1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
|
/*
Title: Signal handling
Author: David C.J. Matthews
Copyright (c) 2000-8 David C.J. Matthews
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef WIN32
#include "winconfig.h"
#else
#include "config.h"
#endif
#ifdef HAVE_STDIO_H
#include <stdio.h>
#endif
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#ifdef HAVE_SIGNAL_H
#include <signal.h>
#endif
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x) 0
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef HAVE_IO_H
#include <io.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h> // For malloc
#endif
#ifdef HAVE_SEMAPHORE_H
#include <semaphore.h>
#endif
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
/*
Signal handling is complicated in a multi-threaded environment.
The pthread mutex and condition variables are not safe to use in a
signal handler so we need to use POSIX semaphores since sem_post is safe.
*/
#if (defined(HAVE_STACK_T) && defined(HAVE_SIGALTSTACK))
extern "C" {
// This is missing in older versions of Mac OS X
int sigaltstack(const stack_t *, stack_t *);
}
#endif
#include "globals.h"
#include "arb.h"
#include "run_time.h"
#include "sighandler.h"
#include "processes.h"
#include "machine_dep.h"
#include "sys.h"
#include "save_vec.h"
#include "rts_module.h"
#include "gc.h" // For convertedWeak
#include "scanaddrs.h"
#include "locking.h"
#ifdef WINDOWS_PC
#include "Console.h"
#endif
#define SAVE(x) taskData->saveVec.push(x)
#define SIZEOF(x) (sizeof(x)/sizeof(word))
#define DEFAULT_SIG 0
#define IGNORE_SIG 1
#define HANDLE_SIG 2 // This is only used in SignalRequest
static struct _sigData
{
bool nonMaskable; // True if this sig is used within the RTS. Must not be ignored or replaced
PolyWord handler; // User-installed handler, TAGGED(DEFAULT_SIG) or TAGGED(IGNORE_SIG)
int signalCount;
} sigData[NSIG];
unsigned receivedSignalCount = 0; // Incremented each time we get a signal
// sigLock protects access to the signalCount values in sigData but
// not the "handler" field.
static PLock sigLock;
#if (defined(HAVE_LIBPTHREAD) && defined(HAVE_PTHREAD_H) && defined(HAVE_SEMAPHORE_H))
static pthread_t detectionThreadId; // Thread processing signals.
static sem_t *waitSema;
static int lastSignals[NSIG];
#endif
// This must not be called from an asynchronous signal handler.
static void signalArrived(int sig)
{
sigLock.Lock();
receivedSignalCount++;
sigData[sig].signalCount++;
sigLock.Unlock();
// To avoid deadlock we must release sigLock first.
processes->SignalArrived();
}
// Called whenever a signal handler is installed other than in this
// module. Because modules are initialised in an unspecified order
// we may have already masked off this signal.
void markSignalInuse(int sig)
{
sigData[sig].nonMaskable = true;
#if (defined(HAVE_LIBPTHREAD) && defined(HAVE_PTHREAD_H))
// Enable this signal.
sigset_t sigset;
sigemptyset(&sigset);
sigaddset(&sigset, sig);
pthread_sigmask(SIG_UNBLOCK, &sigset, NULL);
#endif
}
/* Find the existing handler for this signal. */
static PolyWord findHandler(int sig)
{
if ((unsigned)sig >= NSIG) // Check it's in range.
return TAGGED(DEFAULT_SIG); /* Not there - default action. */
else return sigData[sig].handler;
}
#ifdef WINDOWS_PC
// This is called to simulate a SIGINT in Windows.
void RequestConsoleInterrupt(void)
{
// The default action for SIGINT is to exit.
if (findHandler(SIGINT) == TAGGED(DEFAULT_SIG))
processes->Exit(2); // Exit with the signal value.
else signalArrived(SIGINT);
}
#endif
#if (defined(HAVE_LIBPTHREAD) && defined(HAVE_PTHREAD_H) && defined(HAVE_SEMAPHORE_H))
// Request the main thread to change the blocking state of a signal.
class SignalRequest: public MainThreadRequest
{
public:
SignalRequest(int s, int r): signl(s), state(r) {}
virtual void Perform();
int signl, state;
};
// Called whenever a signal is received.
static void handle_signal(SIG_HANDLER_ARGS(s, c))
{
if (waitSema != 0)
{
lastSignals[s]++; // Assume this is atomic with respect to reading.
