1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
|
;#
;# Title: Assembly code routines for the poly system.
;# Author: David Matthews
;# Copyright (c) Cambridge University Technical Services Limited 2000
;# This library is free software; you can redistribute it and/or
;# modify it under the terms of the GNU Lesser General Public
;# License as published by the Free Software Foundation; either
;# version 2.1 of the License, or (at your option) any later version.
;#
;# This library is distributed in the hope that it will be useful,
;# but WITHOUT ANY WARRANTY; without even the implied warranty of
;# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;# Lesser General Public License for more details.
;#
;# You should have received a copy of the GNU Lesser General Public
;# License along with this library; if not, write to the Free Software
;# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
;#
;#
;#
;#
;# *********************************************************************
;# * IMPORTANT *
;# * This file is used directly by MASM but is also converted *
;# * for use by gas on Unix. For reasons best known to the respective *
;# * developers the assembly language accepted by gas is different *
;# * from that used by MASM. This file uses a sort of half-way house *
;# * between the two versions in that the gas instruction ordering is *
;# * used i.e. the first argument is the source and the second the *
;# * destination, but the MASM format of addresses is used. *
;# * After making any changes to this file ensure that it can be *
;# * successfully converted and compiled under both MASM and gas. *
;# * DCJM January 2000 *
;# *********************************************************************
;#
;# Registers used :-
;#
;# %Reax: First argument to function. Result of function call.
;# %Rebx: Second argument to function.
;# %Recx: General register
;# %Redx: Closure pointer in call.
;# %Rebp: Points to memory used for extra registers
;# %Resi: General register.
;# %Redi: General register.
;# %Resp: Stack pointer.
;# X86_64 Additional registers
;# %R8: Third argument to function
;# %R9: Fourth argument to function
;# %R10: Fifth argument to function
;# %R11: General register
;# %R12: General register
;# %R13: General register
;# %R14: General register
;# %R15: Memory allocation pointer
IFDEF WINDOWS
.486
.model flat,c
;# No name munging needed in MASM
EXTNAME TEXTEQU <>
;# CALLMACRO is used to indicate to the converter that we have a macro
;# since macros have to be converted into C preprocessor macros.
CALLMACRO TEXTEQU <>
IFNDEF HOSTARCHITECTURE_X86_64
Reax TEXTEQU <eax>
Rebx TEXTEQU <ebx>
Recx TEXTEQU <ecx>
Redx TEXTEQU <edx>
Resi TEXTEQU <esi>
Redi TEXTEQU <edi>
Resp TEXTEQU <esp>
Rebp TEXTEQU <ebp>
ELSE
Reax TEXTEQU <rax>
Rebx TEXTEQU <rbx>
Recx TEXTEQU <rcx>
Redx TEXTEQU <rdx>
Resi TEXTEQU <rsi>
Redi TEXTEQU <rdi>
Resp TEXTEQU <rsp>
Rebp TEXTEQU <rbp>
ENDIF
R_cl TEXTEQU <cl>
R_bl TEXTEQU <bl>
R_al TEXTEQU <al>
R_ax TEXTEQU <ax>
CONST TEXTEQU <>
;# gas-style instructions
;# These are the reverse order from MASM.
MOVL MACRO f,t
mov t,f
ENDM
MOVB MACRO f,t
mov t,f
ENDM
ADDL MACRO f,t
add t,f
ENDM
SUBL MACRO f,t
sub t,f
ENDM
XORL MACRO f,t
xor t,f
ENDM
ORL MACRO f,t
or t,f
ENDM
ANDL MACRO f,t
and t,f
ENDM
CMPL MACRO f,t
cmp t,f
ENDM
CMPB MACRO f,t
cmp t,f
ENDM
LEAL MACRO f,t
lea t,f
ENDM
SHRL MACRO f,t
shr t,f
ENDM
SARL MACRO f,t
sar t,f
ENDM
SHLL MACRO f,t
shl t,f
ENDM
TESTL MACRO f,t
test t,f
ENDM
IMULL MACRO f,t
imul t,f
ENDM
LOCKXADDL MACRO f,t
lock xadd t,f
ENDM
MULL TEXTEQU <mul>
NEGL TEXTEQU <neg>
PUSHL TEXTEQU <push>
POPL TEXTEQU <pop>
POPFL TEXTEQU <popfd>
PUSHAL TEXTEQU <pushad>
POPAL TEXTEQU <popad>
INCL TEXTEQU <inc>
ELSE
#include "config.h"
;# External names in older versions of FreeBSD have a leading underscore.
#if ! defined(__ELF__)
#define EXTNAME(x) _##x
#else
#define EXTNAME(x) x
#endif
IFNDEF HOSTARCHITECTURE_X86_64
#define Reax %eax
#define Rebx %ebx
#define Recx %ecx
#define Redx %edx
#define Resi %esi
#define Redi %edi
#define Resp %esp
#define Rebp %ebp
ELSE
#define Reax %rax
#define Rebx %rbx
#define Recx %rcx
#define Redx %rdx
#define Resi %rsi
#define Redi %rdi
#define Resp %rsp
#define Rebp %rbp
ENDIF
#define R_al %al
#define R_cl %cl
#define R_bl %bl
#define R_ax %ax
IFDEF HOSTARCHITECTURE_X86_64
#define R8 %r8
#define R9 %r9
#define R10 %r10
#define R11 %r11
#define R12 %r12
#define R13 %r13
#define R14 %r14
#define R15 %r15
ENDIF
#define CONST $
#define END
IFDEF HOSTARCHITECTURE_X86_64
#define MOVL movq
#define MOVB movb
#define ADDL addq
#define SUBL subq
#define XORL xorq
#define ORL orq
#define ANDL andq
#define CMPL cmpq
#define CMPB cmpb
#define LEAL leaq
#define SHRL shrq
#define SARL sarq
#define SHLL shlq
#define TESTL testq
#define IMULL imulq
#define MULL mulq
#define NEGL negq
#define PUSHL pushq
#define POPL popq
#define POPFL popfq
#define PUSHAL pushaq
#define POPAL popaq
#define LOCKXADDL lock xaddq
ELSE
#define MOVL movl
#define MOVB movb
#define ADDL addl
#define SUBL subl
#define XORL xorl
#define ORL orl
#define ANDL andl
#define CMPL cmpl
#define CMPB cmpb
#define LEAL leal
#define SHRL shrl
#define SARL sarl
#define SHLL shll
#define TESTL testl
#define IMULL imull
#define MULL mull
#define NEGL negl
#define PUSHL pushl
#define POPL popl
#define POPFL popfl
#define PUSHAL pushal
#define POPAL popal
;# Older versions of GCC require a semicolon here.
#define LOCKXADDL lock; xaddl
ENDIF
ENDIF
;# Register mask entries - must match coding used in codeCons.ML
IFDEF WINDOWS
M_Reax EQU 1
M_Recx EQU 2
M_Redx EQU 4
M_Rebx EQU 8
M_Resi EQU 16
M_Redi EQU 32
;# Set the register mask entry
RegMask MACRO name,mask
Mname TEXTEQU <Mask_&name&>
%Mname EQU mask
ENDM
ELSE
;# Register mask entries - must match coding used in codeCons.ML
#define M_Reax 1
#define M_Recx 2
#define M_Redx 4
#define M_Rebx 8
#define M_Resi 16
#define M_Redi 32
IFDEF HOSTARCHITECTURE_X86_64
#define M_R8 64
#define M_R9 128
#define M_R10 256
#define M_R11 512
#define M_R12 1024
#define M_R13 2048
#define M_R14 4096
ENDIF
#define RegMask(name,mask) \
.set Mask_##name, mask
#define OR |
ENDIF
;# Default mask for unused entries. This is set to all the registers
;# for safety in case a new function is added without adding an entry
;# here.
IFNDEF HOSTARCHITECTURE_X86_64
CALLMACRO RegMask all,(M_Reax OR M_Rebx OR M_Recx OR M_Redx OR M_Resi OR M_Redi)
ELSE
CALLMACRO RegMask all,(M_Reax OR M_Rebx OR M_Recx OR M_Redx OR M_Resi OR M_Redi OR M_R8 OR M_R9 OR M_R10 OR M_R11 OR M_R12 OR M_R13 OR M_R14)
;# When we perform an IO call we modify the return register and may also modify the "closure" register
;# in order to do a retry.
CALLMACRO RegMask ioCall,(M_Reax OR M_Redx)
ENDIF
;#
;# Macro to begin the hand-coded functions
;#
IFDEF WINDOWS
INLINE_ROUTINE MACRO id
PUBLIC id
id:
ENDM
ELSE
IFDEF MACOSX
#define GLOBAL .globl
ELSE
#define GLOBAL .global
ENDIF
#define INLINE_ROUTINE(id) \
GLOBAL EXTNAME(id); \
EXTNAME(id):
ENDIF
IFDEF WINDOWS
;#
;# Tagged values. A few operations, such as shift assume that the tag bit
;# is the bottom bit.
;#
TAG EQU 1
TAGSHIFT EQU 1
TAGMULT EQU 2
TAGGED MACRO i
LOCAL t
t TEXTEQU <i*2+1>
EXITM %t
ENDM
MAKETAGGED MACRO f,t
lea t,1[f*2]
ENDM
ELSE
.set TAG, 1
.set TAGSHIFT, 1
.set TAGMULT, (1 << TAGSHIFT)
#define TAGGED(i) ((i << TAGSHIFT) | TAG)
#define MAKETAGGED(from,to) LEAL TAG(,from,2),to
ENDIF
IFDEF WINDOWS
NIL TEXTEQU TAGGED(0)
UNIT TEXTEQU TAGGED(0)
ZERO TEXTEQU TAGGED(0)
FALSE TEXTEQU TAGGED(0)
TRUE TEXTEQU TAGGED(1)
MINUS1 TEXTEQU TAGGED(0-1)
B_bytes EQU 01h
B_mutablebytes EQU 41h
B_mutable EQU 40h
IFNDEF HOSTARCHITECTURE_X86_64
Max_Length EQU 00ffffffh
ELSE
Max_Length EQU 00ffffffffffffffh
ENDIF
ELSE
.set NIL, TAGGED(0)
.set UNIT, TAGGED(0)
.set ZERO, TAGGED(0)
.set FALSE, TAGGED(0)
.set TRUE, TAGGED(1)
.set MINUS1, TAGGED(0-1)
.set B_bytes, 0x01
.set B_mutable, 0x40
.set B_mutablebytes, 0x41
IFNDEF HOSTARCHITECTURE_X86_64
.set Max_Length, 0x00ffffff
ELSE
.set Max_Length, 0x00ffffffffffffff
ENDIF
ENDIF
;# The "memory registers" are pointed to by Rebp within the ML code
;# The first few offsets are built into the compiled code.
