1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
|
/*
Title: Machine dependent code for i386 and X64 under Windows and Unix
Copyright (c) 2000-7
Cambridge University Technical Services Limited
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef WIN32
#include "winconfig.h"
#else
#include "config.h"
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#include <stdio.h>
#ifdef HAVE_SIGNAL_H
#include <signal.h>
#endif
#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x)
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef WINDOWS_PC
#include <windows.h>
#include <excpt.h>
#endif
#include "globals.h"
#include "run_time.h"
#include "mpoly.h"
#include "arb.h"
#include "diagnostics.h"
#include "processes.h"
#include "sys.h"
#include "profiling.h"
#include "sighandler.h"
#include "machine_dep.h"
#include "scanaddrs.h"
#include "gc.h"
#include "check_objects.h"
#include "save_vec.h"
#include "memmgr.h"
#include "foreign.h"
#ifndef HAVE_SIGALTSTACK
// If we can't handle signals on a separate stack make sure there's space
// on the Poly stack. At the moment this includes Windows although we
// probably don't need this.
#define EXTRA_STACK 1024
#else
#define EXTRA_STACK 0
#endif
#ifndef HOSTARCHITECTURE_X86_64
#define CHECKED_REGS 6
#else /* HOSTARCHITECTURE_X86_64 */
#define CHECKED_REGS 13
#endif /* HOSTARCHITECTURE_X86_64 */
/* The unchecked reg field is used for the condition codes. */
#define UNCHECKED_REGS 1
/* the amount of ML stack space to reserve for registers,
C exception handling etc. The compiler requires us to
reserve 2 stack-frames worth (2 * 20 words) plus whatever
we require for the register save area. We actually reserve
slightly more than this. SPF 3/3/97
*/
#define OVERFLOW_STACK_SIZE \
(50 + \
sizeof(StackObject)/sizeof(PolyWord) + \
CHECKED_REGS + \
UNCHECKED_REGS + \
EXTRA_STACK)
// These "memory registers" are referenced from the assembly code.
// Some are actually referenced from ML code so the offsets are built in.
typedef struct _MemRegisters {
// These offsets are built into the code generator and assembly code
PolyWord *localMpointer; // Allocation ptr + 1 word
PolyWord *handlerRegister; // Current exception handler
// Originally these next two were checked using a BOUNDS instruction. That compared
// a value against a lower and upper limit.
PolyWord *localMbottom; // Base of memory + 1 word
PolyWord *stackLimit; // Lower limit of stack
// We don't actually need to do the check against the upper limit but
// we need to pass this to the assembly code so this is a convenient place
// to do it.
PolyWord *stackTop; // Upper limit of stack
// These offsets are built into the assembly code section
byte requestCode; // IO function to call.
// The offset (20/40) of requestCode is built into the MAKE_IO_CALL_SEQUENCE macro
byte inRTS; // Flag indicating we're not in ML
byte returnReason; // Reason for returning from ML.
// The offset (22/42) of returnReason is built into the MAKE_IO_CALL_SEQUENCE macro
StackObject *polyStack; // Current stack base
PolyWord *savedSp; // Saved C stack pointer
byte *heapOverflow; // Called when the heap limit is reached
byte *stackOverflow; // Called when the stack limit is reached
byte *stackOverflowEx; // Called when the stack limit is reached (alternate)
byte *raiseException; // Called to raise an exception. The packet is passed in eax.
// The offset (48/96) of ioEntry is built into the MAKE_IO_CALL_SEQUENCE macro
byte *ioEntry; // Called for an IO function
byte *raiseDiv; // Called to raise the Div exception.
byte *arbEmulation; // This address is called to emulate an arbitrary precision op
PolyObject *threadId; // My thread id. Saves having to call into RTS for it.
POLYSIGNED real_temp; // Space used to convert integers to reals.
} MemRegisters;
class X86TaskData: public MDTaskData {
public:
X86TaskData(): allocReg(0), allocWords(0)
{
memRegisters.inRTS = 1; // We start off in the RTS.
}
unsigned allocReg; // The register to take the allocated space.
POLYUNSIGNED allocWords; // The words to allocate.
Handle callBackResult;
MemRegisters memRegisters;
};
class X86Dependent: public MachineDependent {
public:
X86Dependent() {}
// Create a task data object.
virtual MDTaskData *CreateTaskData(void) { return new X86TaskData(); }
virtual unsigned InitialStackSize(void) { return 128+OVERFLOW_STACK_SIZE; } // Initial size of a stack
virtual void InitInterfaceVector(void);
virtual void ResetSignals(void);
virtual void ScanConstantsWithinCode(PolyObject *addr, PolyObject *oldAddr, POLYUNSIGNED length, ScanAddress *process);
virtual int GetIOFunctionRegisterMask(int ioCall);
virtual Architectures MachineArchitecture(void)
#ifndef HOSTARCHITECTURE_X86_64
{ return MA_I386; }
#else /* HOSTARCHITECTURE_X86_64 */
{ return MA_X86_64; }
#endif /* HOSTARCHITECTURE_X86_64 */
virtual void SetCodeConstant(TaskData *taskData, Handle data, Handle constant, Handle offseth, Handle base);
#ifndef HOSTARCHITECTURE_X86_64
virtual unsigned char *BuildCallback(TaskData *taskData, int cbEntryNo, Handle cResultType, int nArgsToRemove);
virtual void GetCallbackArg(void **args, void *argLoc, int nSize);
#endif
virtual int SwitchToPoly(TaskData *taskData);
virtual void SetForRetry(TaskData *taskData, int ioCall);
virtual void InterruptCode(TaskData *taskData);
virtual bool GetPCandSPFromContext(TaskData *taskData, SIGNALCONTEXT *context, PolyWord *&sp, POLYCODEPTR &pc);
virtual void InitStackFrame(TaskData *taskData, Handle stack, Handle proc, Handle arg);
virtual void SetException(TaskData *taskData, poly_exn *exc);
virtual void CallIO0(TaskData *taskData, Handle(*ioFun)(TaskData *));
virtual void CallIO1(TaskData *taskData, Handle(*ioFun)(TaskData *, Handle));
virtual void CallIO2(TaskData *taskData, Handle(*ioFun)(TaskData *, Handle, Handle));
virtual void CallIO3(TaskData *taskData, Handle(*ioFun)(TaskData *, Handle, Handle, Handle));
virtual void CallIO4(TaskData *taskData, Handle(*ioFun)(TaskData *, Handle, Handle, Handle, Handle));
virtual void CallIO5(TaskData *taskData, Handle(*ioFun)(TaskData *, Handle, Handle, Handle, Handle, Handle));
virtual Handle CallBackResult(TaskData *taskData) { return ((X86TaskData*)taskData->mdTaskData)->callBackResult; }
virtual void SetExceptionTrace(TaskData *taskData);
virtual void CallCodeTupled(TaskData *taskData);
virtual void SetCallbackFunction(TaskData *taskData, Handle func, Handle args);
// Increment or decrement the first word of the object pointed to by the
// mutex argument and return the new value.
virtual Handle AtomicIncrement(TaskData *taskData, Handle mutexp);
virtual Handle AtomicDecrement(TaskData *taskData, Handle mutexp);
void SetMemRegisters(TaskData *taskData);
void SaveMemRegisters(TaskData *taskData);
void HeapOverflowTrap(TaskData *taskData);
void ArbitraryPrecisionTrap(TaskData *taskData);
PolyWord *get_reg(TaskData *taskData, int n);
void do_compare(TaskData *taskData, PolyWord v1, PolyWord v2);
void do_op(TaskData *taskData, int dest, PolyWord v1, PolyWord v2, Handle (*op)(TaskData *, Handle, Handle));
bool emulate_instrs(TaskData *taskData);
Handle BuildCodeSegment(TaskData *taskData, const byte *code, unsigned bytes, char functionName);
Handle BuildKillSelf(TaskData *taskData);
};
// Entry code sequences - copied to memRegisters before entering ML.
static byte *heapOverflow, *stackOverflow, *stackOverflowEx, *raiseDiv, *arbEmulation;
/**********************************************************************
*
* Register usage:
*
* %Reax: First argument to function. Result of function call.
* %Rebx: Second argument to function.
* %Recx: General register
* %Redx: Closure pointer in call.
* %Rebp: Points to memory used for extra registers
* %Resi: General register.
* %Redi: General register.
* %Resp: Stack pointer.
* The following apply only on the X64
* %R8: Third argument to function
* %R9: Fourth argument to function
* %R10: Fifth argument to function
* %R11: General register
* %R12: General register
* %R13: General register
* %R14: General register
* %R15: Memory allocation pointer
*
**********************************************************************/
/**********************************************************************
*
* Register fields in the stack.
*
**********************************************************************/
#define PSP_EAX(stack) (stack)->p_reg[0]
#define PSP_EBX(stack) (stack)->p_reg[1]
#define PSP_ECX(stack) (stack)->p_reg[2]
#define PSP_EDX(stack) (stack)->p_reg[3]
#define PSP_ESI(stack) (stack)->p_reg[4]
#define PSP_EDI(stack) (stack)->p_reg[5]
// X64 registers only
#define PSP_R8(stack) (stack)->p_reg[6]
#define PSP_R9(stack) (stack)->p_reg[7]
#define PSP_R10(stack) (stack)->p_reg[8]
#define PSP_R11(stack) (stack)->p_reg[9]
#define PSP_R12(stack) (stack)->p_reg[10]
#define PSP_R13(stack) (stack)->p_reg[11]
#define PSP_R14(stack) (stack)->p_reg[12]
#define PSP_EFLAGS(stack) (stack)->p_reg[CHECKED_REGS+1]
#define PSP_IC(stack) (stack)->p_pc
#define PSP_INCR_PC(stack, n) (stack)->p_pc += n
#define PSP_SP(stack) (stack)->p_sp
#define PSP_HR(stack) (stack)->hr
// Values for the returnReason byte
enum RETURN_REASON {
RETURN_IO_CALL = 0,
RETURN_HEAP_OVERFLOW,
RETURN_STACK_OVERFLOW,
RETURN_STACK_OVERFLOWEX,
RETURN_RAISE_DIV,
RETURN_ARB_EMULATION,
RETURN_CALLBACK_RETURN,
RETURN_CALLBACK_EXCEPTION
};
extern "C" {
// These are declared in the assembly code segment.
void X86AsmSwitchToPoly(MemRegisters *);
void X86AsmSaveStateAndReturn(void);
// These are declared in the assembly code. They provide hand coded versions
// of simple functions. Some cases, such as adding words, are actually handled by
// the code generator, so the assembly code versions would only be called when
// the function is passed as a closure e.g. map (op+) [(1,2),(3,4)]
extern int alloc_store();
extern int get_length_a();
extern int str_compare();
extern int teststreq(), teststrneq(), teststrgtr(), teststrlss(), teststrgeq(), teststrleq();
extern int locksega();
extern int is_shorta();
extern int add_long(), sub_long(), mult_long(), div_long(), rem_long(), neg_long();
extern int equal_long(), or_long(), and_long(), xor_long();
extern int offset_address();
extern int shift_right_word();
extern int word_neq();
extern int not_bool();
extern int string_length();
extern int int_eq(), int_neq(), int_geq(), int_leq(), int_gtr(), int_lss();
extern int or_word(), and_word(), xor_word(), shift_left_word(), shift_right_arith_word();
extern int word_eq();
extern int load_byte(), load_word();
extern int is_big_endian();
extern int bytes_per_word();
extern int assign_byte(), assign_word();
extern int set_string_length_a();
extern int get_first_long_word_a();
extern int int_to_word();
extern int move_bytes(), move_words();
extern int mul_word(), plus_word(), minus_word(), div_word(), mod_word();
extern int word_geq(), word_leq(), word_gtr(), word_lss();
extern int raisex();
extern int thread_self(), atomic_increment(), atomic_decrement();
extern int real_add(), real_sub(), real_mul(), real_div(), real_neg();
extern int real_geq(), real_leq(), real_gtr(), real_lss(), real_eq(), real_neq();
extern int real_from_int();
};
// Run the current ML process. X86AsmSwitchToPoly saves the C state so that
// whenever the ML requires assistance from the rest of the RTS it simply
// returns to C with the appropriate values set in memRegisters.requestCode and
//
int X86Dependent::SwitchToPoly(TaskData *taskData)
// (Re)-enter the Poly code from C. Returns with the io function to call or
// -1 if we are responding to an interrupt.
