = MTF_EXECUTABLE;
}
}
unsigned permanentEntries = memTableCount; // Remember where new entries start.
// Newly created spaces.
for (unsigned i = 0; i < gMem.neSpaces; i++)
{
memoryTableEntry *entry = &exports.memTable[memTableCount++];
PermanentMemSpace *space = gMem.eSpaces[i];
entry->mtAddr = space->bottom;
entry->mtLength = (space->topPointer-space->bottom)*sizeof(PolyWord);
entry->mtIndex = space->index;
if (space->isMutable)
{
entry->mtFlags = MTF_WRITEABLE;
if (space->noOverwrite) entry->mtFlags |= MTF_NO_OVERWRITE;
}
else
entry->mtFlags = MTF_EXECUTABLE;
}
exports.memTableEntries = memTableCount;
exports.ioSpacing = IO_SPACING;
// Update references to moved objects.
SaveFixupAddress fixup;
for (unsigned l = 0; l < gMem.nlSpaces; l++)
{
LocalMemSpace *space = gMem.lSpaces[l];
fixup.ScanAddressesInRegion(space->pointer, space->top);
}
GCModules(&fixup);
// Update the global memory space table. Old segments at the same level
// or lower are removed. The new segments become permanent.
if (! success || ! gMem.PromoteExportSpaces(newHierarchy))
{
errorMessage = "Out of Memory";
errCode = ENOMEM;
return;
}
// Remove any deeper entries from the hierarchy table.
while (hierarchyDepth > newHierarchy-1)
{
hierarchyDepth--;
delete(hierarchyTable[hierarchyDepth]);
hierarchyTable[hierarchyDepth] = 0;
}
// Write out the file header.
SavedStateHeader saveHeader;
memset(&saveHeader, 0, sizeof(saveHeader));
saveHeader.headerLength = sizeof(saveHeader);
strncpy(saveHeader.headerSignature,
SAVEDSTATESIGNATURE, sizeof(saveHeader.headerSignature));
saveHeader.headerVersion = SAVEDSTATEVERSION;
saveHeader.segmentDescrLength = sizeof(SavedStateSegmentDescr);
if (newHierarchy == 1)
saveHeader.parentTimeStamp = exportTimeStamp;
else
{
saveHeader.parentTimeStamp = hierarchyTable[newHierarchy-2]->timeStamp;
saveHeader.parentNameEntry = 1; // Always the first entry.
}
saveHeader.timeStamp = time(NULL);
saveHeader.segmentDescrCount = exports.memTableEntries; // One segment for each space.
// Write out the header.
fwrite(&saveHeader, sizeof(saveHeader), 1, exports.exportFile);
// We need a segment header for each permanent area whether it is
// actually in this file or not.
SavedStateSegmentDescr *descrs = new SavedStateSegmentDescr [exports.memTableEntries];
for (unsigned j = 0; j < exports.memTableEntries; j++)
{
memoryTableEntry *entry = &exports.memTable[j];
memset(&descrs[j], 0, sizeof(SavedStateSegmentDescr));
descrs[j].relocationSize = sizeof(RelocationEntry);
descrs[j].segmentIndex = entry->mtIndex;
descrs[j].segmentSize = entry->mtLength; // Set this even if we don't write it.
descrs[j].originalAddress = entry->mtAddr;
if (entry->mtFlags & MTF_WRITEABLE)
{
descrs[j].segmentFlags |= SSF_WRITABLE;
if (entry->mtFlags & MTF_NO_OVERWRITE)
descrs[j].segmentFlags |= SSF_NOOVERWRITE;
if (j < permanentEntries && (entry->mtFlags & MTF_NO_OVERWRITE) == 0)
descrs[j].segmentFlags |= SSF_OVERWRITE;
}
}
// Write out temporarily. Will be overwritten at the end.
saveHeader.segmentDescr = ftell(exports.exportFile);
fwrite(descrs, sizeof(SavedStateSegmentDescr), exports.memTableEntries, exports.exportFile);
// Write out the relocations and the data.
for (unsigned k = 1 /* Not IO area */; k < exports.memTableEntries; k++)
{
memoryTableEntry *entry = &exports.memTable[k];
// Write out the contents if this is new or if it is a normal, overwritable
// mutable area.
if (k >= permanentEntries ||
(entry->mtFlags & (MTF_WRITEABLE|MTF_NO_OVERWRITE)) == MTF_WRITEABLE)
{
descrs[k].relocations = ftell(exports.exportFile);
// Have to write this out.
exports.relocationCount = 0;
// Create the relocation table.
char *start = (char*)entry->mtAddr;
char *end = start + entry->mtLength;
for (PolyWord *p = (PolyWord*)start; p < (PolyWord*)end; )
{
p++;
PolyObject *obj = (PolyObject*)p;
POLYUNSIGNED length = obj->Length();
// Most relocations can be computed when the saved state is
// loaded so we only write out the difficult ones: those that
// occur within compiled code.