;# All the offsets are built into x86_dep.c .
IFDEF WINDOWS
LocalMpointer EQU 0
IFNDEF HOSTARCHITECTURE_X86_64
HandlerRegister EQU 4
LocalMbottom EQU 8
StackTop EQU 16 ;# Upper limit of stack
RequestCode EQU 20 ;# Byte: Io function to call.
InRTS EQU 21 ;# Byte: Set when in the RTS
PolyStack EQU 24 ;# Current stack base
SavedSp EQU 28 ;# Saved stack pointer
IOEntryPoint EQU 48 ;# IO call
RaiseDiv EQU 52 ;# Call to raise the Div exception
ArbEmulation EQU 56 ;# Arbitrary precision emulation
ThreadId EQU 60 ;# My thread id
RealTemp EQU 64 ;# Space for int-real conversions
ELSE
HandlerRegister EQU 8
LocalMbottom EQU 16
StackLimit EQU 24 ;# Lower limit of stack
StackTop EQU 32 ;# Upper limit of stack
RequestCode EQU 40 ;# Byte: Io function to call.
InRTS EQU 41 ;# Byte: Set when in the RTS
ReturnReason EQU 42 ;# Byte: Reason for returning from ML.
PolyStack EQU 48 ;# Current stack base
SavedSp EQU 56 ;# Saved stack pointer
HeapOverflow EQU 64 ;# Heap overflow code
StackOverflow EQU 72 ;# Stack overflow code
StackOverflowEx EQU 80 ;# Stack overflow code (for EDI)
RaiseExEntry EQU 88 ;# Raise exception
IOEntryPoint EQU 96 ;# IO call
RaiseDiv EQU 104 ;# Exception trace
ArbEmulation EQU 112 ;# Arbitrary precision emulation
ThreadId EQU 120 ;# My thread id
RealTemp EQU 128 ;# Space for int-real conversions
ENDIF
ELSE
.set LocalMpointer,0
IFNDEF HOSTARCHITECTURE_X86_64
.set HandlerRegister,4
.set LocalMbottom,8
.set StackTop,16
.set RequestCode,20
.set InRTS,21
.set PolyStack,24
.set SavedSp,28
.set IOEntryPoint,48
.set RaiseDiv,52
.set ArbEmulation,56
.set ThreadId,60
.set RealTemp,64
ELSE
.set HandlerRegister,8
.set LocalMbottom,16
.set StackLimit,24
.set StackTop,32
.set RequestCode,40
.set InRTS,41
.set PolyStack,48
.set SavedSp,56
.set HeapOverflow,64
.set StackOverflow,72
.set StackOverflowEx,80
.set RaiseExEntry,88
.set IOEntryPoint,96
.set RaiseDiv,104
.set ArbEmulation,112
.set ThreadId,120
.set RealTemp,128
ENDIF
ENDIF
;# IO function numbers. These are functions that are called
;# to handle special cases in this code
IFDEF WINDOWS
POLY_SYS_alloc_store EQU 11
POLY_SYS_give_ex_trace EQU 31
POLY_SYS_aplus EQU 106
POLY_SYS_aminus EQU 107
POLY_SYS_amul EQU 108
POLY_SYS_adiv EQU 109
POLY_SYS_amod EQU 110
POLY_SYS_aneg EQU 111
POLY_SYS_xora EQU 112
POLY_SYS_equala EQU 113
POLY_SYS_ora EQU 114
POLY_SYS_anda EQU 115
POLY_SYS_int_geq EQU 231
POLY_SYS_int_leq EQU 232
POLY_SYS_int_gtr EQU 233
POLY_SYS_int_lss EQU 234
POLY_SYS_Add_real EQU 125
POLY_SYS_Sub_real EQU 126
POLY_SYS_Mul_real EQU 127
POLY_SYS_Div_real EQU 128
POLY_SYS_Neg_real EQU 130
POLY_SYS_real_to_int EQU 134
POLY_SYS_int_to_real EQU 135
POLY_SYS_sqrt_real EQU 136
POLY_SYS_sin_real EQU 137
POLY_SYS_cos_real EQU 138
POLY_SYS_arctan_real EQU 139
POLY_SYS_exp_real EQU 140
POLY_SYS_ln_real EQU 141
ELSE
#include "sys.h"
ENDIF
;#
;# Stack format from objects.h is:
;# typedef struct
;# { byte offset of start
;# word p_space ; 0
;# byte *p_pc ; 4
;# word *p_sp ; 8
;# word *p_hr ; 12
;# word p_nreg ; 16 = no of checked registers (always CHECKED_REGS)
;# word p_reg[1] ; 20
;# } StackObject ;
;#
;#
;# Starting offsets
IFDEF WINDOWS
SPACE_OFF EQU 0
PC_OFF EQU 4
SP_OFF EQU 8
HR_OFF EQU 12
EAX_OFF EQU 20
EBX_OFF EQU 24
ECX_OFF EQU 28
EDX_OFF EQU 32
ESI_OFF EQU 36
EDI_OFF EQU 40
FLAGS_OFF EQU 48
ELSE
.set SPACE_OFF, 0
IFNDEF HOSTARCHITECTURE_X86_64
.set PC_OFF, 4
.set SP_OFF, 8
.set HR_OFF, 12
.set EAX_OFF, 20
.set EBX_OFF, 24
.set ECX_OFF, 28
.set EDX_OFF, 32
.set ESI_OFF, 36
.set EDI_OFF, 40
.set FLAGS_OFF, 48
ELSE
.set PC_OFF, 8
.set SP_OFF, 16
.set HR_OFF, 24
;# 32 is the count of the number of checked registers
.set EAX_OFF, 40
.set EBX_OFF, 48
.set ECX_OFF, 56
.set EDX_OFF, 64
.set ESI_OFF, 72
.set EDI_OFF, 80
.set R8_OFF, 88
.set R9_OFF, 96
.set R10_OFF, 104
.set R11_OFF, 112
.set R12_OFF, 120
.set R13_OFF, 128
.set R14_OFF, 136
;# 144 is the count of the number of unchecked registers
.set FLAGS_OFF, 152
ENDIF
ENDIF
;#
;# CODE STARTS HERE
;#
IFDEF WINDOWS
.CODE
ELSE
.text
ENDIF
;# Define standard call macro. CALL_IO ioCallNo where ioCallNo is the io function to call.
;# We need to include M_Redx in the register sets. MD_set_for_retry may modify it
;# if the function was called directly and not via the closure register.
IFDEF WINDOWS
CALL_IO MACRO index
mov byte ptr [RequestCode+Rebp],index
IFNDEF HOSTARCHITECTURE_X86_64
jmp dword ptr [IOEntryPoint+Rebp]
ELSE
jmp qword ptr [IOEntryPoint+Rebp]
ENDIF
ENDM
ELSE
#define CALL_IO(index) \
MOVB $index,RequestCode[Rebp]; \
jmp *IOEntryPoint[Rebp];
ENDIF
;# Load the registers from the ML stack and jump to the code.
;# This is used to start ML code.
;# The argument is the address of the MemRegisters struct and goes into %rbp.
IFDEF WINDOWS
PUBLIC X86AsmSwitchToPoly
X86AsmSwitchToPoly:
ELSE
GLOBAL EXTNAME(X86AsmSwitchToPoly)
EXTNAME(X86AsmSwitchToPoly): ;# Entry point from C
ENDIF
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Recx ;# Argument - address of MemRegisters - goes into Rebp
PUSHAL ;# Save all the registers just to be safe
MOVL Resp,SavedSp[Recx] ;# savedSp:=%Resp - Save the system stack pointer.
MOVL Recx,Rebp ;# Put address of MemRegisters where it belongs
ELSE
;# The argument to the function is passed in Redi
PUSHL Rebp ;# Save callee--save registers
PUSHL Rebx
PUSHL %r12
PUSHL %r13
PUSHL %r14
PUSHL %r15
MOVL Resp,SavedSp[Redi] ;# savedSp:=%Resp - Save the system stack pointer.
MOVL Redi,Rebp ;# Put address of MemRegisters where it belongs
ENDIF
MOVL PolyStack[Rebp],Reax
IFDEF HOSTARCHITECTURE_X86_64
MOVL LocalMpointer[Rebp],R15 ;# Set the heap pointer register
ENDIF
MOVL SP_OFF[Reax],Resp ;# Set the new stack ptr
PUSHL PC_OFF[Reax] ;# Push the code address
PUSHL FLAGS_OFF[Reax] ;# Push the flags
MOVL EBX_OFF[Reax],Rebx ;# Load the registers
MOVL ECX_OFF[Reax],Recx
MOVL EDX_OFF[Reax],Redx
MOVL ESI_OFF[Reax],Resi
MOVL EDI_OFF[Reax],Redi
IFDEF HOSTARCHITECTURE_X86_64
MOVL R8_OFF[Reax],R8
MOVL R9_OFF[Reax],R9
MOVL R10_OFF[Reax],R10
MOVL R11_OFF[Reax],R11
MOVL R12_OFF[Reax],R12
MOVL R13_OFF[Reax],R13
MOVL R14_OFF[Reax],R14
ENDIF
MOVL EAX_OFF[Reax],Reax
POPFL ;# reset flags
IFDEF WINDOWS
mov byte ptr [InRTS+Rebp],0
ELSE
MOVB CONST 0,InRTS[Rebp] ;# inRTS:=0 (stack now kosher)
ENDIF
ret ;# Jump to code address
;# Code to save the state and switch to C
IFDEF WINDOWS
PUBLIC X86AsmSaveStateAndReturn
X86AsmSaveStateAndReturn PROC
ELSE
GLOBAL EXTNAME(X86AsmSaveStateAndReturn)
EXTNAME(X86AsmSaveStateAndReturn):
ENDIF
PUSHL Reax ;# Save eax
MOVL PolyStack[Rebp],Reax
MOVL Rebx,EBX_OFF[Reax]
MOVL Recx,ECX_OFF[Reax]
MOVL Redx,EDX_OFF[Reax]
MOVL Resi,ESI_OFF[Reax]
MOVL Redi,EDI_OFF[Reax]
IFDEF HOSTARCHITECTURE_X86_64
MOVL R8,R8_OFF[Reax]
MOVL R9,R9_OFF[Reax]
MOVL R10,R10_OFF[Reax]
MOVL R11,R11_OFF[Reax]
MOVL R12,R12_OFF[Reax]
MOVL R13,R13_OFF[Reax]
MOVL R14,R14_OFF[Reax]
MOVL R15,LocalMpointer[Rebp] ;# Save the heap pointer
ENDIF
POPL Rebx ;# Get old eax value
MOVL Rebx,EAX_OFF[Reax]
MOVL Resp,SP_OFF[Reax]
IFDEF WINDOWS
mov byte ptr [InRTS+Rebp],1
ELSE
MOVB CONST 1,InRTS[Rebp] ;# inRTS:=0 (stack now kosher)
ENDIF
MOVL SavedSp[Rebp],Resp
IFNDEF HOSTARCHITECTURE_X86_64
POPAL
ELSE
POPL %r15 ;# Restore callee-save registers
POPL %r14
POPL %r13
POPL %r12
POPL Rebx
POPL Rebp
ENDIF
ret
IFDEF WINDOWS
X86AsmSaveStateAndReturn ENDP
ENDIF
;#
;# A number of functions implemented in Assembly for efficiency reasons
;#
CALLMACRO INLINE_ROUTINE int_to_word
;# Extract the low order bits from a word.
