1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
|
/*
Title: Share common immutable data
Copyright (c) 2000
Cambridge University Technical Services Limited
and David C. J. Matthews 2006
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef WIN32
#include "winconfig.h"
#else
#include "config.h"
#endif
#ifdef HAVE_STDIO_H
#include <stdio.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x)
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#include "globals.h"
#include "save_vec.h"
#include "machine_dep.h"
#include "scanaddrs.h"
#include "run_time.h"
#include "sys.h"
#include "gc.h"
#include "rts_module.h"
#include "memmgr.h"
#include "processes.h"
/*
This code was largely written by Simon Finn as a database improver for the the
memory-mapped persistent store version. The aim is that where two immutable
objects (cells) contain the same data (i.e. where ML equality would say they
were equal) they should be merged so that only a single object is retained.
The basic algorithm works like this:
1. From the root, recursively process all objects and calculate a "depth"
for each object. Mutable data, stacks and code segments have depth 0 and
cannot be merged. Byte segments (e.g. strings and long-format arbitrary
precision values) have depth 1. Other cells have depths of 1 or greater,
the depth being the maximum recursion depth until a byte segment or an
object with depth 0 is reached. Cycles of immutable data don't arise
normally in ML but could be produced as a result of locking mutable objects.
To avoid infinite recursion cycles are broken by setting the depth of an
object to zero before processing it. The depth of each object is stored
in the length word of the object. This ensures each object is processed
once only.
2. Vectors are created containing objects of the same depth, from 1 to the
maximum depth found.
3. We begin a loop starting at depth 1.
4. The objects are sorted by their contents so bringing together objects
with the same contents. The contents are considered simply as
uninterpreted bits.
5. The sorted vector is processed to find those objects that are actually
bitwise equal. One object is selected to be retained and its length
word is restored to be a normal length (phase 1 had set it to be a depth).
The other objects have their length words turned into tombstones pointing
at the retained object.
6. Objects at the next depth are first processed to find pointers to objects
that moved in the previous step (or that step with a lower depth). The
addresses are updated to point to the retained object. The effect of this
step is to ensure that now two objects that are equal in ML terms have
identical contents.
e.g. If we have
val a = ("abc", "def") and b = ("abc", "def")
then we will have merged the two occurrences of "abc" and "def" in the
previous pass of level 1 objects. This step ensures that the two cells
containing the pairs both hold pointers to the same objects and so are
bitwise equal.
7. Repeat with 4, 5 and 6 until all the levels have been processed.
Each object is processed once and at the end most of the objects have been
updated with the shared addresses. We have to scan all the mutable and
code objects to update the addresses but also have to scan the immutables
because of the possibility of missing an update as a result of breaking a
loop (see SPF's comment below).
DCJM 3/8/06
*/
/******************************************************************************/
/* */
/* Data objects */
/* */
/******************************************************************************/
/* Meaning of length word:
(1) bit 31 (msbit) = 0, bits 0-23 = length, bits 24-30 = flags
(2) bit 31 = 1, bit 30 = 1, bits 0-30 = depth
(2) bit 31 = 1, bit 30 = 0, bits 0-30 = forwarding pointer>>2
*/
typedef struct
{
POLYUNSIGNED L;
PolyObject *pt;
} Item;
class Vector
{
public:
static Vector *AddDepth(POLYUNSIGNED depth);
Vector(POLYUNSIGNED d): depth(d), nitems(0), vsize(0), vector(0), next(0) {}
~Vector() { free(vector); }
POLYUNSIGNED depth;
POLYUNSIGNED nitems;
POLYUNSIGNED vsize;
Item *vector;
Vector *next;
};
static Vector *vectors = 0;
// Returns true if this is an address into either the permanent or temporary areas.
inline bool IsDataAddress(PolyWord p)
{
MemSpace *space = gMem.SpaceForAddress(p.AsAddress());
return space != 0 && space->spaceType != ST_IO;
}
Vector * Vector::AddDepth(POLYUNSIGNED depth)
{
Vector *v;
Vector **L = & vectors;
for (v = *L; v && v->depth < depth; v = *L)
{
L = & v->next;
}
if (v && v->depth == depth)
return v;
v = new Vector(depth);
if (v == 0) // Should throw an exception, but just in case...