// exports.relocateObject(obj);
if (length != 0 && obj->IsCodeObject())
machineDependent->ScanConstantsWithinCode(obj, &exports);
p += length;
}
descrs[k].relocationCount = exports.relocationCount;
// Write out the data.
descrs[k].segmentData = ftell(exports.exportFile);
fwrite(entry->mtAddr, entry->mtLength, 1, exports.exportFile);
}
}
// If this is a child we need to write a string table containing the parent name.
if (newHierarchy > 1)
{
saveHeader.stringTable = ftell(exports.exportFile);
fputc(0, exports.exportFile); // First byte of string table is zero
fputs(hierarchyTable[newHierarchy-2]->fileName, exports.exportFile);
fputc(0, exports.exportFile); // A terminating null.
saveHeader.stringTableSize = strlen(hierarchyTable[newHierarchy-2]->fileName) + 2;
}
// Rewrite the header and the segment tables now they're complete.
fseek(exports.exportFile, 0, SEEK_SET);
fwrite(&saveHeader, sizeof(saveHeader), 1, exports.exportFile);
fwrite(descrs, sizeof(SavedStateSegmentDescr), exports.memTableEntries, exports.exportFile);
// Add an entry to the hierarchy table for this file.
(void)AddHierarchyEntry(fileName, saveHeader.timeStamp);
delete[](descrs);
}
Handle SaveState(TaskData *taskData, Handle args)
{
char fileNameBuff[MAXPATHLEN];
POLYUNSIGNED length =
Poly_string_to_C(DEREFHANDLE(args)->Get(0), fileNameBuff, MAXPATHLEN);
if (length > MAXPATHLEN)
raise_syscall(taskData, "File name too long", ENAMETOOLONG);
// The value of depth is zero for top-level save so we need to add one for hierarchy.
unsigned newHierarchy = get_C_ulong(taskData, DEREFHANDLE(args)->Get(1)) + 1;
// We don't support hierarchical saving at the moment.
if (newHierarchy > hierarchyDepth+1)
raise_fail(taskData, "Depth must be no more than the current hierarchy plus one");
SaveRequest request(fileNameBuff, newHierarchy);
processes->MakeRootRequest(taskData, &request);
if (request.errorMessage)
raise_syscall(taskData, request.errorMessage, request.errCode);
return SAVE(TAGGED(0));
}
/*
* Loading saved state files.
*/
class StateLoader: public MainThreadRequest
{
public:
StateLoader(const char *file): errorResult(0), errNumber(0) { strcpy(fileName, file); }
virtual void Perform(void);
bool LoadFile(void);
const char *errorResult;
// The fileName here is the last file loaded. As well as using it
// to load the name can also be printed out at the end to identify the
// particular file in the hierarchy that failed.
char fileName[MAXPATHLEN];
int errNumber;
};
// Called by the main thread once all the ML threads have stopped.
void StateLoader::Perform(void)
{
(void)LoadFile();
}
// This class is used to relocate addresses in areas that have been loaded.
class LoadRelocate
{
public:
LoadRelocate(): descrs(0), nDescrs(0), errorMessage(0) {}
~LoadRelocate();
void RelocateObject(PolyObject *p);
void RelocateAddressAt(PolyWord *pt);
SavedStateSegmentDescr *descrs;
unsigned nDescrs;
const char *errorMessage;
};
LoadRelocate::~LoadRelocate()
{
if (descrs) delete[](descrs);
}
// Update the addresses in a group of words.
void LoadRelocate::RelocateAddressAt(PolyWord *pt)
{
PolyWord val = *pt;
if (val.IsTagged()) return;
// Which segment is this address in?
unsigned i;
for (i = 0; i < nDescrs; i++)
{
SavedStateSegmentDescr *descr = &descrs[i];
if (val.AsAddress() > descr->originalAddress &&
val.AsAddress() <= (char*)descr->originalAddress + descr->segmentSize)
{
// It's in this segment: relocate it to the current position.