TESTL CONST TAG,Reax
jz get_first_long_word_a1
ret ;# Return the argument
CALLMACRO RegMask int_to_word,(M_Reax)
;# This is now used in conjunction with isShort in Word.fromInt.
get_first_long_word_a1:
CALLMACRO INLINE_ROUTINE get_first_long_word_a
IFDEF WINDOWS
test byte ptr [Reax-1],CONST 16 ;# 16 is the "negative" bit
ELSE
testb CONST 16,(-1)[Reax] ;# 16 is the "negative" bit
ENDIF
MOVL [Reax],Reax ;# Extract the word which is already little-endian
jz gfw1
NEGL Reax ;# We can ignore overflow
gfw1:
CALLMACRO MAKETAGGED Reax,Reax
ret
CALLMACRO RegMask get_first_long_word,(M_Reax)
CALLMACRO INLINE_ROUTINE move_bytes
;# Move a segment of memory from one location to another.
;# Must deal with the case of overlapping segments correctly.
;# (source, sourc_offset, destination, dest_offset, length)
;# Assume that the offsets and length are all short integers.
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 12[Resp],Redi ;# Destination address
MOVL 8[Resp],Recx ;# Destination offset, untagged
ELSE
MOVL R8,Redi ;# Destination address
MOVL R9,Recx ;# Destination offset, untagged
ENDIF
SHRL CONST TAGSHIFT,Recx
ADDL Recx,Redi
MOVL Reax,Resi ;# Source address
SHRL CONST TAGSHIFT,Rebx
ADDL Rebx,Resi
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Recx ;# Get the length to move
ELSE
MOVL R10,Recx ;# Get the length to move
ENDIF
SHRL CONST TAGSHIFT,Recx
cld ;# Default to increment Redi,Resi
CMPL Redi,Resi ;# Check for potential overlap
;# If dest > src then use decrementing moves else
;# use incrementing moves.
ja mvb1
std ;# Decrement Redi,Resi
LEAL (-1)[Resi+Recx],Resi
LEAL (-1)[Redi+Recx],Redi
mvb1:
IFDEF WINDOWS
rep movsb ;# Copy the bytes
ELSE
rep
movsb ;# Copy the bytes
ENDIF
MOVL CONST UNIT,Reax ;# The function returns unit
MOVL Reax,Rebx ;# Clobber bad value in %rbx
MOVL Reax,Recx ;# and %Recx
MOVL Reax,Redi
MOVL Reax,Resi
;# Visual Studio 5 C++ seems to assume that the direction flag
;# is cleared. I think that`s a bug but we have to go along with it.
cld
IFNDEF HOSTARCHITECTURE_X86_64
ret CONST 12
ELSE
ret
ENDIF
CALLMACRO RegMask move_bytes,Mask_all
CALLMACRO INLINE_ROUTINE move_words
;# Move a segment of memory from one location to another.
;# Must deal with the case of overlapping segments correctly.
;# (source, source_offset, destination, dest_offset, length)
;# Assume that the offsets and length are all short integers.
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 12[Resp],Redi ;# Destination address
MOVL 8[Resp],Recx ;# Destination offset
LEAL (-2)[Redi+Recx*2],Redi ;# Destination address plus offset
LEAL (-2)[Reax+Rebx*2],Resi ;# Source address plus offset
MOVL 4[Resp],Recx ;# Get the length to move (words)
ELSE
MOVL R8,Redi ;# Destination address
MOVL R9,Recx ;# Destination offset
LEAL (-4)[Redi+Recx*4],Redi ;# Destination address plus offset
LEAL (-4)[Reax+Rebx*4],Resi ;# Source address plus offset
MOVL R10,Recx ;# Get the length to move (words)
ENDIF
SHRL CONST TAGSHIFT,Recx
cld ;# Default to increment Redi,Resi
CMPL Redi,Resi ;# Check for potential overlap
;# If dest > src then use decrementing moves else
;# use incrementing moves.
ja mvw1
std ;# Decrement Redi,Resi
IFNDEF HOSTARCHITECTURE_X86_64
LEAL (-4)[Resi+Recx*4],Resi
LEAL (-4)[Redi+Recx*4],Redi
ELSE
LEAL (-8)[Resi+Recx*8],Resi
LEAL (-8)[Redi+Recx*8],Redi
ENDIF
mvw1:
IFDEF WINDOWS
IFNDEF HOSTARCHITECTURE_X86_64
rep movsd ;# Copy the words
ELSE
rep movsq ;# Copy the words
ENDIF
ELSE
rep
IFNDEF HOSTARCHITECTURE_X86_64
movsl ;# Copy the words
ELSE
movsq ;# Copy the words
ENDIF
ENDIF
MOVL CONST UNIT,Reax ;# The function returns unit
MOVL Reax,Recx ;# Clobber bad values
MOVL Reax,Redi
MOVL Reax,Resi
;# Visual Studio 5 C++ seems to assume that the direction flag
;# is cleared. I think that`s a bug but we have to go along with it.
cld
IFNDEF HOSTARCHITECTURE_X86_64
ret CONST 12
ELSE
ret
ENDIF
CALLMACRO RegMask move_words,Mask_all
;#
CALLMACRO INLINE_ROUTINE int_eq
CMPL Rebx,Reax
je RetTrue
RetFalse:
MOVL CONST FALSE,Reax
ret
CALLMACRO RegMask int_eq,(M_Reax)
CALLMACRO INLINE_ROUTINE int_neq
CMPL Rebx,Reax
je RetFalse
RetTrue:
MOVL CONST TRUE,Reax
ret
CALLMACRO RegMask int_neq,(M_Reax)
CALLMACRO INLINE_ROUTINE not_bool
XORL CONST (TRUE-TAG),Reax ;# Change the value but leave the tag
ret
CALLMACRO RegMask not_bool,(M_Reax)
;# or, and, xor shift etc. assume the values are tagged integers
CALLMACRO INLINE_ROUTINE or_word
ORL Rebx,Reax
ret
CALLMACRO RegMask or_word,(M_Reax)
CALLMACRO INLINE_ROUTINE and_word
ANDL Rebx,Reax
ret
CALLMACRO RegMask and_word,(M_Reax)
CALLMACRO INLINE_ROUTINE xor_word
XORL Rebx,Reax
ORL CONST TAG,Reax ;# restore the tag
ret
CALLMACRO RegMask xor_word,(M_Reax)
CALLMACRO INLINE_ROUTINE shift_left_word
;# Assume that both args are tagged integers
;# Word.<<(a,b) is defined to return 0 if b > Word.wordSize
IFNDEF HOSTARCHITECTURE_X86_64
CMPL CONST TAGGED(31),Rebx
ELSE
CMPL CONST TAGGED(63),Rebx
ENDIF
jb slw1
MOVL CONST ZERO,Reax
ret
slw1:
MOVL Rebx,Recx
SHRL CONST TAGSHIFT,Recx ;# remove tag
SUBL CONST TAG,Reax
SHLL R_cl,Reax
ORL CONST TAG,Reax ;# restore the tag
MOVL Reax,Recx ;# clobber %Recx
ret
CALLMACRO RegMask shift_left_word,(M_Reax OR M_Recx)
CALLMACRO INLINE_ROUTINE shift_right_word
;# Word.>>(a,b) is defined to return 0 if b > Word.wordSize
IFNDEF HOSTARCHITECTURE_X86_64
CMPL CONST TAGGED(31),Rebx
ELSE
CMPL CONST TAGGED(63),Rebx
ENDIF
jb srw1
MOVL CONST ZERO,Reax
ret
srw1:
MOVL Rebx,Recx
SHRL CONST TAGSHIFT,Recx ;# remove tag
SHRL R_cl,Reax
ORL CONST TAG,Reax ;# restore the tag
MOVL Reax,Recx ;# clobber %Recx
ret
CALLMACRO RegMask shift_right_word,(M_Reax OR M_Recx)
CALLMACRO INLINE_ROUTINE shift_right_arith_word
;# Word.~>>(a,b) is defined to return 0 or ~1 if b > Word.wordSize
;# The easiest way to do that is to set the shift to 31.
IFNDEF HOSTARCHITECTURE_X86_64
CMPL CONST TAGGED(31),Rebx
ELSE
CMPL CONST TAGGED(63),Rebx
ENDIF
jb sra1
IFNDEF HOSTARCHITECTURE_X86_64
MOVL CONST TAGGED(31),Rebx
ELSE
MOVL CONST TAGGED(63),Rebx
ENDIF
sra1:
MOVL Rebx,Recx
SHRL CONST TAGSHIFT,Recx ;# remove tag
SARL R_cl,Reax
ORL CONST TAG,Reax ;# restore the tag
MOVL Reax,Recx ;# clobber %Recx
ret
CALLMACRO RegMask shift_right_arith_word,(M_Reax OR M_Recx)
CALLMACRO INLINE_ROUTINE locksega
;# Clears the "mutable" bit on a segment
IFDEF WINDOWS
and byte ptr [Reax-1],CONST(0ffh-B_mutable)
ELSE
andb CONST(0xff-B_mutable),-1[Reax]
ENDIF
MOVL CONST TAGGED(0),Reax ;# Return Unit,
ret
CALLMACRO RegMask lockseg,M_Reax
;#INLINE_ROUTINE(get_flags)
;# CMPL data0,%Reax
;# jb vf1 ; skip if < data0
;# movzbl (%Reax-1),%Reax ; if > data0 return flag
;# SHLL $TAGSHIFT,%Reax ; Tag it
;# ORL $TAG,%Reax
;# ret
;#
;#vf1: mov $TAGGED(256),%Reax ; if < data0 must be in io area, return 256
;# ret
;# For backwards compatibility this needs to call the RTS.
