1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
|
(*
Copyright (c) 2000
Cambridge University Technical Services Limited
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*
Title: Machine-independent Code and Optimisation.
Author: Dave Matthews, Cambridge University Computer Laboratory
Copyright Cambridge University 1985
*)
(*
Substantially modified.
Changes copyright. David C.J. Matthews 2001.
*)
functor CODETREE (
(*****************************************************************************)
(* GCODE *)
(*****************************************************************************)
structure GCODE :
sig
type machineWord
type codetree
val gencode: codetree * Universal.universal list -> unit -> machineWord;
end (* GCODE *);
(*****************************************************************************)
(* DEBUG *)
(*****************************************************************************)
structure DEBUG :
sig
val codetreeTag: bool Universal.tag (* If true then print the original code. *)
val codetreeAfterOptTag: bool Universal.tag (* If true then print the optimised code. *)
val maxInlineSizeTag: int Universal.tag
val compilerOutputTag: (string->unit) Universal.tag
val getParameter :
'a Universal.tag -> Universal.universal list -> 'a
end (* DEBUG *);
(*****************************************************************************)
(* PRETTYPRINTER *)
(*****************************************************************************)
structure PRETTYPRINTER :
sig
type prettyPrinter
val ppAddString : prettyPrinter -> string -> unit
val ppBeginBlock : prettyPrinter -> int * bool -> unit
val ppEndBlock : prettyPrinter -> unit -> unit
val ppBreak : prettyPrinter -> int * int -> unit
val prettyPrint : int * (string -> unit) -> prettyPrinter;
end;
(*****************************************************************************)
(* MISC *)
(*****************************************************************************)
structure MISC :
sig
exception InternalError of string;
end;
(* DCJM 8/8/00. Previously Address was a global but we aren't allowed
to have sharing constraints with globals in ML97. We could use a
"where type" constraint but then we couldn't bootstrap from ML90. *)
structure ADDRESS :
sig
type machineWord;
type short = Word.word;
type address;
val alloc: short * Word8.word * machineWord -> address;
val call: address * machineWord -> machineWord;
val length: address -> short;
val isShort: 'a -> bool;
val toShort: 'a -> short;
val toMachineWord: 'a -> machineWord;
val toAddress: machineWord -> address;
val wordEq: machineWord * machineWord -> bool;
val isWords : address -> bool;
val isMutable: address -> bool;
val assignWord: address * short * machineWord -> unit;
val loadWord: address * short -> machineWord;
val F_words: Word8.word;
val F_mutable: Word8.word;
val lock: address -> unit
val isIoAddress : address -> bool
end;
structure STRUCTUREEQ:
sig
type machineWord
val structureEq: machineWord * machineWord -> bool;
end
structure BASECODETREE: BaseCodeTreeSig
(*****************************************************************************)
(* CODETREE sharing constraints *)
(*****************************************************************************)
sharing type
ADDRESS.machineWord
= BASECODETREE.machineWord
= STRUCTUREEQ.machineWord
= GCODE.machineWord
sharing type
BASECODETREE.codetree
= GCODE.codetree
sharing type
PRETTYPRINTER.prettyPrinter
= BASECODETREE.prettyPrinter
) :
(*****************************************************************************)
(* CODETREE export signature *)
(*****************************************************************************)
sig
type machineWord
type codetree
type prettyPrinter
val isCodeNil: codetree -> bool;
val CodeNil: codetree; (* Empty codetree NOT the code for "nil" *)
val CodeTrue: codetree; (* code for "true" *)
val CodeFalse: codetree; (* code for "false" *)
val CodeZero: codetree; (* code for 0, nil etc. *)
val MatchFail: codetree; (* pattern match has failed *)
val mkAltMatch: codetree * codetree -> codetree;
val mkRecLoad: int-> codetree;
val mkLoad: int * int -> codetree;
val mkConst: machineWord -> codetree;
val mkDec: int * codetree -> codetree;
val mkInd: int * codetree -> codetree;
val mkProc: codetree * int * int * string -> codetree;
val mkInlproc: codetree * int * int * string -> codetree;
val mkMacroProc: codetree * int * int * string -> codetree;
val mkIf: codetree * codetree * codetree -> codetree;
val mkWhile: codetree * codetree -> codetree;
val mkEnv: codetree list -> codetree;
val mkStr: string -> codetree;
val mkTuple: codetree list -> codetree;
val mkMutualDecs: codetree list -> codetree;
val mkRaise: codetree -> codetree;
val mkNot: codetree -> codetree;
val mkTestnull: codetree -> codetree;
val mkTestnotnull: codetree -> codetree;
val mkCor: codetree * codetree -> codetree;
val mkCand: codetree * codetree -> codetree;
val mkTestptreq: codetree * codetree -> codetree;
val mkTestinteq: codetree * codetree -> codetree;
val mkHandle: codetree * codetree list * codetree -> codetree;
val mkEval: codetree * codetree list * bool -> codetree;
val identityFunction: string -> codetree;
val Ldexc: codetree;
val mkContainer: int -> codetree
val mkSetContainer: codetree * codetree * int -> codetree
val mkTupleFromContainer: codetree * int -> codetree
val multipleUses: codetree * (unit -> int) * int -> {load: int -> codetree, dec: codetree list};
val pretty: codetree * prettyPrinter -> unit;
val evalue: codetree -> machineWord;
val genCode: codetree * Universal.universal list -> (unit -> codetree);
val structureEq: machineWord * machineWord -> bool;
end (* CODETREE export signature *) =
(*****************************************************************************)
(* CODETREE functor body *)
(*****************************************************************************)
struct
open GCODE;
open ADDRESS;
open StretchArray;
open MISC; (* after ADDRESS, so we get MISC.length, not ADDRESS.length *)
open RuntimeCalls; (* for POLY_SYS numbers and EXC_nil *)
open BASECODETREE;
open PRETTYPRINTER;
val structureEq = STRUCTUREEQ.structureEq
infix 9 sub;
val isConstnt = fn (Constnt _) => true | _ => false;
val isCodeNil = fn CodeNil => true | _ => false; (* Exported *)
(*****************************************************************************)
(* optVal functions *)
(*****************************************************************************)
(* Processing each expression results in a "optVal" value. This contains a
"general" value which can be used anywhere and a "special" value which
provides optimisations of inline procedures and tuples. "environ" is a
procedure for mapping addresses in "special" if it is used and "decs" is
any declarations needed by either "general" or "special". The reason for
returning both "general" and "special" is so that we only create a
tuple or a procedure once. In the case of a tuple "special" contains
code to generate the tuple from its elements and is provided so that
operations which select from the tuple can be optimised into loading
the element. "General" will contain code to generate the tuple, or in
the case of a declaration of a tuple, will contain a "load" instruction
to get the value.
*)
fun errorEnv (lf: loadForm, i1: int, i2: int) : optVal =
raise InternalError "error env";
fun optGeneral (OptVal {general,...}) = general
| optGeneral (ValWithDecs {general, ...}) = general
| optGeneral (JustTheVal ct) = ct;
fun optSpecial (OptVal {special,...}) = special
| optSpecial _ = CodeNil;
fun optEnviron (OptVal {environ,...}) = environ
| optEnviron _ = errorEnv;
fun optDecs (OptVal {decs,...}) = decs
| optDecs (ValWithDecs {decs, ...}) = decs
| optDecs (JustTheVal pt) = [];
fun optRec (OptVal {recCall,...}) = recCall
| optRec _ = ref false; (* Generate a temporary. *)
val simpleOptVal : codetree -> optVal = JustTheVal;
fun optVal (ov as {general, special, environ, decs, recCall}) : optVal =
if isCodeNil special
then
case decs of
[] => JustTheVal general
| _ => ValWithDecs {general = general, decs = decs}
else OptVal ov;
fun sizeOptVal (ov : optVal, size: codetree -> int) =
size (optGeneral ov);
(* minor HACKS *)
type casePair = codetree * int list;
val codegen = gencode;
(* gets a value from the run-time system *)
val ioOp : int -> machineWord = RunCall.run_call1 POLY_SYS_io_operation;
fun apply f [] = () | apply f (h::t) = (f h; apply f t);
val word0 = toMachineWord 0;
val word1 = toMachineWord 1;
val False = word0;
val True = word1;
(* since code generator relies on these representations,
we may as well export them *)
val mkConst: machineWord->codetree = Constnt;
val CodeFalse = mkConst False;
val CodeTrue = mkConst True;
val CodeZero = mkConst word0;
val F_mutable_words : Word8.word = Word8.orb (F_words, F_mutable);
type evalForm =
{ (* Evaluate a function with an argument list. *)
function: codetree,
argList: codetree list,
earlyEval: bool
}
and declarForm =
{ (* Declare a value or push an argument. *)
value: codetree,
addr: int,
references: int
}
and indForm =
{ (* Indirect off a value. *)
base: codetree,
offset: int
}
and diadic =
codetree * codetree
and triadic =
codetree * codetree * codetree
and lambdaForm =
{ (* Lambda expressions. *)
body : codetree,
isInline : inlineStatus,
name : string,
closure : codetree list,
numArgs : int,
level : int,
closureRefs : int,
makeClosure : bool
}
and casePair =
(* Expressions and corresponding list of labels. *)
codetree * int list
and caseForm =
{ (* Case expressions *)
cases : (codetree * int list) list,
test : codetree,
default : codetree,
min : int,
max : int
}
and handleForm =
{ (* Exception handler. *)
exp : codetree,
taglist : codetree list,
handler : codetree
};
(*************************** end of copied code *****************************)
fun mkAltMatch (m1, m2) = AltMatch (m1, m2);
fun mkDecRef ct i1 i2 = Declar {value = ct, addr = i1, references = i2};
fun mkGenLoad (i1, i2, bl, lf) =
Extract {addr = i1, level = i2, fpRel = bl, lastRef = lf};
(* Used for recursive functions - setting the "closure" flag
is a real hack. We also have to adjust the level number by
one because we don't really create an extra level. I'm not sure
whether this adjustment should really be here or in VALUEOPS.ML -
it's currently in the latter, because I think it's a parser-related
hack! SPF 11/4/96
*)
fun mkRecLoad level =
Extract {level = level, addr = 0, fpRel = false, lastRef = false};
fun mkLoad (addr,level) =
Extract {level = level, addr = addr, fpRel = true, lastRef = false};
fun mkClosLoad addr last =
Extract {level = 0, addr = addr, fpRel = false, lastRef = last};
val mkEnv = Newenv;
(* Wrap up multiple entries. Return a single item unless it is a
declaration. *)
fun wrapEnv (l as [Declar _]) = mkEnv l
| wrapEnv (l as [MutualDecs _]) = mkEnv l
| wrapEnv [singleton] = singleton
| wrapEnv multiple = mkEnv multiple
(* generates a declaration operation *)
fun mkDec (laddr, res) = mkDecRef res laddr 0;
(* lambda operation: returns a procedure *)
fun mkProc (lval, level, args, name) =
Lambda
{
body = lval,
isInline = (*if isSmall lval then SmallFunction else *) NonInline,
name = name,
closure = [],
numArgs = args,
level = level,
closureRefs = 0,
makeClosure = false
}
(* inline lambda operation: returns an inline procedure *)
fun mkInlproc (lval, level, args, name) =
Lambda
{
body = lval,
isInline = MaybeInline,
name = name,
closure = [],
numArgs = args,
level = level,
closureRefs = 0,
makeClosure = false
};
fun mkMacroProc (lval, level, args, name) =
Lambda
{
body = lval,
isInline = OnlyInline,
name = name,
closure = [],
numArgs = args,
level = level,
closureRefs = 0,
makeClosure = false
};
fun mkEval (ct, clist, bl) =
Eval {function = ct, argList = clist, earlyEval = bl};
fun mkNot arg = mkEval (mkConst (ioOp POLY_SYS_not_bool), [arg], true);
val testptreqFunction = mkConst (ioOp POLY_SYS_word_eq);
val testptrneqFunction = mkConst (ioOp POLY_SYS_word_neq);
fun mkTestptreq (xp1, xp2) = mkEval (testptreqFunction, [xp1,xp2], true);
fun mkTestptrneq (xp1, xp2) = mkEval (testptrneqFunction, [xp1,xp2], true);
fun mkTestnull xp1 = mkTestptreq (xp1, CodeZero);
fun mkTestnotnull xp1 = mkTestptrneq (xp1, CodeZero);
val testnullFunction =
mkInlproc (mkTestnull (mkLoad (~1, 0)), 0, 1, "");
val mkIf = Cond ;
fun mkWhile(b, e) =
(* Generated as if b then (e; <loop>) else (). *)
BeginLoop(mkIf(b, mkEnv[e, Loop[]], CodeZero), [])
(* We previously had conditional-or and conditional-and as separate
instructions. I've taken them out since they can be implemented
just as efficiently as a normal conditional. In addition they
were interfering with the optimisation where the second expression
contained the last reference to something. We needed to add a
"kill entry" to the other branch but there wasn't another branch
to add it to. DCJM 7/12/00. *)
fun mkCor(xp1, xp2) = mkIf(xp1, CodeTrue, xp2);
fun mkCand(xp1, xp2) = mkIf(xp1, xp2, CodeZero);
(* N.B. int equality is SHORT integer equality *)
fun mkTestinteq (xp1, xp2) =
mkEval (mkConst (ioOp POLY_SYS_int_eq), [xp1,xp2], true);
fun mkHandle (exp, taglist, handler) = Handle {exp = exp, taglist = taglist, handler = handler};
val mkRaise = Raise;
val mkMutualDecs = MutualDecs;
fun mkStr (strbuff:string) = mkConst (toMachineWord strbuff);
val mkContainer = Container
(* If we have multiple references to a piece of code we may have to save
it in a temporary and then use it from there. If the code has side-effects
we certainly must do that to ensure that the side-effects are done
exactly once and in the correct order, however if the code is just a
constant or a load we can reduce the amount of code we generate by
simply returning the original code. *)
fun multipleUses (code as Constnt _, nextAddress, level) =
{load = (fn _ => code), dec = []}
| multipleUses (code as Extract{addr, level=loadLevel, ...}, nextAddress, level) =
let (* May have to adjust the level. *)
fun loadFn lev =
if lev = level
then code
else mkLoad (addr, loadLevel + (lev - level))
in
{load = loadFn, dec = []}
end
| multipleUses (code, nextAddress, level) =
let
val addr = nextAddress();
fun loadFn lev = mkLoad (addr, lev - level);
in
{load = loadFn, dec = [mkDec (addr, code)]}
end (* multipleUses *);
fun identityFunction (name : string) : codetree =
mkInlproc (mkLoad (~1, 0), 0, 1, name) (* Returns its argument. *);
fun mkIndirect ct i = Indirect {base = ct, offset = i};
(* Set the container to the fields of the record. Try to push this
down as far as possible. *)
fun mkSetContainer(container, Cond(ifpt, thenpt, elsept), size) =
Cond(ifpt, mkSetContainer(container, thenpt, size),
mkSetContainer(container, elsept, size))
| mkSetContainer(container, Newenv entries, size) =
let
fun applyLast [] = raise List.Empty
| applyLast [last] =
[mkSetContainer(container, last, size)]
| applyLast (hd::tl) = hd :: applyLast tl
in
Newenv(applyLast entries)
end
| mkSetContainer(container, r as Raise _, size) =
r (* We may well have the situation where one branch of an "if" raises an
exception. We can simply raise the exception on that branch. *)
| mkSetContainer(container, tuple, size) =
SetContainer{container = container, tuple = tuple, size = size }
(* Create a tuple from a container. *)
val mkTupleFromContainer = TupleFromContainer
(* Makes a constant value from an expression which is known to be *)
(* constant but may involve inline procedures, types etc. *)
fun makeConstVal (cVal:codetree) =
let
fun makeVal (Constnt c) = c
(* should just be a tuple *)
(* Get a vector, copy the entries into it and return it as a constant. *)
| makeVal (Recconstr []) = word0 (* should have been optimised already! *)
| makeVal (Recconstr xp) =
let
val vec : address = alloc (toShort (List.length xp), F_mutable_words, word0);
fun copyToVec [] locn = ()
| copyToVec (h :: t) locn =
(
assignWord (vec, toShort locn, makeVal h);
copyToVec t (locn + 1)
);
in
copyToVec xp 0;
lock vec;
toMachineWord vec
end
| makeVal _ = raise InternalError "makeVal - not constant or record"
in
mkConst (makeVal cVal)
end;
local
fun allConsts [] = true
| allConsts (Constnt _ :: t) = allConsts t
| allConsts _ = false
in
fun mkTuple xp =
let
val tuple = Recconstr xp
in
if allConsts xp
then (* Make it now. *) makeConstVal tuple
else tuple
end;
end;
(* Look for an entry in a tuple. Used in both the optimiser and in mkInd. *)
fun findEntryInBlock (Recconstr recs) offset =
if offset < List.length recs
then List.nth(recs, offset)
else (* This can arise if we're processing a branch of a case discriminating on
a datatype which won't actually match at run-time. *)
mkRaise (mkTuple [mkConst (toMachineWord EXC_Bind), mkStr "Bind", CodeZero])
| findEntryInBlock (Constnt b) offset =
(
(* The ML compiler may generate loads from invalid addresses as a
result of a val binding to a constant which has the wrong shape.
e.g. val a :: b = nil
It will always result in a Bind exception being generated
before the invalid load, but we have to be careful that the
optimiser does not fall over. *)
if isShort b
orelse not (ADDRESS.isWords (toAddress b)) (* DCJM's bugfix SPF 25/1/95 *)
orelse ADDRESS.length (toAddress b) <= Word.fromInt offset
then mkRaise (mkTuple [mkConst (toMachineWord EXC_Bind), mkStr "Bind", CodeZero])
else mkConst (loadWord (toAddress b, toShort offset))
)
| findEntryInBlock (Global glob) offset =
(* Do the selection now - it makes the code-tree much more readable if *)
(* we don't print the whole of the int type whenever we have int.+. *)
(
case optSpecial glob of
recc as Recconstr _ =>
(
case findEntryInBlock recc offset of
(* Most entries in the list are load instructions, however if
the entry we want is in a type which has been extended we
will return an indirection.