MemSpace *space =
descr->segmentIndex == 0 ? gMem.IoSpace() : gMem.SpaceForIndex(descr->segmentIndex);
// Error if this doesn't match.
byte *setAddress = (byte*)space->bottom + ((char*)val.AsAddress() - (char*)descr->originalAddress);
*pt = PolyWord::FromCodePtr(setAddress);
break;
}
}
if (i == nDescrs)
{
// Error: Not found.
errorMessage = "Unmatched address";
}
}
// This is based on Exporter::relocateObject but does the reverse.
// It attempts to adjust all the addresses in the object when it has
// been read in.
void LoadRelocate::RelocateObject(PolyObject *p)
{
if (p->IsByteObject())
{
}
else if (p->IsCodeObject())
{
POLYUNSIGNED constCount;
PolyWord *cp;
ASSERT(! p->IsMutable() );
p->GetConstSegmentForCode(cp, constCount);
/* Now the constant area. */
for (POLYUNSIGNED i = 0; i < constCount; i++) RelocateAddressAt(&(cp[i]));
// N.B. This does not deal with constants within the code. These have
// to be handled by real relocation entries.
}
else if (p->IsStackObject())
{
StackObject *s = (StackObject*)p;
POLYUNSIGNED length = p->Length();
ASSERT(! p->IsMutable()); // Should have been frozen
/* First the standard registers, space, pc, sp, hr. */
// pc may be TAGGED(0) indicating a retry.
PolyWord pc = PolyWord::FromCodePtr(s->p_pc);
if (pc != TAGGED(0))
{
RelocateAddressAt(&pc);
s->p_pc = pc.AsCodePtr();
}
PolyWord *stackPtr = s->p_sp; // Save this before we change it.
// These point within the current stack.
PolyWord sp = PolyWord::FromStackAddr(s->p_sp);
RelocateAddressAt(&sp);
s->p_sp = sp.AsStackAddr();
PolyWord hr = PolyWord::FromStackAddr(s->p_hr);
RelocateAddressAt(&hr);
s->p_hr = hr.AsStackAddr();
/* Checked registers. */
PolyWord *stackStart = (PolyWord*)p;
PolyWord *stackEnd = stackStart+length;
for (POLYUNSIGNED i = 0; i < s->p_nreg; i++)
{
PolyWord r = s->p_reg[i];
if (r.AsStackAddr() >= stackStart && r.AsStackAddr() < stackEnd)
RelocateAddressAt(&s->p_reg[i]);
/* It seems we can have zeros in the registers, at least on the i386. */
else if (r == PolyWord::FromUnsigned(0)) {}
else RelocateAddressAt(&(s->p_reg[i]));
}
/* Now the values on the stack. */
for (PolyWord *q = stackPtr; q < stackEnd; q++)
RelocateAddressAt(q);
}
else /* Ordinary objects, essentially tuples. */
{
POLYUNSIGNED length = p->Length();
for (POLYUNSIGNED i = 0; i < length; i++) RelocateAddressAt(p->Offset(i));
}
}
// Load a saved state file. Calls itself to handle parent files.
bool StateLoader::LoadFile()
{
LoadRelocate relocate;
AutoFree<char*> thisFile(strdup(fileName));
AutoClose loadFile(fopen(fileName, "rb"));
if ((FILE*)loadFile == NULL)
{
errorResult = "Cannot open load file";
errNumber = errno;
return false;
}
SavedStateHeader header;
// Read the header and check the signature.
if (fread(&header, sizeof(SavedStateHeader), 1, loadFile) != 1)
{
errorResult = "Unable to load header";
return false;
}
if (strncmp(header.headerSignature, SAVEDSTATESIGNATURE, sizeof(header.headerSignature)) != 0)
{
errorResult = "File is not a saved state";
return false;
}
if (header.headerVersion != SAVEDSTATEVERSION ||
header.headerLength != sizeof(SavedStateHeader) ||
header.segmentDescrLength != sizeof(SavedStateSegmentDescr))
{
errorResult = "Unsupported version of saved state file";
return false;
}
// Have verified that this is a reasonable saved state file. If it isn't a
// top-level file we have to load the parents first.
if (header.parentNameEntry != 0)
{
unsigned toRead = header.stringTableSize-header.parentNameEntry;
if (MAXPATHLEN < toRead) toRead = MAXPATHLEN;
if (header.parentNameEntry >= header.stringTableSize /* Bad entry */ ||
fseek(loadFile, header.stringTable + header.parentNameEntry, SEEK_SET) != 0 ||
fread(fileName, 1, toRead, loadFile) != toRead)
{
errorResult = "Unable to read parent file name";
return false;
}
fileName[toRead] = 0; // Should already be null-terminated, but just in case.
if (! LoadFile())
return false;
// Check the parent time stamp.