// Wake the signal detection thread.
sem_post(waitSema);
}
}
void SignalRequest::Perform()
{
struct sigaction action;
memset(&action, 0, sizeof(action));
switch (state)
{
case DEFAULT_SIG:
action.sa_handler = SIG_DFL;
sigaction(signl, &action, 0);
break;
case IGNORE_SIG:
action.sa_handler = SIG_IGN;
sigaction(signl, &action, 0);
break;
case HANDLE_SIG:
setSignalHandler(signl, handle_signal);
break;
}
}
#endif
/* CALL_IO2(Sig_dispatch_,IND) */
/* This function behaves fairly similarly to the Unix and Windows signal
handler. It takes a signal number and a handler which may be a function
or may be 0 (default) or 1 (ignore) and returns the value corresponding
to the previous handler.
I've used a general dispatch function here to allow for future expansion. */
Handle Sig_dispatch_c(TaskData *taskData, Handle args, Handle code)
{
int c = get_C_long(taskData, DEREFWORDHANDLE(code));
switch (c)
{
case 0: /* Set up signal handler. */
{
int sign;
int action;
Handle oldaction;
{
// Lock while we look at the signal vector but release
// it before making a root request.
PLocker locker(&sigLock);
// We have to pass this to the main thread to
// set up the signal handler.
sign = get_C_long(taskData, DEREFHANDLE(args)->Get(0));
/* Decode the action if it is Ignore or Default. */
if (IS_INT(DEREFHANDLE(args)->Get(1)))
action = UNTAGGED(DEREFHANDLE(args)->Get(1));
else action = HANDLE_SIG; /* Set the handler. */
if (sign <= 0 || sign >= NSIG)
raise_syscall(taskData, "Invalid signal value", EINVAL);
/* Get the old action before updating the vector. */
oldaction = SAVE(findHandler(sign));
// Now update it.
sigData[sign].handler = DEREFWORDHANDLE(args)->Get(1);
}
// Request a change in the masking by the root thread.
// This doesn't do anything in Windows so the only "signal"
// we affect is SIGINT and that is handled by RequestConsoleInterrupt.
if (! sigData[sign].nonMaskable)
{
#if (defined(HAVE_LIBPTHREAD) && defined(HAVE_PTHREAD_H) && defined(HAVE_SEMAPHORE_H))
SignalRequest request(sign, action);
processes->MakeRootRequest(taskData, &request);
#endif
}
return oldaction;
}
case 1: // Called by the signal handler thread. Blocks until a signal
// is available.
{
while (true)
{
processes->ProcessAsynchRequests(taskData); // Check for kill.
sigLock.Lock();
// Any pending signals?
for (int sig = 0; sig < NSIG; sig++)
{
if (sigData[sig].signalCount > 0)
{
sigData[sig].signalCount--;
if (!IS_INT(findHandler(sig))) /* If it's not DEFAULT or IGNORE. */
{
// Create a pair of the handler and signal and pass
// them back to be run.
Handle pair = alloc_and_save(taskData, 2);
// Have to call findHandler again here because that
// allocation could have garbage collected.
DEREFHANDLE(pair)->Set(0, findHandler(sig));
DEREFHANDLE(pair)->Set(1, TAGGED(sig));
sigLock.Unlock();
return pair;
}
}
}
if (convertedWeak)
{
// Last GC converted a weak SOME into NONE. This isn't
// anything to do with signals but the signal thread can
// deal with this.
sigLock.Unlock();
convertedWeak = false;
return SAVE(TAGGED(0));
}
// No pending signal. Wait until we're woken up.
// This releases sigLock after acquiring schedLock.
if (! processes->WaitForSignal(taskData, &sigLock))
raise_exception_string(taskData, EXC_Fail, "Only one thread may wait for signals");
}
}
default:
{
char msg[100];
sprintf(msg, "Unknown signal function: %d", c);
raise_exception_string(taskData, EXC_Fail, msg);
return 0;
}
}
}
// Set up per-thread signal data: basically signal stack.