throw MemoryException();
v->next = *L;
*L = v;
return v;
}
/******************************************************************************/
/* */
/* AddToVector */
/* */
/******************************************************************************/
static void AddToVector(POLYUNSIGNED depth, POLYUNSIGNED L, PolyObject *pt)
{
Vector *v = Vector::AddDepth (depth);
ASSERT (v->nitems <= v->vsize);
if (v->nitems == v->vsize)
{
unsigned long new_vsize = 2 * v->vsize + 1;
if (new_vsize < 15)
new_vsize = 15;
Item *new_vector = (Item *)realloc (v->vector, new_vsize*sizeof(Item));
if (new_vector == 0)
throw MemoryException();
v->vector = new_vector;
v->vsize = new_vsize;
}
ASSERT (v->nitems < v->vsize);
v->vector[v->nitems].L = L;
v->vector[v->nitems].pt = pt;
v->nitems++;
ASSERT (v->nitems <= v->vsize);
}
/******************************************************************************/
/* */
/* CompareItems */
/* */
/******************************************************************************/
static int CompareItems(const void *arg_a, const void *arg_b)
{
Item *a = (Item *)arg_a;
Item *b = (Item *)arg_b;
PolyObject *x = a->pt;
PolyObject *y = b->pt;
POLYUNSIGNED A = x->LengthWord();
POLYUNSIGNED B = y->LengthWord();
ASSERT (OBJ_IS_DEPTH(A));
ASSERT (OBJ_IS_DEPTH(B));
ASSERT (A == B); // Should be the same depth.
ASSERT (OBJ_IS_LENGTH(a->L));
ASSERT (OBJ_IS_LENGTH(b->L));
if (a->L > b->L) return 1;
if (a->L < b->L) return -1;
// Return simple bitwise equality.
return memcmp(x, y, OBJ_OBJECT_LENGTH(a->L)*sizeof(PolyWord));
}
/******************************************************************************/
/* */
/* MergeSameItems */
/* */
/******************************************************************************/
static POLYUNSIGNED MergeSameItems(Vector *v)
{
POLYUNSIGNED N = v->nitems;
Item *itemVec = v->vector;
POLYUNSIGNED n = 0;
POLYUNSIGNED i = 0;
while (i < N)
{
ASSERT (OBJ_IS_DEPTH(itemVec[i].pt->LengthWord()));
PolyObject *toShare = NULL; // Candidate to share.
unsigned minHierarchy = 0;
POLYUNSIGNED j;
for (j = i; j < N; j++)
{
// Search for identical objects. Don't bother to compare it with itself.
if (i != j && CompareItems (& itemVec[i], & itemVec[j]) != 0) break;
// Choose an object in the permanent memory if that is available.
// This is necessary to retain the invariant that no object in
// the permanent memory points to an object in the temporary heap.
// (There may well be pointers to this object elsewhere in the permanent
// heap).
// Choose the lowest hierarchy value for preference since that
// may reduce the size of saved state when resaving already saved
// data.
MemSpace *space = gMem.SpaceForAddress(itemVec[j].pt);
if (space->spaceType == ST_PERMANENT)
{
PermanentMemSpace *pSpace = (PermanentMemSpace *)space;
if (toShare == NULL || pSpace->hierarchy < minHierarchy)
{
toShare = itemVec[j].pt;
minHierarchy = pSpace->hierarchy;
}
}
}
// If there isn't a permanent object choose the first in the table.
if (toShare == NULL) toShare = itemVec[i].pt;
POLYUNSIGNED k = j; // Remember the first object that didn't match.
//.For each identical object set all but the one we want to point to
// the shared object.
for (j = i; j < k; j++)
{
ASSERT (OBJ_IS_DEPTH(itemVec[j].pt->LengthWord()));
if (itemVec[j].pt == toShare)
{
// This is the common object.
toShare->SetLengthWord(itemVec[j].L); // restore genuine length word
ASSERT (OBJ_IS_LENGTH(toShare->LengthWord()));
}
else
{
itemVec[j].pt->SetForwardingPtr(toShare); /* an indirection */
ASSERT (itemVec[j].pt->ContainsForwardingPtr());
}
n++;
}
ASSERT(! OBJ_IS_DEPTH(itemVec[i].pt->LengthWord()));
i = k;
}
return n;
}
class ProcessFixupAddress: public ScanAddress
{
public:
void FixupItems (Vector *v);
protected:
virtual POLYUNSIGNED ScanAddressAt(PolyWord *pt);
virtual PolyObject *ScanObjectAddress(PolyObject *base)
{ return GetNewAddress(base).AsObjPtr(); }
PolyWord GetNewAddress(PolyWord old);
};
POLYUNSIGNED ProcessFixupAddress::ScanAddressAt(PolyWord *pt)
{
*pt = GetNewAddress(*pt);
// If we are updating an immutable object in the permanent memory we mustn't
// have it contain an address in the temporary heap. Mutables are ok since the
// garbage collector always scans that area.
// ASSERT(!(H->i_space.bottom <= pt && pt < H->i_space.pointer) || (*pt).IsTagged() ||
// gMem.IsPermanentMemoryPointer((*pt).AsAddress()) || gMem.IsIOPointer((*pt).AsAddress()));
return 0;
}
// Returns the new address if the argument is the address of an object that
// has moved, otherwise returns the original.
