1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
|
(*
Title: Standard Basis Library: Real Signature and structure.
Author: David Matthews
Copyright David Matthews 2000, 2005, 2008
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
structure LargeReal = struct type real = real end;
signature REAL =
sig
type real
structure Math : MATH
where type real = real
val radix : int
val precision : int
val maxFinite : real
val minPos : real
val minNormalPos : real
val posInf : real
val negInf : real
val + : (real * real) -> real
val - : (real * real) -> real
val * : (real * real) -> real
val / : (real * real) -> real
val *+ : real * real * real -> real
val *- : real * real * real -> real
val ~ : real -> real
val abs : real -> real
val min : (real * real) -> real
val max : (real * real) -> real
val sign : real -> int
val signBit : real -> bool
val sameSign : (real * real) -> bool
val copySign : (real * real) -> real
val compare : (real * real) -> General.order
val compareReal : (real * real) -> IEEEReal.real_order
val < : (real * real) -> bool
val <= : (real * real) -> bool
val > : (real * real) -> bool
val >= : (real * real) -> bool
val == : (real * real) -> bool
val != : (real * real) -> bool
val ?= : (real * real) -> bool
val unordered : (real * real) -> bool
val isFinite : real -> bool
val isNan : real -> bool
val isNormal : real -> bool
val class : real -> IEEEReal.float_class
val fmt : StringCvt.realfmt -> real -> string
val toString : real -> string
val fromString : string -> real option
val scan : (char, 'a) StringCvt.reader -> (real, 'a) StringCvt.reader
val toManExp : real -> {man : real, exp : int}
val fromManExp : {man : real, exp : int} -> real
val split : real -> {whole : real, frac : real}
val realMod : real -> real
val rem : (real * real) -> real
val nextAfter : (real * real) -> real
val checkFloat : real ->real
val realFloor : real -> real
val realCeil : real -> real
val realTrunc : real -> real
val realRound : real -> real
val floor : real -> Int.int
val ceil : real -> Int.int
val trunc : real -> Int.int
val round : real -> Int.int
val toInt : IEEEReal.rounding_mode -> real -> int
val toLargeInt : IEEEReal.rounding_mode -> real -> LargeInt.int
val fromInt : int -> real
val fromLargeInt : LargeInt.int -> real
val toLarge : real -> LargeReal.real
val fromLarge : IEEEReal.rounding_mode -> LargeReal.real -> real
val toDecimal : real -> IEEEReal.decimal_approx
val fromDecimal : IEEEReal.decimal_approx -> real option
end;
structure Real: REAL =
struct
open RuntimeCalls IEEEReal
(* This is used for newly added functions in the Standard Basis. *)
(* We want to get the io function once for each function, not once
per call, but that's complicated in ML97. *)
local
val doReal : int*real->real =
RunCall.run_call2 POLY_SYS_Real_Dispatch
in
fun callReal n x = doReal(n, x)
end
local
val doReal : int*(real*real)->real =
RunCall.run_call2 POLY_SYS_Real_Dispatch
in
fun callRealReal n p = doReal(n, p)
end
local
val doReal : int*real->bool =
RunCall.run_call2 POLY_SYS_Real_Dispatch
in
fun callRealToBool n x = doReal(n, x)
end
local
val doReal : int*real->int =
RunCall.run_call2 POLY_SYS_Real_Dispatch
in
fun callRealToInt n x = doReal(n, x)
end
type real = real (* Pick up from globals. *)
structure Math: MATH =
struct
type real = real (* Pick up from globals. *)