;# In due course it should be possible to have it simply return
;# the top byte of the length word as a tagged integer.
;# CALLMACRO CALL_IO1 get_flags_
;# CALLMACRO INLINE_ROUTINE get_flags_a
;# movzx Reax, byte ptr [Reax-1]
;# LEAL 1[Reax*2],Reax
;# ret
;# CALLMACRO RegMask get_flags_,(M_Reax)
CALLMACRO INLINE_ROUTINE get_length_a
IFNDEF HOSTARCHITECTURE_X86_64
MOVL (-4)[Reax],Reax
ELSE
MOVL (-8)[Reax],Reax
ENDIF
SHLL CONST 8,Reax ;# Clear top byte
SHRL CONST(8-TAGSHIFT),Reax ;# Make it a tagged integer
ORL CONST TAG,Reax
ret
CALLMACRO RegMask get_length,(M_Reax)
CALLMACRO INLINE_ROUTINE is_shorta
;# Returns true if the argument is tagged
ANDL CONST TAG,Reax
jz RetFalse
jmp RetTrue
CALLMACRO RegMask is_short,(M_Reax)
CALLMACRO INLINE_ROUTINE string_length
TESTL CONST TAG,Reax ;# Single char strings are represented by the
jnz RetOne ;# character.
MOVL [Reax],Reax ;# Get length field
CALLMACRO MAKETAGGED Reax,Reax
ret
RetOne: MOVL CONST TAGGED(1),Reax
ret
CALLMACRO RegMask string_length,(M_Reax)
;# Store the length of a string in the first word.
CALLMACRO INLINE_ROUTINE set_string_length_a
SHRL CONST TAGSHIFT,Rebx ;# Untag the length
MOVL Rebx,[Reax]
MOVL CONST UNIT,Reax ;# Return unit
MOVL Reax,Rebx ;# Clobber untagged value
ret
CALLMACRO RegMask set_string_length,(M_Reax OR M_Rebx)
;# raisex (formerly raisexn) is used by compiled code.
CALLMACRO INLINE_ROUTINE raisex
MOVL HandlerRegister[Rebp],Recx ;# Get next handler into %rcx
;# Loop to find the handler for this exception. Handlers consist of one or more
;# pairs of identifier and code address, followed by the address of the next
;# handler.
rsx1:
IFDEF WINDOWS
cmp dword ptr [Recx],TAGGED(0)
ELSE
CMPL CONST TAGGED(0),[Recx]
ENDIF
je rsx7 ;# default handler if it is TAGGED(0)
MOVL [Recx],Rebx ;# Arg1 - the identifier for this handler
CMPL [Reax],Rebx ;# Compare with exception tag - Have we got the right handler?
je rsx7 ;# Skip if we found a match.
IFNDEF HOSTARCHITECTURE_X86_64
ADDL CONST 8,Recx ;# Look at the next handler.
ELSE
ADDL CONST 16,Recx ;# Look at the next handler.
ENDIF
MOVL [Recx],Rebx
CMPL Recx,Rebx ;# Is it a pointer to the next handler i.e.
jb rsx1 ;# does it point further up the stack or at itself.
;# (The last handler on the stack points at itself).
CMPL StackTop[Rebp],Rebx
ja rsx1 ;# If not it must be a new pair, so look at that.
MOVL Rebx,Recx ;# It is a pointer to a new handler.
jmp rsx1
rsx7: ;# We have found the right handler - %Recx points to the data
IFNDEF HOSTARCHITECTURE_X86_64
ADDL CONST 4,Recx ;# point it at the code
ELSE
ADDL CONST 8,Recx ;# point it at the code
ENDIF
MOVL [Recx],Redx ;# Get the handler entry point
;# There may be some other identifier/entry point pairs in this group.
;# We have to remove them and find the pointer to the next handler in the
;# chain. This becomes the new handler pointer.
rsx6:
IFNDEF HOSTARCHITECTURE_X86_64
ADDL CONST 4,Recx
ELSE
ADDL CONST 8,Recx
ENDIF
MOVL [Recx],Rebx
CMPL Recx,Rebx ;# Is it a pointer to the next handler i.e.
jb rsx6 ;# does it point further up the stack or at itself?
CMPL StackTop[Rebp],Rebx
ja rsx6
;# We`re now pointing to the pointer to the next handler.
CMPL CONST TAGGED(0),Redx ;# See if it was set up by exception_trace
je rsx9
;# Ordinary exception
MOVL Recx,Resp ;# Move stack pointer to handler frame
POPL HandlerRegister[Rebp] ;# Load previous handler
MOVL CONST UNIT,Rebx ;# The values in some regs are illegal.
MOVL CONST UNIT,Recx
PUSHL Redx
MOVL Rebx,Redx
ret ;# Now enter the handler
rsx9:
;# Must give an exception trace - ex_tracec unwinds to the next handler.
MOVL Reax,Rebx
MOVL Recx,Reax
CALLMACRO CALL_IO POLY_SYS_give_ex_trace
CALLMACRO INLINE_ROUTINE load_byte
MOVL Rebx,Redi
SHRL CONST TAGSHIFT,Redi
IFDEF WINDOWS
movzx Redi, byte ptr [Reax][Redi]
ELSE
IFNDEF HOSTARCHITECTURE_X86_64
movzbl (Reax,Redi,1),Redi
ELSE
movzbq (Reax,Redi,1),Redi
ENDIF
ENDIF
CALLMACRO MAKETAGGED Redi,Reax
MOVL Reax,Redi ;# Clobber bad value in %Redi
ret
CALLMACRO RegMask load_byte,(M_Reax OR M_Redi)
CALLMACRO INLINE_ROUTINE load_word
IFNDEF HOSTARCHITECTURE_X86_64
MOVL (-2)[Reax+Rebx*2],Reax
ELSE
MOVL (-4)[Reax+Rebx*4],Reax
ENDIF
MOVL Reax,Rebx
ret
CALLMACRO RegMask load_word,(M_Reax)
CALLMACRO INLINE_ROUTINE assign_byte
;# We can assume that the data value will not overflow 30 bits (it is only 1 byte!)
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Recx
ELSE
MOVL R8,Recx
ENDIF
SHRL CONST TAGSHIFT,Recx ;# Remove tags from data value
;# We can assume that the index will not overflow 30 bits i.e. it is a tagged short
SHRL CONST TAGSHIFT,Rebx ;# Remove tags from offset
MOVB R_cl,[Reax+Rebx]
MOVL CONST UNIT,Reax ;# The function returns unit
MOVL Reax,Rebx ;# Clobber bad value in %Rebx
MOVL Reax,Recx ;# and %Recx
IFNDEF HOSTARCHITECTURE_X86_64
ret CONST 4
ELSE
ret
ENDIF
CALLMACRO RegMask assign_byte,(M_Reax OR M_Rebx OR M_Recx)
CALLMACRO INLINE_ROUTINE assign_word
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Recx
MOVL Recx,(-2)[Reax+Rebx*2]
ELSE
MOVL R8,(-4)[Reax+Rebx*4] ;# The offset is tagged already
ENDIF
MOVL CONST UNIT,Reax ;# The function returns unit
IFNDEF HOSTARCHITECTURE_X86_64
ret CONST 4
CALLMACRO RegMask assign_word,(M_Reax OR M_Recx)
ELSE
ret
CALLMACRO RegMask assign_word,(M_Reax)
ENDIF
;# alloc(size, flags, initial). Allocates a segment of a given size and
;# initialises it.
;#
;# This is primarily used for arrays and for strings. Refs are
;# allocated using inline code.
CALLMACRO INLINE_ROUTINE alloc_store
;# alloc(size, flags, initial). Allocates a segment of a given size and
;# initialises it.
;# First check that the length is acceptable
TESTL CONST TAG,Reax
jz alloc_in_rts ;# Get the RTS to raise an exception
MOVL Reax,Redi
SHRL CONST TAGSHIFT,Redi ;# Remove tag
jnz allst0 ;# (test for 0) Make zero sized objects 1
MOVL CONST 1,Redi ;# because they mess up the g.c.
MOVL CONST TAGGED(1),Reax
allst0:
IFNDEF HOSTARCHITECTURE_X86_64
CMPL CONST Max_Length,Redi ;# Length field must fit in 24 bits
ELSE
MOVL CONST Max_Length,Redx ;# Length field must fit in 56 bits
CMPL Redx,Redi
ENDIF
ja alloc_in_rts ;# Get the RTS to raise an exception
IFNDEF HOSTARCHITECTURE_X86_64
INCL Redi ;# Add 1 word
SHLL CONST 2,Redi ;# Get length in bytes
MOVL LocalMpointer[Rebp],Redx
ELSE
ADDL CONST 1,Redi ;# Add 1 word
SHLL CONST 3,Redi ;# Get length in bytes
MOVL R15,Redx
ENDIF
SUBL Redi,Redx ;# Allocate the space
MOVL Reax,Redi ;# Clobber bad value in Redi
CMPL LocalMbottom[Rebp],Redx ;# Check for free space
IFNDEF HOSTARCHITECTURE_X86_64
jb alloc_in_rts ;# TODO: Is this exactly the right test?
MOVL Redx,LocalMpointer[Rebp] ;# Put back in the heap ptr
ELSE
jb alloc_in_rts
MOVL Redx,R15 ;# Put back in the heap ptr
ENDIF
SHRL CONST TAGSHIFT,Reax
IFNDEF HOSTARCHITECTURE_X86_64
MOVL Reax,(-4)[Redx] ;# Put in length
ELSE
MOVL Reax,(-8)[Redx] ;# Put in length
ENDIF
SHRL CONST TAGSHIFT,Rebx ;# remove tag from flag
ORL CONST B_mutable,Rebx ;# set mutable bit
MOVB R_bl,(-1)[Redx] ;# and put it in.
;# Initialise the store.
MOVL Reax,Recx ;# Get back the no. of words.