PolyWord ProcessFixupAddress::GetNewAddress(PolyWord old)
{
if (old.IsTagged() || old == PolyWord::FromUnsigned(0) || gMem.IsIOPointer(old.AsAddress()))
return old; // Nothing to do.
// When we are updating addresses in the stack or in code segments we may have
// code pointers.
if (old.IsCodePtr())
{
// Find the start of the code segment
PolyObject *oldObject = ObjCodePtrToPtr(old.AsCodePtr());
// Calculate the byte offset of this value within the code object.
POLYUNSIGNED offset = old.AsCodePtr() - (byte*)oldObject;
PolyWord newObject = GetNewAddress(oldObject);
return PolyWord::FromCodePtr(newObject.AsCodePtr() + offset);
}
ASSERT(old.IsDataPtr());
ASSERT(IsDataAddress(old));
PolyObject *obj = old.AsObjPtr();
POLYUNSIGNED L = obj->LengthWord();
// Generally each address will point to an object processed at a lower depth.
// The exception is if we have a cycle and have assigned the rest of the
// structure to a higher depth.
// N.B. We return the original address here but this could actually share
// with something else and not be retained.
if (OBJ_IS_DEPTH(L))
return old;
if (obj->ContainsForwardingPtr()) // tombstone is a pointer to a shared object
{
PolyObject *newp = obj->GetForwardingPtr();
ASSERT (newp->ContainsNormalLengthWord());
return newp;
}
ASSERT (obj->ContainsNormalLengthWord()); // object is not shared
return old;
}
void ProcessFixupAddress::FixupItems (Vector *v)
{
POLYUNSIGNED N = v->nitems;
Item *V = v->vector;
for (POLYUNSIGNED i = 0; i < N; i++)
{
ScanAddressesInObject(V[i].pt, V[i].L);
}
}
class ProcessAddToVector: public ScanAddress
{
public:
ProcessAddToVector() {}
virtual POLYUNSIGNED ScanAddressAt(PolyWord *pt)
{ (void)AddObjectsToDepthVectors(*pt); return 0; }
virtual PolyObject *ScanObjectAddress(PolyObject *base)
{ (void)AddObjectsToDepthVectors(base); return base; }
protected:
POLYUNSIGNED AddObjectsToDepthVectors(PolyWord old);
};
POLYUNSIGNED ProcessAddToVector::AddObjectsToDepthVectors(PolyWord old)
{
// If this is a tagged integer or an IO pointer that's simply a constant.
if (old.IsTagged() || old == PolyWord::FromUnsigned(0) || gMem.IsIOPointer(old.AsAddress()))
return 0;
ASSERT(IsDataAddress(old));
PolyObject *obj = old.AsObjPtr();
POLYUNSIGNED L = obj->LengthWord();
if (OBJ_IS_DEPTH(L)) // tombstone contains genuine depth or 0.
return OBJ_GET_DEPTH(L);
ASSERT (OBJ_IS_LENGTH(L));
// Byte objects always have depth 1 and can't contain addresses.
if (obj->IsByteObject())
{
obj->SetLengthWord(OBJ_SET_DEPTH(1));
AddToVector (1, L, old.AsObjPtr());// add to vector at correct depth
return 1;
}
// set initial depth to 0 (to cope with loops)
obj->SetLengthWord(OBJ_SET_DEPTH(0));
/* There's a problem sharing code objects if they have relative calls/jumps
in them to other code. The code of two functions may be identical (e.g.
they both call functions 100 bytes ahead) and so they will appear the
same but if the functions they jump to are different they are actually
different. For that reason we don't share code segments. DCJM 4/1/01 */
if (OBJ_IS_MUTABLE_OBJECT(L) || OBJ_IS_STACK_OBJECT(L) || OBJ_IS_CODE_OBJECT(L))
{
// These always have depth 0. We still have to process any addresses within them.
ScanAddressesInObject(obj, L);
// Add these at depth zero. This allows us to restore the length words.
AddToVector (0, L, old.AsObjPtr());
return 0;
}
ASSERT(OBJ_IS_WORD_OBJECT(L)); // That leaves immutable data objects.
POLYUNSIGNED depth = 0;
POLYUNSIGNED n = OBJ_OBJECT_LENGTH(L);
PolyWord *pt = (PolyWord*)obj;
// Process all the values in this object and calculate the maximum depth.
for(POLYUNSIGNED i = 0; i < n; i++)
{
POLYUNSIGNED d = AddObjectsToDepthVectors(*pt);
if (d > depth) depth = d;
pt++;
}
depth++; // Plus one for this object.
obj->SetLengthWord(OBJ_SET_DEPTH(depth));// set genuine depth.