{
X86TaskData *mdTask = (X86TaskData*)taskData->mdTaskData;
Handle mark = taskData->saveVec.mark();
do
{
taskData->saveVec.reset(mark); // Remove old data e.g. from arbitrary precision.
CheckMemory(); // Do any memory checking before calling SetMemRegisters
// (which may set pc to a temporarily bad value if this is a retry).
SetMemRegisters(taskData);
X86AsmSwitchToPoly(&mdTask->memRegisters);
SaveMemRegisters(taskData); // Update globals from the memory registers.
// Handle any heap/stack overflows or arbitrary precision traps.
switch (mdTask->memRegisters.returnReason)
{
case RETURN_IO_CALL:
return mdTask->memRegisters.requestCode;
case RETURN_HEAP_OVERFLOW:
// The heap has overflowed. Pop the return address into the program counter.
// It may well not be a valid code address anyway.
PSP_IC(taskData->stack) = (*(PSP_SP(taskData->stack))++).AsCodePtr();
HeapOverflowTrap(taskData); // Computes a value for allocWords only
break;
case RETURN_STACK_OVERFLOW:
try {
// The stack check has failed. This may either be because we really have
// overflowed the stack or because the stack limit value has been adjusted
// to result in a call here.
PSP_IC(taskData->stack) = (*PSP_SP(taskData->stack)++).AsCodePtr();
CheckAndGrowStack(taskData, taskData->stack->p_sp);
}
catch (IOException) {
// We may get an exception while handling this if we run out of store
}
return -1; // We're in a safe state to handle any interrupts.
case RETURN_STACK_OVERFLOWEX:
try {
// Stack limit overflow. If the required stack space is larger than
// the fixed overflow size the code will calculate the limit in %EDI.
// We need to extract that and the clear that register since it may
// very well be outside the stack and therefore a "bad address".
PolyWord *stackP = PSP_EDI(taskData->stack).AsStackAddr();
PSP_EDI(taskData->stack) = TAGGED(0);
PSP_IC(taskData->stack) = (*PSP_SP(taskData->stack)++).AsCodePtr();
CheckAndGrowStack(taskData, stackP);
}
catch (IOException) {
// We may get an exception while handling this if we run out of store
}
return -1; // We're in a safe state to handle any interrupts.
case RETURN_RAISE_DIV:
try {
// Generally arithmetic operations don't raise exceptions. Overflow
// is either ignored, for Word operations, or results in a call to
// the abitrary precision emulation code. This is the exception
// (no pun intended).
PSP_IC(taskData->stack) = (*PSP_SP(taskData->stack)++).AsCodePtr();
// Set all the registers to a safe value here. We will almost certainly
// have shifted a value in one of the registers before testing it for zero.
for (POLYUNSIGNED i = 0; i < taskData->stack->p_nreg; i++)
taskData->stack->p_reg[i] = TAGGED(0);
raise_exception0(taskData, EXC_divide);
}
catch (IOException) {
// Handle the C++ exception.
}
break;
case RETURN_ARB_EMULATION:
try {
PSP_IC(taskData->stack) = (*PSP_SP(taskData->stack)++).AsCodePtr();
ArbitraryPrecisionTrap(taskData);
}
catch (IOException) {
// We may get an exception in the trap handler e.g. if we run out of store.
}
break;
case RETURN_CALLBACK_RETURN:
// Remove the extra exception handler we created in SetCallbackFunction
ASSERT(taskData->stack->p_hr == PSP_SP(taskData->stack));
PSP_SP(taskData->stack) += 2;
taskData->stack->p_hr = (*(PSP_SP(taskData->stack)++)).AsStackAddr(); // Restore the previous handler.
mdTask->callBackResult = taskData->saveVec.push(PSP_EAX(taskData->stack)); // Argument to return is in EAX.
// Restore the registers
#ifdef HOSTARCHITECTURE_X86_64
PSP_R10(taskData->stack) = *PSP_SP(taskData->stack)++;
PSP_R9(taskData->stack) = *PSP_SP(taskData->stack)++;
PSP_R8(taskData->stack) = *PSP_SP(taskData->stack)++;
#endif
PSP_EBX(taskData->stack) = *PSP_SP(taskData->stack)++;
PSP_EAX(taskData->stack) = *PSP_SP(taskData->stack)++;
PSP_EDX(taskData->stack) = *PSP_SP(taskData->stack)++;
taskData->stack->p_pc = (*PSP_SP(taskData->stack)).AsCodePtr(); // Set the return address
return -2;
case RETURN_CALLBACK_EXCEPTION:
// An ML callback has raised an exception.
SetException(taskData, (poly_exn *)PSP_EAX(taskData->stack).AsObjPtr());
// Raise a C++ exception. If the foreign function that called this callback
// doesn't handle the exception it will be raised in the calling ML function.
// But if it is caught we may have a problem ...
throw IOException(EXC_EXCEPTION);
default:
Crash("Unknown return reason code %u", mdTask->memRegisters.returnReason);
}
} while (1);
}
void X86Dependent::InitStackFrame(TaskData *parentTaskData, Handle stackh, Handle proc, Handle arg)
/* Initialise stack frame. */
{
StackObject *newStack = (StackObject *)DEREFWORDHANDLE(stackh);
POLYUNSIGNED stack_size = newStack->Length();
POLYUNSIGNED topStack = stack_size-5;
newStack->p_space = OVERFLOW_STACK_SIZE;
newStack->p_pc = PC_RETRY_SPECIAL;
newStack->p_sp = newStack->Offset(topStack);
newStack->p_hr = newStack->Offset(topStack)+1;
newStack->p_nreg = CHECKED_REGS;
for (POLYUNSIGNED i = 0; i < CHECKED_REGS; i++) newStack->p_reg[i] = TAGGED(0);
newStack->p_reg[CHECKED_REGS] = PolyWord::FromUnsigned(UNCHECKED_REGS); /* 1 unchecked register */
newStack->p_reg[CHECKED_REGS+1] = PolyWord::FromUnsigned(0);
newStack->p_reg[3] = DEREFWORDHANDLE(proc); /* rdx - closure pointer */
/* If this function takes an argument store it in the argument register. */
if (arg != 0) newStack->p_reg[0] = DEREFWORD(arg);
/* We initialise the end of the stack with a sequence that will jump to
kill_self whether the process ends with a normal return or by raising an
exception.
There's one additional complication. kill_self is called via CallIO0
which loads the value at *p_sp into p_pc assuming this is a return address.
We need to make sure that this value is acceptable since this stack may be
scanned by a subsequent minor GC if it's already been copied by a minor GC. */
newStack->Set(topStack+4, TAGGED(0)); // Acceptable value if we've exited by exception.
/* No previous handler so point it at itself. */
newStack->Set(topStack+3, PolyWord::FromStackAddr(newStack->Offset(topStack)+3));
// Set the default handler and return address to point to this code.
// It's not necessary, on this architecture at least, to make these off-word
// aligned since we're pointing at the start of some code. That may be
// necessary on e.g. the Sparc(?), which always subtracts two from a return
// address before jumping to it.
Handle killCode = BuildKillSelf(parentTaskData);
PolyWord killJump = killCode->Word();
newStack = (StackObject *)DEREFWORDHANDLE(stackh); // In case it's moved
newStack->Set(topStack+2, killJump); // Default handler.
/* Set up exception handler. This also, conveniently, ends up in p_pc
if we return normally. */
newStack->Set(topStack+1, TAGGED(0)); /* Default handler. */
// Normal Return address.
newStack->Set(topStack, killJump);
}
// IO Functions called indirectly from assembly code.
void X86Dependent::CallIO0(TaskData *taskData, Handle (*ioFun)(TaskData *))
{
// Set the return address now.
taskData->stack->p_pc = (*PSP_SP(taskData->stack)).AsCodePtr();
try {
Handle result = (*ioFun)(taskData);
PSP_EAX(taskData->stack) = result->Word();
// If this is a normal return we can pop the return address.
// If this has raised an exception, set for retry or changed process
// we mustn't. N,B, The return address could have changed because of GC
PSP_SP(taskData->stack)++;
}
catch (IOException exc) {
switch (exc.m_reason)
{
case EXC_EXCEPTION:
return;
case EXC_RETRY:
return;
}
}
}
void X86Dependent::CallIO1(TaskData *taskData, Handle (*ioFun)(TaskData *, Handle))
{
taskData->stack->p_pc = (*PSP_SP(taskData->stack)).AsCodePtr();
Handle saved1 = taskData->saveVec.push(PSP_EAX(taskData->stack));
try {
Handle result = (*ioFun)(taskData, saved1);
PSP_EAX(taskData->stack) = result->Word();
PSP_SP(taskData->stack)++; // Pop the return address.
}
catch (IOException exc) {
switch (exc.m_reason)
{
case EXC_EXCEPTION:
return;
case EXC_RETRY:
return;
}
}
}
void X86Dependent::CallIO2(TaskData *taskData, Handle (*ioFun)(TaskData *, Handle, Handle))
{
taskData->stack->p_pc = (*PSP_SP(taskData->stack)).AsCodePtr();
Handle saved1 = taskData->saveVec.push(PSP_EAX(taskData->stack));
Handle saved2 = taskData->saveVec.push(PSP_EBX(taskData->stack));
try {
Handle result = (*ioFun)(taskData, saved2, saved1);
PSP_EAX(taskData->stack) = result->Word();
PSP_SP(taskData->stack)++;
}
catch (IOException exc) {
switch (exc.m_reason)
{
case EXC_EXCEPTION:
return;
case EXC_RETRY:
return;
}
}
}
void X86Dependent::CallIO3(TaskData *taskData, Handle (*ioFun)(TaskData *, Handle, Handle, Handle))
{
taskData->stack->p_pc = (*PSP_SP(taskData->stack)).AsCodePtr();
Handle saved1 = taskData->saveVec.push(PSP_EAX(taskData->stack));
Handle saved2 = taskData->saveVec.push(PSP_EBX(taskData->stack));
#ifndef HOSTARCHITECTURE_X86_64
Handle saved3 = taskData->saveVec.push(PSP_SP(taskData->stack)[1]);
#else /* HOSTARCHITECTURE_X86_64 */
Handle saved3 = taskData->saveVec.push(PSP_R8(taskData->stack));
#endif /* HOSTARCHITECTURE_X86_64 */
try {
Handle result = (*ioFun)(taskData, saved3, saved2, saved1);
PSP_EAX(taskData->stack) = result->Word();
#ifndef HOSTARCHITECTURE_X86_64
PSP_SP(taskData->stack) += 2; // Pop the return address and a stack arg.