ASSERT(hierarchyDepth > 0 && hierarchyTable[hierarchyDepth-1] != 0);
if (header.parentTimeStamp != hierarchyTable[hierarchyDepth-1]->timeStamp)
{
// Time-stamps don't match.
errorResult = "The parent for this saved state does not match or has been changed";
return false;
}
}
else // Top-level file
{
if (header.parentTimeStamp != exportTimeStamp)
{
// Time-stamp does not match executable.
errorResult =
"Saved state was exported from a different executable or the executable has changed";
return false;
}
// Any existing spaces at this level or greater must be turned
// into local spaces. We may have references from the stack to objects that
// have previously been imported but otherwise these spaces are no longer
// needed.
gMem.DemoteImportSpaces();
// Clean out the hierarchy table.
for (unsigned h = 0; h < hierarchyDepth; h++)
{
delete(hierarchyTable[h]);
hierarchyTable[h] = 0;
}
hierarchyDepth = 0;
}
// Now have a valid, matching saved state.
// Load the segment descriptors.
relocate.nDescrs = header.segmentDescrCount;
relocate.descrs = new SavedStateSegmentDescr[relocate.nDescrs];
if (fseek(loadFile, header.segmentDescr, SEEK_SET) != 0 ||
fread(relocate.descrs, sizeof(SavedStateSegmentDescr), relocate.nDescrs, loadFile) != relocate.nDescrs)
{
errorResult = "Unable to read segment descriptors";
return false;
}
// Read in and create the new segments first. If we have problems,
// in particular if we have run out of memory, then it's easier to recover.
for (unsigned i = 0; i < relocate.nDescrs; i++)
{
SavedStateSegmentDescr *descr = &relocate.descrs[i];
MemSpace *space =
descr->segmentIndex == 0 ? gMem.IoSpace() : gMem.SpaceForIndex(descr->segmentIndex);
if (descr->segmentData == 0)
{ // No data - just an entry in the index.
if (space == NULL/* ||
descr->segmentSize != (size_t)((char*)space->top - (char*)space->bottom)*/)
{
errorResult = "Mismatch for existing memory space";
return false;
}
}
else if ((descr->segmentFlags & SSF_OVERWRITE) == 0)
{ // New segment.
if (space != NULL)
{
errorResult = "Segment already exists";
return false;
}
// Allocate memory for the new segment.
size_t actualSize = descr->segmentSize;
PolyWord *mem =
(PolyWord*)osMemoryManager->Allocate(actualSize,
PERMISSION_READ|PERMISSION_WRITE|PERMISSION_EXEC);
if (mem == 0)
{
errorResult = "Unable to allocate memory";
return false;
}
if (fseek(loadFile, descr->segmentData, SEEK_SET) != 0 ||
fread(mem, descr->segmentSize, 1, loadFile) != 1)
{
errorResult = "Unable to read segment";
osMemoryManager->Free(mem, descr->segmentSize);
return false;
}
// Fill unused space to the top of the area.
gMem.FillUnusedSpace(mem+descr->segmentSize/sizeof(PolyWord),
(actualSize-descr->segmentSize)/sizeof(PolyWord));
// At the moment we leave all segments with write access.
space = gMem.NewPermanentSpace(mem, actualSize / sizeof(PolyWord),
(descr->segmentFlags & SSF_WRITABLE) != 0,
(descr->segmentFlags & SSF_NOOVERWRITE) != 0,
descr->segmentIndex, hierarchyDepth+1);
}
}
// Now read in the mutable overwrites and relocate.
for (unsigned j = 0; j < relocate.nDescrs; j++)
{
SavedStateSegmentDescr *descr = &relocate.descrs[j];
MemSpace *space =
descr->segmentIndex == 0 ? gMem.IoSpace() : gMem.SpaceForIndex(descr->segmentIndex);
ASSERT(space != NULL); // We should have created it.
if (descr->segmentFlags & SSF_OVERWRITE)
{
if (fseek(loadFile, descr->segmentData, SEEK_SET) != 0 ||
fread(space->bottom, descr->segmentSize, 1, loadFile) != 1)
{
errorResult = "Unable to read segment";
return false;
}
}
// Relocation.
if (descr->segmentData != 0)
{
// Adjust the addresses in the loaded segment.
for (PolyWord *p = space->bottom; p < space->top; )
{
p++;
PolyObject *obj = (PolyObject*)p;
POLYUNSIGNED length = obj->Length();
relocate.RelocateObject(obj);
p += length;
}
}
// Process explicit relocations.