(* These are provided directly in the RTS. *)
(* These are the old functions which had separate entries in the
interface vector. *)
val sqrt: real -> real = RunCall.run_call1 POLY_SYS_sqrt_real;
val sin: real -> real = RunCall.run_call1 POLY_SYS_sin_real;
val cos: real -> real = RunCall.run_call1 POLY_SYS_cos_real;
val atan: real -> real = RunCall.run_call1 POLY_SYS_arctan_real;
val exp: real -> real = RunCall.run_call1 POLY_SYS_exp_real;
val ln: real -> real = RunCall.run_call1 POLY_SYS_ln_real;
(* Functions added for ML 97. These use the Real_dispatch entry. *)
(* It may well be possible to derive these from the old ML90 functions
but it's almost certainly quicker to implement them in the RTS. *)
val tan = callReal 0
val asin = callReal 1
val acos = callReal 2
val atan2 = callRealReal 3
val pow = callRealReal 4
val log10 = callReal 5
val sinh = callReal 6
val cosh = callReal 7
val tanh = callReal 8
(* Derived values. *)
val e = exp 1.0
val pi = 4.0 * atan 1.0
end;
infix 4 == != ?=;
val op == : (real * real) -> bool = RunCall.run_call2 POLY_SYS_Real_eq;
val op != : (real * real) -> bool = RunCall.run_call2 POLY_SYS_Real_neq;
val radix : int = callRealToInt 11 0.0
val precision : int = callRealToInt 12 0.0
val maxFinite : real = callReal 13 0.0
val minNormalPos : real = callReal 14 0.0
val posInf : real = 1.0/0.0;
val negInf : real = ~1.0/0.0;
(* We only implement this sort of real. *)
fun toLarge (x: real) : (*LargeReal.*)real =x
fun fromLarge (round : IEEEReal.rounding_mode) (x: (*LargeReal.*)real): real = x
val isFinite : real -> bool = callRealToBool 15
val isNan : real -> bool = callRealToBool 16
val signBit : real -> bool = callRealToBool 17
val copySign : (real * real) -> real = callRealReal 18
(* If we assume that all functions produce normalised results where
possible, the only subnormal values will be those smaller than
minNormalPos. *)
fun isNormal x = isFinite x andalso abs x >= minNormalPos
fun class x =
if isFinite x then if x == 0.0 then ZERO
else if abs x >= minNormalPos then NORMAL
else SUBNORMAL
else if isNan x then NAN
else (* not finite and not Nan *) INF
fun sign x =
if isNan x then raise General.Domain
else if x == 0.0 then 0 else if x < 0.0 then ~1 else 1
fun sameSign (x, y) = signBit x = signBit y
fun unordered (x, y) = isNan x orelse isNan y
(* Returns the minimum. In the case where one is a NaN it returns the
other. In that case the comparison will be false. *)
fun min (a: real, b: real): real = if a < b orelse isNan b then a else b
(* Similarly for max. *)
fun max (a: real, b: real): real = if a > b orelse isNan b then a else b
fun checkFloat x =
if isFinite x then x
else if isNan x then raise General.Div else raise General.Overflow
local
infix 7 rem quot
(* The RTS float and floor operations only work with SHORT integers.
Since we may be dealing with arbitrary precision values we need to
restrict the range of arguments so that they will work.
. We use 32768 since that is always a short representation on all
architectures (in fact 2^28 is probably all right). We could
do better and find the largest power of two (because that's likely to
be fast to multiply by) which is a short value. *)
val maxShortInt = 32768
val floatShort: int -> real = RunCall.run_call1 POLY_SYS_int_to_real;