#else /* HOSTARCHITECTURE_X86_64 */
PSP_SP(taskData->stack)++;
#endif /* HOSTARCHITECTURE_X86_64 */
}
catch (IOException exc) {
switch (exc.m_reason)
{
case EXC_EXCEPTION:
return;
case EXC_RETRY:
return;
}
}
}
void X86Dependent::CallIO4(TaskData *taskData, Handle (*ioFun)(TaskData *, Handle, Handle, Handle, Handle))
{
taskData->stack->p_pc = (*PSP_SP(taskData->stack)).AsCodePtr();
Handle saved1 = taskData->saveVec.push(PSP_EAX(taskData->stack));
Handle saved2 = taskData->saveVec.push(PSP_EBX(taskData->stack));
#ifndef HOSTARCHITECTURE_X86_64
Handle saved3 = taskData->saveVec.push(PSP_SP(taskData->stack)[2]);
Handle saved4 = taskData->saveVec.push(PSP_SP(taskData->stack)[1]);
#else /* HOSTARCHITECTURE_X86_64 */
Handle saved3 = taskData->saveVec.push(PSP_R8(taskData->stack));
Handle saved4 = taskData->saveVec.push(PSP_R9(taskData->stack));
#endif /* HOSTARCHITECTURE_X86_64 */
try {
Handle result = (*ioFun)(taskData, saved4, saved3, saved2, saved1);
PSP_EAX(taskData->stack) = result->Word();
#ifndef HOSTARCHITECTURE_X86_64
PSP_SP(taskData->stack) += 3; // Pop the return address and two stack args.
#else /* HOSTARCHITECTURE_X86_64 */
PSP_SP(taskData->stack)++;
#endif /* HOSTARCHITECTURE_X86_64 */
}
catch (IOException exc) {
switch (exc.m_reason)
{
case EXC_EXCEPTION:
return;
case EXC_RETRY:
return;
}
}
}
// The only functions with 5 args are move_bytes/word_long
void X86Dependent::CallIO5(TaskData *taskData, Handle (*ioFun)(TaskData *, Handle, Handle, Handle, Handle, Handle))
{
taskData->stack->p_pc = (*PSP_SP(taskData->stack)).AsCodePtr();
Handle saved1 = taskData->saveVec.push(PSP_EAX(taskData->stack));
Handle saved2 = taskData->saveVec.push(PSP_EBX(taskData->stack));
#ifndef HOSTARCHITECTURE_X86_64
Handle saved3 = taskData->saveVec.push(PSP_SP(taskData->stack)[3]);
Handle saved4 = taskData->saveVec.push(PSP_SP(taskData->stack)[2]);
Handle saved5 = taskData->saveVec.push(PSP_SP(taskData->stack)[1]);
#else /* HOSTARCHITECTURE_X86_64 */
Handle saved3 = taskData->saveVec.push(PSP_R8(taskData->stack));
Handle saved4 = taskData->saveVec.push(PSP_R9(taskData->stack));
Handle saved5 = taskData->saveVec.push(PSP_R10(taskData->stack));
#endif /* HOSTARCHITECTURE_X86_64 */
try {
Handle result = (*ioFun)(taskData, saved5, saved4, saved3, saved2, saved1);
PSP_EAX(taskData->stack) = result->Word();
#ifndef HOSTARCHITECTURE_X86_64
PSP_SP(taskData->stack) += 4; // Pop the return address and 3 stack args
#else /* HOSTARCHITECTURE_X86_64 */
PSP_SP(taskData->stack)++;
#endif /* HOSTARCHITECTURE_X86_64 */
}
catch (IOException exc) {
switch (exc.m_reason)
{
case EXC_EXCEPTION:
return;
case EXC_RETRY:
return;
}
}
}
// Build an ML code segment to hold a copy of a piece of code
Handle X86Dependent::BuildCodeSegment(TaskData *taskData, const byte *code, unsigned bytes, char functionName)
{
POLYUNSIGNED codeWords = (bytes + sizeof(PolyWord)-1) / sizeof(PolyWord);
POLYUNSIGNED words = codeWords + 6;
Handle codeHandle = alloc_and_save(taskData, words, F_BYTE_OBJ|F_MUTABLE_BIT);
byte *cp = codeHandle->Word().AsCodePtr();
memcpy(cp, code, bytes);
if (bytes % sizeof(PolyWord) != 0) // Fill unused bytes with NOPs
memset(cp+bytes, 0x90, sizeof(PolyWord)- bytes % sizeof(PolyWord));
codeHandle->WordP()->Set(codeWords++, PolyWord::FromUnsigned(0)); // Marker word
codeHandle->WordP()->Set(codeWords, PolyWord::FromUnsigned(codeWords*sizeof(PolyWord))); // Bytes to the start
codeWords++;
codeHandle->WordP()->Set(codeWords++, PolyWord::FromUnsigned(0)); // Profile count
codeHandle->WordP()->Set(codeWords++, TAGGED(functionName)); // Name of function
codeHandle->WordP()->Set(codeWords++, TAGGED(0)); // Register set
codeHandle->WordP()->Set(codeWords++, PolyWord::FromUnsigned(2)); // Number of constants
CodeSegmentFlags(taskData, taskData->saveVec.push(TAGGED(F_CODE_OBJ)), codeHandle);
return codeHandle;
}
// Set up a handler that, if it's called, will print an exception trace.
// If the handler isn't called the dummy handler is simply removed.
// This is tricky since when we "return" we actually need to run the new
// function.
void X86Dependent::SetExceptionTrace(TaskData *taskData)
{
taskData->stack->p_pc = (*PSP_SP(taskData->stack)).AsCodePtr();
Handle fun = taskData->saveVec.push(PSP_EAX(taskData->stack));
PolyObject *functToCall = fun->WordP();
PSP_EDX(taskData->stack) = functToCall; // Closure address
// Leave the return address where it is on the stack.
taskData->stack->p_pc = functToCall->Get(0).AsCodePtr(); // First word of closure is entry pt.
*(--PSP_SP(taskData->stack)) = PolyWord::FromStackAddr(taskData->stack->p_hr); // Create a special handler entry
// We have to use a special entry here that can be recognised by the exception
// unwinding code because we want to know the stack pointer that is in effect
// at the time the exception is raised. If we simply put a normal handler in here
// that handler would be called after the stack was unwound.
*(--PSP_SP(taskData->stack)) = TAGGED(0);
*(--PSP_SP(taskData->stack)) = TAGGED(0);
taskData->stack->p_hr = PSP_SP(taskData->stack);
byte *codeAddr;
#ifndef __GNUC__
#ifdef HOSTARCHITECTURE_X86_64
ASSERT(0); // Inline assembly not supported on Windows 64-bit
#else
__asm {
call endCode
add esp,8 // Remove handler
pop dword ptr [4+ebp] // Restore the old handler
ret // Return to the original caller
endCode: pop eax
mov codeAddr,eax
}
#endif
#else
// GCC
__asm__ __volatile__ (
"call 1f;"
#ifndef HOSTARCHITECTURE_X86_64
"addl $8,%%esp;"
"popl 4(%%ebp);"
#else /* HOSTARCHITECTURE_X86_64 */
"addq $16,%%rsp;"
"popq 8(%%rbp);"
#endif /* HOSTARCHITECTURE_X86_64 */
"ret;"
"nop;" // Add an extra byte so that we have 8 bytes on both X86 and X86_64
"1: pop %0"
:"=r"(codeAddr)
);
#endif
Handle retCode = BuildCodeSegment(taskData, codeAddr, 8 /* Code is 8 bytes */, 'R');
*(--PSP_SP(taskData->stack)) = retCode->WordP(); // Code for normal return.
PSP_EAX(taskData->stack) = TAGGED(0); // Set the argument of the function to "unit".
}
// In Solaris-x86 the registers are named EIP and ESP.
#if (!defined(REG_EIP) && defined(EIP))
#define REG_EIP EIP
#endif
#if (!defined(REG_ESP) && defined(ESP))
#define REG_ESP ESP
#endif
// Get the PC and SP(stack) from a signal context. This is needed for profiling.
bool X86Dependent::GetPCandSPFromContext(TaskData *taskData, SIGNALCONTEXT *context, PolyWord * &sp, POLYCODEPTR &pc)
{
X86TaskData *mdTask = (X86TaskData*)taskData->mdTaskData;
if (mdTask->memRegisters.inRTS)
{
sp = taskData->stack->p_sp;
pc = taskData->stack->p_pc;
return true;
}
// The tests for HAVE_UCONTEXT_T, HAVE_STRUCT_SIGCONTEXT and HAVE_WINDOWS_H need
// to follow the tests in machine_dep.h.
#if defined(HAVE_UCONTEXT_T)
#ifdef HAVE_MCONTEXT_T_GREGS
// Linux
#ifndef HOSTARCHITECTURE_X86_64
pc = (byte*)context->uc_mcontext.gregs[REG_EIP];
sp = (PolyWord*)context->uc_mcontext.gregs[REG_ESP];
#else /* HOSTARCHITECTURE_X86_64 */
pc = (byte*)context->uc_mcontext.gregs[REG_RIP];
sp = (PolyWord*)context->uc_mcontext.gregs[REG_RSP];
#endif /* HOSTARCHITECTURE_X86_64 */
#elif defined(HAVE_MCONTEXT_T_MC_ESP)
// FreeBSD
#ifndef HOSTARCHITECTURE_X86_64
pc = (byte*)context->uc_mcontext.mc_eip;
sp = (PolyWord*)context->uc_mcontext.mc_esp;
#else /* HOSTARCHITECTURE_X86_64 */
pc = (byte*)context->uc_mcontext.mc_rip;
sp = (PolyWord*)context->uc_mcontext.mc_rsp;
#endif /* HOSTARCHITECTURE_X86_64 */
#else
// Mac OS X
#ifndef HOSTARCHITECTURE_X86_64
#if(defined(HAVE_STRUCT_MCONTEXT_SS)||defined(HAVE_STRUCT___DARWIN_MCONTEXT32_SS))
pc = (byte*)context->uc_mcontext->ss.eip;
sp = (PolyWord*)context->uc_mcontext->ss.esp;
#elif(defined(HAVE_STRUCT___DARWIN_MCONTEXT32___SS))
pc = (byte*)context->uc_mcontext->__ss.__eip;
sp = (PolyWord*)context->uc_mcontext->__ss.__esp;
#else
return false;
#endif
#else /* HOSTARCHITECTURE_X86_64 */
#if(defined(HAVE_STRUCT_MCONTEXT_SS)||defined(HAVE_STRUCT___DARWIN_MCONTEXT64_SS))
pc = (byte*)context->uc_mcontext->ss.rip;
sp = (PolyWord*)context->uc_mcontext->ss.rsp;
#elif(defined(HAVE_STRUCT___DARWIN_MCONTEXT64___SS))
pc = (byte*)context->uc_mcontext->__ss.__rip;
sp = (PolyWord*)context->uc_mcontext->__ss.__rsp;
#else
return false;
#endif
#endif /* HOSTARCHITECTURE_X86_64 */
#endif
#elif defined(HAVE_STRUCT_SIGCONTEXT)
pc = (byte*)context->sc_pc;
sp = (PolyWord*)context->sc_sp;
#elif defined(HAVE_WINDOWS_H)
#ifdef _WIN64
sp = (PolyWord *)context->Rsp;
pc = (POLYCODEPTR)context->Rip;
#else
// Windows 32 including cygwin.
sp = (PolyWord *)context->Esp;
pc = (POLYCODEPTR)context->Eip;
#endif
#else
// Can't get context.
return false;
#endif
// Check the sp value is in the current stack.
if (sp >= (PolyWord*)taskData->stack && sp < taskData->stack->Offset(taskData->stack->Length()))
return true;
else
return false; // Bad stack pointer
}
void X86Dependent::InterruptCode(TaskData *taskData)
{
X86TaskData *mdTask = (X86TaskData*)taskData->mdTaskData;
// Set the stack limit pointer to the top of the stack to cause
// a trap when we next check for stack overflow.