// If we get errors just skip the error and continue rather than leave
// everything in an unstable state.
if (descr->relocations)
{
if (fseek(loadFile, descr->relocations, SEEK_SET) != 0)
{
errorResult = "Unable to read relocation segment";
}
for (unsigned k = 0; k < descr->relocationCount; k++)
{
RelocationEntry reloc;
if (fread(&reloc, sizeof(reloc), 1, loadFile) != 1)
{
errorResult = "Unable to read relocation segment";
}
MemSpace *toSpace =
reloc.targetSegment == 0 ? gMem.IoSpace() : gMem.SpaceForIndex(reloc.targetSegment);
if (toSpace == NULL)
{
errorResult = "Unknown space reference in relocation";
continue;
}
byte *setAddress = (byte*)space->bottom + reloc.relocAddress;
byte *targetAddress = (byte*)toSpace->bottom + reloc.targetAddress;
if (setAddress >= (byte*)space->top || targetAddress >= (byte*)toSpace->top)
{
errorResult = "Bad relocation";
continue;
}
ScanAddress::SetConstantValue(setAddress, PolyWord::FromCodePtr(targetAddress), reloc.relKind);
}
}
}
// Add an entry to the hierarchy table for this file.
if (! AddHierarchyEntry(thisFile, header.timeStamp))
return false;
return true; // Succeeded
}
Handle LoadState(TaskData *taskData, Handle hFileName)
// Load a saved state file and any ancestors.
{
// Open the load file
char fileNameBuff[MAXPATHLEN];
POLYUNSIGNED length =
Poly_string_to_C(DEREFHANDLE(hFileName), fileNameBuff, MAXPATHLEN);
if (length > MAXPATHLEN)
raise_syscall(taskData, "File name too long", ENAMETOOLONG);
StateLoader loader(fileNameBuff);
// Request the main thread to do the load. This may set the error string if it failed.
processes->MakeRootRequest(taskData, &loader);
if (loader.errorResult != 0)
{
if (loader.errNumber == 0)
raise_fail(taskData, loader.errorResult);
else
{
char buff[MAXPATHLEN+100];
strcpy(buff, loader.errorResult);
strcat(buff, ": ");
strcat(buff, loader.fileName);
raise_syscall(taskData, buff, loader.errNumber);
}
}
return SAVE(TAGGED(0));
}
/*
* Additional functions to provide information or change saved-state files.
*/
// These functions do not affect the global state so can be executed by
// the ML threads directly.
Handle ShowHierarchy(TaskData *taskData)
// Return the list of files in the hierarchy.
{
Handle saved = taskData->saveVec.mark();
Handle list = SAVE(ListNull);
// Process this in reverse order.
for (unsigned i = hierarchyDepth; i > 0; i--)
{
Handle value = SAVE(C_string_to_Poly(taskData, hierarchyTable[i-1]->fileName));
Handle next = alloc_and_save(taskData, sizeof(ML_Cons_Cell)/sizeof(PolyWord));
DEREFLISTHANDLE(next)->h = DEREFWORDHANDLE(value);
DEREFLISTHANDLE(next)->t = DEREFLISTHANDLE(list);
taskData->saveVec.reset(saved);
list = SAVE(DEREFHANDLE(next));
}
return list;
}
Handle RenameParent(TaskData *taskData, Handle args)
// Change the name of the immediate parent stored in a child
{
char fileNameBuff[MAXPATHLEN], parentNameBuff[MAXPATHLEN];
// The name of the file to modify.
POLYUNSIGNED fileLength =
Poly_string_to_C(DEREFHANDLE(args)->Get(0), fileNameBuff, MAXPATHLEN);
if (fileLength > MAXPATHLEN)
raise_syscall(taskData, "File name too long", ENAMETOOLONG);
// The new parent name to insert.