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Reax ;# Get initial value.
ELSE
MOVL R8,Reax ;# Get initial value.
ENDIF
CMPL CONST B_mutablebytes,Rebx
jne allst2
;# If this is a byte seg
SHRL CONST TAGSHIFT,Reax ;# untag the initialiser
IFNDEF HOSTARCHITECTURE_X86_64
SHLL CONST 2,Recx ;# Convert to bytes
ELSE
SHLL CONST 3,Recx ;# Convert to bytes
ENDIF
MOVL Redx,Redi
IFDEF WINDOWS
rep stosb
ELSE
rep
stosb
ENDIF
jmp allst3
;# If this is a word segment
allst2:
MOVL Redx,Redi
IFDEF WINDOWS
rep stosd
ELSE
rep
IFNDEF HOSTARCHITECTURE_X86_64
stosl
ELSE
stosq
ENDIF
ENDIF
allst3:
MOVL Redx,Reax
MOVL Reax,Recx ;# Clobber these
MOVL Reax,Redx
MOVL Reax,Rebx
MOVL Reax,Redi
IFNDEF HOSTARCHITECTURE_X86_64
ret CONST 4
ELSE
ret
ENDIF
CALLMACRO RegMask alloc_store,(M_Reax OR M_Rebx OR M_Recx OR M_Redx OR M_Redi)
;# This is used if we have reached the store limit and need to garbage-collect.
alloc_in_rts:
MOVL Reax,Redx ;# Clobber these first
MOVL Reax,Redi
CALLMACRO CALL_IO POLY_SYS_alloc_store
CALLMACRO INLINE_ROUTINE add_long
MOVL Reax,Redi
ANDL Rebx,Redi
ANDL CONST TAG,Redi
jz add_really_long
LEAL (-TAG)[Reax],Redi
ADDL Rebx,Redi
jo add_really_long
MOVL Redi,Reax
ret
add_really_long:
MOVL Reax,Redi
CALLMACRO CALL_IO POLY_SYS_aplus
CALLMACRO RegMask aplus,(M_Reax OR M_Redi OR Mask_all)
CALLMACRO INLINE_ROUTINE sub_long
MOVL Reax,Redi
ANDL Rebx,Redi
ANDL CONST TAG,Redi
jz sub_really_long
MOVL Reax,Redi
SUBL Rebx,Redi
jo sub_really_long
LEAL TAG[Redi],Reax ;# Put back the tag
MOVL Reax,Redi
ret
sub_really_long:
MOVL Reax,Redi
CALLMACRO CALL_IO POLY_SYS_aminus
CALLMACRO RegMask aminus,(M_Reax OR M_Redi OR Mask_all)
CALLMACRO INLINE_ROUTINE mult_long
MOVL Reax,Redi
ANDL Rebx,Redi
ANDL CONST TAG,Redi
jz mul_really_long
MOVL Rebx,Redi
SARL CONST TAGSHIFT,Redi ;# Shift multiplicand
MOVL Reax,Resi
SUBL CONST TAG,Resi ;# Just subtract off the tag off multiplier
IMULL Redi,Resi
jo mul_really_long
ADDL CONST TAG,Resi
MOVL Resi,Reax
MOVL Reax,Redi
ret
mul_really_long:
MOVL Reax,Resi ;# Clobber this
MOVL Reax,Redi
CALLMACRO CALL_IO POLY_SYS_amul
CALLMACRO RegMask amul,(M_Reax OR M_Redi OR M_Resi OR Mask_all)
CALLMACRO INLINE_ROUTINE div_long
MOVL Reax,Redi
ANDL Rebx,Redi
ANDL CONST TAG,Redi ;# %Redi now contains $0 or $1 (both legal!)
jz div_really_long
CMPL CONST TAGGED(0),Rebx ;# Check that it's non-zero
jz div_really_long ;# We don't want a trap.
;# The only case of overflow is dividing the smallest negative number by -1
CMPL CONST TAGGED((-1)),Rebx
jz div_really_long
SARL CONST TAGSHIFT,Reax
MOVL Rebx,Redi
SARL CONST TAGSHIFT,Redi
IFNDEF HOSTARCHITECTURE_X86_64
cdq
ELSE
cqo
ENDIF
idiv Redi
CALLMACRO MAKETAGGED Reax,Reax
MOVL Reax,Redx
MOVL Reax,Redi
ret
div_really_long:
MOVL Reax,Redi
CALLMACRO CALL_IO POLY_SYS_adiv
CALLMACRO RegMask adiv,(M_Reax OR M_Redi OR M_Redx OR Mask_all)
CALLMACRO INLINE_ROUTINE rem_long
MOVL Reax,Redi
ANDL Rebx,Redi
ANDL CONST TAG,Redi ;# %Redi now contains $0 or $1 (both legal!
jz rem_really_long
CMPL CONST TAGGED(0),Rebx ;# Check that it's non-zero
jz rem_really_long ;# We don't want a trap.
;# The only case of overflow is dividing the smallest negative number by -1
CMPL CONST TAGGED((-1)),Rebx
jz rem_really_long
SARL CONST TAGSHIFT,Reax
MOVL Rebx,Redi
SARL CONST TAGSHIFT,Redi
IFNDEF HOSTARCHITECTURE_X86_64
cdq
ELSE
cqo
ENDIF
idiv Redi
CALLMACRO MAKETAGGED Redx,Reax
MOVL Reax,Redx
MOVL Reax,Redi
ret
rem_really_long:
MOVL Reax,Redi
CALLMACRO CALL_IO POLY_SYS_amod
CALLMACRO RegMask amod,(M_Reax OR M_Redi OR M_Redx OR Mask_all)
CALLMACRO INLINE_ROUTINE equal_long
CMPL Reax,Rebx
je RetTrue
MOVL Reax,Recx ;# If either is short
ORL Rebx,Reax ;# the result is false
ANDL CONST TAG,Reax
jnz RetFalse
MOVL Recx,Reax
CALLMACRO CALL_IO POLY_SYS_equala
CALLMACRO RegMask equala,(M_Reax OR M_Recx OR Mask_all)
CALLMACRO INLINE_ROUTINE or_long
IFDEF NOTATTHEMOMENT
MOVL Reax,Redi
ANDL Rebx,Redi
ANDL CONST TAG,Redi
jz or_really_long
ORL Rebx,Reax
MOVL Reax,Redi
ret
or_really_long:
ENDIF
CALLMACRO CALL_IO POLY_SYS_ora
CALLMACRO RegMask ora,(M_Reax OR M_Redi OR Mask_all)
CALLMACRO INLINE_ROUTINE xor_long
IFDEF NOTATTHEMOMENT
MOVL Reax,Redi
ANDL Rebx,Redi
ANDL CONST TAG,Redi
jz xor_really_long
XORL Rebx,Reax
ORL CONST TAG,Reax ;# restore the tag
MOVL Reax,Redi
ret
xor_really_long:
ENDIF
CALLMACRO CALL_IO POLY_SYS_xora
CALLMACRO RegMask xora,(M_Reax OR M_Redi OR Mask_all)
CALLMACRO INLINE_ROUTINE and_long
IFDEF NOTATTHEMOMENT
MOVL Reax,Redi
ANDL Rebx,Redi
ANDL CONST TAG,Redi
jz and_really_long
ANDL Rebx,Reax
MOVL Reax,Redi
ret
and_really_long:
ENDIF
CALLMACRO CALL_IO POLY_SYS_anda
CALLMACRO RegMask anda,(M_Reax OR M_Redi OR Mask_all)
CALLMACRO INLINE_ROUTINE neg_long
TESTL CONST TAG,Reax
jz neg_really_long
MOVL CONST (TAGGED(0)+TAG),Redi
SUBL Reax,Redi
jo neg_really_long
MOVL Redi,Reax
ret
neg_really_long:
MOVL Reax,Redi
CALLMACRO CALL_IO POLY_SYS_aneg
CALLMACRO RegMask aneg,(M_Reax OR M_Redi OR Mask_all)
CALLMACRO INLINE_ROUTINE int_geq
MOVL Reax,Recx ;# Use long test if either is long
ANDL Rebx,Reax
ANDL CONST TAG,Reax
jz igeq1
CMPL Rebx,Recx
jge RetTrue
jmp RetFalse
igeq1:
MOVL Recx,Reax
CALLMACRO CALL_IO POLY_SYS_int_geq
CALLMACRO RegMask int_geq,(M_Reax OR M_Recx OR Mask_all)
CALLMACRO INLINE_ROUTINE int_leq
MOVL Reax,Recx
ANDL Rebx,Reax
ANDL CONST TAG,Reax
jz ileq1
CMPL Rebx,Recx
jle RetTrue
jmp RetFalse
ileq1:
MOVL Recx,Reax
CALLMACRO CALL_IO POLY_SYS_int_leq
CALLMACRO RegMask int_leq,(M_Reax OR M_Recx OR Mask_all)
CALLMACRO INLINE_ROUTINE int_gtr
MOVL Reax,Recx
ANDL Rebx,Reax
ANDL CONST TAG,Reax
jz igtr1
CMPL Rebx,Recx
jg RetTrue
jmp RetFalse
igtr1:
MOVL Recx,Reax
CALLMACRO CALL_IO POLY_SYS_int_gtr
CALLMACRO RegMask int_gtr,(M_Reax OR M_Recx OR Mask_all)
CALLMACRO INLINE_ROUTINE int_lss
MOVL Reax,Recx
ANDL Rebx,Reax
ANDL CONST TAG,Reax
jz ilss1
CMPL Rebx,Recx
jl RetTrue
jmp RetFalse
ilss1:
MOVL Recx,Reax
CALLMACRO CALL_IO POLY_SYS_int_lss
CALLMACRO RegMask int_lss,(M_Reax OR M_Recx OR Mask_all)
CALLMACRO INLINE_ROUTINE offset_address
;# This is needed in the code generator, but is a very risky thing to do.
SHRL CONST TAGSHIFT,Rebx ;# Untag
ADDL Rebx,Reax ;# and add in
MOVL Reax,Rebx
ret
CALLMACRO RegMask offset_address,(M_Reax OR M_Rebx)
CALLMACRO INLINE_ROUTINE teststreq
MOVL Reax,Recx ;# Are either just single chars?
ORL Rebx,Reax
ANDL CONST TAG,Reax
jz teststreq2
CMPL Rebx,Recx ;# Must be identical
jz RetTrue
jmp RetFalse
teststreq2:
MOVL Recx,Reax
MOVL Rebx,Redi ;# Move ready for cmpsb.