// SetMemRegisters actually does this anyway if "pendingInterrupt" is set but
// it's safe to do this repeatedly.
if (taskData->stack != 0)
mdTask->memRegisters.stackLimit = taskData->stack->Offset(taskData->stack->Length()-1);
taskData->pendingInterrupt = true;
}
// This is called from SwitchToPoly before we enter the ML code.
void X86Dependent::SetMemRegisters(TaskData *taskData)
{
X86TaskData *mdTask = (X86TaskData*)taskData->mdTaskData;
// Copy the current store limits into variables before we go into the assembly code.
// If we haven't yet set the allocation area or we don't have enough we need
// to create one (or a new one).
if (taskData->allocPointer <= taskData->allocLimit + mdTask->allocWords ||
(userOptions.debug & DEBUG_FORCEGC))
{
if (taskData->allocPointer < taskData->allocLimit)
Crash ("Bad length in heap overflow trap");
// Find some space to allocate in. Updates taskData->allocPointer and
// returns a pointer to the newly allocated space (if allocWords != 0)
PolyWord *space =
processes->FindAllocationSpace(taskData, mdTask->allocWords, true);
if (space == 0)
{
// We will now raise an exception instead of returning.
// Set allocWords to zero so we don't set the allocation register
// since that could be holding the exception packet.
mdTask->allocWords = 0;
}
// Undo the allocation just now.
taskData->allocPointer += mdTask->allocWords;
}
if (mdTask->allocWords != 0)
{
// If we have had a heap trap we actually do the allocation here.
// We will have already garbage collected and recovered sufficient space.
// This also happens if we have just trapped because of store profiling.
taskData->allocPointer -= mdTask->allocWords; // Now allocate
#ifndef HOSTARCHITECTURE_X86_64
// Set the allocation register to this area.
*(get_reg(taskData, mdTask->allocReg)) =
PolyWord::FromStackAddr(taskData->allocPointer + 1); /* remember: it's off-by-one */
#endif
mdTask->allocWords = 0;
}
// If we have run out of store, either just above or while allocating in the RTS,
// allocPointer and allocLimit will have been set to zero as part of the GC. We will
// now be raising an exception which may free some store but we need to come back here
// before we allocate anything. The compiled code uses unsigned arithmetic to check for
// heap overflow but only after subtracting the space required. We need to make sure
// that the values are still non-negative after substracting any object size.
if (taskData->allocPointer == 0) taskData->allocPointer += MAX_OBJECT_SIZE;
if (taskData->allocLimit == 0) taskData->allocLimit += MAX_OBJECT_SIZE;
mdTask->memRegisters.localMbottom = taskData->allocLimit + 1;
mdTask->memRegisters.localMpointer = taskData->allocPointer + 1;
// If we are profiling store allocation we set mem_hl so that a trap
// will be generated.
if (profileMode == kProfileStoreAllocation || (userOptions.debug & (DEBUG_FORCEGC|DEBUG_REGION_CHECK)))
mdTask->memRegisters.localMbottom = mdTask->memRegisters.localMpointer;
mdTask->memRegisters.polyStack = taskData->stack;
// Whenever the ML code enters a function it checks that the stack pointer is above
// this value. The default is to set it to the top of the reserved area
// but if we've had an interrupt we set it to the end of the stack.
// InterruptCode may be called either when the thread is in the RTS or in ML code.
mdTask->memRegisters.stackTop = taskData->stack->Offset(taskData->stack->Length() - 1);
if (taskData->pendingInterrupt)
mdTask->memRegisters.stackLimit = taskData->stack->Offset(taskData->stack->Length()-1);
else mdTask->memRegisters.stackLimit = taskData->stack->Offset(taskData->stack->p_space);
mdTask->memRegisters.handlerRegister = taskData->stack->p_hr;
mdTask->memRegisters.requestCode = 0; // Clear these because only one will be set.
mdTask->memRegisters.returnReason = RETURN_IO_CALL;
// Point "raiseException" at the assembly code for "raisex"
mdTask->memRegisters.raiseException = (byte*)raisex;
// Entry point to save the state for an IO call. This is the common entry
// point for all the return and IO-call cases.
mdTask->memRegisters.ioEntry = (byte*)X86AsmSaveStateAndReturn;
mdTask->memRegisters.heapOverflow = heapOverflow;
mdTask->memRegisters.stackOverflow = stackOverflow;
mdTask->memRegisters.stackOverflowEx = stackOverflowEx;
mdTask->memRegisters.raiseDiv = raiseDiv;
mdTask->memRegisters.arbEmulation = arbEmulation;
mdTask->memRegisters.threadId = taskData->threadObject;
// We set the PC to zero to indicate that we should retry the call to the RTS
// function. In that case we need to set it back to the code address before we
// return. This is also used if we have raised an exception.
if (PSP_IC(taskData->stack) == PC_RETRY_SPECIAL)
taskData->stack->p_pc = PSP_EDX(taskData->stack).AsObjPtr()->Get(0).AsCodePtr();
}
// This is called whenever we have returned from ML to C.
void X86Dependent::SaveMemRegisters(TaskData *taskData)
{
X86TaskData *mdTask = (X86TaskData*)taskData->mdTaskData;
// Check a few items on the stack to see it hasn't been overwritten
if (! taskData->stack->IsStackObject() || taskData->stack->p_space != OVERFLOW_STACK_SIZE ||
taskData->stack->p_nreg != CHECKED_REGS || taskData->stack->p_reg[CHECKED_REGS] != PolyWord::FromUnsigned(UNCHECKED_REGS))
Crash("Stack overwritten\n");
taskData->allocPointer = mdTask->memRegisters.localMpointer - 1;
taskData->stack->p_hr = mdTask->memRegisters.handlerRegister;
mdTask->allocWords = 0;
}
// Called if we need the ML code to retry an RTS call.
void X86Dependent::SetForRetry(TaskData *taskData, int ioCall)
{
/* We now have to set the closure entry for the RTS call to work.
DCJM 4/1/01. */
PSP_EDX(taskData->stack) = (PolyObject*)IoEntry(ioCall);
taskData->stack->p_pc = PC_RETRY_SPECIAL; // This value is treated specially in SetMemRegisters
}
PolyWord *X86Dependent::get_reg(TaskData *taskData, int n)
/* Returns a pointer to the register given by n. */
{
switch (n)
{
case 0: return &PSP_EAX(taskData->stack);
case 1: return &PSP_ECX(taskData->stack);
case 2: return &PSP_EDX(taskData->stack);
case 3: return &PSP_EBX(taskData->stack);
case 4: return (PolyWord*)&taskData->stack->p_sp;
case 6: return &PSP_ESI(taskData->stack);
case 7: return &PSP_EDI(taskData->stack);
#ifdef HOSTARCHITECTURE_X86_64
case 8: return &PSP_R8(taskData->stack);
case 9: return &PSP_R9(taskData->stack);
case 10: return &PSP_R10(taskData->stack);
case 11: return &PSP_R11(taskData->stack);
case 12: return &PSP_R12(taskData->stack);
case 13: return &PSP_R13(taskData->stack);
case 14: return &PSP_R14(taskData->stack);
// R15 is the heap pointer so shouldn't occur here.
#endif /* HOSTARCHITECTURE_X86_64 */
default:
Crash("Unknown register %d at %p\n", n, PSP_IC(taskData->stack));
}
}
// Called as a result of a heap overflow trap
void X86Dependent::HeapOverflowTrap(TaskData *taskData)
{
X86TaskData *mdTask = (X86TaskData*)taskData->mdTaskData;
POLYUNSIGNED wordsNeeded = 0;
// The next instruction, after any branches round forwarding pointers, will
// be a store of register containing the adjusted heap pointer. We need to
// find that register and the value in it in order to find out how big the
// area we actually wanted is.
while (PSP_IC(taskData->stack)[0] == 0xeb)
{
if (PSP_IC(taskData->stack)[1] >= 128)
PSP_IC(taskData->stack) += 256 - PSP_IC(taskData->stack)[1] + 2;
else PSP_IC(taskData->stack) += PSP_IC(taskData->stack)[1] + 2;
}
#ifndef HOSTARCHITECTURE_X86_64
// This should be movl REG,0[%ebp].
ASSERT(PSP_IC(taskData->stack)[0] == 0x89);
mdTask->allocReg = (PSP_IC(taskData->stack)[1] >> 3) & 7; // Remember this until we allocate the memory
PolyWord *reg = get_reg(taskData, mdTask->allocReg);
PolyWord reg_val = *reg;
// The space we need is the difference between this register
// and the current value of newptr.
// The +1 here is because memRegisters.localMpointer is A.M.pointer +1. The reason
// is that after the allocation we have the register pointing at the address we will
// actually use.
wordsNeeded = (taskData->allocPointer - (PolyWord*)reg_val.AsAddress()) + 1;
*reg = TAGGED(0); // Clear this - it's not a valid address.
/* length in words, including length word */
ASSERT (wordsNeeded <= (1<<24)); /* Max object size including length/flag word is 2^24 words. */
#else /* HOSTARCHITECTURE_X86_64 */
// This should be movq Length,-8(%r15)
ASSERT(PSP_IC(taskData->stack)[0] == 0x49 && PSP_IC(taskData->stack)[1] == 0xc7 && PSP_IC(taskData->stack)[2] == 0x47 && PSP_IC(taskData->stack)[3] == 0xf8);
// The Length field should be in the next word. N.B. This assumes that
// the length word < 2^31.
ASSERT((PSP_IC(taskData->stack)[7] & 0x80) == 0); // Should not be negative
for (unsigned i = 7; i >= 4; i--) wordsNeeded = (wordsNeeded << 8) | PSP_IC(taskData->stack)[i];
wordsNeeded += 1; // That was the object size. We need to add one for the length word.
#endif /* HOSTARCHITECTURE_X86_64 */
if (profileMode == kProfileStoreAllocation)
add_count(taskData, PSP_IC(taskData->stack), PSP_SP(taskData->stack), wordsNeeded);
#ifdef HOSTARCHITECTURE_X86_64
// On the X64 the value that ends up in allocSpace->pointer includes the
// attempted allocation. Add back the space we tried to allocate
taskData->allocPointer += wordsNeeded;
#endif /* HOSTARCHITECTURE_X86_64 */
mdTask->allocWords = wordsNeeded; // The actual allocation is done in SetMemRegisters.