POLYUNSIGNED parentLength =
Poly_string_to_C(DEREFHANDLE(args)->Get(1), parentNameBuff, MAXPATHLEN);
if (parentLength > MAXPATHLEN)
raise_syscall(taskData, "Parent name too long", ENAMETOOLONG);
AutoClose loadFile(fopen(fileNameBuff, "r+b")); // Open for reading and writing
if ((FILE*)loadFile == NULL)
{
char buff[MAXPATHLEN+1+23];
strcpy(buff, "Cannot open load file: ");
strcat(buff, fileNameBuff);
raise_syscall(taskData, buff, errno);
}
SavedStateHeader header;
// Read the header and check the signature.
if (fread(&header, sizeof(SavedStateHeader), 1, loadFile) != 1)
raise_fail(taskData, "Unable to load header");
if (strncmp(header.headerSignature, SAVEDSTATESIGNATURE, sizeof(header.headerSignature)) != 0)
raise_fail(taskData, "File is not a saved state");
if (header.headerVersion != SAVEDSTATEVERSION ||
header.headerLength != sizeof(SavedStateHeader) ||
header.segmentDescrLength != sizeof(SavedStateSegmentDescr))
{
raise_fail(taskData, "Unsupported version of saved state file");
}
// Does this actually have a parent?
if (header.parentNameEntry == 0)
raise_fail(taskData, "File does not have a parent");
// At the moment the only entry in the string table is the parent
// name so we can simply write a new one on the end of the file.
// This makes the file grow slightly each time but it shouldn't be
// significant.
fseek(loadFile, 0, SEEK_END);
header.stringTable = ftell(loadFile); // Remember where this is
fputc(0, loadFile); // First byte of string table is zero
fputs(parentNameBuff, loadFile);
fputc(0, loadFile); // A terminating null.
header.stringTableSize = strlen(parentNameBuff) + 2;
// Now rewind and write the header with the revised string table.
fseek(loadFile, 0, SEEK_SET);
fwrite(&header, sizeof(header), 1, loadFile);
return SAVE(TAGGED(0));
}
Handle ShowParent(TaskData *taskData, Handle hFileName)
// Return the name of the immediate parent stored in a child
{
char fileNameBuff[MAXPATHLEN+1];
POLYUNSIGNED length =
Poly_string_to_C(DEREFHANDLE(hFileName), fileNameBuff, MAXPATHLEN);
if (length > MAXPATHLEN)
raise_syscall(taskData, "File name too long", ENAMETOOLONG);
AutoClose loadFile(fopen(fileNameBuff, "rb"));
if ((FILE*)loadFile == NULL)
{
char buff[MAXPATHLEN+1+23];
strcpy(buff, "Cannot open load file: ");
strcat(buff, fileNameBuff);
raise_syscall(taskData, buff, errno);
}
SavedStateHeader header;
// Read the header and check the signature.
if (fread(&header, sizeof(SavedStateHeader), 1, loadFile) != 1)
raise_fail(taskData, "Unable to load header");
if (strncmp(header.headerSignature, SAVEDSTATESIGNATURE, sizeof(header.headerSignature)) != 0)
raise_fail(taskData, "File is not a saved state");
if (header.headerVersion != SAVEDSTATEVERSION ||
header.headerLength != sizeof(SavedStateHeader) ||
header.segmentDescrLength != sizeof(SavedStateSegmentDescr))
{
raise_fail(taskData, "Unsupported version of saved state file");
}
// Does this have a parent?
if (header.parentNameEntry != 0)
{
char parentFileName[MAXPATHLEN+1];
unsigned toRead = header.stringTableSize-header.parentNameEntry;
if (MAXPATHLEN < toRead) toRead = MAXPATHLEN;
if (header.parentNameEntry >= header.stringTableSize /* Bad entry */ ||
fseek(loadFile, header.stringTable + header.parentNameEntry, SEEK_SET) != 0 ||
fread(parentFileName, 1, toRead, loadFile) != toRead)
{
raise_fail(taskData, "Unable to read parent file name");
}
parentFileName[toRead] = 0; // Should already be null-terminated, but just in case.
// Convert the name into a Poly string and then build a "Some" value.
// It's possible, although silly, to have the empty string as a parent name.
Handle resVal = SAVE(C_string_to_Poly(taskData, parentFileName));
Handle result = alloc_and_save(taskData, 1);
DEREFHANDLE(result)->Set(0, DEREFWORDHANDLE(resVal));
return result;
}
else return SAVE(NONE_VALUE);
}
|