MOVL [Reax],Recx ;# Get length
IFNDEF HOSTARCHITECTURE_X86_64
ADDL CONST 4,Recx ;# add 4 for the length field.
ELSE
ADDL CONST 8,Recx ;# add 8 for the length field.
ENDIF
MOVL Reax,Resi ;# Move to correct reg for cmpsb
cld ;# Make sure we increment
CMPL Reax,Reax ;# Set the Zero bit
;# Compare the strings. Because the length field is at the beginning
;# it does not matter if the value we loaded into %Recx is wrong
IFDEF WINDOWS
repe cmpsb
ELSE
repe
cmpsb
ENDIF
MOVL Reax,Resi ;# Make these valid
MOVL Reax,Recx
MOVL Reax,Redi
jz RetTrue
jmp RetFalse
CALLMACRO RegMask teststreq,(M_Reax OR M_Recx OR M_Redi OR M_Resi)
CALLMACRO INLINE_ROUTINE teststrneq
MOVL Reax,Recx ;# Are either just single chars?
ORL Rebx,Reax
ANDL CONST TAG,Reax
jz teststrneq2
CMPL Rebx,Recx ;# Must be identical
jz RetFalse
jmp RetTrue
teststrneq2:
MOVL Recx,Reax
MOVL Rebx,Redi ;# Move ready for cmpsb.
MOVL [Reax],Recx ;# Get length
IFNDEF HOSTARCHITECTURE_X86_64
ADDL CONST 4,Recx ;# add 4 for the length field.
ELSE
ADDL CONST 8,Recx ;# add 8 for the length field.
ENDIF
MOVL Reax,Resi ;# Move to correct reg for cmpsb
cld ;# Make sure we increment
CMPL Reax,Reax ;# Set the Zero bit
;# Compare the strings. Because the length field is at the beginning
;# it does not matter if the value we loaded into %Recx is wrong
IFDEF WINDOWS
repe cmpsb
ELSE
repe
cmpsb
ENDIF
MOVL Reax,Resi ;# Make these valid
MOVL Reax,Recx
MOVL Reax,Redi
jz RetFalse
jmp RetTrue
CALLMACRO RegMask teststrneq,(M_Reax OR M_Recx OR M_Redi OR M_Resi)
;# General test routine. Returns with the condition codes set
;# appropriately.
teststr:
TESTL CONST TAG,Reax ;# Is arg1 short
jz tststr1
TESTL CONST TAG,Rebx ;# Yes: is arg2 also short?
jz tststr0a
;# Both are short - just compare the characters
CMPL Rebx,Reax
ret
tststr0a:
MOVL CONST 1,Redi ;# Is arg2 the null string ?
CMPL [Rebx],Redi
jg tststr4 ;# Return with "gtr" set if it is
SHRL CONST TAGSHIFT,Reax
IFNDEF HOSTARCHITECTURE_X86_64
CMPB 4[Rebx],R_al
ELSE
CMPB 8[Rebx],R_al
ENDIF
jne tststr4 ;# If they're not equal that's the result
CMPL CONST 256,Reax ;# But if they're equal set "less" because A is less than B
jmp tststr4
tststr1: ;# arg2 is not short. Is arg1 ?
TESTL CONST TAG,Rebx
jz tststr2
MOVL [Reax],Redi ;# Is arg1 the null string
CMPL CONST 1,Redi
jl tststr4 ;# Return with "less" set if it is
SHRL CONST TAGSHIFT,Rebx
IFNDEF HOSTARCHITECTURE_X86_64
MOVB 4[Reax],R_cl
ELSE
MOVB 8[Reax],R_cl
ENDIF
CMPB R_bl,R_cl
jne tststr4 ;# If they're not equal that's the result
CMPL CONST 0,Redi ;# But if they're equal set "greater" because A is greater than B
jmp tststr4
tststr2:
MOVL [Reax],Redi ;# Get length.
MOVL [Rebx],Recx ;#
CMPL Recx,Redi ;# Find shorter length
jge tststr3
MOVL Redi,Recx
tststr3:
IFNDEF HOSTARCHITECTURE_X86_64
LEAL 4[Reax],Resi ;# Load ptrs for cmpsb
LEAL 4[Rebx],Redi
ELSE
LEAL 8[Reax],Resi ;# Load ptrs for cmpsb
LEAL 8[Rebx],Redi
ENDIF
cld ;# Make sure we increment
CMPL Reax,Reax ;# Set the Zero bit
IFDEF WINDOWS
repe cmpsb ;# Compare while equal and Recx > 0
ELSE
repe
IFNDEF HOSTARCHITECTURE_X86_64
cmpsb ;# Compare while equal and %ecx > 0
ELSE
cmpsb ;# Compare while equal and %rcx > 0
ENDIF
ENDIF
jnz tststr4
;# Strings are equal as far as the shorter of the two. Have to compare
;# the lengths.
MOVL [Reax],Redi
CMPL [Rebx],Redi
tststr4:
MOVL CONST 1,Reax ;# Clobber these
MOVL Reax,Rebx
MOVL Reax,Recx
MOVL Reax,Resi
MOVL Reax,Redi
ret
;# These functions compare strings for lexical ordering. This version, at
;# any rate, assumes that they are UNSIGNED bytes.
CALLMACRO INLINE_ROUTINE str_compare
call teststr
ja RetTrue ;# Return TAGGED(1) if it's greater
je RetFalse ;# Return TAGGED(0) if it's equal
MOVL CONST MINUS1,Reax ;# Return TAGGED(-1) if it's less.
ret
CALLMACRO RegMask str_compare,(M_Reax OR M_Recx OR M_Redi OR M_Resi)
CALLMACRO INLINE_ROUTINE teststrgeq
call teststr
jnb RetTrue
jmp RetFalse
CALLMACRO RegMask teststrgeq,(M_Reax OR M_Recx OR M_Redi OR M_Resi)
CALLMACRO INLINE_ROUTINE teststrleq
call teststr
jna RetTrue
jmp RetFalse
CALLMACRO RegMask teststrleq,(M_Reax OR M_Recx OR M_Redi OR M_Resi)
CALLMACRO INLINE_ROUTINE teststrlss
call teststr
jb RetTrue
jmp RetFalse
CALLMACRO RegMask teststrlss,(M_Reax OR M_Recx OR M_Redi OR M_Resi)
CALLMACRO INLINE_ROUTINE teststrgtr
call teststr
ja RetTrue
jmp RetFalse
CALLMACRO RegMask teststrgtr,(M_Reax OR M_Recx OR M_Redi OR M_Resi)
CALLMACRO INLINE_ROUTINE is_big_endian
jmp RetFalse ;# I386/486 is little-endian
CALLMACRO RegMask is_big_endian,(M_Reax)
CALLMACRO INLINE_ROUTINE bytes_per_word
IFNDEF HOSTARCHITECTURE_X86_64
MOVL CONST TAGGED(4),Reax ;# 4 bytes per word
ELSE
MOVL CONST TAGGED(8),Reax ;# 8 bytes per word
ENDIF
ret
CALLMACRO RegMask bytes_per_word,(M_Reax)
;# Word functions. These are all unsigned and do not raise Overflow
CALLMACRO INLINE_ROUTINE mul_word
SHRL CONST TAGSHIFT,Rebx ;# Untag the multiplier
SUBL CONST TAG,Reax ;# Remove the tag from the multiplicand
MULL Rebx ;# unsigned multiplication
ADDL CONST TAG,Reax ;# Add back the tag, but don`t shift
MOVL Reax,Redx ;# clobber this which has the high-end result
MOVL Reax,Rebx ;# and the other bad result.
ret
CALLMACRO RegMask mul_word,(M_Reax OR M_Rebx OR M_Redx)
CALLMACRO INLINE_ROUTINE plus_word
LEAL (-TAG)[Reax+Rebx],Reax ;# Add the values and subtract a tag
ret
CALLMACRO RegMask plus_word,(M_Reax)
CALLMACRO INLINE_ROUTINE minus_word
SUBL Rebx,Reax
ADDL CONST TAG,Reax ;# Put back the tag
ret
CALLMACRO RegMask minus_word,(M_Reax)
CALLMACRO INLINE_ROUTINE div_word
SHRL CONST TAGSHIFT,Rebx
jz raise_div_ex
MOVL Reax,Redi
SHRL CONST TAGSHIFT,Reax
MOVL CONST 0,Redx
div Rebx
CALLMACRO MAKETAGGED Reax,Reax
MOVL Reax,Redx
MOVL Reax,Rebx
ret
CALLMACRO RegMask div_word,(M_Reax OR M_Rebx OR M_Redx)
CALLMACRO INLINE_ROUTINE mod_word
SHRL CONST TAGSHIFT,Rebx
jz raise_div_ex
MOVL Reax,Redi
SHRL CONST TAGSHIFT,Reax
MOVL CONST 0,Redx
div Rebx
CALLMACRO MAKETAGGED Redx,Reax
MOVL Reax,Redx
MOVL Reax,Rebx
ret
CALLMACRO RegMask mod_word,(M_Reax OR M_Rebx OR M_Redx)
raise_div_ex:
IFDEF WINDOWS
jmp dword ptr [RaiseDiv+Rebp]
ELSE
jmp *RaiseDiv[Rebp]
ENDIF
CALLMACRO INLINE_ROUTINE word_eq
CMPL Rebx,Reax
jz RetTrue ;# True if they are equal.
jmp RetFalse
CALLMACRO RegMask word_eq,(M_Reax)
CALLMACRO INLINE_ROUTINE word_neq
CMPL Rebx,Reax
jz RetFalse
jmp RetTrue
CALLMACRO RegMask word_neq,(M_Reax)
CALLMACRO INLINE_ROUTINE word_geq
CMPL Rebx,Reax
jnb RetTrue
jmp RetFalse
CALLMACRO RegMask word_geq,(M_Reax)
CALLMACRO INLINE_ROUTINE word_leq
CMPL Rebx,Reax
jna RetTrue
jmp RetFalse
CALLMACRO RegMask word_leq,(M_Reax)
CALLMACRO INLINE_ROUTINE word_gtr
CMPL Rebx,Reax
ja RetTrue
jmp RetFalse
CALLMACRO RegMask word_gtr,(M_Reax)
CALLMACRO INLINE_ROUTINE word_lss
CMPL Rebx,Reax
jb RetTrue
jmp RetFalse
CALLMACRO RegMask word_lss,(M_Reax)
;# Atomically increment the value at the address of the arg and return the
;# updated value. Since the xadd instruction returns the original value
;# we have to increment it.