}
/******************************************************************************/
/* */
/* do_compare - do a "long" comparison, setting the flags register */
/* */
/******************************************************************************/
void X86Dependent::do_compare(TaskData *taskData, PolyWord v1, PolyWord v2)
{
Handle val1, val2;
/* Must push these to the save vec. A persistent store trap
might cause a garbage collection and move the stack. */
val1 = taskData->saveVec.push(v1);
val2 = taskData->saveVec.push(v2);
int r = compareLong(taskData, val2, val1);
/* Clear the flags. */
POLYUNSIGNED flags = PSP_EFLAGS(taskData->stack).AsUnsigned();
flags &= -256;
if (r == 0) flags |= 0x40;
else if (r < 0) flags |= 0x80;
PSP_EFLAGS(taskData->stack) = PolyWord::FromUnsigned(flags);
}
/******************************************************************************/
/* */
/* do_op - do a "long" operation, setting the destination register */
/* */
/******************************************************************************/
void X86Dependent::do_op(TaskData *taskData, int dest, PolyWord v1, PolyWord v2, Handle (*op)(TaskData *, Handle, Handle))
{
Handle val1, val2, result;
/* Must push these to the save vec. A persistent store trap
or a garbage collection might move the stack. */
val1 = taskData->saveVec.push(v1);
val2 = taskData->saveVec.push(v2);
/* Clobber the destination which may have overflowed. */
*(get_reg(taskData, dest)) = TAGGED(0);
result = op (taskData, val2, val1); /* N.B parameters are intentionally reversed */
/* N.B. the stack may have moved so we must recompute get_reg(dest). */
*(get_reg(taskData, dest)) = DEREFWORD(result);
}
// Emulate a long precision operation.
bool X86Dependent::emulate_instrs(TaskData *taskData)
{
int src1 = -1, src2 = -1, dest = -1;
bool doneSubtraction = false;
while(1) {
byte rexPrefix = 0;
#ifdef HOSTARCHITECTURE_X86_64
// Get any REX prefix
if (PSP_IC(taskData->stack)[0] >= 0x40 && PSP_IC(taskData->stack)[0] <= 0x4f)
{
rexPrefix = PSP_IC(taskData->stack)[0];
PSP_INCR_PC(taskData->stack, 1);
}
#endif /* HOSTARCHITECTURE_X86_64 */
// Decode the register fields and include any REX bits
int bbb = PSP_IC(taskData->stack)[1] & 7;
if (rexPrefix & 0x1) bbb += 8;
int rrr = (PSP_IC(taskData->stack)[1] >> 3) & 7;
if (rexPrefix & 0x4) rrr += 8;
switch (PSP_IC(taskData->stack)[0]) {
case 0x03: /* add. */
if ((PSP_IC(taskData->stack)[1] & 0xc0) != 0xc0)
Crash("Expected register");
if (dest != rrr)
Crash("Expected same destination register.");
src2 = bbb;
do_op(taskData, dest, *(get_reg(taskData, src1)), *(get_reg(taskData, src2)), add_longc);
PSP_INCR_PC(taskData->stack, 2);
return true;
case 0x2b: /* Subtraction. */
if ((PSP_IC(taskData->stack)[1] & 0xc0) != 0xc0)
Crash("Expected register");
if (dest != rrr)
Crash("Expected same destination register.");
src2 = bbb;
do_op(taskData, dest, *(get_reg(taskData, src1)), *(get_reg(taskData, src2)), sub_longc);
PSP_INCR_PC(taskData->stack, 2);
// The next instruction should be a lea to put on the tag.
// The result is already tagged so we need to skip that.
// Previously this removed the tag and returned but CheckRegion
// didn't like this.
doneSubtraction = true;
break;
case 0x3b: /* Compare. */
if ((PSP_IC(taskData->stack)[1] & 0xc0) != 0xc0)
Crash("Expected register");
src1 = rrr;
src2 = bbb;
do_compare(taskData, *(get_reg(taskData, src1)), *(get_reg(taskData, src2)));
PSP_INCR_PC(taskData->stack, 2);
return true;
case 0x8d: /* leal - Used to remove a tag before an add and multiply. */
// Also used to put the tag on after a subtraction.
if ((PSP_IC(taskData->stack)[1] & 7) == 4)
{ // R12 (and RSP but that isn't used here) have to be encoded with a SIB byte.
ASSERT((PSP_IC(taskData->stack)[2] & 7) == 4); // Should be same register
PSP_INCR_PC(taskData->stack, 1);
}
if (doneSubtraction)
{
PSP_INCR_PC(taskData->stack, 3);
return true;
}
if (src1 == -1) src1 = bbb; else src2 = bbb;
dest = rrr;
ASSERT(PSP_IC(taskData->stack)[2] == 0xff);
PSP_INCR_PC(taskData->stack, 3);
break;
case 0x89: /* movl: move source into dest. */
if ((PSP_IC(taskData->stack)[1] & 0xc0) != 0xc0)
Crash("Can't move into store.");
dest = bbb;
if (src1 == -1) src1 = rrr; else src2 = rrr;
PSP_INCR_PC(taskData->stack, 2);
/* Next should be add-immediate. */
break;
case 0x83: { /* One byte immediate: Add, sub or compare. */
int cval = PSP_IC(taskData->stack)[2];
if (cval >= 128) cval -= 256;
switch (PSP_IC(taskData->stack)[1] & (7 << 3)) // This is a code. Ignore any REX override.
{
case (0 << 3): /* add */
{
if (dest != bbb)
Crash("Expected same destination register.");
/* immediate value is shifted, but hasn't had 1 added;
do this now before calling add_longc */
do_op(taskData, dest, *(get_reg(taskData, src1)), PolyWord::FromSigned(cval+1), add_longc);
break;
}
case (5 << 3): /* sub */
{
if (dest != bbb)
Crash("Expected same destination register.");
/* immediate value is shifted, but hasn't had 1 added;
do this now before calling sub_longc */
do_op(taskData, dest, *(get_reg(taskData, src1)), PolyWord::FromSigned(cval+1), sub_longc);
break;
}
case (7 << 3): /* cmp */
{
if ((PSP_IC(taskData->stack)[1] & 0xc0) != 0xc0)
Crash("Can't test with store.");
src1 = bbb;
/* immediate value is already tagged */
do_compare(taskData, *(get_reg(taskData, src1)), PolyWord::FromSigned(cval));
break;
}
default: Crash("Unknown instruction after overflow trap");
}
PSP_INCR_PC(taskData->stack, 3);
return true;
}
case 0x81: { /* 4 byte immediate: Add, sub or compare. */
int cval = PSP_IC(taskData->stack)[5];
if (cval >= 128) cval -= 256;
cval = cval*256 + PSP_IC(taskData->stack)[4];
cval = cval*256 + PSP_IC(taskData->stack)[3];
cval = cval*256 + PSP_IC(taskData->stack)[2];
if ((PSP_IC(taskData->stack)[1] & 0xc0) != 0xc0)
Crash("Expected register");
switch (PSP_IC(taskData->stack)[1] & (7 << 3))
{
case (0 << 3): /* add */
{
if (dest != bbb)
Crash("Expected same destination register.");
/* immediate value is shifted, but hasn't had 1 added;
do this now before calling add_longc */
do_op(taskData, dest, *(get_reg(taskData, src1)), PolyWord::FromSigned(cval+1), add_longc);
break;
}
case (5 << 3): /* sub */
{
if (dest != bbb)
Crash("Expected same destination register.");
/* immediate value is shifted, but hasn't had 1 added;
do this now before calling sub_longc */
do_op(taskData, dest, *(get_reg(taskData, src1)), PolyWord::FromSigned(cval+1), sub_longc);
break;
}
case (7 << 3): /* cmp */
{
src1 = bbb;
/* immediate value is already tagged */
do_compare(taskData, *(get_reg(taskData, src1)), PolyWord::FromSigned(cval));
break;
}
default: Crash("Unknown instruction after overflow trap");
}
PSP_INCR_PC(taskData->stack, 6);
return true;
}
case 0xeb: /* jmp - used in branch forwarding. */
/* While forwarded jumps are always positive we may use backward
branches in the future. */
if (PSP_IC(taskData->stack)[1] >= 128)
PSP_INCR_PC(taskData->stack, 256 - PSP_IC(taskData->stack)[1] + 2);
else PSP_INCR_PC(taskData->stack, PSP_IC(taskData->stack)[1] + 2);
break;
case 0x50: /* push eax - used before a multiply. */
#ifdef HOSTARCHITECTURE_X86_64
ASSERT((rexPrefix & 1) == 0); // Check it's not r8
#endif /* HOSTARCHITECTURE_X86_64 */
*(--PSP_SP(taskData->stack)) = PSP_EAX(taskData->stack);
PSP_INCR_PC(taskData->stack, 1);
break;
case 0x52: /* push edx - used before a multiply. */
#ifdef HOSTARCHITECTURE_X86_64
ASSERT((rexPrefix & 1) == 0); // Check it's not r10
#endif /* HOSTARCHITECTURE_X86_64 */
*(--PSP_SP(taskData->stack)) = PSP_EDX(taskData->stack);
PSP_INCR_PC(taskData->stack, 1);
break;
case 0xd1: /* Group1A - must be sar edx before a multiply. */
if (PSP_IC(taskData->stack)[1] != 0xfa)
Crash("Unknown instruction after overflow trap");
PSP_INCR_PC(taskData->stack, 2);
/* If we haven't moved anything into edx then edx must be
one of the arguments. */
if (src2 == -1) src2 = 2; /* edx. */
break;
case 0xf7: /* Multiply instruction. */
if (PSP_IC(taskData->stack)[1] != 0xea)
Crash("Unknown instruction after overflow trap");
do_op(taskData, 0 /* eax */, *(get_reg(taskData, src1)), *(get_reg(taskData, src2)), mult_longc);
/* Subtract one because the next instruction will tag it. */
PSP_EAX(taskData->stack) = PolyWord::FromUnsigned(PSP_EAX(taskData->stack).AsUnsigned() - 1);
PSP_INCR_PC(taskData->stack, 2);
return true;
default:
Crash("Unknown instruction after overflow trap");
}
}
return false;
}
void X86Dependent::ArbitraryPrecisionTrap(TaskData *taskData)
{
// Arithmetic operation has overflowed or detected long values.
if (profileMode == kProfileEmulation)
add_count(taskData, PSP_IC(taskData->stack), PSP_SP(taskData->stack), 1);
// Emulate the arbitrary precision instruction.
if (! emulate_instrs(taskData))
Crash("Arbitrary precision emulation fault at %x\n", PSP_IC(taskData->stack));
}
// These macros build small pieces of assembly code for each io call.
// The code simply sets the requestCode value and jumps to
// X86AsmSaveStateAndReturn. The address of these code pieces is
// stored in iovec. Values in iovec are never looked at with the
// garbage collector so that's safe.
// N.B. The length of this code (7) is built into BuildKillSelf
// It's 7 bytes on both x86 and X86_64.