DCJM 28/11/99. That may not apply to ML. *)
Extract (ext as {level, ...}) =>
Global ((optEnviron glob) (ext, 0, (* global *) level))
| Indirect{base=Extract (ext as {level, ...}), offset} =>
let
(* Must be indirecting on a local value. Look it up and do the
indirection recursively. *)
val newBase =
Global ((optEnviron glob) (ext, 0, (* global *) level))
in
findEntryInBlock newBase offset
end
| selection => selection (* constants *)
)
| _ => findEntryInBlock (optGeneral glob) offset
)
| findEntryInBlock base offset =
Indirect {base = base, offset = offset} (* anything else *)
(* end findEntryInBlock *);
(* indirect load operation *)
fun mkInd (addr, base as Global _ ) = findEntryInBlock base addr
| mkInd (addr, base as Constnt _) = findEntryInBlock base addr
| mkInd (addr, base) = Indirect {base = base, offset = addr};
(* Get the value from the code. *)
fun evalue (Constnt c) : machineWord = c
| evalue (Global g) : machineWord = evalue(optGeneral g)
| evalue _ =
raise InternalError "evalue: Not a constant"
(* Test for possible side effects. If an expression has no side-effect
and its result is not used then we don't need to generate it. An
expresssion is side-effect free if it does not call a procedure or
involve an instruction which could raise an exception. Only the more
common instructions are included. There may be some safe expressions
which this procedure thinks are unsafe. *)
(* Calls which could raise an exception must not be included.
Most arbitrary precision operations, word operations and
real operations don't raise exceptions (we don't get overflow
exceptions) so are safe. *)
(* The application of ioOp has been moved out of the isInList since it
turned out to be a hot-spot. *)
val safeRTSCalls = map ioOp
[POLY_SYS_get_length,
POLY_SYS_get_flags, (* POLY_SYS_alloc_store, - can raise Size *)
POLY_SYS_teststreq, POLY_SYS_teststrneq, POLY_SYS_teststrgtr,
POLY_SYS_teststrlss, POLY_SYS_teststrgeq, POLY_SYS_teststrleq,
POLY_SYS_is_short, POLY_SYS_aplus, POLY_SYS_aminus, POLY_SYS_amul,
POLY_SYS_aneg, POLY_SYS_xora,
POLY_SYS_equala, POLY_SYS_ora, POLY_SYS_anda,
POLY_SYS_Real_str, POLY_SYS_Real_geq, POLY_SYS_Real_leq,
POLY_SYS_Real_gtr, POLY_SYS_Real_lss, POLY_SYS_Real_eq,
POLY_SYS_Real_neq, POLY_SYS_Add_real, POLY_SYS_Sub_real,
POLY_SYS_Mul_real, POLY_SYS_Div_real, POLY_SYS_Neg_real,
POLY_SYS_sqrt_real, POLY_SYS_sin_real, POLY_SYS_cos_real,
POLY_SYS_arctan_real, POLY_SYS_exp_real, POLY_SYS_ln_real,
POLY_SYS_io_operation, POLY_SYS_shift_right_arith_word,
POLY_SYS_is_big_endian, POLY_SYS_bytes_per_word,
POLY_SYS_shift_right_word, POLY_SYS_word_neq, POLY_SYS_not_bool,
POLY_SYS_string_length, POLY_SYS_int_eq, POLY_SYS_int_neq,
POLY_SYS_int_geq, POLY_SYS_int_leq, POLY_SYS_int_gtr, POLY_SYS_int_lss,
POLY_SYS_mul_word, POLY_SYS_plus_word,
POLY_SYS_minus_word, POLY_SYS_or_word,
POLY_SYS_and_word, POLY_SYS_xor_word, POLY_SYS_shift_left_word,
POLY_SYS_word_geq, POLY_SYS_word_leq,
POLY_SYS_word_gtr, POLY_SYS_word_lss, POLY_SYS_word_eq,
POLY_SYS_load_byte, POLY_SYS_load_word, POLY_SYS_get_first_long_word]
val divisionOperations = map ioOp
[POLY_SYS_adiv, POLY_SYS_amod, POLY_SYS_div_word, POLY_SYS_mod_word]
(* Note: This simply returns true or false. For complex expressions,
such as an RTS call whose argument has a side-effect, we could
reduce the code by extracting the sub-expressions with side-effects
and returning just those. *)
fun sideEffectFree CodeNil = true
| sideEffectFree (Lambda _) = true
| sideEffectFree (Constnt _) = true
| sideEffectFree (Extract _) = true
| sideEffectFree (Declar{value, ...}) = sideEffectFree value
| sideEffectFree (Cond(i, t, e)) =
sideEffectFree i andalso
sideEffectFree t andalso
sideEffectFree e
| sideEffectFree (Newenv decs) = testList decs
| sideEffectFree (Handle { exp, taglist, handler }) =
sideEffectFree exp andalso
testList taglist andalso
sideEffectFree handler
| sideEffectFree (Recconstr recs) = testList recs
| sideEffectFree (Indirect{base, ...}) = sideEffectFree base
| sideEffectFree (MutualDecs decs) = testList decs
(* An RTS call, which may actually be code which is inlined
by the code-generator, may be side-effect free. This can
occur if we have, for example, "if exp1 orelse exp2"
where exp2 can be reduced to "true", typically because it's
inside an inline function and some of the arguments to the
function are constants. This then gets converted to
(exp1; true) and we can eliminate exp1 if it is simply
a comparison. *)
| sideEffectFree (Eval{function=Constnt w, argList, ...}) =
isIoAddress(toAddress w) andalso sideEffectFreeRTSCall(w, argList)
andalso testList argList
| sideEffectFree(Container _) = true
(* But since SetContainer has a side-effect we'll always create the
container even if it isn't used. *)
| sideEffectFree(TupleFromContainer(c, _)) = sideEffectFree c
| sideEffectFree _ = false
(* Rest are unsafe (or too rare to be worth checking) *)
and testList [] = true
| testList (h :: t) = sideEffectFree h andalso testList t
and sideEffectFreeRTSCall(function: machineWord, args: codetree list): bool =
let
fun isInList(ioCall, sofar) = sofar orelse wordEq (function, ioCall)
in
List.foldl isInList false safeRTSCalls orelse
(* Division operations are safe if we know that the second argument
is not zero. If it's long it can't be zero and we can't have
long arguments for the word operations. *)
(List.foldl isInList false divisionOperations andalso
(case args of
[_, Constnt c] => not (isShort c) orelse toShort c <> 0w0
| _ => false)
)
end;
(************************************************************************)
(* earlyRtsCall *)
(************************************************************************)
(* Tests whether an RTS call in which all the arguments are constants can
be evaluated immediately. Normally this will be clear from the RTS
call itself but in a few cases we need to look at the arguments.
It's quite safe to evaluate a function which results in an exception.
It isn't safe to evaluate a function which might have a side-effect. *)
fun earlyRtsCall(function: machineWord, args: codetree list): bool =
let
val safeForImmutable =
[POLY_SYS_get_flags, POLY_SYS_load_byte, POLY_SYS_load_word]
val safeCalls =
[POLY_SYS_get_length,
POLY_SYS_teststreq, POLY_SYS_teststrneq, POLY_SYS_teststrgtr,
POLY_SYS_teststrlss, POLY_SYS_teststrgeq, POLY_SYS_teststrleq,
POLY_SYS_is_short, POLY_SYS_aplus, POLY_SYS_aminus, POLY_SYS_amul,
POLY_SYS_adiv, POLY_SYS_amod, POLY_SYS_aneg, POLY_SYS_xora,
POLY_SYS_equala, POLY_SYS_ora, POLY_SYS_anda,
POLY_SYS_Real_str, POLY_SYS_Real_geq, POLY_SYS_Real_leq,
POLY_SYS_Real_gtr, POLY_SYS_Real_lss, POLY_SYS_Real_eq,
POLY_SYS_Real_neq, POLY_SYS_Add_real, POLY_SYS_Sub_real,
POLY_SYS_Mul_real, POLY_SYS_Div_real, POLY_SYS_Neg_real,
POLY_SYS_conv_real, POLY_SYS_real_to_int, POLY_SYS_int_to_real,
POLY_SYS_sqrt_real, POLY_SYS_sin_real, POLY_SYS_cos_real,
POLY_SYS_arctan_real, POLY_SYS_exp_real, POLY_SYS_ln_real,
POLY_SYS_io_operation, POLY_SYS_shift_right_arith_word,
POLY_SYS_is_big_endian, POLY_SYS_bytes_per_word,
POLY_SYS_shift_right_word, POLY_SYS_word_neq, POLY_SYS_not_bool,
POLY_SYS_string_length, POLY_SYS_int_eq, POLY_SYS_int_neq,
POLY_SYS_int_geq, POLY_SYS_int_leq, POLY_SYS_int_gtr, POLY_SYS_int_lss,
POLY_SYS_mul_word, POLY_SYS_plus_word,
POLY_SYS_minus_word, POLY_SYS_div_word, POLY_SYS_or_word,
POLY_SYS_and_word, POLY_SYS_xor_word, POLY_SYS_shift_left_word,
POLY_SYS_mod_word, POLY_SYS_word_geq, POLY_SYS_word_leq,
POLY_SYS_word_gtr, POLY_SYS_word_lss, POLY_SYS_word_eq,
POLY_SYS_get_first_long_word]
fun isInList(ioCall, sofar) = sofar orelse wordEq (function, ioOp ioCall)
fun isImmutable (Constnt w, sofar) =
sofar andalso (isShort w orelse not(isMutable(toAddress w)))
| isImmutable _ = raise InternalError "isImmutable: arg not constant"
in
if List.foldl isInList false safeCalls
then true
else if List.foldl isInList false safeForImmutable
then (* These are safe if the first argument is immutable. If it's
mutable we might find that the value has changed when we
come to run the program. *)
List.foldl isImmutable true args
else false
end
(************************************************************************)
(* evaluate *)
(************************************************************************)
(* Evaluates expressions by code-generating and running them. *)
(* "resultCode" is a copied code expression. The result is either *)
(* a constant or an exception. *)
fun evaluate (resultCode as Constnt _) codegen =
(* May already have been reduced to a constant. *)
resultCode
| evaluate (resultCode as Eval { function=evalFunction, argList, ...}) codegen =
(* It's a function call - generate a call. This should only be
as a result of "early" evaluation when all the arguments are
constants or inline procedures. *)
(
case evaluate evalFunction codegen of
function as Raise _ => (* Could be an exception. *)
function
| function =>
let (* Evaluate each argument. *)
(* NB This version of loadArgs is DIFFERENT from the old Poly version.
The Poly version stores the arguments in reverse order, then uses
"callcode" (run-time call POLY_SYS_callcode = 16) to apply the function.
The ML version stores the parameters in the usual order, then uses
"callcode_tupled" (run-time call POLY_SYS_callcode_tupled = 204) to apply
the function. [The other difference is that "callcode" expects its
two arguments in registers (Poly calling convention) but "callcode_tupled"
expects to receive an ML pair (ML calling convention).] These interface
differences are actually implicit in the fact that we use Address.call
rather than address$call. SPF 8/7/94
*)
val funcAddress =
case function of
Constnt addr =>
if isShort addr
then raise InternalError "Code address is not an address"
else toAddress addr
| _ => raise InternalError "Code address is not a constant";
(* Finished loading the args; call the function. This may raise *)
(* an exception, in which case we just return the original code *)
(* rather than trying to sort out the exception packet. *)
(* We would have a problem if the code we were executing could *)
(* raise Interrupt ("is it the user, or is it the code?") but *)
(* this isn't a problem because we never execute an explicit *)
(* "raise" expression and none of the built-in functions can *)
(* raise Interrupt. *)
fun callFunction (argTuple:machineWord) =
mkConst (call (funcAddress, argTuple))
handle SML90.Interrupt => raise SML90.Interrupt (* Must not handle this *)
| _ => resultCode
fun loadArgs (argVec : address) ([]:codetree list) locn =
(
lock argVec;
callFunction (toMachineWord argVec)
)
| loadArgs (argVec : address) (h :: t) locn =
(
case evaluate h codegen of
arg as Raise _ => arg
(* if argument is a "raise" expression, so is final result *)
| Constnt cv =>
(
assignWord (argVec, toShort locn, cv);
loadArgs argVec t (locn + 1)
)
| _ => raise InternalError "Result of evaluate is not a constant"
)
in
case argList of
[] => callFunction word0 (* empty tuple - don't allocate *)
| argList =>
let
val argVec = alloc (toShort (List.length argList), F_mutable_words, word0);
in
loadArgs argVec argList 0
end
end
)
| evaluate resultCode codegen =
(* Compile the expression, evaluate it, and catch any exceptions. *)
let
val compiledCode = codegen resultCode;
in
mkConst (compiledCode ())
handle SML90.Interrupt => raise SML90.Interrupt (* Must not handle this *)
| _ => resultCode
end (* evaluate *);
(************************************************************************)
(* preCode *)
(************************************************************************)
(* This phase generates closures, decides if a procedure can be called *)
(* with a static link, and calculates use-counts for declarations. *)
(************************************************************************
The main point of this phase is to change the Loads to be closure-relative.
At the start of the phase, they are mostly of the form:
Extract {level = n, addr = m, fpRel = true} (m <> 0)
which means: go out n (>= 0) levels of lambda binding, then get either
(1) the m'th local (m > 0)
(2) the ~m'th most recent parameter (m < 0)
with a few of the form:
Extract {level = n, addr = 0, fpRel = false}
which means: load the n'th enclosing procedure (n = 0 means the current
procedure).
At the end of the phase, we have three possible forms:
Extract {level = 0, addr = m, fpRel = true} (m <> 0)
Extract {level = 0, addr = 0, fpRel = false}
which are restricted forms of the above, and
Extract {level = 0, addr = k, fpRel = false}
which means extract the k'th (k > 0) element of the procedure's closure.
The phase also constructs code to load the appropriate value into
the procedure's closure.
In addition to this, we want to work out when a procedure can be
virtual i.e. when we can call it via a static link. We can do this
if the procedure is never passed as a parameter, returned as a
result or used in the closure of a non static-link procedure.
The process starts by being optimistic, then marks each item as needing
a closure when a "difficult" use is encountered.