AddToVector (depth, L, old.AsObjPtr());// add to vector at correct depth
return depth;
}
static void RestoreLengthWords(Vector *vec)
{
// Restore the length words.
Item *itemVec = vec->vector;
for (POLYUNSIGNED i = 0; i < vec->nitems; i++)
{
itemVec[i].pt->SetLengthWord(itemVec[i].L); // restore genuine length word
ASSERT (OBJ_IS_LENGTH(itemVec[i].pt->LengthWord()));
}
}
static unsigned verbose = 0;
// This is called by the root thread to do the work.
bool RunShareData(PolyObject *root)
{
POLYUNSIGNED totalObjects = 0;
POLYUNSIGNED totalShared = 0;
vectors = 0;
// Build the vectors from the immutable objects.
ProcessAddToVector addToVector;
try {
(void)addToVector.ScanObjectAddress(root);
}
catch (MemoryException)
{
// If we run out of memory and raise an exception we have to clean up.
while (vectors)
{
Vector *v = vectors;
vectors = v->next;
delete(v);
}
return false; // Run out of memory.
}
ProcessFixupAddress fixup;
Vector *vec = vectors;
if (vec && vec->depth == 0) // Skip the level zero objects.
vec = vec->next; // We fix them up when we've done all the rest.
while (vec)
{
fixup.FixupItems(vec);
qsort (vec->vector, vec->nitems, sizeof(Item), CompareItems);
POLYUNSIGNED n = MergeSameItems (vec);
if (n && verbose)
{
printf("Level %4lu, Objects %6lu, Shared %6lu\n", vec->depth, vec->nitems, n);
}
totalObjects += vec->nitems;
totalShared += n;
vec = vec->next; // Get the next vector (if any)
}
/*
At this stage, we have fixed up most but not all of the forwarding
pointers. The ones that we haven't fixed up arise from situations
such as the following:
X -> Y <-> Z
i.e. Y and Z form a loop, and X is isomorphic to Z. When we assigned
the depths, we have to arbitrarily break the loop between Y and Z.
Suppose Y is assigned to level 1, and Z is assigned to level 2.
When we process level 1 and fixup Y, there's nothing to do, since
Z is still an ordinary object. However when we process level 2,
we find that X and Z are isomorphic so we arbitrarily choose one
of them and turn it into a "tombstone" pointing at the other. If
we change Z into the tombstone, then Y now contains a pointer
that needs fixing up. That's why we need the second fixup pass.
Note also that if we had broken the loop the other way, we would have
assigned Z to level 1, Y to level 2 and X to level 3, so we would
have missed the chance to share Z and X. Perhaps that's why running
the program repeatedly sometimes finds extra things to share?
SPF 26/1/95
*/
/* We have updated the addresses in objects with non-zero level so they point to
the single occurrence but we need to do the same with level 0 objects
(mutables, stacks and code). */
vec = vectors;
if (vec && vec->depth == 0)
{
Vector *v = vec;
RestoreLengthWords(v);
fixup.FixupItems(v);
vec = vec->next;
delete(v); // Free all the data
}
/* Previously we made a complete scan over the memory updating any addresses so
that if we have shared two substructures within our root we would also
share any external pointers. This has been removed but we have to
reinstate the length words we've overwritten with forwarding pointers because
there may be references to unshared objects from outside. */
while (vec != 0)
{
Vector *v = vec;
RestoreLengthWords(v);
vec = vec->next;
delete(v);
}
if (verbose)
{
printf ("Total Objects %6lu, Total Shared %6lu\n", totalObjects, totalShared);
fflush(stdout); /* We need this for Windows at least. */
}
return true; // Succeeded.
}
class ShareRequest: public MainThreadRequest
{
public:
ShareRequest(Handle root): shareRoot(root), result(false) {}
virtual void Perform() { result = RunShareData(shareRoot->WordP()); }
Handle shareRoot;
bool result;
};
// ShareData. This is the main entry point.
// Because this can recurse deeply it needs to be run by the main thread.
// Also it manipulates the heap in ways that could mess up other threads
// so we need to stop them before executing this.
void ShareData(TaskData *taskData, Handle root)
{
if (! root->Word().IsDataPtr())
return; // Nothing to do. We could do handle a code pointer but it shouldn't occur.
// Request a full GC to reduce the size of fix-ups.
FullGC(taskData);
// Request the main thread to do the sharing.
ShareRequest request(root);
processes->MakeRootRequest(taskData, &request);
// Raise an exception if it failed.
if (! request.result)
raise_exception_string(taskData, EXC_Fail, "Insufficient memory");
}
|