#define MAKE_CALL_SEQUENCE_BYTES 7
#ifndef __GNUC__
// Windows
#ifndef HOSTARCHITECTURE_X86_64
#define MAKE_IO_CALL_SEQUENCE(ioNum, result) \
{ \
__asm call endCode##ioNum \
__asm mov byte ptr [20+ebp],ioNum \
__asm jmp dword ptr [48+ebp] \
__asm endCode##ioNum: pop eax \
__asm mov result,eax \
}
#define MAKE_EXTRA_CALL_SEQUENCE(exNum, result) \
{ \
__asm call endCodeX##exNum \
__asm mov byte ptr [22+ebp],exNum \
__asm jmp dword ptr [48+ebp] \
__asm endCodeX##exNum: pop eax \
__asm mov result,eax \
}
#else /* HOSTARCHITECTURE_X86_64 */
// Visual C++ on X64 doesn't support inline assembly code
#endif /* HOSTARCHITECTURE_X86_64 */
#else
#ifndef HOSTARCHITECTURE_X86_64
#define MAKE_IO_CALL_SEQUENCE(ioNum, result) \
{ \
__asm__ __volatile__ ( "call 1f; " \
"movb %1,20(%%ebp); " \
"jmp *48(%%ebp); " \
"1: popl %0" \
:"=r"(result) \
:"i"(ioNum) \
); \
}
#define MAKE_EXTRA_CALL_SEQUENCE(exNum, result) \
{ \
__asm__ __volatile__ ( "call 1f; " \
"movb %1,22(%%ebp); " \
"jmp *48(%%ebp); " \
"1: popl %0" \
:"=r"(result) \
:"i"(exNum) \
); \
}
#else /* HOSTARCHITECTURE_X86_64 */
#define MAKE_IO_CALL_SEQUENCE(ioNum, result) \
{ \
__asm__ __volatile__ ( "call 1f; " \
"movb %1,40(%%rbp); " \
"jmp *96(%%rbp); " \
"1: popq %0" \
:"=r"(result) \
:"i"(ioNum) \
); \
}
#define MAKE_EXTRA_CALL_SEQUENCE(exNum, result) \
{ \
__asm__ __volatile__ ( "call 1f; " \
"movb %1,42(%%rbp); " \
"jmp *96(%%rbp); " \
"1: popq %0" \
:"=r"(result) \
:"i"(exNum) \
); \
}
#endif /* HOSTARCHITECTURE_X86_64 */
#endif
static void add_function_to_io_area(int x, int (*y)())
{
add_word_to_io_area(x, PolyWord::FromUnsigned((POLYUNSIGNED)y));
}
/******************************************************************************/
/* */
/* MD_init_interface_vector - called from run-time system */
/* */
/******************************************************************************/
void X86Dependent::InitInterfaceVector(void)
{
unsigned char *codeAddr;
MAKE_IO_CALL_SEQUENCE(POLY_SYS_exit, codeAddr);
add_word_to_io_area(POLY_SYS_exit, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_alloc_store, &alloc_store);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_chdir, codeAddr);
add_word_to_io_area(POLY_SYS_chdir, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_get_length, &get_length_a);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_get_flags, codeAddr);
add_word_to_io_area(POLY_SYS_get_flags, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_str_compare, str_compare);
add_function_to_io_area(POLY_SYS_teststreq, &teststreq);
add_function_to_io_area(POLY_SYS_teststrneq, &teststrneq);
add_function_to_io_area(POLY_SYS_teststrgtr, &teststrgtr);
add_function_to_io_area(POLY_SYS_teststrlss, &teststrlss);
add_function_to_io_area(POLY_SYS_teststrgeq, &teststrgeq);
add_function_to_io_area(POLY_SYS_teststrleq, &teststrleq);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_exception_trace, codeAddr);
add_word_to_io_area(POLY_SYS_exception_trace, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_lockseg, &locksega);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_profiler, codeAddr);
add_word_to_io_area(POLY_SYS_profiler, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_is_short, &is_shorta);
add_function_to_io_area(POLY_SYS_aplus, &add_long); // Retain
add_function_to_io_area(POLY_SYS_aminus, &sub_long);
add_function_to_io_area(POLY_SYS_amul, &mult_long);
add_function_to_io_area(POLY_SYS_adiv, &div_long);
add_function_to_io_area(POLY_SYS_amod, &rem_long);
add_function_to_io_area(POLY_SYS_aneg, &neg_long);
add_function_to_io_area(POLY_SYS_equala, &equal_long);
add_function_to_io_area(POLY_SYS_ora, &or_long);
add_function_to_io_area(POLY_SYS_anda, &and_long);
add_function_to_io_area(POLY_SYS_xora, &xor_long);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_Real_str, codeAddr);
add_word_to_io_area(POLY_SYS_Real_str, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_Real_geq, real_geq);
add_function_to_io_area(POLY_SYS_Real_leq, real_leq);
add_function_to_io_area(POLY_SYS_Real_gtr, real_gtr);
add_function_to_io_area(POLY_SYS_Real_lss, real_lss);
add_function_to_io_area(POLY_SYS_Real_eq, real_eq);
add_function_to_io_area(POLY_SYS_Real_neq, real_neq);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_Real_Dispatch, codeAddr);
add_word_to_io_area(POLY_SYS_Real_Dispatch, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_Add_real, real_add);
add_function_to_io_area(POLY_SYS_Sub_real, real_sub);
add_function_to_io_area(POLY_SYS_Mul_real, real_mul);
add_function_to_io_area(POLY_SYS_Div_real, real_div);
add_function_to_io_area(POLY_SYS_Neg_real, real_neg);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_Repr_real, codeAddr);
add_word_to_io_area(POLY_SYS_Repr_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_conv_real, codeAddr);
add_word_to_io_area(POLY_SYS_conv_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_real_to_int, codeAddr);
add_word_to_io_area(POLY_SYS_real_to_int, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_int_to_real, real_from_int);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_sqrt_real, codeAddr);
add_word_to_io_area(POLY_SYS_sqrt_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_sin_real, codeAddr);
add_word_to_io_area(POLY_SYS_sin_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_cos_real, codeAddr);
add_word_to_io_area(POLY_SYS_cos_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_arctan_real, codeAddr);
add_word_to_io_area(POLY_SYS_arctan_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_exp_real, codeAddr);
add_word_to_io_area(POLY_SYS_exp_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_ln_real, codeAddr);
add_word_to_io_area(POLY_SYS_ln_real, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_io_operation, codeAddr);
add_word_to_io_area(POLY_SYS_io_operation, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_atomic_incr, &atomic_increment);
add_function_to_io_area(POLY_SYS_atomic_decr, &atomic_decrement);
add_function_to_io_area(POLY_SYS_thread_self, &thread_self);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_thread_dispatch, codeAddr);
add_word_to_io_area(POLY_SYS_thread_dispatch, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_kill_self, codeAddr);
add_word_to_io_area(POLY_SYS_kill_self, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_offset_address, &offset_address);
add_function_to_io_area(POLY_SYS_shift_right_word, &shift_right_word);
add_function_to_io_area(POLY_SYS_word_neq, &word_neq);
add_function_to_io_area(POLY_SYS_not_bool, ¬_bool);
add_function_to_io_area(POLY_SYS_string_length, &string_length);
add_function_to_io_area(POLY_SYS_int_eq, &int_eq);
add_function_to_io_area(POLY_SYS_int_neq, &int_neq);
add_function_to_io_area(POLY_SYS_int_geq, &int_geq);
add_function_to_io_area(POLY_SYS_int_leq, &int_leq);
add_function_to_io_area(POLY_SYS_int_gtr, &int_gtr);
add_function_to_io_area(POLY_SYS_int_lss, &int_lss);
add_function_to_io_area(POLY_SYS_or_word, &or_word);
add_function_to_io_area(POLY_SYS_and_word, &and_word);
add_function_to_io_area(POLY_SYS_xor_word, &xor_word);
add_function_to_io_area(POLY_SYS_shift_left_word, &shift_left_word);
add_function_to_io_area(POLY_SYS_word_eq, &word_eq);
add_function_to_io_area(POLY_SYS_load_byte, &load_byte);
add_function_to_io_area(POLY_SYS_load_word, &load_word);
add_function_to_io_area(POLY_SYS_is_big_endian, &is_big_endian);
add_function_to_io_area(POLY_SYS_bytes_per_word, &bytes_per_word);
add_function_to_io_area(POLY_SYS_assign_byte, &assign_byte);
add_function_to_io_area(POLY_SYS_assign_word, &assign_word);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_objsize, codeAddr);
add_word_to_io_area(POLY_SYS_objsize, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_showsize, codeAddr);
add_word_to_io_area(POLY_SYS_showsize, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_timing_dispatch, codeAddr);
add_word_to_io_area(POLY_SYS_timing_dispatch, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_XWindows, codeAddr);
add_word_to_io_area(POLY_SYS_XWindows, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_full_gc, codeAddr);
add_word_to_io_area(POLY_SYS_full_gc, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_stack_trace, codeAddr);
add_word_to_io_area(POLY_SYS_stack_trace, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_foreign_dispatch, codeAddr);
add_word_to_io_area(POLY_SYS_foreign_dispatch, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_callcode_tupled, codeAddr);
add_word_to_io_area(POLY_SYS_callcode_tupled, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_process_env, codeAddr);
add_word_to_io_area(POLY_SYS_process_env, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_set_string_length, &set_string_length_a); /* DCJM 28/2/01 */
add_function_to_io_area(POLY_SYS_get_first_long_word, &get_first_long_word_a); /* DCJM 28/2/01 */
MAKE_IO_CALL_SEQUENCE(POLY_SYS_shrink_stack, codeAddr);
add_word_to_io_area(POLY_SYS_shrink_stack, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_code_flags, codeAddr);
add_word_to_io_area(POLY_SYS_code_flags, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_shift_right_arith_word, &shift_right_arith_word); /* DCJM 10/10/99 */
add_function_to_io_area(POLY_SYS_int_to_word, &int_to_word); /* DCJM 10/10/99 */
MAKE_IO_CALL_SEQUENCE(POLY_SYS_set_code_constant, codeAddr); /* DCJM 2/1/01 */
add_word_to_io_area(POLY_SYS_set_code_constant, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_poly_specific, codeAddr); /* DCJM 19/6/06 */
add_word_to_io_area(POLY_SYS_poly_specific, PolyWord::FromCodePtr(codeAddr));
add_function_to_io_area(POLY_SYS_move_bytes, &move_bytes); /* DCJM 10/10/99 */
add_function_to_io_area(POLY_SYS_move_words, &move_words); /* DCJM 10/10/99 */
add_function_to_io_area(POLY_SYS_mul_word, &mul_word); /* DCJM 10/10/99 */
add_function_to_io_area(POLY_SYS_plus_word, &plus_word); /* DCJM 10/10/99 */
add_function_to_io_area(POLY_SYS_minus_word, &minus_word); /* DCJM 10/10/99 */
add_function_to_io_area(POLY_SYS_div_word, &div_word); /* DCJM 10/10/99 */
add_function_to_io_area(POLY_SYS_mod_word, &mod_word); /* DCJM 10/10/99 */
add_function_to_io_area(POLY_SYS_word_geq, &word_geq);
add_function_to_io_area(POLY_SYS_word_leq, &word_leq);
add_function_to_io_area(POLY_SYS_word_gtr, &word_gtr);
add_function_to_io_area(POLY_SYS_word_lss, &word_lss);
// This used to contain the code itself. Now this is set up as a "closure"
// but is only used for exceptions raised within the RTS.
add_function_to_io_area(POLY_SYS_raisex, &raisex);
MAKE_IO_CALL_SEQUENCE(POLY_SYS_io_dispatch, codeAddr);
add_word_to_io_area(POLY_SYS_io_dispatch, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_network, codeAddr);
add_word_to_io_area(POLY_SYS_network, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_os_specific, codeAddr);
add_word_to_io_area(POLY_SYS_os_specific, PolyWord::FromCodePtr(codeAddr));
MAKE_IO_CALL_SEQUENCE(POLY_SYS_signal_handler, codeAddr);
add_word_to_io_area(POLY_SYS_signal_handler, PolyWord::FromCodePtr(codeAddr));
// Entries for special cases. These are generally, but not always, called from
// compiled code.