SPF 19/5/95
*************************************************************************)
(*
This previously used a use-counting mechanism to allow the code-generator
to decide when a value, particularly one in a register, is no longer required.
That the the disadvantage that it took no account of control flow so that
in a function such as
fun f (a, b) = if a then g a + 1 else b
b was marked as in use in the then-part and saved across the
call to g even though it is not actually required.
This has been changed to add information about when the last reference
to a variable occurs in any particular flow of control. Extra "kill"
references are added to alternative flow of control, so for, example
the above function would be rewritten as something like
fun f (a, b) = if a then (b<last>; g (a<last>) + 1) else (a<last>; b<last>)
DCJM 2000.
*)
fun preCode (codegen, pt) =
let
val initTrans = 5; (* Initial size of arrays. *)
(* preCode.copyCode *)
fun copyCode (pt, previous, argUses, closureUses) =
let
(* Tables for local declarations. "localUses" is the use count,
and "closuresForLocals" a flag indicating that if the declaration
is a procedure a closure must be made for it. *)
val localUses = stretchArray (initTrans, false);
val closuresForLocals = stretchArray (initTrans, false);
(* used to indicate whether a local declaration is really
a constant, so that we can in-line it. SPF 16/5/95 *)
val localConsts = stretchArray (initTrans, NONE);
abstype usageSet =
UsageSet of {locals: int list ref, args: int list ref, clos: bool ref}
with
(* Used to give us a "kill set" for an expression.
In the case of parallel flows of control (e.g. then- and else-parts
of an if-then-else) we can explicitly kill variables if they
appear in the kill set for one branch but not in another.
e.g. in if x then y else z assuming that x, y, z are not
used in subsequent expressions we can kill z in the then-branch
and y in the else-branch. The advantage of this is that we don't
need to save variables if they are never used. *)
fun saveUsages() =
let
fun tabulate(size, vec) =
let
fun tabul n l =
if n = size
then l
else if StretchArray.sub(vec, n)
then tabul (n+1) (n::l)
else tabul (n+1) l
in
tabul 0 []
end
val localLength = StretchArray.length localUses
and argLength = StretchArray.length argUses
val localSaved = tabulate(localLength, localUses)
and argSaved = tabulate(argLength, argUses)
in
UsageSet{locals=ref localSaved, args=ref argSaved, clos=ref(!closureUses)}
end
(* Restore the table to the saved values. *)
fun setToSaved(UsageSet{locals=ref locals, args=ref args, clos}): unit =
let
fun copyArray i f t =
if i < 0
(* Put in a check here temporarily. *)
then (case f of [] => () | _ => raise InternalError "setToSaved: not empty")
else case f of
[] =>
(
StretchArray.update(t, i, false);
copyArray (i-1) [] t
)
| head :: tail =>
if head = i
then
(
StretchArray.update(t, i, true);
copyArray (i-1) tail t
)
else
(
StretchArray.update(t, i, false);
copyArray (i-1) f t
)
in
copyArray (StretchArray.length argUses -1) args argUses;
copyArray (StretchArray.length localUses -1) locals localUses;
closureUses := !clos
end;
(* Similar to setToSaved except that it sets the current set
to the union of the current set and the saved set. *)
fun addFromSaved(UsageSet{locals=ref locals, args=ref args, clos}): unit =
let
fun addArray [] t = ()
| addArray (head::tail) t =
(
StretchArray.update(t, head, true);
addArray tail t
)
in
addArray args argUses;
addArray locals localUses;
if !clos then closureUses := true else ()
end;
fun inSet(UsageSet{locals=ref locals, args=ref args, clos}, addr, level) =
if level > 0 then !clos
else if addr < 0
then (* Argument *) List.exists(fn n => n = ~addr) args
else (* Local *) List.exists(fn n => n = addr) locals;
fun removeItem(UsageSet{locals, args, clos}, addr, level) =
if level > 0 then clos := false
else if addr < 0
then args := List.filter (fn n => n <> ~addr) (!args)
else locals := List.filter (fn n => n <> addr) (!locals)
(* Differences of two sets, used as kill entries.
The differences are returned as Extract codetree entries. *)
fun computeKillSets(
thenUsage as UsageSet{locals=ref thenLoc, args=ref thenArgs, clos=thenClos},
elseUsage as UsageSet{locals=ref elseLoc, args=ref elseArgs, clos=elseClos}) =
let
fun killSets f [] [] inThenOnly inElseOnly = (inThenOnly, inElseOnly)
| killSets f [] (inElseH::inElseT) inThenOnly inElseOnly =
killSets f [] inElseT inThenOnly
(mkGenLoad(f inElseH, 0, true, true) :: inElseOnly)
| killSets f (inThenH::inThenT) [] inThenOnly inElseOnly =
killSets f inThenT []
(mkGenLoad(f inThenH, 0, true, true) ::inThenOnly) inElseOnly
| killSets f (inThen as inThenH::inThenT)
(inElse as inElseH::inElseT) inThenOnly inElseOnly =
if inThenH = inElseH
then (* In both sets *)
killSets f inThenT inElseT inThenOnly inElseOnly
else if inThenH < inElseH
then (* Only in Else part. *)
killSets f inThen inElseT inThenOnly
(mkGenLoad(f inElseH, 0, true, true) :: inElseOnly)
else killSets f inThenT inElse
(mkGenLoad(f inThenH, 0, true, true) ::inThenOnly) inElseOnly
val (argThen, argElse) =
killSets (op ~) thenArgs elseArgs [] []
val (localThen, localElse) =
killSets (fn x=>x) thenLoc elseLoc argThen argElse
val (closThen, closElse) =
if !thenClos = !elseClos then (localThen, localElse)
else if !thenClos
then (mkClosLoad 0 true :: localThen, localElse)
else (localThen, mkClosLoad 0 true :: localElse)
in
(closThen, closElse)
end;
end;
(* returns the translated node *)
fun locaddr (ptr as { addr=laddr, level=lev, ...}: loadForm) (closure : bool) : codetree =
if lev <> 0 orelse laddr = 0
then (* non-local *) previous (ptr, lev, closure)
else if laddr < 0
then let (* parameters *)
val argNo = ~ laddr;
val wasInUse = argUses sub argNo;
in
(* Mark the argument as used. *)
update (argUses, argNo, true);
mkGenLoad (laddr, 0, true, not wasInUse)
end
(* isOnstack *)
else case (localConsts sub laddr) of (* SPF 16/5/95 *)
SOME c => c (* just return the constant *)
| NONE =>
let
(* Mark as used and set closure flag if necessary. *)
val wasInUse = localUses sub laddr
in
if closure then update (closuresForLocals, laddr, true) else ();
update (localUses, laddr, true);
mkGenLoad (laddr, 0, true, not wasInUse)
end
(* locaddr *);
(* Map f onto a list tail first. N.B. It doesn't reverse the list.
Generally used to map "insert" over a list where we need to
ensure that last references to variables are detected correctly. *)
fun revmap f [] = []
| revmap f (a::b) =
let
val rest = revmap f b
in
f a :: rest
end
(* preCode.copyCode.insert *)
fun insert (pt:codetree) : codetree =
let
(* If "makeClosure" is true the procedure will need a full closure. *)
(* It may need a full closure even if makeClosure is false if it *)
(* involves a recursive reference which will need a closure. *)
(* preCode.copyCode.insert.copyLambda *)
fun copyLambda ({body=lambdaBody, level=nesting, numArgs, isInline,
name=lambdaName, ...}: lambdaForm) makeClosure =
let
val newGrefs = ref []; (* non-local references *)
val newNorefs = ref 0; (* number of non-local refs *)
val refsToClosure = ref false; (* Number of references to the closure. *)
(* A new table for the new procedure. *)
(* preCode.copyCode.insert.copyLambda.prev *)
fun prev (ptr as { addr, fpRel, ...} : loadForm, lev : int, closure: bool) : codetree =
let
(* Returns the closure address of the non-local *)
(* preCode.copyCode.insert.copyLambda.prev.makeClosureEntry *)
fun makeClosureEntry [] _ wasRefed = (* not found - construct new entry *)
let
val U =
newGrefs := mkGenLoad (addr, lev - 1, fpRel, false) :: !newGrefs;
val newAddr = !newNorefs + 1;
in
newNorefs := newAddr; (* increment count *)
mkClosLoad newAddr (not wasRefed)
end
| makeClosureEntry
(Extract{addr=loadAddr, level=loadLevel, fpRel=loadFpRel, ...} :: t)
newAddr wasRefed =
if loadAddr = addr andalso loadLevel = lev - 1 andalso loadFpRel = fpRel
then mkClosLoad newAddr (not wasRefed)
else makeClosureEntry t (newAddr - 1) wasRefed
| makeClosureEntry (_ ::_) newAddr wasRefed =
raise InternalError "makeClosureEntry: closure is not Extract";
in
(* If we use a procedure on another level in a way that will
require it to have a real closure we must make one for it.
(i.e. we must set the "closure" flag.) This is necessary
because we may, for example, pass an outer procedure as a
parameter from within an inner procedure. The inner procedure
may not itself need a closure so the non-local references
it makes will not be forced to have closures, but the outer
procedure will need one. *)
if lev = 0 (* Reference to the closure itself. *)
then let
val U : unit =
if addr <> 0 orelse fpRel
then raise InternalError "prev: badly-formed load"
else ();
val U : unit =
if closure then makeClosure := true else ();
val wasRefed = ! refsToClosure
in
refsToClosure := true;
mkClosLoad 0 (not wasRefed)
end
else if lev = 1 andalso addr > 0
then let (* local at this level *)
val U : unit =
if not fpRel
then raise InternalError "prev: badly-formed load"
else ();
in
case localConsts sub addr of
SOME c => c (* propagate constant, rather than using closure *)
| NONE =>
let
val U : unit =
if closure
then update (closuresForLocals, addr, true)
else ();
val wasRefed = ! refsToClosure
in
refsToClosure := true;
makeClosureEntry (!newGrefs) (!newNorefs) wasRefed
end
end
else if lev = 1 andalso addr < 0
then let (* parameter at this level *)
val U : unit =
if not fpRel
then raise InternalError "prev: badly-formed load"
else ();
val wasRefed = ! refsToClosure
in
refsToClosure := true;
makeClosureEntry (!newGrefs) (!newNorefs) wasRefed
end
else let (* lev > 1 orelse (lev = 1 andalso addr = 0) *)
(* Discard the result, unless it's a constant.
We fix up the old (fp-relative) address in the
closure list on the second pass. Why not now?
That would make it harder to set the makeClosure
flag for the closure lists of mutually-recursive
definitions. But doesn't doing it this way risks
making the refsToClosure count too high? SPF 19/5/95 *)
val outerLoad : codetree =
previous (ptr, lev - 1, closure)
in
case outerLoad of
Constnt _ => outerLoad
| _ =>
let
val wasRefed = ! refsToClosure
in
refsToClosure := true;
makeClosureEntry (!newGrefs) (!newNorefs) wasRefed
end
end
end (* prev *);
(* This could be a fixed array rather than stretchArray. The
size is one more than the number of arguments because the
arguments are numbered from ~1 .. ~n and we use the entries
as ~arg. *)
val argUses = stretchArray (numArgs+1, false);
(* process the body *)
val bodyCode = copyCode (lambdaBody, prev, argUses, refsToClosure);
(* Add kill entries for unused arguments. Typically a function
taking a unit argument will not use it. *)
fun addKills n =
if n > numArgs then nil
else if not (StretchArray.sub(argUses, n))
then mkGenLoad(~n, 0, true, true) :: addKills (n+1)
else addKills (n+1)
val insertedCode = (* Wrap the lot up if necessary. *)
case addKills 1 of
nil => bodyCode
| kills => Newenv(kills @ [bodyCode])
in (* body of preCode.copyCode.insert.copyLambda *)
if null (!newGrefs) (* no external references *)
then let
(*
Since we are code-generating the procedure before we
have done a full analysis of any mutually-recursive
functions, we have to conservatively assume that it
will require a closure, even if all the uses of the
procedure within its body are kosher. SPF 20/5/95.
We now want recursive calls to be code-generated using
the saved closure register, rather than by loading the
address of the closure from the constants vector. This
means that we can no longer set closureRefs to 0, since
we will actually be *using* the closure. SPF 20/5/95
*)
val copiedProc =
Lambda
{
body = insertedCode,
isInline = isInline,
name = lambdaName,
closure = [],
numArgs = numArgs,
level = nesting,
closureRefs = if !refsToClosure then 1 else 0 (* was set to 0 *),
makeClosure = true
};
in
(* Code generate it now so we get a constant. *)
evaluate copiedProc codegen
end
else
(* External references present. The closure will be copied
later with copyProcClosure. *)
Lambda
{
body = insertedCode,
isInline = isInline,
name = lambdaName,
closure = !newGrefs,
numArgs = numArgs,
level = nesting,
closureRefs = if !refsToClosure then 1 else 0,
makeClosure = false
}
end (* copyLambda *);
(* Copy the closure of a procedure which has previously been
processed by copyLambda. *)
(* preCode.copyCode.insert.copyProcClosure *)
fun copyProcClosure (Lambda{ body, isInline, name, numArgs, level,
closureRefs, closure, ...}) makeClosure =
let
(* process the non-locals in this procedure *)
(* If a closure is needed then any procedures referred to
from the closure also need closures.*)
fun makeLoads (Extract ext) = locaddr ext makeClosure
| makeLoads _ = raise InternalError "makeLoads - not an Extract"
val copyRefs = rev (map makeLoads closure);
in
Lambda
{
body = body,
isInline = isInline,
name = name,
closure = copyRefs,
numArgs = numArgs,
level = level,
closureRefs = closureRefs,
makeClosure = makeClosure
}
end
| copyProcClosure pt makeClosure = pt (* may now be a constant *)
(* end copyProcClosure *);
in (* body of preCode.copyCode.insert *)
case pt of
(pt as MatchFail) => pt : codetree
| AltMatch(x, y) =>
let
val insY = insert y
val insX = insert x
in
AltMatch (insX, insY) : codetree
end
| CodeNil => CodeNil
| Eval { function, argList, ...} =>
let
(* Process the arguments first. *)
val newargs = revmap insert argList
val func =
case function of
Extract ext => locaddr ext (* closure = *) false
| first => insert first
in
(* If we are calling a procedure which has been declared this
does not require it to have a closure. Any other use of the
procedure would. *)
mkEval (func, newargs, false)
end : codetree
| Extract ext =>
(* Load the value bound to an identifier. The closure flag is
set to true since the only cases where a closure is not needed,
eval and load-andStore, are handled separately. *)
locaddr ext (* closure = *) true : codetree
| Indirect {base, offset} => Indirect {base = insert base, offset = offset}
| pt as Constnt _ =>
pt : codetree (* Constants can be returned untouched. *)
| BeginLoop(body, argList) => (* Start of tail-recursive inline function. *)
let
(* Make entries in the tables for the arguments. I'm not sure
if this is essential. *)
fun declareArg(Declar{addr=caddr, ...}) =
(
update (localUses, caddr, false);
update (closuresForLocals, caddr, false);
update (localConsts, caddr, NONE)
)
| declareArg _ = raise InternalError "declareArg: not a declaration"
val _ = List.app declareArg argList
(* Process the body. *)
val insBody = insert body
(* Then the initial argument values. *)
fun copyDec(Declar{addr, value, ...}) =
(
(* Reset the uses for this entry since it's local. *)
update (localUses, addr, false);
mkDecRef (insert value) addr 1
)
| copyDec _ = raise InternalError "copyDec: not a declaration"
val newargs = revmap copyDec argList
(* TODO: Perhaps we should modify this so that any "last
references" we find in the loop body are moved out to
beyond the loop. *)
in
BeginLoop(insBody, newargs)
end
| Loop argList => (* Jump back to start of tail-recursive function. *)
Loop(revmap insert argList)
| Raise x => Raise (insert x) : codetree
(* See if we can use a case-instruction. Arguably this belongs
in the optimiser but it is only really possible when we have
removed redundant declarations. *)
| Cond (condTest, condThen, condElse) =>
copyCond (condTest, condThen, condElse)
| Newenv ptElist =>
let
(* Process the body. Recurses down the list of declarations
and expressions processing each, and then reconstructs the
list on the way back. *)
(* body of preCode.copyCode.insert(isNewenv).copyDeclarations *)
fun copyDeclarations ([]: codetree list) : codetree list = []
| copyDeclarations ((Declar{addr=caddr, value = pt, ...}) :: vs) : codetree list =
let
(* Set the table entries. *)
(* DCJM 1/12/99. I think the reason for this is in case we have
reused the address in a different block. *)
val U = update (localUses, caddr, false); (* needed? *)
val U = update (closuresForLocals, caddr, false);
val U : unit =
case pt of
Constnt _ => update (localConsts, caddr, SOME pt)
| _ => update (localConsts, caddr, NONE); (* needed? *)
(* This must be done first, even for non-lambdas - why? *)
(* The first declarative might be a set of mutual declarations,
and we have to copy all their uses before we can successfully
compile them because we need to know whether they will
require closures. SPF 13/5/95 *)
val rest = copyDeclarations vs;
val wasUsed = localUses sub caddr;
in
(* It is never used and it has no side-effects
so we can ignore it. *)
if not wasUsed andalso sideEffectFree pt
then rest
else let
val dec =
case pt of
Lambda lam =>
let
val closure = ref (closuresForLocals sub caddr);
val copiedLambda = copyLambda lam closure;
in
(* Note: copyLambda may have set closure *)
copyProcClosure copiedLambda (! (closure))
end
| _ => insert pt
in
(* Set the use count back to free otherwise this local
declaration would become part of the kill set for the
surrounding expression. *)
update (localUses, caddr, false);
mkDecRef dec caddr (if wasUsed then 1 else 0) :: rest
end
end (* copyDeclarations.isDeclar *)
| copyDeclarations (MutualDecs mutualDecs :: vs) : codetree list =
let
(* Mutually recursive declarations. Any of the declarations
may refer to any of the others. This causes several problems
in working out the use-counts and whether the procedures
(they should be procedures) need closures. A procedure will
need a closure if any reference would require one (i.e. does
anything other than call it). The reference may be from one
of the other mutually recursive declarations and may be
because that procedure requires a full closure. This means
that once we have dealt with any references in the rest of
the containing block we have to repeatedly scan the list of
declarations removing those which need closures until we
are left with those that do not. The use-counts can only be
obtained when all the non-local lists have been copied. *)
(* First go down the list making a declaration for each entry.