val maxShortIntAsReal = floatShort maxShortInt
val floorShort: real -> int = RunCall.run_call1 POLY_SYS_real_to_int;
val isShort : int -> bool = RunCall.run_call1 POLY_SYS_is_short
val op quot = Int.quot and op rem = Int.rem
in
(* TODO: I think there may be the possibility of errors due to
rounding when converting large integers to real. *)
fun fromInt n =
if isShort n then floatShort n
else (maxShortIntAsReal * fromInt (n quot maxShortInt) +
floatShort (n rem maxShortInt))
val fromLargeInt = fromInt
val realFloor = callReal 19
and realCeil = callReal 20
and realTrunc = callReal 21
and realRound = callReal 22
fun floor x =
(* Returns the largest integer <= x. *)
let
fun floor' (x: real) : int =
if abs x <= maxShortIntAsReal
then floorShort x
else
let
(* Return the largest multiple of maxShortInt <= x *)
val d: int = maxShortInt * floor' (x / maxShortIntAsReal);
in
(* Add in the largest integer <= the remainder. *)
d + floorShort (x - fromInt d)
end;
in
if isNan x then raise General.Domain
else if not (isFinite x) then raise General.Overflow
else floor' x
end
fun ceil x = floor(realCeil x)
(* Returns the smallest integer >= x. *)
fun trunc x = floor(realTrunc x)
(* Truncate towards zero. *)
fun round x = floor(realRound x)
(* Return the nearest integer, returning an even value if equidistant. *)
fun toInt IEEEReal.TO_NEGINF r = floor r
| toInt IEEEReal.TO_POSINF r = ceil r
| toInt IEEEReal.TO_ZERO r = trunc r
| toInt IEEEReal.TO_NEAREST r = round r
val toLargeInt = toInt
end;
val radixAsReal (* Not exported *) = fromInt radix
val epsilon (* Not exported *) = Math.pow(radixAsReal, fromInt (Int.-(1, precision)))
val minPos : real = minNormalPos*epsilon;
local
val toMantissa : real->real = callReal 24
and toExponent : real->int = callRealToInt 25
val doReal : int*(real*int)->real =
RunCall.run_call2 POLY_SYS_Real_Dispatch
fun fromManAndExp (ri: real*int): real = doReal(23, ri)
in
fun toManExp r =
if not (isFinite r) orelse r == 0.0
(* Nan, infinities and +/-0 all return r in the mantissa.
We include 0 to preserve its sign. *)
then {man=r, exp=0}
else {man=toMantissa r, exp=toExponent r}
fun fromManExp {man, exp} =
if not (isFinite man) orelse man == 0.0
(* Nan, infinities and +/-0 in the mantissa all return
their argument. *)
then man
else fromManAndExp(man, exp)
end
local
val realConv: string->real = RunCall.run_call1 POLY_SYS_conv_real
val posNan = abs(0.0 / 0.0)
val negNan = ~posNan
in
fun fromDecimal { class = INF, sign=true, ...} = SOME negInf
| fromDecimal { class = INF, sign=false, ...} = SOME posInf
| fromDecimal { class = ZERO, sign=true, ...} = SOME ~0.0
| fromDecimal { class = ZERO, sign=false, ...} = SOME 0.0
(* Generate signed Nans ignoring the digits and mantissa. There
was code here to set the mantissa but there's no reference to
that in the current version of the Basis library. *)
| fromDecimal { class = NAN, sign=true, ... } = SOME negNan
| fromDecimal { class = NAN, sign=false, ... } = SOME posNan
| fromDecimal { class = _ (* NORMAL or SUBNORMAL *), sign, digits, exp} =
(let
fun toChar x =
if x < 0 orelse x > 9 then raise General.Domain
else Char.chr (x + Char.ord #"0")
(* Turn the number into a string. *)
val str = "0." ^ String.implode(List.map toChar digits) ^"E" ^
Int.toString exp
(* Convert it to a real using the RTS conversion function.