MAKE_EXTRA_CALL_SEQUENCE(RETURN_HEAP_OVERFLOW, heapOverflow);
MAKE_EXTRA_CALL_SEQUENCE(RETURN_STACK_OVERFLOW, stackOverflow);
MAKE_EXTRA_CALL_SEQUENCE(RETURN_STACK_OVERFLOWEX, stackOverflowEx);
MAKE_EXTRA_CALL_SEQUENCE(RETURN_RAISE_DIV, raiseDiv);
MAKE_EXTRA_CALL_SEQUENCE(RETURN_ARB_EMULATION, arbEmulation);
}
// We need the kill-self code in a little function.
Handle X86Dependent::BuildKillSelf(TaskData *taskData)
{
byte *codeAddr;
MAKE_IO_CALL_SEQUENCE(POLY_SYS_kill_self, codeAddr);
return BuildCodeSegment(taskData, codeAddr, MAKE_CALL_SEQUENCE_BYTES, 'K');
}
void X86Dependent::SetException(TaskData *taskData, poly_exn *exc)
// Set up the stack of a process to raise an exception.
{
PSP_EDX(taskData->stack) = (PolyObject*)IoEntry(POLY_SYS_raisex);
PSP_IC(taskData->stack) = PC_RETRY_SPECIAL;
PSP_EAX(taskData->stack) = exc; /* put exception data into eax */
}
void X86Dependent::ResetSignals(void)
{
/* restore default signal handling. */
/* SIGILL, SIGEMT are not used in PC version */
signal(SIGFPE, SIG_DFL);
}
// Call a piece of compiled code.
void X86Dependent::CallCodeTupled(TaskData *taskData)
{
// The eventual return address is on the stack - leave it there.
PolyObject *argTuple = PSP_EAX(taskData->stack).AsObjPtr();
Handle closure = taskData->saveVec.push(argTuple->Get(0));
Handle argvec = taskData->saveVec.push(argTuple->Get(1));
if (! IS_INT(DEREFWORD(argvec))) // May be nil if there are no args.
{
PolyObject *argv = DEREFHANDLE(argvec);
POLYUNSIGNED argCount = argv->Length();
// Check we have space for the arguments. This may result in a GC which
// in turn may throw a C++ exception.
if (argCount > 2)
{
try {
CheckAndGrowStack(taskData, taskData->stack->p_sp - (argCount - 2));
}
catch (IOException)
{
return; // Will have been set up to raise an exception.
}
}
// First argument is in EAX
PSP_EAX(taskData->stack) = argv->Get(0);
// Second arg, if there is one, goes into EBX
if (argCount > 1)
PSP_EBX(taskData->stack) = argv->Get(1);
#ifdef HOSTARCHITECTURE_X86_64
if (argCount > 2)
PSP_R8(taskData->stack) = argv->Get(2);
if (argCount > 3)
PSP_R9(taskData->stack) = argv->Get(3);
if (argCount > 4)
PSP_R10(taskData->stack) = argv->Get(4);
#endif /* HOSTARCHITECTURE_X86_64 */
// Remaining args go on the stack.
#ifndef HOSTARCHITECTURE_X86_64
for (POLYUNSIGNED i = 2; i < argCount; i++)
*(--PSP_SP(taskData->stack)) = argv->Get(i+2);
#else /* HOSTARCHITECTURE_X86_64 */
for (POLYUNSIGNED i = 5; i < argCount; i++)
*(--PSP_SP(taskData->stack)) = argv->Get(i);
#endif /* HOSTARCHITECTURE_X86_64 */
}
// The closure goes into the closure reg.
PSP_EDX(taskData->stack) = DEREFWORD(closure);
// First word of closure is entry point.
PSP_IC(taskData->stack) = (PSP_EDX(taskData->stack)).AsObjPtr()->Get(0).AsCodePtr();
}
// Sets up a callback function on the current stack. The present state is that
// the ML code has made a call in to foreign_dispatch. We need to set the stack
// up so that we will enter the callback (as with CallCodeTupled) but when we return
// the result we enter callback_return.
void X86Dependent::SetCallbackFunction(TaskData *taskData, Handle func, Handle args)
{
byte *codeAddr1, *codeAddr2;
MAKE_EXTRA_CALL_SEQUENCE(RETURN_CALLBACK_RETURN, codeAddr1);
Handle callBackReturn = BuildCodeSegment(taskData, codeAddr1, MAKE_CALL_SEQUENCE_BYTES, 'C');
MAKE_EXTRA_CALL_SEQUENCE(RETURN_CALLBACK_EXCEPTION, codeAddr2);
Handle callBackException = BuildCodeSegment(taskData, codeAddr2, MAKE_CALL_SEQUENCE_BYTES, 'X');
// Save the closure pointer and argument registers to the stack. If we have to
// retry the current RTS call we need these to have their original values.
*(--PSP_SP(taskData->stack)) = PSP_EDX(taskData->stack);
*(--PSP_SP(taskData->stack)) = PSP_EAX(taskData->stack);
*(--PSP_SP(taskData->stack)) = PSP_EBX(taskData->stack);
#ifdef HOSTARCHITECTURE_X86_64
*(--PSP_SP(taskData->stack)) = PSP_R8(taskData->stack);
*(--PSP_SP(taskData->stack)) = PSP_R9(taskData->stack);
*(--PSP_SP(taskData->stack)) = PSP_R10(taskData->stack);
#endif
// Set up an exception handler so we will enter callBackException if there is an exception.
*(--PSP_SP(taskData->stack)) = PolyWord::FromStackAddr(taskData->stack->p_hr); // Create a special handler entry
*(--PSP_SP(taskData->stack)) = callBackException->Word();
*(--PSP_SP(taskData->stack)) = TAGGED(0);
taskData->stack->p_hr = PSP_SP(taskData->stack);
// Push the call to callBackReturn onto the stack as the return address.
*(--PSP_SP(taskData->stack)) = callBackReturn->Word();
// Set up the entry point of the callback.
PolyObject *functToCall = func->WordP();
PSP_EDX(taskData->stack) = functToCall; // Closure address
PSP_EAX(taskData->stack) = args->Word();
taskData->stack->p_pc = functToCall->Get(0).AsCodePtr(); // First word of closure is entry pt.
}
static void skipea(byte **pt, ScanAddress *process)
{
unsigned int modrm = *((*pt)++);
unsigned int md = modrm >> 6;
unsigned int rm = modrm & 7;
if (md == 3) { } /* Register. */
else if (rm == 4)
{
/* s-i-b present. */
unsigned int sib = *((*pt)++);
if (md == 0)
{
if ((sib & 7) == 5)
{
/* An immediate address. */
#ifndef HOSTARCHITECTURE_X86_64
process->ScanConstant(*pt, PROCESS_RELOC_DIRECT);
#endif /* HOSTARCHITECTURE_X86_64 */
(*pt) += 4;
}
}
else if (md == 1) (*pt)++;
else if (md == 2) (*pt) += 4;
}
else if (md == 0 && rm == 5)
{
#ifndef HOSTARCHITECTURE_X86_64
/* Absolute address. */
process->ScanConstant(*pt, PROCESS_RELOC_DIRECT);
#endif /* HOSTARCHITECTURE_X86_64 */
*pt += 4;
}
else
{
if (md == 1) *pt += 1;
else if (md == 2) *pt += 4;
}
}
/* Added to deal with constants within the
code rather than in the constant area. The constant
area is still needed for the function name.
DCJM 2/1/2001
*/
void X86Dependent::ScanConstantsWithinCode(PolyObject *addr, PolyObject *old, POLYUNSIGNED length, ScanAddress *process)
{
byte *pt = (byte*)addr;
PolyWord *end;
POLYUNSIGNED unused;
/* Find the end of the code (before the constants). */
addr->GetConstSegmentForCode(length, end, unused);
end -= 3;
assert(end->AsUnsigned() == 0); /* This should be the marker word. */
while (pt != (byte*)end)
{
#ifdef HOSTARCHITECTURE_X86_64
// REX prefixes. Set this first.
byte lastRex;
if (*pt >= 0x40 && *pt <= 0x4f)
lastRex = *pt++;
else
lastRex = 0;
//printf("pt=%p *pt=%x\n", pt, *pt);
#endif /* HOSTARCHITECTURE_X86_64 */
switch (*pt)
{
case 0x50: case 0x51: case 0x52: case 0x53:
case 0x54: case 0x55: case 0x56: case 0x57: /* Push */
case 0x58: case 0x59: case 0x5a: case 0x5b:
case 0x5c: case 0x5d: case 0x5e: case 0x5f: /* Pop */
case 0x90: /* nop */ case 0xc3: /* ret */
case 0xf9: /* stc */ case 0xce: /* into */
pt += 1; break;
case 0x70: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76:
case 0x77: case 0x7c: case 0x7d: case 0x7e: case 0x7f: case 0xeb:
/* short jumps. */
case 0xcd: /* INT */
case 0xa8: /* TEST_ACC8 */
case 0x6a: /* PUSH_8 */
pt += 2; break;
case 0xc2: /* RET_16 */
pt += 3; break;
case 0x03: case 0x0b: case 0x13: case 0x1b:
case 0x23: case 0x2b: case 0x33: case 0x3b: /* Add r,ea etc. */
case 0x88: /* MOVB_R_A */ case 0x89: /* MOVL_R_A */
case 0x8b: /* MOVL_A_R */
case 0x62: /* BOUNDL */
case 0xff: /* Group5 */
case 0xd1: /* Group2_1_A */
case 0x8f: /* POP_A */
case 0x8d: /* leal. */
pt++; skipea(&pt, process); break;
case 0xf6: /* Group3_a */
{
int isTest = 0;
pt++;
/* The test instruction has an immediate operand. */
if ((*pt & 0x38) == 0) isTest = 1;
skipea(&pt, process);
if (isTest) pt++;
break;
}
case 0xf7: /* Group3_A */
{
int isTest = 0;
pt++;
/* The test instruction has an immediate operand. */
if ((*pt & 0x38) == 0) isTest = 1;
skipea(&pt, process);
if (isTest) pt += 4;
break;
}
case 0xc1: /* Group2_8_A */
case 0xc6: /* MOVB_8_A */
case 0x83: /* Group1_8_A */
pt++; skipea(&pt, process); pt++; break;
case 0x81: /* Group1_32_A */
{
pt ++;
skipea(&pt, process);
/* Ignore the 32 bit constant here. It may be
untagged and it shouldn't be an address. */
pt += 4;
break;
}
case 0xe8: case 0xe9:
// Long jump and call. These are used to call constant (known) functions
// and also long jumps within the function.
{
pt++;
POLYSIGNED disp = (pt[3] & 0x80) ? -1 : 0; // Set the sign just in case.
for(unsigned i = 4; i > 0; i--)
disp = (disp << 8) | pt[i-1];
byte *absAddr = pt + disp + 4; // The address is relative to AFTER the constant
// If the new address is within the current piece of code we don't do anything
if (absAddr >= (byte*)addr && absAddr < (byte*)end) {}
else {
#ifdef HOSTARCHITECTURE_X86_64
ASSERT(sizeof(PolyWord) == 4); // Should only be used internally on x64
#endif /* HOSTARCHITECTURE_X86_64 */
if (addr != old)
{
// The old value of the displacement was relative to the old address before
// we copied this code segment.