This makes sure there is a table entry for all the
declarations. *)
fun applyFn (Declar{addr=caddr, value=dv, ...}) =
(
(* SPF 16/5/95 *)
case dv of
Constnt _ => update (localConsts, caddr, SOME dv)
| _ => ();
update (localUses, caddr, false);
update (closuresForLocals, caddr, false)
)
| applyFn _ = raise InternalError "applyFn: not a Declar"
val U = apply applyFn mutualDecs;
(* Process the rest of the block. Identifies all other
references to these declarations. *)
val restOfBlock = copyDeclarations vs;
(* We now want to find out which of the declarations require
closures. First we copy all the declarations, except that
we don't copy the non-local lists of procedures. *)
fun copyDec (Declar{addr=caddr, value=dv, ...}) =
let
val closure = ref (closuresForLocals sub caddr);
val dec =
case dv of
Lambda lam => copyLambda lam closure
| _ => insert dv;
(* SPF 18/5/95 - check whether we now have a constant *)
val U : unit =
case dec of
Constnt _ => update (localConsts, caddr, SOME dec)
| _ => update (localConsts, caddr, NONE); (* needed? *)
(* copyLambda may set "closure" to true. *)
val U : unit =
update (closuresForLocals, caddr, !closure);
in
mkDec (caddr, dec)
end
| copyDec _ = raise InternalError "copyDec: not a Declar"
val copiedDecs = map copyDec mutualDecs;
(* We now have identified all possible references to the
procedures apart from those of the closures themselves.
Any of closures may refer to any other procedure so we must
iterate until all the procedures which need full closures
have been processed. *)
fun processClosures [] outlist true =
(* Sweep completed. - Must repeat. *)
processClosures outlist [] false
| processClosures [] outlist false =
(* We have processed the whole of the list without finding
anything which needs a closure. The remainder do not
need full closures. *)
let
fun mkLightClosure (Declar{value, addr, ...}) =
let
val clos = copyProcClosure value false;
in
mkDec (addr, clos)
end
| mkLightClosure _ =
raise InternalError "mkLightClosure: not a Declar"
in
map mkLightClosure outlist
end
| processClosures ((h as Declar{addr=caddr, value, ...})::t) outlist someFound =
if closuresForLocals sub caddr
then let (* Must copy it. *)
val clos = copyProcClosure value true
in
mkDec (caddr, clos) :: processClosures t outlist true
end
(* Leave it for the moment. *)
else processClosures t (h :: outlist) someFound
| processClosures _ outlist someFound =
raise InternalError "processClosures: not a Declar"
(* Now we know all the references we can complete
the declaration and put on the use-count. *)
fun copyEntries [] = []
| copyEntries (Declar{ addr, value, ...} ::ds) =
let
val wasUsed = localUses sub addr;
in
if not wasUsed andalso sideEffectFree value
then copyEntries ds
else
(
(* Set the use count back to false otherwise this
entry would become part of the kill set for the
surrounding expression. *)
update(localUses, addr, false);
mkDecRef value addr (if wasUsed then 1 else 0) :: copyEntries ds
)
end
| copyEntries (d::ds) =
raise InternalError "copyEntries: Not a Declar";
val decs = copyEntries (processClosures copiedDecs [] false);
in
(* Return the mutual declarations and the rest of the block. *)
case decs of
[] => restOfBlock (* None left *)
| [d] => d :: restOfBlock (* Just one *)
| _ => mkMutualDecs decs :: restOfBlock
end (* copyDeclarations.isMutualDecs *)
| copyDeclarations (v :: vs) : codetree list =
let (* Not a declaration - process this and the rest. *)
(* Must process later expressions before earlier
ones so that the last references to variables
are found correctly. DCJM 30/11/99. *)
val copiedRest = copyDeclarations vs;
val copiedNode = insert v;
in
(* Expand out blocks *)
case copiedNode of
Newenv decs => decs @ copiedRest
| _ => copiedNode :: copiedRest
end (* copyDeclarations *);
(* Can we optimise a tuple to a constant? It would be nice
to adjust the local use counts when we find a constant,
but I think we're already committed to the values we
found on the previous pass. SPF 13/6/95. *)
fun recopyValue (Recconstr recs) : codetree =
mkTuple (map recopyValue recs)
| recopyValue (v as Extract{level=lev, addr=laddr, ...}) : codetree =
if lev = 0 andalso laddr > 0
then
case (localConsts sub laddr) of
SOME c => c
| NONE => v
else v
| recopyValue v = v;
fun recopyDeclaration (Declar{addr=caddr, value=pt as Recconstr _, references}) : codetree =
let
val pt' = recopyValue pt
in
if isConstnt pt'
then update (localConsts, caddr, SOME pt')
else update (localConsts, caddr, NONE); (* needed? *)
mkDecRef pt' caddr references
end
| recopyDeclaration (v as Declar _) : codetree = v
| recopyDeclaration (MutualDecs decs) : codetree =
mkMutualDecs (map recopyDeclaration decs)
| recopyDeclaration (v : codetree) : codetree = recopyValue v;
(* recopy declarations to remove constant tuples SPF 13/6/95 *)
val insElist = map recopyDeclaration (copyDeclarations ptElist);
in
(* If there is only one item then return that item (unless it is
a declaration - this can occur if we have a block which contains
a declaration to discard the result of a function call and
only do its side-effects). *)
wrapEnv insElist
end : codetree (* isNewEnv *)
| Recconstr recs => (* perhaps it's a constant now? *)
(* Recconstr (map insert (cRecconstr pt)) : codetree *)
mkTuple (revmap insert recs) : codetree
| (pt as Ldexc) => pt : codetree (* just a constant so return it *)
| Lambda lam =>
(* Must make a closure for this procedure because
it is not a simple declaration. *)
copyProcClosure (copyLambda lam (ref true)) true : codetree
| Handle { exp, taglist, handler } =>
let
(* The order here is important. We want to make sure that
the last reference to a variable really is the last. *)
val hand = insert handler;
val exp = insert exp;
val tags = map insert taglist
in
Handle {exp = exp, taglist = tags, handler = hand}
end
| Case { cases, test, default, min, max } =>
let
fun insertCasePair ((e,l) : casePair) : casePair =
(insert e, l);
in
Case
{
cases = revmap insertCasePair cases,
default = insert default,
test = insert test, (* Must be called last. *)
min = min,
max = max
}
end : codetree
| c as Container _ => c
| SetContainer {container, tuple, size} =>
SetContainer{container = insert container, tuple = insert tuple, size = size}
| TupleFromContainer(container, size) =>
TupleFromContainer(insert container, size)
| Global g =>
(* Should have been taken off by the optimiser. *)
optGeneral g : codetree
| _ => raise InternalError "unknown instruction"
end
and copyCond (condTest, condThen, condElse) =
let
(* Process each of the arms, computing the kill sets for
each arm. *)
(* Save the current usage set. Because we process the
codetree in reverse order to the control flow entries
in here show the variables which are in use after the
if-expression has completed. *)
val usagesAfterIf = saveUsages();
(* Process the then-part. Save the usage set which
corresponds to variables which are in use in the
flow of control through the then-part and afterwards. *)
val insThen = insert condThen;
val thenUsage = saveUsages();
(* Reset the use-counts to the saved value. *)
val U: unit = setToSaved usagesAfterIf;
(* Process the else-part. *)
val insElse = insert condElse;
val elseUsage = saveUsages();
(* Now compute the differences of the sets.
The differences are returned as Extract codetree entries. *)
val (killThenOnly, killElseOnly) =
computeKillSets(thenUsage, elseUsage);
(* Now ensure that all the variables that were used in the
then-part are marked as used. It may be that they have already
been set if they also appeared in the else-part.
This sets the usage sets to the union of the then-part,
the else-part and code after the if-expression. *)
val U: unit = addFromSaved thenUsage;
(* Add kill entries to the other branch. We simply add
Extract entries with lastRef=true before the appropriate
branch. This does what we want since the code-generator
does not generate any code for them but it might make
the intermediate code easier to read if we used a different
instruction. *)
fun addKillSet(original, []) = original (* No change *)
| addKillSet(Newenv decs, killSet) = Newenv(killSet @ decs)
| addKillSet(original, killSet) = Newenv(killSet @ [original]);
(* Process the condition AFTER the then- and else-parts. *)
val insFirst = insert condTest;
datatype caseVal =
NoCaseVal
| CaseVal of
{ tags: int list,
min: int,
max: int,
test: codetree };
(* True if both instructions are loads or indirections with the
same effect. More complicated cases could be considered but
function calls must always be treated as different.
Now returns the variable, choosing the one which has lastRef set
if possible. Note: the reason we consider Indirect entries here
as well as Extract is because we (used to) defer Indirect entries. *)
datatype similarity = Different | Similar of loadForm;
fun similar (Extract (a as {addr=aAddr, level=aLevel, fpRel=aFpRel, lastRef=aRef}))
(Extract (b as {addr=bAddr, level=bLevel, fpRel=bFpRel, lastRef=bRef})) =
if aAddr = bAddr andalso aLevel = bLevel andalso aFpRel = bFpRel
then if aRef then Similar a else Similar b
else Different
| similar (Indirect{offset=aOff, base=aBase})
(Indirect{offset=bOff, base=bBase}) =
if aOff <> bOff then Different else similar aBase bBase
| similar (a:codetree) (b:codetree) = Different;
(* If we have a call to the int equality operation *)
(* then we may be able to use a case statement. *)
(* preCode.copyCode.insert.findCase *)
fun findCase (evl as Eval{ function=Constnt cv, argList, ... }) : caseVal =
(* Since we are comparing for equality with constants we
can do a case for short integers (tags) or arbitrary
precision integers. This will certainly work with the
new (Sparc, Mips, I386) code-generator. *)
(* The above comment is an oversimplification, because we can't be
sure that the constant is a short. If it isn't, then word equality
is *not* the same as integer equality, so I've added a test for
this. I've also added code for all three types of equality test:
int_eq 229 (used for case tags - but not necessarily short)
equala 113 (arbitrary precision arithmetic)
word_eq 251 (used for shorts)
rather than just for the first two, since although the last case
may not arise (says who?) it does no harm to test for it. SPF 12/10/94 *)
if wordEq (cv, ioOp POLY_SYS_int_eq) orelse
wordEq (cv, ioOp POLY_SYS_equala) orelse
wordEq (cv, ioOp POLY_SYS_word_eq)
then (* Should be just two arguments. *)
case argList of
[Constnt c1, arg2] =>
if isShort c1
then let
val value : int = Word.toIntX (toShort c1);
in
CaseVal{tags=[value], min=value, max=value, test=arg2}
end
else NoCaseVal (* Not a short constant. *)
| [arg1, Constnt c2] =>
if isShort c2
then let
val value : int = Word.toIntX (toShort c2);
in
CaseVal{tags=[value], min=value, max=value, test=arg1}
end
else NoCaseVal (* Not a short constant. *)
| _ => NoCaseVal
(* Wrong number of arguments - should raise exception? *)
else NoCaseVal (* Function is not a comparison. *)
| findCase (Case{cases, min=minC, max=maxC, test, default}) : caseVal =
(* If we have an expression like x = 1 cor x = 2
we can make a case-expression out of it. *)
(* This is more complicated now that we've removed
conditional-or and replaced it by a normal conditional.
If the first expression is suitable for inclusion in the
case it will already have been converted into a case. *)
let
(* To match the other cases we need to have the same
test variable, all the cases must return CodeTrue and
the default must be of the form caseVar = constant.
i.e. it is of the form
case x of n1 => true | n2 => true | _ => x = n3.
*)
val defCase: caseVal = findCase default
(* Extract the tags and check that the results are all "true". *)
fun checkCases [] = SOME []
| checkCases ((c, tags) :: t) =
if
case c of
Constnt w => wordEq(w, True)
| _ => false
then
case checkCases t of
NONE => NONE
| SOME tags' => SOME(tags @ tags')
else NONE
in
case (defCase, checkCases cases) of
(CaseVal{test=testDef, min=minDef, max=maxDef, tags=tagsDef},
SOME newTags) =>
if similar testDef test <> Different
then
CaseVal{tags = newTags @ tagsDef, min=Int.min(minC, minDef),
max=Int.max(maxC, maxDef),
(* Return the default test rather than the original because
that might contain the last reference. *)
test=testDef}
else NoCaseVal
| _ => NoCaseVal
end (* isCor *)
| findCase _ = NoCaseVal (* Neither of those instructions *)
(* end findCase *);
val testCase : caseVal = findCase insFirst;
(*val insSecond : codetree = insThen;
val insThird : codetree = insElse; *)
in (* body of preCode.copyCode.insert(isCond) *)
case testCase of
NoCaseVal => (* Can't use a case *)
mkIf (insFirst,
addKillSet(insThen, killElseOnly),
addKillSet(insElse, killThenOnly))
| CaseVal { tags=caseTags, min=caseMin, max=caseMax, test=caseTest } =>
(* Can use a case. Can we combine two cases?
If we have an expression like
"if x = a then .. else if x = b then ..."
we can combine them into a single "case". *)
case insElse of
Case { cases=nextCases, min=nextMin, max=nextMax, test=nextTest,
default=nextDefault } =>
(
case similar nextTest caseTest of
(* Note - it is legal (though completely redundant) for the
same case to appear more than once in the list. This is not
checked for at this stage. *)
(* We have to take care to get the "last-reference" flags
and the kill-set right when "nextTest" is the last
reference to the variable. (N.B. This means that it does
not appear anywhere else in the case).
There are two cases to consider:
1. If the then-part contains the variable
e.g. if a = 1 then a<lastRef>
else (case a<lastRef> of 2 => x | _ => y)
Note: because the last reference for a appears in
both the branches it will not be in either kill set.
2. If the then-part does not contain the variable
e.g. if a = 1 then x
else (case a<lastRef> of 2 => x | _ => y)
Note: because the last reference to a appears only
in the else-part it will be in killElseOnly.