// This is really only needed for profiling timer signals.
void initThreadSignals(TaskData *taskData)
{
#if (!(defined(WINDOWS_PC)||defined(MACOSX)))
// On the i386, at least, we need to set up a signal stack for
// each thread if it might receive a signal. ML code checks for
// stack overflow but a signal could result in C code being
// executed on the ML stack. The signal stack avoids this.
// On some architectures the C stack pointer is left unused
// when executing ML code so this isn't a problem.
// In Linux each thread can receive a SIGVTALRM signal when
// profiling.
// This is currently disabled in Mac OS X. In 10.4 and before
// setting a signal stack in a thread seemed to set it for the
// whole process and crash with an illegal instruction on the
// second signal. This isn't currently a problem since only the
// main thread receives signals in Mac OS X.
#if (defined(SA_ONSTACK) && defined(HAVE_SIGALTSTACK))
taskData->signalStack = malloc(SIGSTKSZ);
#ifdef HAVE_STACK_T
stack_t ex_stack;
#else
// This used to be used in FreeBSD and Mac OS X
struct sigaltstack ex_stack;
#endif
memset(&ex_stack, 0, sizeof(ex_stack));
// Cast to char* because ss_sp is char* in FreeBSD.
// Linux simply casts it back to void*.
ex_stack.ss_sp = (char*)taskData->signalStack;
ex_stack.ss_size = SIGSTKSZ;
ex_stack.ss_flags = 0; /* not SS_DISABLE */
int sigaltstack_result = sigaltstack(&ex_stack, NULL);
ASSERT(sigaltstack_result == 0);
#endif
#endif /* not the PC */
#if (defined(HAVE_LIBPTHREAD) && defined(HAVE_PTHREAD_H))
// Block all signals except those marked as in use by the RTS so
// that they will only be picked up by the signal detection thread.
// Since the signal mask is inherited we really don't need to do
// this for every thread, just the initial one.
sigset_t sigset;
sigfillset(&sigset);
for (int i = 0; i < NSIG; i++)
{
if (sigData[i].nonMaskable)
sigdelset(&sigset, i);
}
pthread_sigmask(SIG_SETMASK, &sigset, NULL);
#endif
}
/* General purpose function to set up a signal handler. */
#ifndef WINDOWS_PC
bool setSignalHandler(int sig, signal_handler_type func)
{
struct sigaction sigcatch;
memset(&sigcatch, 0, sizeof(sigcatch));
sigcatch.sa_sigaction = func;
/*
Both Linux and FreeBSD now use SA_SIGINFO in a similar way. If SA_SIGINFO is set the
handler is supposed to be in sa_sigaction rather than sa_handler (actually this is a union
so they're in the same place).
*/
init_asyncmask(&sigcatch.sa_mask);
sigcatch.sa_flags = 0;
#if defined(SA_ONSTACK) && defined(HAVE_SIGALTSTACK)
sigcatch.sa_flags |= SA_ONSTACK;
#endif
#ifdef SA_RESTART
sigcatch.sa_flags |= SA_RESTART;
#endif
#ifdef SA_SIGINFO
sigcatch.sa_flags |= SA_SIGINFO;
#endif
#ifdef SV_SAVE_REGS
sigcatch.sa_flags |= SV_SAVE_REGS;
#endif
return sigaction(sig, &sigcatch,NULL) >= 0;
}
// Signals to mask off when handling a signal. The signal being handled
// is always masked off. This really only applied when emulation traps
// and requests to GC involved signals. That no longer applies except
// on the Sparc.
void init_asyncmask(sigset_t *mask)
{
/* disable asynchronous interrupts while servicing interrupt */
sigemptyset(mask);
sigaddset(mask,SIGVTALRM);
sigaddset(mask,SIGINT);
sigaddset(mask,SIGUSR2);
sigaddset(mask,SIGWINCH);
// This next used to be needed when emulation traps resulted in
// signals. This no longer applies except on the Sparc.
#ifdef SPARC
sigaddset(mask,SIGILL);
sigaddset(mask,SIGFPE);
/* Mask off SIGSEGV. This is definitely needed when we are
installing a handler for SIGINT under Linux and may also
be needed in other cases as well e.g. SIGVTALRM. Without
it typing control-C to a program which is taking lots
of emulation traps can cause a crash because the signals
are delivered in the "wrong" order and the pc value given
to catchSEGV can point at the handler for SIGINT.