Change any Conversion exceptions into Domain. *)
val result = realConv str handle _ => raise General.Domain
in
if sign then SOME (~result) else SOME result
end
handle General.Domain => NONE
)
end
local
val dtoa: real*int*int -> string*int*int = RunCall.run_call3 POLY_SYS_Real_str
open StringCvt
fun addZeros n =
if n <= 0 then "" else "0" ^ addZeros (n-1)
fun fixFmt ndigs r =
if not (isFinite r)
then (if signBit r then "~" else "") ^ (if isNan r then "nan" else "inf")
else
let
(* Try to get ndigs past the decimal point. *)
val (str, exp, sign) = dtoa(r, 3, ndigs)
val strLen = String.size str
(* If the exponents is negative or zero we need to put a zero
before the decimal point. If the exponent is positive and
less than the number of digits we can take that
many characters off, otherwise we have to pad with zeros. *)
val numb =
if exp <= 0
then (* Exponent is zero or negative - all significant digits are
after the decimal point. Put in any zeros before
the significant digits, then the significant digits
and then any trailing zeros. *)
if ndigs = 0 then "0"
else "0." ^ addZeros(~exp) ^ str ^ addZeros(ndigs-strLen+exp)
else if strLen <= exp
then (* Exponent is not less than the length of the string -
all significant digits are before the decimal point. Add
any extra zeros before the decimal point then zeros after it. *)
str ^ addZeros(exp-strLen) ^
(if ndigs = 0 then "" else "." ^ addZeros ndigs)
else (* Significant digits straddle the decimal point - insert the
decimal point and add any trailing zeros. *)
String.substring(str, 0, exp) ^ "." ^
String.substring(str, exp, strLen-exp) ^
addZeros(ndigs-strLen+exp)
in
if sign <> 0 then "~" ^ numb else numb
end
fun sciFmt ndigs r =
if not (isFinite r)
then (if signBit r then "~" else "") ^ (if isNan r then "nan" else "inf")
else
let
(* Try to get ndigs+1 digits. 1 before the decimal point and ndigs after. *)
val (str, exp, sign) = dtoa(r, 2, ndigs+1)
val strLen = String.size str
fun addZeros n =
if n <= 0 then "" else "0" ^ addZeros (n-1)
val numb =
if strLen = 0
then "0" ^ (if ndigs = 0 then "" else "." ^ addZeros ndigs) ^ "E0"
else
(if strLen = 1
then str ^ (if ndigs = 0 then "" else "." ^ addZeros ndigs)
else String.substring(str, 0, 1) ^ "." ^
String.substring(str, 1, strLen-1) ^ addZeros (ndigs-strLen+1)
) ^ "E" ^ Int.toString (exp-1)
in
if sign <> 0 then "~" ^ numb else numb
end
fun genFmt ndigs r =
if not (isFinite r)
then (if signBit r then "~" else "") ^ (if isNan r then "nan" else "inf")
else
let
(* Try to get ndigs digits. *)
val (str, exp, sign) = dtoa(r, 2, ndigs)
val strLen = String.size str
val numb =
(* Have to use scientific notation if exp > ndigs. Also use it
if the exponent is small (TODO: adjust this) *)
if exp > ndigs orelse exp < ~5
then (* Scientific format *)
(if strLen = 1 then str
else String.substring(str, 0, 1) ^ "." ^
String.substring(str, 1, strLen-1)
) ^ "E" ^ Int.toString (exp-1)
else (* Fixed format (N.B. no trailing zeros are added after the
decimal point apart from one if necessary) *)
if exp <= 0
then (* Exponent is zero or negative - all significant digits are
after the decimal point. Put in any zeros before
the significant digits, then the significant digits
and then any trailing zeros. *)
"0." ^ addZeros(~exp) ^ str
else if strLen <= exp
then (* Exponent is not less than the length of the string -
all significant digits are before the decimal point. Add
any extra zeros before the decimal point. Insert .0 at the
end to make it a valid real number. *)
str ^ addZeros(exp-strLen) ^ ".0"
else (* Significant digits straddle the decimal point - insert the
decimal point. *)
String.substring(str, 0, exp) ^ "." ^
String.substring(str, exp, strLen-exp)
in
if sign <> 0 then "~" ^ numb else numb
end
fun strToDigitList str =
let
fun getDigs i l =
if i < 0 then l
else getDigs (i-1)
((Char.ord(String.sub(str, i)) - Char.ord #"0") :: l)
in
getDigs (String.size str - 1) []
end
in
fun toDecimal r =
let
val sign = signBit r