In 1 we transform this into
case a of 1 => a<lastRef>
| 2 => <kill a> x | 3 => <kill a> y
i.e. the test is NOT the last reference but a must be
killed on the other branches.
In 2 we transform it into
case a<last> of 1 => x | 2 => y | 3 => z
i.e. the test IS the last reference.
*)
Similar(testVar as {lastRef = true, addr, level, ...}) =>
let (* Contains the last reference to the test variable. *)
(* Remove this variable from the usage table for the else-part
since we are lifting it up to the test. *)
val U: unit = removeItem(elseUsage, addr, level);
(* Compute the new kill sets. *)
val (killThenOnly, killElseOnly) =
computeKillSets(thenUsage, elseUsage);
in
if inSet(thenUsage, addr, level)
then (* Must be in the then-part. *)
Case
{
cases = (addKillSet(insThen, killElseOnly), caseTags) ::
map (fn (c, l) =>
(addKillSet(c, killThenOnly), l)) nextCases,
test = caseTest, (* This will not be a last-ref *)
default = addKillSet(nextDefault, killThenOnly),
min = Int.min(caseMin, nextMin),
max = Int.max(caseMax, nextMax)
}
else (* It was in killElseOnly *)
Case
{
cases = (addKillSet(insThen, killElseOnly), caseTags) ::
map (fn (c, l) =>
(addKillSet(c, killThenOnly), l)) nextCases,
test = nextTest, (* Last reference *)
default = addKillSet(nextDefault, killThenOnly),
min = Int.min(caseMin, nextMin),
max = Int.max(caseMax, nextMax)
}
end
| Similar _ =>
(* Does not contain the last reference to the test variable or
the test variable is non-local.
Add the kill sets to appropriate cases. *)
Case
{
cases = (addKillSet(insThen, killElseOnly), caseTags) ::
map (fn (c, l) =>
(addKillSet(c, killThenOnly), l)) nextCases,
test = nextTest,
default = addKillSet(nextDefault, killThenOnly),
min = Int.min(caseMin, nextMin),
max = Int.max(caseMax, nextMax)
}
| Different => (* Two case expressions but they test different
variables. We can't combine them. *)
Case
{
cases = [(addKillSet(insThen, killElseOnly), caseTags)],
test = caseTest,
default = addKillSet(insElse, killThenOnly),
min = caseMin,
max = caseMax
}
)
| _ => (* insElse is not a case *)
(* A nil entry for the default indicates that
the case is exhaustive (ML only), so if we are
converting an "if" without an "else" (Poly only)
we put in a dummy "else". *)
(* DCJM 28/11/99. Not true: I think this comment was
left over from an old version of the compiler in which
case instructions were actually generated by the ML->codetree
code-generator. I think the idea was to optimise the case
expression when it was applied to a datatype rather than to
integers. For integers we always have to test that the
value is in the range for which we have entries in the indexed
case before we try computing the jump. If we know that the
value can only correspond to jump table entries we can avoid
that.
At present the Case entries in codetree are only produced
here. *)
Case
{
cases = [(addKillSet(insThen, killElseOnly), caseTags)],
test = caseTest,
default =
addKillSet(if isCodeNil insElse then
CodeZero else insElse, killThenOnly),
min = caseMin,
max = caseMax
}
end : codetree (* body of preCode.copyCode.insert(isCond) *)
in
insert pt
end (* copyCode *);
val insertedCode =
copyCode (pt,
fn (lf, i , b) =>
raise InternalError "outer level reached in copyCode",
stretchArray (initTrans, false),
ref false);
in
insertedCode
end (* preCode *);
(* Remove redundant declarations from the code. This reduces
the size of the data structure we retain for inline functions
and speeds up compilation. More importantly it removes internal
functions which have been completely inlined. These can mess up
the optimisation which detects which parameters to a recursive
function are unchanged. It actually duplicates work that is
done later in preCode but adding this function significantly
reduced compilation time by reducing the amount of garbage
created through inline expansion. DCJM 29/12/00. *)
(* This also ensures that recursive references are converted into
the correct CLOS(0,0) form. DCJM 23/1/01. *)
fun cleanProc (pt: codetree, prev: loadForm * int * int -> codetree,
nestingDepth): codetree =
let
val locals = stretchArray (5 (* Initial size. *), false);
fun cleanLambda(myAddr,
{body, isInline, name, numArgs, level=nestingDepth, ...}) =
let
(* Start a new level. *)
fun lookup(ext as {addr, fpRel, ...}, level, depth) =
if level = 0
then if addr = myAddr andalso fpRel
then (* It's a recursive reference. *)
mkRecLoad(depth-nestingDepth)
else
(
if addr >= 0 andalso fpRel
then update(locals, addr, true)
else (); (* Recursive *)
Extract ext
)
else prev(ext, level-1, depth);
val bodyCode = cleanProc(body, lookup, nestingDepth)
in
Lambda{body=bodyCode, isInline=isInline, name=name,
closure=[], numArgs=numArgs, level=nestingDepth,
closureRefs=0, makeClosure=false}
end
and cleanCode (Newenv decs) =
let
fun cleanDec(myAddr, Lambda lam) = cleanLambda(myAddr, lam)
| cleanDec(_, d) = cleanCode d;
(* Process the declarations in reverse order. *)
fun processDecs [] = []
| processDecs(Declar{value, addr, references} :: rest) =
let
(* Clear the entry. I think it's possible that
addresses have been reused in other blocks
so do this just in case. *)
val _ = update(locals, addr, false)
val processedRest = processDecs rest
in
(* If this is used or if it has side-effects we
must include it otherwise we can ignore it. *)
if locals sub addr orelse not (sideEffectFree value)
then Declar{value=cleanDec(addr, value), addr=addr,
references=references} :: processedRest
else processedRest
end
| processDecs(MutualDecs decs :: rest) =
let
(* Clear the entries just in case the addresses are reused. *)
fun setEntry(Declar{addr, ...}) = update(locals, addr, false)
| setEntry _ = raise InternalError "setEntry: unknown instr"
val _ = List.app setEntry decs
val processedRest = processDecs rest
(* We now know the entries that have actually been used
in the rest of the code. We need to include those
declarations and any that they use. *)
fun processMutuals [] excluded true =
(* If we have included a function in this
pass we have to reprocess the list of
those we excluded before. *)
processMutuals excluded [] false
| processMutuals [] _ false =
(* We didn't add anything more - finish *) []
| processMutuals(
(this as Declar{addr, value, references}) :: rest)
excluded added =
if not (locals sub addr)
then (* Put this on the excluded list. *)
processMutuals rest (this::excluded) added
else
let
(* Process this entry - it may cause other
entries to become "used". *)
val newEntry =
Declar{value=cleanDec(addr, value), addr=addr,
references=references}
in
newEntry :: processMutuals rest excluded true
end
| processMutuals _ _ _ =
raise InternalError "processMutual: unknown instr"
val processedDecs = processMutuals decs nil false
in
case processedDecs of
[] => processedRest (* None at all. *)
| [oneDec] => oneDec :: processedRest
| mutuals => MutualDecs mutuals :: processedRest
end
| processDecs(Newenv decs :: rest) = (* Expand out blocks. *)
let
val processedRest = processDecs rest
val processedDecs = processDecs decs
in
processedDecs @ processedRest
end
| processDecs(exp :: rest) =
let
(* Either the result expression or part of an expression
being evaluated for its side-effects. We can
eliminate it if it doesn't actually have a side-effect
except if it is the result.
Note: we have to process the rest of the list first
because the code for SetContainer checks whether the
container is used. *)
val processedRest = processDecs rest
val newExp = cleanCode exp
in
if sideEffectFree newExp andalso not(null processedRest)
then processedRest
else newExp :: processedRest
end
val res = processDecs decs
in
(* We need a Newenv entry except for singleton expressions. *)
wrapEnv res
end (* Newenv *)
| cleanCode (dec as Extract(ext as {addr, level, fpRel, ...})) =
(* If this is a local we need to mark it as used. *)
if level = 0
then
(
(* On this level. *)
if addr >= 0 andalso fpRel
then (* Local *) update(locals, addr, true)
else (); (* Argument or recursive - ignore it. *)
dec
)
else (* Non-local. This may be a recursive call. *)
prev(ext, level-1, nestingDepth)
| cleanCode (Lambda lam) = cleanLambda(0, lam)
(* All the other case simply map cleanCode over the tree. *)
| cleanCode MatchFail = MatchFail
| cleanCode (AltMatch(a, b)) = AltMatch(cleanCode a, cleanCode b)
| cleanCode (c as Constnt _) = c
| cleanCode (Indirect{base, offset}) =
Indirect{base=cleanCode base, offset=offset}
| cleanCode (Eval{function, argList, earlyEval}) =
Eval{function=cleanCode function, argList = map cleanCode argList,
earlyEval=earlyEval}
| cleanCode(Cond(test, thenpt, elsept)) =
Cond(cleanCode test, cleanCode thenpt, cleanCode elsept)
| cleanCode(BeginLoop(body, argList)) =
let
val processedBody = cleanCode body
fun copyDec(Declar{addr, value, ...}) =
mkDec(addr, cleanCode value)
| copyDec _ = raise InternalError "copyDec: not a declaration"
val newargs = map copyDec argList
in
BeginLoop(processedBody, newargs)
end
| cleanCode(Loop args) = Loop(map cleanCode args)
| cleanCode(Raise r) = Raise(cleanCode r)
| cleanCode(Ldexc) = Ldexc
| cleanCode(Handle{exp, taglist, handler}) =
Handle{exp = cleanCode exp, taglist = map cleanCode taglist,
handler = cleanCode handler}
| cleanCode(Recconstr decs) = Recconstr(map cleanCode decs)
| cleanCode(c as Container _) = c
| cleanCode(SetContainer {container, tuple, size}) =
let
(* If the container is unused we don't need to set it.
The container won't be created either. *)
val used =
case container of
Extract{addr, level=0, fpRel=true, ...} =>
addr <= 0 orelse locals sub addr
| _ => true (* Assume it is. *)
in
(* Disable this for the moment - it's probably not very useful
anyway. It doesn't work at the moment because we sometimes
make a local declaration point at another variable (in
pushContainer and replaceContainerDec). The
new variable may be set but not used while the old variable
is used but not set. *)
if not used andalso false
then CodeZero (* Return something. *)
else
(* Push the container down the tree and then process it. If we've
expanded an inline function we want to be able to find any
tuple we're creating. *)
case tuple of
Cond _ => cleanCode(mkSetContainer(container, tuple, size))
| Newenv _ => cleanCode(mkSetContainer(container, tuple, size))
| r as Raise _ =>
(* If we're raising an exception we don't need to set the container. *)
cleanCode r
| _ => SetContainer{container = cleanCode container,
tuple = cleanCode tuple, size = size}
end
| cleanCode(TupleFromContainer(container, size)) =
TupleFromContainer(cleanCode container, size)
| cleanCode CodeNil = CodeNil
| cleanCode _ = raise InternalError "cleanCode: unknown instr"
in
cleanCode pt
end (* cleanProc *);
(************************************************************************)
fun getSome (SOME v) = v
| getSome NONE = raise InternalError "getSome";
val initTrans = 10; (* Initial size of arrays. *)
(*****************************************************************************)
(* changeLevel *)
(*****************************************************************************)
(* Change the level of an entry if necessary. This *)
(* happens if we have a function inside an inline function. *)
fun changeLevel entry 0 = entry (* No change needed*)
| changeLevel entry correction =
let
fun changeL(ext as Extract{addr, level, fpRel, ...}, nesting) =
if level >= 0 andalso level < nesting
(* We enter declarations with level = ~1 for recursive
calls when processing mutual recursion. *)
then ext (* It's local to the function(s) we're processing. *)
else mkGenLoad (addr, level + correction, fpRel, false)
| changeL(Lambda{body, isInline, name, closure, numArgs,
level, closureRefs, makeClosure}, nesting) =
Lambda{body = changeL(body, nesting+1), isInline = isInline,
name = name, closure = closure, numArgs = numArgs,
level = level + correction, closureRefs = closureRefs,
makeClosure = makeClosure }
| changeL(Eval{function, argList, earlyEval}, nesting) =
Eval{function = changeL(function, nesting),
argList = map (fn a => changeL(a, nesting)) argList,
earlyEval = earlyEval}
| changeL(Indirect{ base, offset }, nesting) =
Indirect{base = changeL(base, nesting), offset = offset }
| changeL(Declar{value, addr, ...}, nesting) =
mkDec(addr, changeL(value, nesting))
| changeL(Newenv l, nesting) =
Newenv(map(fn d => changeL(d, nesting)) l)
| changeL(c as Container _, _) = c
| changeL(TupleFromContainer(container, size), nesting) =
TupleFromContainer(changeL(container, nesting), size)
| changeL(code, _) =
(* The code we produce in these inline functions is very limited. *)
let
(* If we add something else it's very useful to know what it is. *)
val pprint = prettyPrint(77, fn s => TextIO.output(TextIO.stdOut,s));
in
ppBeginBlock pprint (1, false);
pretty (code, pprint);
ppEndBlock pprint ();
raise InternalError "changeL: Unknown code"
end
in
case optGeneral entry of
gen as Extract _ =>
optVal
{
general = changeL(gen, 0),
special = optSpecial entry,
environ = optEnviron entry,
decs = [],
recCall = optRec entry
}
| Constnt _ => entry
| gen as Lambda _ =>
optVal {
general = changeL(gen, 0),
special = optSpecial entry,
environ = optEnviron entry,
decs = [],
recCall = optRec entry
}
| _ => raise InternalError "changeLevel: Unknown entry"
end
(* end changeLevel *);
(*****************************************************************************)
(* optimiseProc *)
(*****************************************************************************)
fun optimiseProc
(pt : codetree,
lookupNewAddr : loadForm * int * int -> optVal,
lookupOldAddr : loadForm * int * int -> optVal,
enterDec : int * optVal -> unit,
enterNewDec : int * optVal -> unit,
nestingOfThisProcedure : int,
spval : int ref,
earlyInline : bool,
evaluate : codetree -> codetree,
tailCallEntry: bool ref option,
recursiveExpansions:
((codetree list * bool * int -> codetree list) * bool ref) list,
maxInlineSize: int) =
(* earlyInline is true if we are expanding a procedure declared
"early inline". *)
(* spval is the Declaration counter. Normally ref(1) except when expanding
an inline procedure. *)
(* tailCallEntry is NONE if this is not an inline function and SOME r if
it is. r is set to true if a tail recursive LOOP instruction is generated. *)
let
(*****************************************************************************)
(* newDecl (inside optimiseProc) *)
(*****************************************************************************)
(* Puts a new declaration into a table. Used for both local declarations
and also parameters to inline procedures. "setTab" is the table to
put the entry in and "pt" is the value to be put in the table. We try
to optimise various cases, such as constants, where a value is declared
but where it is more efficient when it is used to return the value
itself rather than an instruction to load the value. *)
fun stripDecs (ov : optVal) : optVal =
case optDecs ov of
[] => ov
| _ =>
optVal
{
general = optGeneral ov,
special = optSpecial ov,
environ = optEnviron ov,
decs = [],
recCall = optRec ov
};
fun newDecl (setTab, ins, addrs, pushProc) : codetree list =
let
val gen = optGeneral ins;
in
case gen of
Constnt _ =>
let (* No need to generate code. *)
val spec = optSpecial ins;
val ov =
(* If it is a non-inline procedure it must be declared. *)
case (spec, pushProc) of
(Lambda{isInline=NonInline, ...}, true) => simpleOptVal gen
| _ => stripDecs ins (* Remove the declarations before entering it. *)
val U : unit = setTab (addrs, ov);
in
(* Just return the declarations. *)
optDecs ins
end
| Extract { level = 0, ...} =>
let
(* Declaration is simply giving a new name to a local
- can ignore this declaration. *)
val optVal = stripDecs ins (* Simply copy the entry. *)
val U : unit = setTab (addrs, optVal);
in
optDecs ins
end
(* old ...
else if isIndirect gen
then let
(* It is safe to defer an indirection if we can. For instance,
in ML fun f (a as (b,c)) will generate declarations of b and c
as indirections on a. If b and c are not used immediately there
is no point in loading them (it only uses up the registers).