CALLMACRO INLINE_ROUTINE atomic_increment
MOVL CONST 2,Rebx
LOCKXADDL Rebx,[Reax]
ADDL CONST 2,Rebx
MOVL Rebx,Reax
ret
CALLMACRO RegMask atomic_incr,(M_Reax OR M_Rebx)
;# Atomically decrement the value at the address of the arg and return the
;# updated value. Since the xadd instruction returns the original value
;# we have to decrement it.
CALLMACRO INLINE_ROUTINE atomic_decrement
MOVL CONST -2,Rebx
LOCKXADDL Rebx,[Reax]
MOVL Rebx,Reax
SUBL CONST 2,Reax
ret
CALLMACRO RegMask atomic_decr,(M_Reax OR M_Rebx)
;# Return the thread id object for the current thread
CALLMACRO INLINE_ROUTINE thread_self
MOVL ThreadId[Rebp],Reax
ret
CALLMACRO RegMask thread_self,(M_Reax)
;# FLOATING POINT
;# If we have insufficient space for the result we call in to
;# main RTS to do the work.
mem_for_real:
;# Allocate memory for the result.
IFNDEF HOSTARCHITECTURE_X86_64
MOVL LocalMpointer[Rebp],Recx
SUBL CONST 12,Recx ;# Length word (4 bytes) + 8 bytes
ELSE
MOVL R15,Recx
SUBL CONST 16,Recx ;# Length word (4 bytes) + 8 bytes
ENDIF
IFDEF TEST_ALLOC
;# Test case - this will always force a call into RTS.
CMPL LocalMpointer[Rebp],Recx
ELSE
CMPL LocalMbottom[Rebp],Recx
ENDIF
jb mem_for_real1
IFNDEF HOSTARCHITECTURE_X86_64
MOVL Recx,LocalMpointer[Rebp] ;# Updated allocation pointer
IFDEF WINDOWS
mov dword ptr (-4)[Recx],01000002h ;# Length word:
ELSE
MOVL CONST 0x01000002,(-4)[Recx] ;# Two words plus tag
ENDIF
ELSE
MOVL Recx,R15 ;# Updated allocation pointer
MOVL CONST 1,(-8)[Recx] ;# One word
MOVB CONST B_bytes,(-1)[Recx] ;# Set the byte flag.
ENDIF
ret
mem_for_real1: ;# Not enough store: clobber bad value in ecx.
MOVL CONST 1,Recx
ret
CALLMACRO INLINE_ROUTINE real_add
call mem_for_real
jb real_add_1 ;# Not enough space - call RTS.
;# Do the operation and put the result in the allocated
;# space.
IFDEF WINDOWS
FLD qword ptr [Reax]
FADD qword ptr [Rebx]
FSTP qword ptr [Recx]
ELSE
FLDL [Reax]
FADDL [Rebx]
FSTPL [Recx]
ENDIF
MOVL Recx,Reax
ret
real_add_1:
CALLMACRO CALL_IO POLY_SYS_Add_real
CALLMACRO RegMask real_add,(M_Reax OR M_Recx OR M_Redx OR Mask_all)
CALLMACRO INLINE_ROUTINE real_sub
call mem_for_real
jb real_sub_1 ;# Not enough space - call RTS.
;# Do the operation and put the result in the allocated
;# space.
IFDEF WINDOWS
FLD qword ptr [Reax]
FSUB qword ptr [Rebx]
FSTP qword ptr [Recx]
ELSE
FLDL [Reax]
FSUBL [Rebx]
FSTPL [Recx]
ENDIF
MOVL Recx,Reax
ret
real_sub_1:
CALLMACRO CALL_IO POLY_SYS_Sub_real
CALLMACRO RegMask real_sub,(M_Reax OR M_Recx OR M_Redx OR Mask_all)
CALLMACRO INLINE_ROUTINE real_mul
call mem_for_real
jb real_mul_1 ;# Not enough space - call RTS.
;# Do the operation and put the result in the allocated
;# space.
IFDEF WINDOWS
FLD qword ptr [Reax]
FMUL qword ptr [Rebx]
FSTP qword ptr [Recx]
ELSE
FLDL [Reax]
FMULL [Rebx]
FSTPL [Recx]
ENDIF
MOVL Recx,Reax
ret
real_mul_1:
CALLMACRO CALL_IO POLY_SYS_Mul_real
CALLMACRO RegMask real_mul,(M_Reax OR M_Recx OR M_Redx OR Mask_all)
CALLMACRO INLINE_ROUTINE real_div
call mem_for_real
jb real_div_1 ;# Not enough space - call RTS.
;# Do the operation and put the result in the allocated
;# space.
IFDEF WINDOWS
FLD qword ptr [Reax]
FDIV qword ptr [Rebx]
FSTP qword ptr [Recx]
ELSE
FLDL [Reax]
FDIVL [Rebx]
FSTPL [Recx]
ENDIF
MOVL Recx,Reax
ret
real_div_1:
CALLMACRO CALL_IO POLY_SYS_Div_real
CALLMACRO RegMask real_div,(M_Reax OR M_Recx OR M_Redx OR Mask_all)
CALLMACRO INLINE_ROUTINE real_neg
call mem_for_real
jb real_neg_1 ;# Not enough space - call RTS.
;# Do the operation and put the result in the allocated
;# space.
;# N.B. Real.~ X is not the same as 0.0 - X. Real.~ 0.0 is ~0.0;
IFDEF WINDOWS
FLD qword ptr [Reax]
FCHS
FSTP qword ptr [Recx]
ELSE
FLDL [Reax]
FCHS
FSTPL [Recx]
ENDIF
MOVL Recx,Reax
ret
real_neg_1:
CALLMACRO CALL_IO POLY_SYS_Neg_real
CALLMACRO RegMask real_neg,(M_Reax OR M_Recx OR M_Redx OR Mask_all)
CALLMACRO INLINE_ROUTINE real_eq
IFDEF WINDOWS
FLD qword ptr [Reax]
FCOMP qword ptr [Rebx]
ELSE
FLDL [Reax]
FCOMPL [Rebx]
ENDIF
FNSTSW R_ax
;# Not all 64-bit processors support SAHF.
;# The result is true if the zero flag is set and parity flag clear.
ANDL CONST 17408,Reax ;# 0x4400
CMPL CONST 16384,Reax ;# 0x4000
je RetTrue
jmp RetFalse
CALLMACRO RegMask real_eq,(M_Reax)
CALLMACRO INLINE_ROUTINE real_neq
IFDEF WINDOWS
FLD qword ptr [Reax]
FCOMP qword ptr [Rebx]
ELSE
FLDL [Reax]
FCOMPL [Rebx]
ENDIF
FNSTSW R_ax
ANDL CONST 17408,Reax ;# 0x4400
CMPL CONST 16384,Reax ;# 0x4000
jne RetTrue
jmp RetFalse
CALLMACRO RegMask real_neq,(M_Reax)
CALLMACRO INLINE_ROUTINE real_lss
;# Compare Rebx > Reax
IFDEF WINDOWS
FLD qword ptr [Rebx]
FCOMP qword ptr [Reax]
ELSE
FLDL [Rebx]
FCOMPL [Reax]
ENDIF
FNSTSW R_ax
;# True if the carry flag (C0), zero flag (C3) and parity (C2) are all clear
ANDL CONST 17664,Reax ;# 0x4500
je RetTrue
jmp RetFalse
CALLMACRO RegMask real_lss,(M_Reax)
CALLMACRO INLINE_ROUTINE real_gtr
IFDEF WINDOWS
FLD qword ptr [Reax]
FCOMP qword ptr [Rebx]
ELSE
FLDL [Reax]
FCOMPL [Rebx]
ENDIF
FNSTSW R_ax
;# True if the carry flag (C0), zero flag (C3) and parity (C2) are all clear
ANDL CONST 17664,Reax ;# 0x4500
je RetTrue
jmp RetFalse
CALLMACRO RegMask real_gtr,(M_Reax)
CALLMACRO INLINE_ROUTINE real_leq
;# Compare Rebx > Reax
IFDEF WINDOWS
FLD qword ptr [Rebx]
FCOMP qword ptr [Reax]
ELSE
FLDL [Rebx]
FCOMPL [Reax]
ENDIF
FNSTSW R_ax
;# True if the carry flag (C0) and parity (C2) are both clear
ANDL CONST 1280,Reax ;# 0x500
je RetTrue
jmp RetFalse
CALLMACRO RegMask real_leq,(M_Reax)
CALLMACRO INLINE_ROUTINE real_geq
IFDEF WINDOWS
FLD qword ptr [Reax]
FCOMP qword ptr [Rebx]
ELSE
FLDL [Reax]
FCOMPL [Rebx]
ENDIF
FNSTSW R_ax
;# True if the carry flag (C0) and parity (C2) are both clear
ANDL CONST 1280,Reax ;# 0x500
je RetTrue
jmp RetFalse
CALLMACRO RegMask real_geq,(M_Reax)
CALLMACRO INLINE_ROUTINE real_from_int
call mem_for_real
jb real_float_1 ;# Not enough space - call RTS.