val kind = class r
in
case kind of
ZERO => { class = ZERO, sign = sign, digits=[], exp = 0 }
| INF => { class = INF, sign = sign, digits=[], exp = 0 }
| NAN => { class = NAN, sign = sign, digits=[], exp = 0 }
| _ => (* NORMAL/SUBNORMAL *)
let
val (str, exp, sign) = dtoa(r, 0, 0)
val digits = strToDigitList str
in
{ class = kind, sign = sign <> 0, digits = digits, exp = exp }
end
end
(* Note: The definition says, reasonably, that negative values
for the number of digits raises Size. The tests also check
for a very large value for the number of digits and seem to
expect Size to be raised in that case. *)
fun fmt (SCI NONE) r = sciFmt 6 r
| fmt (SCI (SOME d) ) r =
if d < 0 orelse d > 200 then raise General.Size
else sciFmt d r
| fmt (FIX NONE) r = fixFmt 6 r
| fmt (FIX (SOME d) ) r =
if d < 0 orelse d > 200 then raise General.Size
else fixFmt d r
| fmt (GEN NONE) r = genFmt 12 r
| fmt (GEN (SOME d) ) r =
if d < 1 orelse d > 200 then raise General.Size
else genFmt d r
| fmt EXACT r = IEEEReal.toString(toDecimal r)
val toString = fmt (GEN NONE)
end
fun scan getc src =
let
(* Return a list of digits. *)
fun getdigits inp src =
case getc src of
NONE => (List.rev inp, src)
| SOME(ch, src') =>
if ch >= #"0" andalso ch <= #"9"
then getdigits ((Char.ord ch - Char.ord #"0") :: inp) src'
else (List.rev inp, src)
(* Read an unsigned integer. Returns NONE if no digits have been read. *)
fun getNumber sign digits acc src =
case getc src of
NONE => if digits = 0 then NONE else SOME(if sign then ~acc else acc, src)
| SOME(ch, src') =>
if ch >= #"0" andalso ch <= #"9"
then getNumber sign (digits+1) (acc*10 + Char.ord ch - Char.ord #"0") src'
else if digits = 0 then NONE else SOME(if sign then ~acc else acc, src')
(* Return the signed exponent. *)
fun getExponent src =
case getc src of
NONE => NONE
| SOME(ch, src') =>
if ch = #"+"
then getNumber false 0 0 src'
else if ch = #"-" orelse ch = #"~"
then getNumber true 0 0 src'
else getNumber false 0 0 src
fun read_number sign src =
case getc src of
NONE => NONE
| SOME(ch, src') =>
if not (ch >= #"0" andalso ch <= #"9" orelse ch = #".")
then NONE (* Bad *)
else (* Digits or decimal. *)
let
(* Get the digits before the decimal point (if any) *)
val (intPart, srcAfterDigs) = getdigits [] src
(* Get the digits after the decimal point (if any).
If there is a decimal point we only accept it if
there is at least one digit after it. *)
val (decimals, srcAfterMant) =
case getc srcAfterDigs of
NONE => ([], srcAfterDigs)
| SOME (#".", srcAfterDP) =>
( (* Check that the next character is a digit. *)
case getc srcAfterDP of
NONE => ([], srcAfterDigs)
| SOME(ch, _) =>
if ch >= #"0" andalso ch <= #"9"
then getdigits [] srcAfterDP
else ([], srcAfterDigs)
)
| SOME (_, _) => ([], srcAfterDigs)
(* The exponent is optional. If it doesn't form a valid
exponent we return zero as the value and the
continuation is the beginning of the "exponent". *)
val (exponent, srcAfterExp) =
case getc srcAfterMant of
NONE => (0, srcAfterMant)
| SOME (ch, src'''') =>
if ch = #"e" orelse ch = #"E"
then
(
case getExponent src'''' of
NONE => (0, srcAfterMant)
| SOME x => x
)
else (0, srcAfterMant)
(* Generate a decimal representation ready for conversion.
We don't bother to strip off leading or trailing zeros. *)
val decimalRep = {class=NORMAL, sign=sign,
digits=List.@(intPart, decimals),
exp=exponent + List.length intPart}
in
case fromDecimal decimalRep of
SOME r => SOME(r, srcAfterExp)
| NONE => NONE
end
in
case getc src of
NONE => NONE
| SOME(ch, src') =>
if Char.isSpace ch (* Skip white space. *)
then scan getc src' (* Recurse *)
else if ch = #"+" (* Remove the + sign *)
then read_number false src'
else if ch = #"-" orelse ch = #"~"
then read_number true src'
else (* See if it's a valid digit. *)
read_number false src
end
val fromString = StringCvt.scanString scan
(* Converter to real values. This replaces the basic conversion
function for reals installed in the bootstrap process.