Once they are actually used they will be loaded into registers
and those registers will be cached by the normal register caching
scheme, so that if used again soon after they will not be
reloaded. *)
val ind = cIndirect gen;
fun optSetTab (i, v) =
setTab
(i,
optVal
{ (* Add on the indirection. *)
general = mkInd (indOffset ind, optGeneral v),
special = optSpecial v,
environ = optEnviron v,
decs = optDecs v
});
in
(* Take off the indirection from the value to be declared and add
it to the load instruction. This causes the indirection to be
deferred until the value is actually used. *)
newDecl
(optSetTab,
optVal
{
general = indBase ind,
special = optSpecial ins,
environ = optEnviron ins,
decs = optDecs ins
},
addrs,
pushProc)
end
... *)
| _ =>
let (* Declare an identifier to have this value. *)
val decSpval = ! spval;
val UUU = spval := decSpval + 1 ;
(* The table entry is similar to the result of the expression except
that the declarations are taken off and put into the containing
block, and the general value is put into a local variable and
replaced by an instruction to load from there. If the special
is a non-inline procedure it is removed. Non-inline procedures
are returned by copyLambda so that they can be inserted inline
if they are immediately called (e.g. a catch phrase) but if they
are declared they are created as normal procedures. We don't do
this for parameters to inline procedures so that lambda-expressions
passed to inline procedures will be expanded inline if they are
only called inside the inline procedure.
e.g. for(..., proc(..)(...)) will be expanded inline. *)
val spec = optSpecial ins;
val optSpec =
case (spec, pushProc) of
(Lambda{isInline=NonInline, ...}, true) => CodeNil
| _ => spec
val optV =
optVal
{
general = mkLoad (decSpval, 0),
special = optSpec,
environ = optEnviron ins,
decs = [],
recCall = optRec ins
};
val U : unit = setTab (addrs, optV);
in
optDecs ins @ [mkDecRef gen decSpval 0]
end
end (* newDecl *);
(*****************************************************************************)
(* optimise (inside optimiseProc) *)
(*****************************************************************************)
fun getGeneral ov =
(
case optDecs ov of
[] => optGeneral ov
| decs => mkEnv (decs @ [optGeneral ov])
)
(* The main optimisation routine. *)
(* Returns only the general value from an expression. *)
fun generalOptimise(pt, tailCall) = getGeneral(optimise(pt, tailCall))
and general pt = generalOptimise(pt, NONE)
and optimise (pt as MatchFail, _) = simpleOptVal pt
| optimise (AltMatch(a, b), _) =
simpleOptVal(AltMatch(general a, general b))
| optimise (CodeNil, _) = simpleOptVal CodeNil
| optimise (evl as Eval{function, argList, earlyEval}, tailCall) =
let
(* Get the function to be called and see if it is inline or
a lambda expression. *)
val funct : optVal = optimise(function, NONE);
val foptRec = optRec funct
(* There are essentially two cases to consider - the procedure
may be "inline" in which case it must be expanded as a block,
or it must be called. *)
fun notInlineCall recCall =
let
val argsAreConstants = ref true;
fun copyArg arg =
let
val copied = general arg;
in
(* Check for early evaluation. *)
if not (isConstnt copied) then argsAreConstants := false else ();
copied
end
val copiedArgs = map copyArg argList;
val gen = optGeneral funct
and early = earlyEval orelse earlyInline
(* If the procedure was declared as early or is inside an inline
procedure declared as early we can try to evaluate it now.
Also if it is a call to an RTS function (which may actually
be code-generated inline by G_CODE) we can evaluate it if
it's safe. *)
val evalEarly =
! argsAreConstants andalso isConstnt (optGeneral funct) andalso
(early orelse
(case optGeneral funct of
Constnt w =>
isIoAddress(toAddress w) andalso
earlyRtsCall(w, copiedArgs)
| _ => false
)
)
val evCopiedCode =
if evalEarly
then evaluate (mkEval (gen, copiedArgs, early))
else case recCall of
(* This is a recursive call to a function we're expanding.
Is it tail recursive? We may have several levels of
expansion. *)
SOME (filterArgs, optr) =>
if (case tailCall of
SOME tCall => optr = tCall (* same reference? *)
| NONE => false)
then Loop (filterArgs(copiedArgs, true, nestingOfThisProcedure))
else mkEval (gen,
filterArgs(copiedArgs, false, nestingOfThisProcedure), early)
(* Not a recursive expansion. *)
| NONE => mkEval (gen, copiedArgs, early)
in
optVal
{
general = evCopiedCode,
special = CodeNil,
environ = errorEnv,
decs = optDecs funct,
recCall = ref false
}
end (* notInlineCall *)
in
case (List.find (fn (_, r) => r = foptRec) recursiveExpansions,
optSpecial funct) of
(recCall as SOME _, _) =>
(* We're already expanding this function - don't recursively expand
it. Either loop or generate a function call. *)
notInlineCall recCall
| (_,
Lambda { isInline, body=lambdaBody, name=lambdaName, closureRefs, ...}) =>
let
(* Calling inline proc or a lambda expression which is just called.
The procedure is replaced with a block containing declarations
of the parameters. We need a new table here because the addresses
we use to index it are the addresses which are local to the function.
New addresses are created in the range of the surrounding function. *)
val localVec = stretchArray (initTrans, NONE);
val paramVec = stretchArray (initTrans, NONE);
val localNewVec = stretchArray (initTrans, NONE);
(* copies the argument list. *)
fun copy [] argAddress = [] : codetree list
| copy (h::t) argAddress =
let
fun setTab (index, v) = update (paramVec, ~index, SOME v);
(* Make the declaration, picking out constants, inline
procedures and load-and-stores. These are entered in the
table, but nil is returned by "newDecl". *)
val lapt = newDecl (setTab, optimise(h, NONE), argAddress, false);
in (* Now process the rest of the declarations. *)
lapt @ copy t (argAddress + 1)
end (* end copy *);
val nArgs = List.length argList
val copiedArgs = copy argList (~nArgs);
(* Create an immutable vector from the parameter array to reduce the
amount of mutable data, *)
val frozenParams = StretchArray.vector paramVec
(* All declarations should be of positive addresses. *)
fun setNewTabForInline (addr, v) = update (localNewVec, addr, SOME v)
fun setTabForInline (index, v) =
(
case optGeneral v of
Extract{addr, ...} =>
if addr <= 0 then ()
else setNewTabForInline(addr, v)
| _ => ();
update (localVec, index, SOME v)
)
fun lookupLocalNewAddr (ext as { addr, ...}, depth, levels) =
(* It may be local to this function or to the surrounding scope. *)
if levels <> 0 orelse addr <= 0
then lookupNewAddr(ext, depth, levels)
else case localNewVec sub addr of
SOME v => changeLevel v (depth - nestingOfThisProcedure)
| NONE => lookupNewAddr(ext, depth, levels);
val copiedBody =
if isInline = MaybeInline orelse isInline = OnlyInline
then(* It's a function the front-end has explicitly inlined.
It can't be directly recursive. If it turns out to
be indirectly recursive (i.e. it calls a function which
then calls it recursively) that's fine - the recursive
expansion will be stopped by the other function. *)
let
(* The environment for the expansion of this procedure
is the table for local declarations and the original
environment in which the function was declared for
non-locals. *)
fun lookupDec ({ addr=0, ...}, depth, 0) =
(* Recursive reference - shouldn't happen. *)
raise InternalError "lookupDec: Inline function recurses"
| lookupDec ({ addr=index, ...}, depth, 0) =
let (* On this level. *)
val optVal =
if index > 0
then getSome (localVec sub index) (* locals *)
else getSome (Vector.sub(frozenParams, ~index)) (* parameters *)
in
changeLevel optVal (depth - nestingOfThisProcedure)
end
| lookupDec (ptr as { addr=index, ...}, depth, levels) =
(optEnviron funct) (ptr, depth, levels - 1);
in
optimiseProc
(lambdaBody,
lookupLocalNewAddr,
lookupDec,
setTabForInline,
setNewTabForInline,
nestingOfThisProcedure,
spval,
earlyInline orelse earlyEval,
evaluate,
tailCall,
recursiveExpansions,
maxInlineSize)
end
else (* It's a "small" function. *)
let
(* Now load the procedure body itself. We first process it assuming
that we won't need to treat any of the arguments specially. If
we find that we generate a Loop instruction somewhere we have
to make sure that any arguments we change in the course of the
loop are taken out. For example:
fun count'(n, []) = n | count' (n, _::t) = count'(n+1, t);
fun count l = count'(0, l).
In this case we would start by expanding count' using 0 for n
throughout, since it's a constant. When we find the recursive
call in which n becomes n+1 we find we have to take n out of the
loop and treat it as a variable.
We don't need to do this if the argument is passed through unchanged
e.g. fun foldl f b [] = b | foldl f b (x::y) = foldl f (f(x, b)) y;
where the same value for f is used everywhere and by treating it
specially we can expand its call.
This two-pass (it will normally be two-pass but could be more) approach
allows us to optimise cases where we have a recursive function which
happens to be non-recursive with particular constant values of the
arguments.
e.g. if x = nil ... generates a general recursive function for
equality on lists but because of the nil argument this optimises
down to a simple test. *)
(*
I'm now extending this to the general recursive case not just tail
recursion. If we discover a recursive call while processing the
function we turn this expansion into a function call and give up
trying to inline it. Instead we create a special-purpose function
for this call but with only the arguments that change as a
result of the recursive calls actually passed as arguments. Other
arguments can be inserted inline in function.
e.g. fun map f [] = [] | map f (a::b) = f a :: map f b
where when we map a function over a list we compile a specialised
mapping function with the actual value of f inserted in it.
*)
val needsBeginLoop = ref false
val needsRecursiveCall = ref false
val argModificationVec = stretchArray (initTrans, false);
(* Create addresses for the new variables for modified arguments.
If newdecl created a variable we might be able to reuse that
but it's easier to create new ones. *)
val argBaseAddr = ! spval; val _ = spval := argBaseAddr + nArgs
(* filterArgs is called whenever a recursive call is made to
this function. *)
fun filterArgs (argList, isTail, depth) =
let
fun filterArgs' 0 [] = []
| filterArgs' _ [] =
raise InternalError "filterArgs': wrong number of args"
| filterArgs' n (arg :: rest) =
let
(* Is this simply passing the original argument value? *)
val original = getSome (Vector.sub(frozenParams, n))
val unChanged =
case (arg, optGeneral original) of
(Constnt w, Constnt w') =>
(* These may well be functions so don't use
structure equality. *)
wordEq(w, w')
| (Extract {addr=aA, level=aL, fpRel=aFp, ...},
Extract {addr=bA, level=bL, fpRel=bFp, ...}) =>
aA = bA andalso aFp = bFp andalso
aL = bL+depth-nestingOfThisProcedure
| _ => false
in
if unChanged
then ()
else update(argModificationVec, n, true);
(* If any recursive call has changed it we need
to include this argument even if it didn't
change on this particular call. *)
if argModificationVec sub n
then arg :: filterArgs' (n-1) rest
else (* Not modified *) filterArgs' (n-1) rest
end
in
needsBeginLoop := true; (* Indicate we generated a Loop instr. *)
(* If this isn't tail recursion we need a full call. *)
if isTail then () else needsRecursiveCall := true;
(* If we have a recursive inline function containing a
local recursive inline function which calls the outer
function
(e.g. fun f a b = .... map (f a) ....) we may process
the body of the inner function twice, once as a lambda
and once when we attempt to expand it inline. That
means we will process the recursive call to the outer
function twice. The first call may filter out redundant
arguments (e.g. "a" in the above example). *)
if List.length argList <> nArgs
then argList
else filterArgs' nArgs argList
end
(* See how many arguments changed. *)
fun countSet n 0 = n
| countSet n i =
if argModificationVec sub i then countSet (n+1) (i-1)
else countSet n (i-1)
fun checkRecursiveCalls lastModCount =
(* We've found at least one non-tail recursive call so we're
going to have to generate this function as a function and
a call to that function. However we may well gain by inserting
in line arguments which don't change as a result of recursion. *)
let
val nesting = nestingOfThisProcedure + 1
(* Find the parameter we're actually going to use. *)
fun getParamNo n =
if n = 0 then 0
else if argModificationVec sub (~n)
then getParamNo (n+1) - 1
else getParamNo (n+1)
fun prev ({ addr=0, ...}, depth, 0) =
(* Recursive reference. We're going to generate this
as a function so return a reference to the closure.