SARL CONST TAGSHIFT,Reax ;# Untag the value
MOVL Reax,RealTemp[Rebp] ;# Save it in a temporary
IFDEF WINDOWS
FILD dword ptr RealTemp[Rebp]
FSTP qword ptr [Recx]
ELSE
IFDEF HOSTARCHITECTURE_X86_64
FILDQ RealTemp[Rebp]
ELSE
FILDL RealTemp[Rebp]
ENDIF
FSTPL [Recx]
ENDIF
MOVL Recx,Reax
ret
real_float_1:
CALLMACRO CALL_IO POLY_SYS_int_to_real
CALLMACRO RegMask real_from_int,(M_Reax OR M_Recx OR M_Redx OR Mask_all)
;# Register mask vector. - extern int registerMaskVector[];
;# Each entry in this vector is a set of the registers modified
;# by the function. It is an untagged bitmap with the registers
;# encoded in the same way as the
IFDEF WINDOWS
align 4
PUBLIC registerMaskVector
registerMaskVector dd Mask_all ;# 0 is unused
ELSE
IFNDEF HOSTARCHITECTURE_X86_64
GLOBAL EXTNAME(registerMaskVector)
ELSE
.global EXTNAME(registerMaskVector)
ENDIF
EXTNAME(registerMaskVector):
#define dd .long
dd Mask_all ;# 0 is unused
ENDIF
dd Mask_all ;# 1
dd Mask_all ;# 2
dd Mask_all ;# 3 is unused
dd Mask_all ;# 4 is unused
dd Mask_all ;# 5 is unused
dd Mask_all ;# 6
dd Mask_all ;# 7 is unused
dd Mask_all ;# 8 is unused
dd Mask_all ;# 9
dd Mask_all ;# 10 is unused
dd Mask_alloc_store ;# 11
dd Mask_all ;# 12
dd Mask_all ;# return = 13
dd Mask_all ;# raisex = 14
dd Mask_get_length ;# 15
dd Mask_all ;# 16 is unused
dd Mask_all ;# 17
dd Mask_all ;# 18 is no longer used
dd Mask_all ;# 19 is no longer used
dd Mask_all ;# 20 is no longer used
dd Mask_all ;# 21 is unused
dd Mask_all ;# 22 is unused
dd Mask_str_compare ;# 23
dd Mask_teststreq ;# 24
dd Mask_teststrneq ;# 25
dd Mask_teststrgtr ;# 26
dd Mask_teststrlss ;# 27
dd Mask_teststrgeq ;# 28
dd Mask_teststrleq ;# 29
dd Mask_all ;# 30
dd Mask_all ;# 31 is no longer used
dd Mask_all ;# 32 is no longer used
dd Mask_all ;# 33 is no longer used
dd Mask_all ;# 34 is no longer used
dd Mask_all ;# 35 is no longer used
dd Mask_all ;# 36 is no longer used
dd Mask_all ;# 37 is unused
dd Mask_all ;# 38 is unused
dd Mask_all ;# 39 is unused
dd Mask_all ;# 40
dd Mask_all ;# 41 is unused
dd Mask_all ;# 42
dd Mask_all ;# 43
dd Mask_all ;# 44 is no longer used
dd Mask_all ;# 45 is no longer used
dd Mask_all ;# 46
dd Mask_lockseg ;# 47
dd Mask_all ;# nullorzero = 48
dd Mask_all ;# 49 is no longer used
dd Mask_all ;# 50 is no longer used
dd Mask_all ;# 51
dd Mask_all ;# 52
dd Mask_all ;# 53 is unused
dd Mask_all ;# 54 is unused
dd Mask_all ;# version_number = 55
dd Mask_all ;# 56 is unused
dd Mask_all ;# 57 is unused
dd Mask_all ;# 58 is unused
dd Mask_all ;# 59 is unused
dd Mask_all ;# 60 is unused
dd Mask_all ;# 61
dd Mask_all ;# 62
dd Mask_all ;# 63 is unused
dd Mask_all ;# 64 is unused
dd Mask_all ;# 65 is unused
dd Mask_all ;# 66 is unused
dd Mask_all ;# 67 is unused
dd Mask_all ;# 68 is unused
dd Mask_all ;# 69 is unused
dd Mask_atomic_incr ;# 70
dd Mask_atomic_decr ;# 71
dd Mask_thread_self ;# 72
dd Mask_all ;# 73
dd Mask_all ;# 74 is unused
dd Mask_all ;# 75 is unused
dd Mask_all ;# 76 is unused
dd Mask_all ;# 77 is unused
dd Mask_all ;# 78 is unused
dd Mask_all ;# 79 is unused
dd Mask_all ;# Mask_version_number_1 = 80
dd Mask_all ;# 81 is now unused
dd Mask_all ;# 82 is now unused
dd Mask_all ;# 83 is now unused
dd Mask_all ;# 84
dd Mask_all ;# 85 is now unused
dd Mask_all ;# 86 is now unused
dd Mask_all ;# 87 is now unused
dd Mask_all ;# 88
dd Mask_all ;# 89 is unused
dd Mask_all ;# 90 is unused
dd Mask_all ;# 91 is unused
dd Mask_all ;# 92
dd Mask_all ;# 93
dd Mask_all ;# 94
dd Mask_all ;# 95 is unused
dd Mask_all ;# 96 is unused
dd Mask_all ;# 97 is unused
dd Mask_all ;# 98
dd Mask_all ;# 99
dd Mask_all ;# 100
dd Mask_all ;# 101 is unused
dd Mask_all ;# 102 is unused
dd Mask_all ;# 103
dd Mask_all ;# 104 is unused
dd Mask_is_short ;# 105
dd Mask_aplus ;# 106
dd Mask_aminus ;# 107
dd Mask_amul ;# 108
dd Mask_adiv ;# 109
dd Mask_amod ;# 110
dd Mask_aneg ;# 111
dd Mask_xora ;# 112
dd Mask_equala ;# 113
dd Mask_ora ;# 114
dd Mask_anda ;# 115
dd Mask_all ;# version_number_3 = 116
dd Mask_all ;# 117
dd Mask_real_geq ;# 118
dd Mask_real_leq ;# 119
dd Mask_real_gtr ;# 120
dd Mask_real_lss ;# 121
dd Mask_real_eq ;# 122
dd Mask_real_neq ;# 123
dd Mask_all ;# 124
dd Mask_real_add ;# 125
dd Mask_real_sub ;# 126
dd Mask_real_mul ;# 127
dd Mask_real_div ;# 128
dd Mask_all ;# 129 is unused
dd Mask_real_neg ;# 130
dd Mask_all ;# 131 is unused
dd Mask_all ;# 132
dd Mask_all ;# 133
dd Mask_all ;# 134
dd Mask_real_from_int ;# 135
dd Mask_all ;# 136
dd Mask_all ;# 137
dd Mask_all ;# 138
dd Mask_all ;# 139
dd Mask_all ;# 140
dd Mask_all ;# 141
dd Mask_all ;# 142 is no longer used
dd Mask_all ;# 143 is unused
dd Mask_all ;# 144 is unused
dd Mask_all ;# 145 is unused
dd Mask_all ;# 146 is unused
dd Mask_all ;# 147 is unused
dd Mask_all ;# stdin = 148
dd Mask_all ;# stdout= 149
dd Mask_all ;# 150
dd Mask_set_string_length ;# 151
dd Mask_get_first_long_word ;# 152
dd Mask_all ;# 153 is unused
dd Mask_all ;# 154 is unused
dd Mask_all ;# 155 is unused
dd Mask_all ;# 156 is unused
dd Mask_all ;# 157 is unused
dd Mask_all ;# 158 is unused
dd Mask_all ;# 159 is unused
dd Mask_all ;# 160 is unused
dd Mask_all ;# 161 is unused
dd Mask_all ;# 162 is unused
dd Mask_all ;# 163 is unused
dd Mask_all ;# 164 is unused
dd Mask_all ;# 165 is unused
dd Mask_all ;# 166 is unused
dd Mask_all ;# 167 is unused
dd Mask_all ;# 168 is unused
dd Mask_all ;# 169 is unused
dd Mask_all ;# 170 is unused
dd Mask_all ;# 171 is unused
dd Mask_all ;# 172 is unused
dd Mask_all ;# 173 is unused
dd Mask_all ;# 174 is unused
dd Mask_all ;# 175 is unused
dd Mask_all ;# 176 is unused
dd Mask_all ;# 177 is unused
dd Mask_all ;# 178 is unused
dd Mask_all ;# 179 is unused
dd Mask_all ;# 180 is unused
dd Mask_all ;# 181 is unused
dd Mask_all ;# 182 is unused
dd Mask_all ;# 183 is unused
dd Mask_all ;# 184 is unused
dd Mask_all ;# 185 is unused
dd Mask_all ;# 186 is unused
dd Mask_all ;# 187 is unused
dd Mask_all ;# 188 is unused
dd Mask_all ;# 189
dd Mask_all ;# 190 is unused
dd Mask_all ;# 191 is no longer used
dd Mask_all ;# 192 is unused
dd Mask_all ;# 193 is unused
dd Mask_all ;# 194
dd Mask_move_words ;# 195
dd Mask_shift_right_arith_word ;# 196
dd Mask_int_to_word ;# 197
dd Mask_move_bytes ;# 198
dd Mask_all ;# 199 now unused
dd Mask_all ;# 200
dd Mask_all ;# 201
dd Mask_all ;# stderr = 202
dd Mask_all ;# 203 now unused
dd Mask_all ;# 204
dd Mask_all ;# 205
dd Mask_all ;# 206
dd Mask_all ;# 207 is unused
dd Mask_all ;# 208 now unused
dd Mask_all ;# 209
dd Mask_all ;# 210 is unused
dd Mask_all ;# 211 is unused
dd Mask_all ;# 212 is unused
dd Mask_is_big_endian ;# 213
dd Mask_bytes_per_word ;# 214
dd Mask_offset_address ;# 215
dd Mask_shift_right_word ;# 216
dd Mask_word_neq ;# 217
dd Mask_not_bool ;# 218
dd Mask_all ;# 219 is unused
dd Mask_all ;# 220 is unused
dd Mask_all ;# 221 is unused
dd Mask_all ;# 222 is unused
dd Mask_string_length ;# 223
dd Mask_all ;# 224 is unused
dd Mask_all ;# 225 is unused
dd Mask_all ;# 226 is unused
dd Mask_all ;# 227 is unused
dd Mask_all ;# 228 is unused
dd Mask_int_eq ;# 229
dd Mask_int_neq ;# 230
dd Mask_int_geq ;# 231
dd Mask_int_leq ;# 232
dd Mask_int_gtr ;# 233
dd Mask_int_lss ;# 234
dd Mask_all ;# 235
dd Mask_all ;# 236 is unused
dd Mask_all ;# 237 is unused
dd Mask_mul_word ;# 238
dd Mask_plus_word ;# 239
dd Mask_minus_word ;# 240
dd Mask_div_word ;# 241
dd Mask_or_word ;# 242
dd Mask_and_word ;# 243
dd Mask_xor_word ;# 244
dd Mask_shift_left_word ;# 245
dd Mask_mod_word ;# 246
dd Mask_word_geq ;# 247
dd Mask_word_leq ;# 248
dd Mask_word_gtr ;# 249
dd Mask_word_lss ;# 250
dd Mask_word_eq ;# 251
dd Mask_load_byte ;# 252
dd Mask_load_word ;# 253
dd Mask_assign_byte ;# 254
dd Mask_assign_word ;# 255
IFDEF HOSTARCHITECTURE_X86_64
ENDIF
END
|