DCJM 7/2/01. */
sigaddset(mask,SIGSEGV);
/* And, just to be sure, include SIGBUS. DCJM 22/5/02. */
sigaddset(mask,SIGBUS);
#endif
}
#endif
class SigHandler: public RtsModule
{
public:
virtual void Init(void);
virtual void GarbageCollect(ScanAddress * /*process*/);
};
// Declare this. It will be automatically added to the table.
static SigHandler sighandlerModule;
#if (defined(HAVE_LIBPTHREAD) && defined(HAVE_PTHREAD_H) && defined(HAVE_SEMAPHORE_H))
// This thread is really only to convert between POSIX semaphores and
// pthread condition variables. It waits for a semphore to be released by the
// signal handler running on the main thread and then wakes up the ML handler
// thread. The ML thread must not wait directly on a POSIX semaphore because it
// may also be woken by other events, particularly a kill request when the program
// exits.
static void *SignalDetectionThread(void *)
{
// Block all signals so they will be delivered to the main thread.
sigset_t active_signals;
sigfillset(&active_signals);
pthread_sigmask(SIG_SETMASK, &active_signals, NULL);
int readSignals[NSIG];
memset(readSignals, 0, sizeof(readSignals));
while (true)
{
if (waitSema == 0)
return 0;
// Wait until we are woken up by an arriving signal.
// waitSema will be incremented for each signal so we should
// not block until we have processed them all.
while (sem_wait(waitSema) == -1)
{
if (errno != EINTR)
return 0;
}
for (int j = 1; j < NSIG; j++)
{
if (readSignals[j] < lastSignals[j])
{
readSignals[j]++;
signalArrived(j);
}
}
}
}
#endif
#if (defined(HAVE_SEMAPHORE_H))
static sem_t waitSemaphore;
// Initialise a semphore. Tries to create an unnamed semaphore if
// it can but tries a named semaphore if it can't. Mac OS X only
// supports named semaphores.
static sem_t *init_semaphore(sem_t *sema, int init)
{
if (sem_init(sema, 0, init) == 0)
return sema;
#if (defined(__CYGWIN__))
// Cygwin doesn't define sem_unlink but that doesn't matter
// since sem_init works.
return 0;
#else
char semname[30];
static int count=0;
sprintf(semname, "poly%0d-%0d", (int)getpid(), count++);
sema = sem_open(semname, O_CREAT|O_EXCL, 00666, init);
if (sema == (sem_t*)SEM_FAILED) return 0;
sem_unlink(semname);
return sema;
#endif
}
#endif
void SigHandler::Init(void)
{
// Mark certain signals as non-maskable since they really
// indicate a fatal error.
#ifdef SIGSEGV
sigData[SIGSEGV].nonMaskable = true;
#endif
#ifdef SIGBUS
sigData[SIGBUS].nonMaskable = true;
#endif
#ifdef SIGILL
sigData[SIGILL].nonMaskable = true;
#endif
#if (defined(HAVE_LIBPTHREAD) && defined(HAVE_PTHREAD_H) && defined(HAVE_SEMAPHORE_H))
// Initialise the "wait" semaphore so that it blocks immediately.
waitSema = init_semaphore(&waitSemaphore, 0);
if (waitSema == 0) return;
// Create a new thread to handle signals synchronously.
// for it to finish.
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED);
#ifdef PTHREAD_STACK_MIN
#if (PTHREAD_STACK_MIN < 4096)
pthread_attr_setstacksize(&attrs, 4096); // But not too small: FreeBSD makes it 2k
#else
pthread_attr_setstacksize(&attrs, PTHREAD_STACK_MIN); // Only small stack.
#endif
#endif
pthread_create(&detectionThreadId, &attrs, SignalDetectionThread, 0);
pthread_attr_destroy(&attrs);
#endif
}
void SigHandler::GarbageCollect(ScanAddress *process)
{
for (unsigned i = 0; i < NSIG; i++)
{
if (sigData[i].handler != PolyWord::FromUnsigned(0) && sigData[i].handler.IsDataPtr())
{
PolyObject *obj = sigData[i].handler.AsObjPtr();
process->ScanRuntimeAddress(&obj, ScanAddress::STRENGTH_STRONG);
sigData[i].handler = obj;
}
}
}
|