I've ensured that we pass the appropriate value for
recCall here although I don't know if it's necessary. *)
optVal {
general = mkGenLoad (0, depth - nesting, false, false),
(* This is a bit of a mess. We need a non-nil value for
special here in order to pass recCall correctly
because optVal filters it otherwise. *)
special = (*optSpecial funct *)
mkGenLoad (0, depth - nesting, false, false),
decs = [],
recCall = foptRec,
environ = errorEnv
}
| prev (ptr as { addr=index, ...}, depth, 0) =
if index > 0 (* locals *)
then changeLevel(getSome (localVec sub index)) (depth - nesting)
else (* index < 0 - parameters *)
if argModificationVec sub ~index
then (* This argument has changed - find the corresponding
actual argument. *)
simpleOptVal(mkLoad(getParamNo index, depth-nesting))
else (* Unchanged - get the entry from the table, converting
the level because it's in the surrounding scope. *)
changeLevel (getSome (Vector.sub(frozenParams, ~index))) (depth-nesting+1)
| prev (ptr as { addr=index, ...}, depth, levels) =
(optEnviron funct) (ptr, depth, levels - 1);
val newAddrTab = stretchArray (initTrans, NONE);
(* localNewAddr is used as the environment of inline functions within
the function we're processing. *)
fun localNewAddr ({ addr=index, ...}, depth, 0) =
if index > 0
then case newAddrTab sub index of
NONE => (* Return the original entry if it's not there. *)
simpleOptVal(
mkGenLoad (index, depth - nesting, true, false))
| SOME v => changeLevel v (depth - nesting)
else simpleOptVal (mkGenLoad (index, depth - nesting, index <> 0, false))
| localNewAddr (ptr, depth, levels) =
lookupNewAddr (ptr, depth, levels - 1);
fun setNewTab (addr, v) = update (newAddrTab, addr, SOME v)
fun setTab (index, v) =
(
case optGeneral v of
Extract{addr, ...} =>
if addr <= 0 then () else setNewTab(addr, v)
| _ => ();
update (localVec, index, SOME v)
)
val copiedBody =
optimiseProc
(lambdaBody,
localNewAddr,
prev,
setTab,
setNewTab,
nesting,
ref 1,
earlyInline orelse earlyEval,
evaluate,
NONE, (* Don't generate loop instructions. *)
(filterArgs, foptRec) :: recursiveExpansions,
maxInlineSize)
val newModCount = countSet 0 nArgs
in
if newModCount > lastModCount
then (* We have some (more) arguments to include. *)
checkRecursiveCalls newModCount
else optVal {
general = Lambda {
body = getGeneral copiedBody,
isInline = NonInline,
name = lambdaName,
closure = [],
numArgs = lastModCount,
level = nestingOfThisProcedure + 1,
closureRefs = 0,
makeClosure = false },
special = CodeNil,
decs = [],
recCall = ref false,
environ = localNewAddr
}
end
fun checkForLoopInstrs lastModCount =
(* Called initially or while we only have tail recursive
calls. We can inline the function. *)
let
fun prev (ptr as { addr=index, ...}, depth, 0) : optVal =
let (* On this level. *)
val optVal =
if index = 0
(* Recursive reference - return the copied function after removing
the declarations. These will be put on in the surrounding
scope. We can't at this stage tell whether it's a call or
some other recursive use (e.g. passing it as an argument) and
it could be that it's an argument to an inline function which
actually calls it. Since we include the original optRec value
it can be sorted out later. *)
then stripDecs funct
else if index > 0
then getSome (localVec sub index) (* locals *)
else (* index < 0 *) if argModificationVec sub ~index
then (* This argument changes - must use a variable even if
the original argument was a constant. *)
simpleOptVal(mkLoad(argBaseAddr + nArgs + index, 0))
else getSome (Vector.sub(frozenParams, ~index)) (* parameters *)
in
changeLevel optVal (depth - nestingOfThisProcedure)
end
| prev (ptr as { addr=index, ...}, depth, levels) : optVal =
(* On another level. *)
(optEnviron funct) (ptr, depth, levels - 1);
val copiedBody =
optimiseProc
(lambdaBody,
lookupLocalNewAddr,
prev,
setTabForInline,
setNewTabForInline,
nestingOfThisProcedure,
spval,
earlyInline orelse earlyEval,
evaluate,
SOME foptRec,
(filterArgs, foptRec) :: recursiveExpansions,
maxInlineSize)
in
if ! needsRecursiveCall
then (* We need a fully recursive call. *)
checkRecursiveCalls (countSet 0 nArgs)
else if ! needsBeginLoop
then (* We've found at least one recursive call which changes its
argument value. *)
let
val newModCount = countSet 0 nArgs
in
if newModCount > lastModCount
then checkForLoopInstrs newModCount
else copiedBody
end
else copiedBody
end
val procBody = checkForLoopInstrs 0
(* If we need to make the declarations put them in at the
beginning of the loop. *)
fun makeDecs 0 _ = []
| makeDecs n isCall =
if not (argModificationVec sub n)
then makeDecs (n-1) isCall
else
let
val argVal = getGeneral(getSome (Vector.sub(frozenParams, n)))
val argDec =
(* If we are calling a function we just put the
argument values in. *)
if isCall
then argVal
else mkDec(argBaseAddr+nArgs-n, argVal)
in
argDec :: makeDecs (n-1) isCall
end
in
if ! needsRecursiveCall
then (* We need to put in a call to this function. *)
let
(* Put the function into the declarations. *)
val addr = ! spval
in
spval := addr + 1;
optVal{
general =
mkEval(mkLoad(addr, 0), makeDecs nArgs true, false),
special = CodeNil,
decs = [mkDec(addr, getGeneral procBody)],
recCall = ref false,
environ = lookupNewAddr
}
end
else if ! needsBeginLoop
then simpleOptVal(BeginLoop(getGeneral procBody, makeDecs nArgs false))
else procBody
end
in
StretchArray.freeze localVec;
StretchArray.freeze localNewVec;
(* The result is the result of the body of the inline procedure. *)
(* The declarations needed for the inline procedure, the *)
(* declarations used to load the arguments and the declarations *)
(* in the expanded procedure are all concatenated together. We *)
(* do not attempt to evaluate "early inline" procedures. Instead *)
(* we try to ensure that all procedures inside are evaluated *)
(*"early". *)
optVal
{
general = optGeneral copiedBody,
special = optSpecial copiedBody,
environ = optEnviron copiedBody,
decs = optDecs funct @ (copiedArgs @ optDecs copiedBody),
recCall = optRec copiedBody
}
end
| _ => notInlineCall NONE (* Not a Lambda and not recursive. *)
end (* Eval { } *)
| optimise (Extract(ext as {level, ...}), _) =
lookupOldAddr (ext, nestingOfThisProcedure, level)
| optimise (original as Lambda({body=lambdaBody, isInline=lambdaInline, name=lambdaName,
numArgs, ...}), _) =
let
(* The nesting of this new procedure is the current nesting level
plus one. Normally this will be the same as lambda.level except
when we have a procedure inside an inline procedure. *)
val nesting = nestingOfThisProcedure + 1;
(* A new table for the new procedure. *)
val oldAddrTab = stretchArray (initTrans, NONE);
val newAddrTab = stretchArray (initTrans, NONE);
fun localOldAddr ({ addr=index, ...}, depth, 0) =
(* local declaration or argument. *)
if index > 0
(* Local declaration. *)
then changeLevel (getSome (oldAddrTab sub index)) (depth - nesting)
(* Argument or closure. *)
else simpleOptVal (mkGenLoad (index, depth - nesting, index <> 0, false))
| localOldAddr (ptr, depth, levels) = lookupOldAddr (ptr, depth, levels - 1);
(* localNewAddr is used as the environment of inline functions within
the function we're processing. All the entries in this table will
have their "general" entries as simply Extract entries with the
original address. Their "special" entries may be different. The
only entries in the table will be those which correspond to
declarations in the original code so there may be new declarations
which aren't in the table. *)
fun localNewAddr ({ addr=index, ...}, depth, 0) =
if index > 0
then case newAddrTab sub index of
NONE => (* Return the original entry if it's not there. *)
simpleOptVal(mkGenLoad (index, depth - nesting, true, false))
| SOME v => changeLevel v (depth - nesting)
else simpleOptVal (mkGenLoad (index, depth - nesting, index <> 0, false))
| localNewAddr (ptr, depth, levels) = lookupNewAddr (ptr, depth, levels - 1);
fun setNewTab (addr, v) = update (newAddrTab, addr, SOME v)
fun setTab (index, v) =
(
case optGeneral v of
Extract{addr, ...} =>
if addr <= 0 then () else setNewTab(addr, v)
| _ => ();
update (oldAddrTab, index, SOME v)
)
val newCode =
optimiseProc
(lambdaBody,
localNewAddr,
localOldAddr,
setTab,
setNewTab,
nesting,
ref 1,
false,
evaluate,
NONE,
recursiveExpansions,
maxInlineSize);
(* nonLocals - a list of the non-local references made by this
function. If this is empty the function can be code-generated
immediately and returned as a constant. If it is non-empty it
is set as the closure for the function. This is then used
when processing mutually recursive functions to find the
dependencies. *)
val nonLocals = ref nil;
fun addNonLocal(ext: loadForm as {addr, level, fpRel, ...}, depth) =
let
(* The level will be correct relative to the use, which may be
in an inner function. We want the level relative to the
scope in which this function is declared. *)
val correctedLevel = level - (depth - nestingOfThisProcedure)
fun findNonLocal(Extract{addr=addr', level=level', fpRel=fpRel', ...}) =
addr = addr' andalso correctedLevel = level' andalso fpRel=fpRel'
| findNonLocal _ = raise InternalError "findNonLocal: not Extract"
in
if List.exists findNonLocal (!nonLocals)
then () (* Already there. *)
else nonLocals := mkGenLoad(addr, correctedLevel, fpRel, false) :: ! nonLocals
end
fun checkRecursion(ext as {fpRel=oldfpRel, ...}, levels, depth) =
case optGeneral(lookupNewAddr (ext, depth, levels)) of
(res as Extract(ext as {addr=0, fpRel=false, level, ...})) =>
(
(* If this is just a recursive call it doesn't count
as a non-local reference. This only happens if
we turned a reference to a local into a recursive
reference (i.e. fpRel was previously true). *)
if levels = 0 andalso oldfpRel
then ()
else addNonLocal(ext, depth);
res
)
| res as Extract(ext as {addr, level, fpRel, ...}) =>
(
addNonLocal(ext, depth);
res
)
| res => res (* We may have a constant in this table. *)
val cleanedBody =
cleanProc(getGeneral newCode, checkRecursion, nesting)
val resultCode =
case lambdaInline of
OnlyInline =>
(* Used only for functors. Don't compile now. Return the processed
version as the special value. *)
optVal
{
general = CodeZero,
(* Changed from using CodeNil here to CodeZero. This avoids a problem
which only surfaced with the changes to ML97 and the possibility of
mixing functor and value declarations in the same "program" (i.e.
top-level declarations with a terminating semicolon.
OnlyInline is used for functors which can only ever be called,
never passed as values, so the "general" value is not really
required. It can though appear in the result tuple of the "program"
from which the (value) results of the program are extracted.
DCJM 6/1/00 *)
special =
Lambda
{
body = cleanedBody,
isInline = OnlyInline,
name = lambdaName,
closure = [],
numArgs = numArgs,
level = nesting,
closureRefs = 0,
makeClosure = false
},
environ = lookupNewAddr, (* new addresses with cleanedBody. *)
decs = [],
recCall = ref false
}
| MaybeInline => (* Explicitly inlined functions. *)
(* We return the processed version of the function as
the general value but the unprocessed version as
the special value. *)
optVal
{
general =
Lambda
{
body = cleanedBody,
isInline = MaybeInline,
name = lambdaName,
closure = !nonLocals, (* Only looked at in MutualDecs. *)
numArgs = numArgs,
level = nesting,
closureRefs = 0,
makeClosure = false
},
special = original,
environ = lookupOldAddr, (* Old addresses with unprocessed body. *)
decs = [],
recCall = ref false (* *** REF HOTSPOT; Contributes many refs to the environment. *)
}
| _ => (* "Normal" function. If the function is small we mark it as
inlineable. If the body has no free variables we compile it
now so that we can propagate the resulting constant, otherwise
we return the processed body. We return the processed body as
the special value so that it can be inlined. We do this even
in the case where the function isn't small because it is just
possible we're going to apply the function immediately and in
that case it's worth inlining it anyway. *)
let
val inlineType =
if lambdaInline = NonInline andalso isSmall(cleanedBody, maxInlineSize)
then SmallFunction
else lambdaInline
val copiedLambda =
Lambda
{
body = cleanedBody,
isInline = inlineType,
name = lambdaName,
closure = !nonLocals, (* Only looked at in MutualDecs. *)
numArgs = numArgs,
level = nesting,
closureRefs = 0,
makeClosure = false
};
val general =
(* If this has no free variables we can code-generate it now. *)
if null (!nonLocals)
then evaluate copiedLambda
else copiedLambda
in
optVal
{
general = general,
special =
Lambda
{
body = cleanedBody,
isInline = inlineType,
name = lambdaName,
closure = [],
numArgs = numArgs,
level = nesting,
closureRefs = 0,
makeClosure = false
},
environ = lookupNewAddr,
decs = [],
recCall = ref false (* *** REF HOTSPOT; Contributes many refs to the environment. *)
}
end
in
StretchArray.freeze oldAddrTab;
StretchArray.freeze newAddrTab;
resultCode
end (* Lambda{...} *)
| optimise (pt as Constnt _, _) =
simpleOptVal pt (* Return the original constant. *)
| optimise (BeginLoop(body, args), tailCall) =
let
(* We could try extracting redundant loop variables but for
the time being we just see whether we actually need a loop
or not. This is needed if we have already constructed a loop
from a recursive inline function and then expand it in another
function. If some of the loop variables are now constants we may
optimise away the loop altogether. e.g. equality for lists where
we actually have if x = nil then ... *)
val loops = ref false
fun filterArgs (a, _, _) = (loops := true; a)
val foptRec = ref false
(* First process as though it was not a BeginLoop but just a
set of declarations followed by an expression. *)
val firstBeginBody =
optimiseProc
(mkEnv(args @ [body]), lookupNewAddr, lookupOldAddr,
enterDec, enterNewDec, nestingOfThisProcedure,
spval, earlyInline, evaluate, SOME foptRec,
(filterArgs, foptRec) :: recursiveExpansions,
maxInlineSize)
in
if not (! loops)
then (* The Loop instructions have been optimised away. Since there's
no BeginLoop we can reprocess it with the surrounding
tail recursion. *)
optimise(mkEnv(args @ [body]), tailCall)
else (* It loops - have to reprocess. *)
let
(* The arguments to the functions are Declar entries but they
must not be optimised. *)
fun declArg(Declar{addr, value, ...}) =
let
val optVal = optimise(value, NONE)
val decSpval = ! spval
val _ = spval := decSpval + 1
val optV = simpleOptVal(mkLoad (decSpval, 0))
in
enterDec(addr, optV);
mkDec(decSpval, getGeneral optVal)
end
| declArg _ = raise InternalError "declArg: not Declar"
val declArgs = map declArg args
val beginBody =
optimiseProc
(body, lookupNewAddr, lookupOldAddr, enterDec, enterNewDec,
nestingOfThisProcedure, spval, earlyInline, evaluate, SOME foptRec,
(filterArgs, foptRec) :: recursiveExpansions, maxInlineSize)
in
simpleOptVal (BeginLoop (getGeneral beginBody, declArgs))
end
end
| optimise (Loop args, tailCall) =
(
(* The Loop instruction should be at the tail of the
corresponding BeginLoop. *)
case (tailCall, recursiveExpansions) of
(SOME fopt, (filterArgs, fopt') :: _) =>
if fopt <> fopt'
then raise InternalError "Loop: mismatched BeginLoop"
else simpleOptVal (Loop (filterArgs((map general args),
true, nestingOfThisProcedure)))
| _ => raise InternalError "Loop: not at tail of BeginLoop"
)
| optimise (Raise x, _) = simpleOptVal (Raise (general x))
| optimise (Cond(condTest, condThen, condElse), tailCall) =
let
val insFirst = general condTest;
in
(* If the condition is a constant we need only
return the appropriate arm. *)
case insFirst of
Constnt testResult =>
if wordEq (testResult, False) (* false - return else-part *)
then
(* if false then x else y == y *)
if isCodeNil condElse (* May be nil. (Pattern-matching) *)
then simpleOptVal (mkEnv [])
else optimise(condElse, tailCall)
(* if true then x else y == x *)
else optimise(condThen, tailCall) (* return then-part *)
| _ =>
let
(* Perhaps the "if" is really a simpler expression?
Unfortunately, we don't know whether we're returning
a boolean result here so we can't optimise to
andalso/orelse but we can at least look for the
case where both results are constants. *)
val insSecond = optimise(condThen, tailCall)
val insThird = optimise(condElse, tailCall)
(* If we have tuples on both arms we can probably combine them. *)
fun combineTuples(containerAddr, thenAddr, elseAddr, thenRec, elseRec, size) =
let
val thenDecs = optDecs insSecond and elseDecs = optDecs insThird
fun replaceContainerDec([], ad) =
raise InternalError "replaceContainerDec"
| replaceContainerDec((hd as Declar{addr, ...})::tl, ad)=
if addr = ad
then (* Found the declaration. If we are using this
container address we remove this declaration.
If we have containers on both branches we
need to make them both point to the same
container. *)
if addr = containerAddr
then tl
else mkDec(addr, mkLoad(containerAddr, 0)) :: tl
else hd :: replaceContainerDec(tl, ad)
| replaceContainerDec(hd :: tl, ad) =
hd :: replaceContainerDec(tl, ad)
fun createBranch(recEntries, decEntries, cAddr) =
case cAddr of
SOME ad => (* We have a container on that branch ... *)
wrapEnv(replaceContainerDec(decEntries, ad))
| NONE =>
wrapEnv(decEntries @
[mkSetContainer(
mkLoad(containerAddr, 0), Recconstr recEntries,
size)])
val thenPart = createBranch(thenRec, thenDecs, thenAddr)
and elsePart = createBranch(elseRec, elseDecs, elseAddr)
(* The result is a block which declares the container, side-effects it
in the "if" and makes a tuple from the result. If we're lucky
the resulting tuple will be optimised away. *)
(* This code is the same as that used to optimise TupleFromContainer
and is designed to allow us to optimise away the tuple creation
if we use the individual fields. *)
val baseAddr = !spval
val _ = spval := baseAddr + size
val specialDecs =
List.tabulate(size,
fn n => mkDec(n+baseAddr, mkInd(n, mkLoad(containerAddr, 0))))
val specialEntries = List.tabulate(size, fn n => mkLoad(n+baseAddr, 0))
fun env (l:loadForm, depth, levels) : optVal =
changeLevel (simpleOptVal(Extract l)) (depth - nestingOfThisProcedure)
in
optVal
{
general = TupleFromContainer(mkLoad(containerAddr, 0), size),
special = Recconstr specialEntries,
environ = env,
decs =
mkDec(containerAddr, Container size) ::
mkIf(insFirst, thenPart, elsePart) :: specialDecs,
recCall = ref false
}
end (* combineTuples *)
in
case (optGeneral insSecond, optDecs insSecond,
optGeneral insThird, optDecs insThird) of
(second as Constnt c2, [], third as Constnt c3, []) =>
(* if x then y else y == (x; y) *)
if wordEq (c2, c3)
then if sideEffectFree insFirst
then insSecond
else
(* Must put insFirst in decs, so it gets executed *)
optVal
{
general = second,
special = CodeNil,
environ = errorEnv,
decs = [insFirst],
recCall = ref false
}
(* if x then true else false == x *)
else if wordEq (c2, True) andalso wordEq (c3, False)
then simpleOptVal insFirst
(* if x then false else y == not x *)
else if wordEq (c2, False) andalso wordEq (c3, True)
then simpleOptVal (mkNot insFirst)
else (* can't optimise *)
simpleOptVal (mkIf (insFirst, second, third))
| (Recconstr thenRec, _, Recconstr elseRec, _) =>
(* Both tuples - are they the same size? They may not be if they
are actually datatypes. *)
if List.length thenRec = List.length elseRec
then (* We can transform this into an operation which creates space
on the stack, side-effects it and then picks up the result
from it. *)
let
val size = List.length thenRec (* = List.length elseRec *)
(* Create a new address for the container. *)
val containerAddr = let val ad = !spval in spval := ad + 1; ad end
in
combineTuples(containerAddr, NONE, NONE, thenRec, elseRec, size)
end
else (* Different sizes - use default. *)
simpleOptVal (mkIf (insFirst, getGeneral insSecond, getGeneral insThird))
| (TupleFromContainer(Extract{addr=thenAddr,level=0,fpRel=true, ...}, thenSize), _,
TupleFromContainer(Extract{addr=elseAddr,level=0,fpRel=true, ...}, elseSize), _) =>
(* Have both been converted already. If we are returning a tuple from
a container the container must be declared locally. *)
if thenSize = elseSize
then (* We can combine the containers. We can't if these are actually
datatypes in which case they could be different sizes. *)
let
(* If we have already transformed this we will have a
declaration of a container somewhere in the list. *)
(* Use the address which has already been allocated for the else part.