// We have to correct it back to the original address.
absAddr = absAddr - (byte*)addr + (byte*)old;
// We have to correct the displacement for the new location and store
// that away before we call ScanConstant.
POLYSIGNED newDisp = absAddr - pt - 4;
for (unsigned i = 0; i < 4; i++)
{
pt[i] = (byte)(newDisp & 0xff);
newDisp >>= 8;
}
}
process->ScanConstant(pt, PROCESS_RELOC_I386RELATIVE);
}
pt += 4;
break;
}
case 0xc7:/* MOVL_32_A */
{
pt++;
if ((*pt & 0xc0) == 0x40 /* Byte offset or sib present */ &&
((*pt & 7) != 4) /* But not sib present */ && pt[1] == 256-sizeof(PolyWord))
{
/* We may use a move instruction to set the length
word on a new segment. We mustn't try to treat this as a constant. */
pt += 6; /* Skip the modrm byte, the offset and the constant. */
}
else
{
skipea(&pt, process);
#ifndef HOSTARCHITECTURE_X86_64
process->ScanConstant(pt, PROCESS_RELOC_DIRECT);
#endif /* HOSTARCHITECTURE_X86_64 */
pt += 4;
}
break;
}
case 0xb8: case 0xb9: case 0xba: case 0xbb:
case 0xbc: case 0xbd: case 0xbe: case 0xbf: /* MOVL_32_64_R */
pt ++;
#ifdef HOSTARCHITECTURE_X86_64
if ((lastRex & 8) == 0)
pt += 4; // 32-bit mode on 64-bits. Can this occur?
else
#endif /* HOSTARCHITECTURE_X86_64 */
{
// 32 bits in 32-bit mode, 64-bits in 64-bit mode.
process->ScanConstant(pt, PROCESS_RELOC_DIRECT);
pt += sizeof(PolyWord);
}
break;
case 0x68: /* PUSH_32 */
pt ++;
#ifndef HOSTARCHITECTURE_X86_64
process->ScanConstant(pt, PROCESS_RELOC_DIRECT);
#endif /* HOSTARCHITECTURE_X86_64 */
pt += 4;
break;
case 0x0f: /* ESCAPE */
{
pt++;
switch (*pt)
{
case 0xb6: /* movzl */
pt++; skipea(&pt, process); break;
case 0x80: case 0x81: case 0x82: case 0x83:
case 0x84: case 0x85: case 0x86: case 0x87:
case 0x88: case 0x89: case 0x8a: case 0x8b:
case 0x8c: case 0x8d: case 0x8e: case 0x8f:
/* Conditional branches with 32-bit displacement. */
pt += 5; break;
default: Crash("Unknown opcode %d at %p\n", *pt, pt);
}
break;
}
default: Crash("Unknown opcode %d at %p\n", *pt, pt);
}
}
}
extern "C" int registerMaskVector[];
int X86Dependent::GetIOFunctionRegisterMask(int ioCall)
{
return registerMaskVector[ioCall];
}
// Store a constant in the code segment. This has to be handled specially because
// the constant is probably an address.
// At the moment this assumes we're dealing with a 32-bit constant on a 32-bit machine
// and a 64-bit constant on a 64-bit machine.
void X86Dependent::SetCodeConstant(TaskData *taskData, Handle data, Handle constant, Handle offseth, Handle base)
{
POLYUNSIGNED offset = get_C_ulong(taskData, DEREFWORD(offseth)); // Byte offset
byte *pointer = DEREFWORD(base).AsCodePtr() + offset;
POLYUNSIGNED flags = UNTAGGED(DEREFWORD(data));
POLYUNSIGNED c = DEREFWORD(constant).AsUnsigned(); // N.B. This may well really be an address.
if (flags == 1)
c -= (POLYUNSIGNED)(pointer + sizeof(PolyWord)); // Relative address. Relative to AFTER the pointer.
// Store the value into the code. It can be on an arbitrary alignment.
for (unsigned i = 0; i < sizeof(PolyWord); i++)
{
pointer[i] = (byte)(c & 255);
c >>= 8;
}
}
#ifndef HOSTARCHITECTURE_X86_64
// This will only work on the i386. The X86_64 uses different conventions with some arguments
// in registers.
/* We have to compile the callback function dynamically. This code mallocs the store for it.
At least at the moment, the store is never freed. If we decide to garbage collect it
we could store it in a vol. */
unsigned char *X86Dependent::BuildCallback(TaskData *taskData, int cbEntryNo, Handle cResultType, int nArgsToRemove)
{
int max_callback_size = 36; /* Sufficient for the largest callback (actually 33 I think).*/
unsigned char *result = (unsigned char*)malloc(max_callback_size);
/* TODO: This does not allocate memory with execute permissions and that could cause problems
in newer operating systems such as Windows XP SP2. DCJM 19/8/04. */
unsigned char *p = result;
long cbAddr = (long)&CCallbackFunction;
/* This code creates a variable on the stack which is initialised to point to the first arg,
then calls "CCallbackFunction" with the address of this variable and the callback reference number.
When "CCallbackFunction" returns with the ADDRESS of the result this code extracts the result in
the appropriate form and returns with it. */
// We only need one word on the stack but Mac OS X requires the stack to be aligned
// on a 16-byte boundary, With the return address, the saved EBP pushed by ENTER and
// the two words we push as arguments that means we need 16 bytes here.
*p++ = 0xC8; /* enter 16, 0 */
*p++ = 0x10;
*p++ = 0x00;
*p++ = 0x00;
*p++ = 0x8D; /* lea eax,[ebp+8] */ /* Address of first arg. */
*p++ = 0x45;
*p++ = 0x08;
*p++ = 0x89; /* mov dword ptr [ebp-4],eax */ /* Store it in the variable. */
*p++ = 0x45;
*p++ = 0xFC;
*p++ = 0x8D; /* lea ecx,[ebp-4] */ /* Get the address of the variable. */
*p++ = 0x4D;
*p++ = 0xFC;
*p++ = 0x51; /* push ecx */
*p++ = 0x68; /* push cbEntryNo */
*p++ = cbEntryNo & 0xff;
cbEntryNo = cbEntryNo >> 8;
*p++ = cbEntryNo & 0xff;
cbEntryNo = cbEntryNo >> 8;
*p++ = cbEntryNo & 0xff;
cbEntryNo = cbEntryNo >> 8;
*p++ = cbEntryNo & 0xff;
/* The call is PC relative so we have to subtract the address of the END of the call instruction. */
cbAddr -= (int)p + 5; /* The instruction is 5 bytes long. */
*p++ = 0xE8; /* call cbAddr */
*p++ = cbAddr & 0xff;
cbAddr = cbAddr >> 8;
*p++ = cbAddr & 0xff;
cbAddr = cbAddr >> 8;
*p++ = cbAddr & 0xff;
cbAddr = cbAddr >> 8;
*p++ = cbAddr & 0xff;
*p++ = 0x83; /* add esp,8 */ /* Probably not needed since we're about to leave. */
*p++ = 0xC4;
*p++ = 0x08;
/* Put in the return sequence. eax points to the C_pointer for the result. */
if (! IS_INT(DEREFWORD(cResultType))) {
/* We might be able to get this to work but it's probably too much effort. */
raise_exception_string(taskData, EXC_foreign, "Structure results from callbacks are not supported\n");
}
else {
switch (UNTAGGED(DEREFWORD(cResultType))) {
case Cchar: /* movsbl eax, [eax] */
*p++ = 0x0f;
*p++ = 0xbe;
*p++ = 0x00;
break;
case Cshort: /* movswl eax, [eax] */
*p++ = 0x0f;
*p++ = 0xbf;
*p++ = 0x00;
break;
case Cfloat: /* flds [eax] */
*p++ = 0xD9;
*p++ = 0x00;
break;
case Cdouble: /* fldl [eax] */
*p++ = 0xDD;
*p++ = 0x00;
break;
case Cint: case Cuint: case Clong: case Cpointer:
*p++ = 0x8B; /* mov eax,dword ptr [eax] */
*p++ = 0x00;
break;
default: Crash("Unknown C type"); /* This shouldn't happen */
}
}
*p++ = 0xC9; /* leave */
// We use a simple "ret" instruction if this is a C function and "ret n" if it's Pascal.
if (nArgsToRemove == 0) *p++ = 0xC3; /* Usual case for C functions */
else { /* Pascal calling convention - remove arguments. */
*p++ = 0xC2; /* ret n */
*p++ = nArgsToRemove & 0xff;
nArgsToRemove = nArgsToRemove >> 8;
*p++ = nArgsToRemove & 0xff;
}
ASSERT(p - result <= max_callback_size);
return result;
}
/* This function retrieves the callback arguments. How the arguments to the
function are stored is likely to be machine-dependent since some arguments are
likely to be passed in registers and others on the stack. On the i386 it's
easy - all arguments are on the stack. */
void X86Dependent::GetCallbackArg(void **args, void *argLoc, int nSize)
{
/* nSize is the size of the result when we copy it into the vol. char and short
arguments are always expanded to int. This code will work for little-endians
but NOT for big-endian machines. */
memcpy(argLoc, *args, nSize);
/* Go on to the next argument. */
nSize += sizeof(int)-1;
nSize &= -(int)sizeof(int);
*args = (void*) (*(char**)args + nSize);
}
#endif
// Atomic addition. Returns the new value
static POLYUNSIGNED AtomicAdd(PolyObject *p, POLYUNSIGNED toAdd)
{
POLYUNSIGNED result;
#ifdef HOSTARCHITECTURE_X86_64
#ifdef __GNUC__
// Unix - x64
__asm__ __volatile__ (
"lock xaddq %1,(%2) " // Do atomic addition
: "=r" (result) // Output
: "0" (toAdd), "r" (p) // Input
: "cc", "memory" // Modifies cc and memory
);
#else
// Visual C++ on X64 doesn't support inline assembly code
#endif // ! __GNUC__
//
#else // ! HOSTARCHITECTURE_X86_64
#ifdef __GNUC__
// Unix - x32
__asm__ __volatile__ (
"lock; xaddl %1,(%2) " // Do atomic addition
: "=r" (result) // Output
: "0" (toAdd), "r" (p) // Input
: "cc", "memory" // Modifies cc and memory
);
#else
// Windows
__asm {
mov ebx,toAdd
mov eax,p
lock xadd [eax],ebx
mov result,ebx
}
#endif // ! __GNUC__
#endif
return result + toAdd; // Adjust to the new value.
}
Handle X86Dependent::AtomicIncrement(TaskData *taskData, Handle mutexp)
{
PolyObject *p = DEREFHANDLE(mutexp);
POLYUNSIGNED result = AtomicAdd(p, 1 << POLY_TAGSHIFT);
return taskData->saveVec.push(PolyWord::FromUnsigned(result));
}
// Decrement the value contained in the first word of the mutex.
Handle X86Dependent::AtomicDecrement(TaskData *taskData, Handle mutexp)
{
PolyObject *p = DEREFHANDLE(mutexp);
POLYUNSIGNED result = AtomicAdd(p, (-1) << POLY_TAGSHIFT);
return taskData->saveVec.push(PolyWord::FromUnsigned(result));
}
static X86Dependent x86Dependent;
MachineDependent *machineDependent = &x86Dependent;
|