For more information see convInt in Int. *)
(* Don't use it for the moment because it doesn't really provide any
advantage over the existing function. *)
(*
local
structure Conversion =
RunCall.Run_exception1
(
type ex_type = string;
val ex_iden = EXC_conversion
);
exception Conversion = Conversion.ex;
fun convReal s =
case StringCvt.scanString scan s of
NONE => raise Conversion "Invalid real constant"
| SOME res => res
in
(* Install this as a conversion function for real literals. *)
val unused: unit = RunCall.addOverload convReal "convReal"
end
*)
val op + : (real * real) -> real = RunCall.run_call2 POLY_SYS_Add_real;
val op - : (real * real) -> real = RunCall.run_call2 POLY_SYS_Sub_real;
val op * : (real * real) -> real = RunCall.run_call2 POLY_SYS_Mul_real;
val op / : (real * real) -> real = RunCall.run_call2 POLY_SYS_Div_real;
val op < : (real * real) -> bool = RunCall.run_call2 POLY_SYS_Real_lss;
val op <= : (real * real) -> bool = RunCall.run_call2 POLY_SYS_Real_leq;
val op > : (real * real) -> bool = RunCall.run_call2 POLY_SYS_Real_gtr;
val op >= : (real * real) -> bool = RunCall.run_call2 POLY_SYS_Real_geq;
fun compare (r1, r2) =
if not (isFinite r1 andalso isFinite r2)
then raise Unordered
else if r1 < r2 then General.LESS
else if r1 > r2 then General.GREATER
else General.EQUAL
fun compareReal (r1, r2) =
if not (isFinite r1 andalso isFinite r2)
then UNORDERED
else if r1 < r2 then LESS
else if r1 > r2 then GREATER
else EQUAL
(* Question: The definition says "bitwise equal, ignoring signs on zeros".
If we assume that all numbers are normalised, is that the same as "equal"?*)
fun op ?= (x, y) =
isNan x orelse isNan y orelse x == y
(* Although these may be built in in some architectures it's
probably not worth treating them specially at the moment. *)
fun *+ (x: real, y: real, z: real): real = x*y+z
and *- (x: real, y: real, z: real): real = x*y-z
val ~ : real -> real = RunCall.run_call1 POLY_SYS_Neg_real
(* Absolute value. N.B. Since the comparison returns false on NaN
this function returns its argument on NaN. *)
fun abs (x : real) : real = if x < 0.0 then ~ x else x;
fun rem (x, y) =
if not (isFinite y) andalso not (isNan y) then x
else x - realTrunc(x / y)*y
(* Split a real into whole and fractional parts. The fractional part must have
the same sign as the number even if it is zero. *)
fun split r =
let
val whole = realTrunc r
val frac = r - whole
in
{ whole = whole,
frac =
if not (isFinite r)
then if isNan r then r else (* Infinity *) if r < 0.0 then ~0.0 else 0.0
else if frac == 0.0 then if signBit r then ~0.0 else 0.0
else frac }
end
(* Get the fractional part of a real. *)
fun realMod r = #frac(split r)
local
(* For normalised numbers the next in the sequence is x*(1+epsilon).
However for unnormalised values we may have to multiply the epsilon
value by the radix. *)
fun nextUp r p =
let
val nxt = r + r*p
in
if nxt == r then nextUp r (p*radixAsReal)
else nxt
end
fun nextDown r p =
let
val prev = r - r*p
in
if prev == r then nextDown r (p*radixAsReal)
else prev
end
in
fun nextAfter (r, t) =
if not (isFinite r) orelse r == t then r
else if r < t then nextUp r epsilon else nextDown r epsilon
end
end;
structure Math = Real.Math;
structure LargeReal: REAL = Real;
(* Values available unqualified at the top-level. *)
val real : int -> real = Real.fromInt
val trunc : real -> int = Real.trunc
val floor : real -> int = Real.floor
val ceil : real -> int = Real.ceil
val round : real -> int =Real.round;
(* Install print function. *)
local
fun print_real (put, beg, brk, nd) depth _ (r: real) =
put(Real.fmt (StringCvt.GEN(SOME 10)) r)
in
val () = PolyML.install_pp print_real;
end;
|