That makes it easier for the subsequent pass to convert this into
a "case" if appropriate. *)
val containerAddr = elseAddr
in
combineTuples(containerAddr, SOME thenAddr, SOME elseAddr, [], [], thenSize)
end
else (* Different sizes - use default. *)
simpleOptVal (mkIf (insFirst, getGeneral insSecond, getGeneral insThird))
| (TupleFromContainer(Extract{addr=thenAddr,level=0,fpRel=true, ...}, thenSize), _,
Recconstr elseRec, _) =>
(* The then-part has already been converted *)
if thenSize = List.length elseRec
then combineTuples(thenAddr, SOME thenAddr, NONE, [], elseRec, thenSize)
else (* Different sizes - use default. *)
simpleOptVal (mkIf (insFirst, getGeneral insSecond, getGeneral insThird))
| (Recconstr thenRec, _,
TupleFromContainer(Extract{addr=elseAddr,level=0,fpRel=true, ...}, elseSize), _) =>
(* The else-part has already been converted *)
if elseSize = List.length thenRec
then
combineTuples(elseAddr, NONE, SOME elseAddr, thenRec, [], elseSize)
else (* Different sizes - use default. *)
simpleOptVal (mkIf (insFirst, getGeneral insSecond, getGeneral insThird))
| _ => (* Not constants or records. *)
simpleOptVal (mkIf (insFirst, getGeneral insSecond, getGeneral insThird))
end
end (* isCond pt *)
| optimise (Newenv envDecs, tailCall) =
let (* Process the body. *)
(* Recurses down the list of declarations and expressions processing
each, and then reconstructs the list on the way back. *)
(* Only if we have an empty block or a block containing only
declarations i.e. a declaration is used to discard the result
of a function and only perform its side-effects. *)
fun copyDeclarations [] = simpleOptVal (mkEnv [])
| copyDeclarations (Declar{addr=caddr, value, ...} :: vs) =
let
(* Add the declaration to the table. *)
val dec =
newDecl (enterDec, optimise(value, NONE), caddr, true);
(* Deal with the rest of the block. *)
val rest = copyDeclarations vs;
in
case dec of
[] => rest
| _ => (* Must put these declarations onto the list. *)
optVal
{
general = optGeneral rest,
special = optSpecial rest,
environ = optEnviron rest,
decs = dec @ optDecs rest,
recCall = optRec rest
}
end
| copyDeclarations (MutualDecs mutualDecs :: vs) =
(* Mutually recursive declarations. Any of the declarations may
refer to any of the others. They should all be lambdas.
The front end generates functions with more than one argument
(either curried or tupled) as pairs of mutually recursive
functions. The main function body takes its arguments on
the stack (or in registers) and the auxiliary inline function,
possibly nested, takes the tupled or curried arguments and
calls it. If the main function is recursive it will first
call the inline function which is why the pair are mutually
recursive.
As far as possible we want to use the main function since that
uses the least memory. Specifically, if the function recurses
we want the recursive call to pass all the arguments if it
can. We force the inline functions to be macros while
processing the non-inline functions and then process the
inlines. DCJM 23/1/01. *)
let
(* Split the inline and non-inline functions. *)
val (inlines, nonInlines) =
List.foldl (
fn (d, (inlines, nonInlines)) =>
case d of
Declar{value = Lambda{ isInline=MaybeInline, ...}, ... } =>
(d::inlines, nonInlines)
| _ => (inlines, d::nonInlines)) ([], []) mutualDecs;
(* Go down the non-inline functions creating new addresses
for them and entering them in the table. *)
val startAddr = !spval
val addresses =
map (fn Declar{ value = decVal, addr, ... } =>
let
val decSpval = !spval;
in
enterDec (addr, simpleOptVal (mkLoad (decSpval, 0)));
spval := !spval + 1;
decSpval
end
| _ => raise InternalError "mutualDecs: not Declar")
nonInlines;
val endAddr = !spval
(* We can now process the inline functions. Since these
can't be directly recursive we don't need to do anything
special. *)
val _ =
List.app (fn Declar{ value, addr, ... } =>
enterDec (addr, optimise(value, NONE))
| _ => raise InternalError "mutualDecs: not Declar")
inlines;
(* Next process the non-inlines. We really want to be able to
compile the functions now if we can and get a constant for
the code address. We can do that for functions which make
no non-local references or whose non-local references are
by means of constants. For non-recursive declarations this
is easy since an earlier declaration cannot depend on a later
one but for mutually recursive declarations we don't know
the dependencies.
The simple case is where we have a function which does not
depend on anything and so can be code-generated in the Lambda
case. Code-generating that may allow others to be code-generated.
Another case is where the functions depend on each other but not
on anything else. We can compile them together but not
individually. There are various versions of this second case.
The only one we consider here is if all the (non-constant)
functions are of that form in which case we process the
whole mutually-recursive declaration. *)
val hasNonLocalReference = ref false
fun checkClosure (Extract{addr, level=0, fpRel=true, ...}) =
if addr >= startAddr andalso addr < endAddr
then ()
else hasNonLocalReference := true
| checkClosure _ = hasNonLocalReference := true
fun processNonInlines (Declar{ value = decVal, addr = decAddr, ... },
decSpval,
(decs, otherChanges)) =
(* Have a look at the old entry to see if it's a constant. *)
let
val oldEntry =
lookupOldAddr(
{addr=decAddr, level=0, fpRel=true, lastRef=false},
nestingOfThisProcedure, 0)
val oldGen = optGeneral oldEntry
in
if isConstnt oldGen
then (mkDec (decSpval, oldGen) :: decs, otherChanges) (* It's already a constant - don't reprocess. *)
else let
(* Set this entry to create a recursive call if we load
the address while processing the function. The recursive
call may come about as a result of expanding an inline
function which then makes the recursive call. *)
local
val recursive = simpleOptVal (mkGenLoad (0, ~1, false, false))
in
val _ = enterDec(decAddr, recursive);
val _ = enterNewDec(decSpval, recursive)
end;
(* Now copy this entry. *)
val ins = optimise(decVal, NONE)
val gen = optGeneral ins;
val spec = optSpecial ins;
(* The general value is either a reference to the
declaration or a constant if the function has just
been compiled into a code segment. *)
val isConstant = isConstnt gen
val optGen =
case gen of
Constnt _ => gen
| Lambda{closure, ...} => (
List.app checkClosure closure;
mkLoad (decSpval, 0)
)
| _ => raise InternalError "processNonInlines: Not a function";
(* Explicitly reset the entry in the new table. *)
val _ = enterNewDec(decSpval, simpleOptVal optGen);
(* If this is a small function we leave the special
value so it can be inserted inline. Otherwise
we clear it. *)
val optSpec =
case spec of
Lambda{ isInline=NonInline, ...} => CodeNil
| _ => optSpecial ins;
val nowInline =
not (isCodeNil optSpec) andalso isCodeNil(optSpecial oldEntry)
(* If this is now a constant or it is a small function when it
wasn't before we need to reprocess everything
which depends on it to try to get the constant inserted
everywhere it can be. *)
in
enterDec
(decAddr,
optVal
{
general = optGen,
special = optSpec,
environ = optEnviron ins,
decs = optDecs ins, (* Should be nil. *)
recCall = optRec ins
});
(
mkDec (decSpval, gen) :: decs,
otherChanges orelse isConstant orelse nowInline
)
end
end
| processNonInlines _ =
raise InternalError "processNonInlines: not Declar"
fun repeatProcess () =
let
val (decs, haveChanged) =
(* Use foldr here to keep the result in the same order
in case we can compile them immediately below. *)
ListPair.foldr processNonInlines
([], false) (nonInlines, addresses);
in
if haveChanged
then repeatProcess ()
else decs
end
val decs = repeatProcess ()
val allAreConstants =
List.foldl
(fn(Declar{value=Constnt _, ...}, others) => others
| _ => false) true decs
(* If hasNonLocalReference is still false we can code-generate
the mutual declarations. *)
val decs =
if ! hasNonLocalReference orelse allAreConstants
then decs
else
let
(* Create a tuple of Extract entries to get the result. *)
val extracts =
List.map (
fn (Declar{addr, ...}) => mkLoad(addr, 0)
| _ => raise InternalError "extracts: not Declar")
decs
val code = mkEnv[mkMutualDecs decs, mkTuple extracts]
(* Code generate it. *)
val results = evaluate code
fun reprocessDec(Declar{addr=decAddr, ...}, decSpval, (offset, others)) =
let
val oldEntry =
lookupOldAddr(
{addr=decAddr, level=0, fpRel=true, lastRef=false},
nestingOfThisProcedure, 0)
in
let
val newConstant = findEntryInBlock results offset
in
(* Replace the entry by an entry with a constant. *)
enterNewDec(decSpval, simpleOptVal newConstant);
enterDec
(decAddr,
optVal
{
general = newConstant,
special = optSpecial oldEntry,
environ = optEnviron oldEntry,
decs = optDecs oldEntry, (* Should be nil. *)
recCall = optRec oldEntry
});
(offset+1, mkDec(decSpval, newConstant) :: others)
end
end
| reprocessDec _ = raise InternalError "reprocessDec: not Declar"
val (_, newDecs) = ListPair.foldl reprocessDec (0, []) (nonInlines, addresses);
in
newDecs (* We've converted them all to constants. *)
end
(* Deal with the rest of the block *)
val rest = copyDeclarations vs
val result =
case decs of
[] => []
| [singleton] => [singleton]
| multiple => [mkMutualDecs multiple]
in
(* and put these declarations onto the list. *)
optVal
{
general = optGeneral rest,
special = optSpecial rest,
environ = optEnviron rest,
decs = result @ optDecs rest,
recCall = optRec rest
}
end
| copyDeclarations [v] =
(* Last expression. *) optimise(v, tailCall)
| copyDeclarations (v :: vs) =
let (* Not a declaration - process this and the rest.*)
val copiedNode = optimise(v, NONE);
val rest = copyDeclarations vs;
in (* This must be a statement whose
result is ignored. Put it into the declaration list. *)
optVal
{
general = optGeneral rest,
special = optSpecial rest,
environ = optEnviron rest,
decs = optDecs copiedNode @
(optGeneral copiedNode :: optDecs rest),
recCall = optRec rest
}
end; (* copyDeclarations *)
in
copyDeclarations envDecs
end (* isNewenv *)
| optimise (Recconstr entries, _) =
(* The main reason for optimising record constructions is that they
appear as tuples in ML. We try to ensure that loads from locally
created tuples do not involve indirecting from the tuple but can
get the value which was put into the tuple directly. If that is
successful we may find that the tuple is never used directly so
the use-count mechanism will ensure it is never created. *)
let
val newTab = stretchArray (initTrans, NONE);
fun setTab (i, v) = update (newTab, i, SOME v);
(* The record construction is treated as a block of local
declarations so that any expressions which might have side-effects
are done exactly once. *)
val allConsts = ref true;
fun makeDecs [] addr = {decs = [], gen_args = [], spec_args = []}
| makeDecs (h::t) addr =
let
(* Declare this value. If it is anything but a constant
there will be some code. *)
val newDecs = newDecl (setTab, optimise(h, NONE), addr, true);
val thisArg = getSome (newTab sub addr); (* Get the value back. *)
val rest = makeDecs t (addr + 1);
val gen = optGeneral thisArg;
val spec = optSpecial thisArg;
val UUU =
if not (isConstnt gen) then allConsts := false else ();
val specArgs =
if isCodeNil spec andalso isConstnt gen
then gen :: #spec_args rest
else mkLoad (addr, 0) :: #spec_args rest
in
{gen_args = gen :: #gen_args rest,
spec_args = specArgs,
decs = newDecs @ #decs rest }
end;
val newDecs = makeDecs entries 1;
val newRec = Recconstr (#gen_args newDecs);
val gen = if !allConsts then makeConstVal newRec else newRec;
val spec = Recconstr (#spec_args newDecs);
val vec = StretchArray.vector newTab
fun env ({addr, ...}:loadForm, depth, levels) : optVal =
changeLevel
(getSome (Vector.sub(vec, addr)))
(depth - nestingOfThisProcedure)
in
optVal
{
general = gen,
special = spec,
environ = env,
decs = #decs newDecs,
recCall = ref false
}
end
| optimise (Indirect{ base, offset }, _) =
let (* Try to do the selection now if possible. *)
val source = optimise(base, NONE)
in
case (optSpecial source, optGeneral source) of
(spec as Recconstr _, _) =>
let
(* The "special" entry we've found is a record. That means that
we are taking a field from a record we made earlier and so we
should be able to get the original code we used when we made
the record. That might mean the record is never used and
we can optimise away the construction of it completely. The
entry we get back from findEntryInBlock will either be a
constant or a load. In that case we need to look it up in
the environment we used for the record to give us an optVal.
The previous code in newDecl, commented out by AHL, also put
indirections into the table. To save having the various cases
in here we simply call optimiseProc which will deal with them.
DCJM 9/1/01. *)
val specEntry = findEntryInBlock spec offset;
val newCode =
optimiseProc
(specEntry,
errorEnv, (* We must always look up old addresses. *)
optEnviron source,
enterDec, (* should not be used *)
enterNewDec, (* should not be used *)
nestingOfThisProcedure,
spval,
earlyInline,
evaluate,
NONE,
recursiveExpansions,
maxInlineSize);
in
optVal
{
general = optGeneral newCode,
special = optSpecial newCode,
environ = optEnviron newCode,
decs = optDecs source @ optDecs newCode,
recCall = optRec newCode
}
end
| (_ , gen as Constnt _ ) => (* General is a constant - Do the selection now. *)
optVal
{
general = findEntryInBlock gen offset,
special = CodeNil,
environ = errorEnv,
decs = optDecs source,
recCall = ref false
}
| (_, gen) => (* No special case possible. *)
optVal
{
general = mkInd (offset, optGeneral source),
special = CodeNil,
environ = errorEnv,
decs = optDecs source,
recCall = ref false
}
end
| optimise (pt as Ldexc, _) =
simpleOptVal pt (* just a constant so return it *)
| optimise (Handle { exp, taglist, handler }, tailCall) =
simpleOptVal
(Handle {exp = general exp,
taglist = map general taglist,
handler = generalOptimise(handler, tailCall)}
)
(* Case expressions are generated only in preCode from if-then-else. *)
(* | optimise (Case { cases, test, default, min, max }) =
let
fun optimiseCasePair ((e,l):casePair) : casePair =
(general e, l);
in
simpleOptVal
(Case
{
cases = map optimiseCasePair cases,
test = general test,
default = general default,
min = min,
max = max
}
)
end
*)
| optimise (c as Container _, _) = simpleOptVal c
| optimise (TupleFromContainer(container, size), _) =
let
(* If possible we want to optimise this away in the same way as
a tuple made with Recconstr. We have to be careful, though,
that we have no references to the container after we return.
We first make declarations for all the fields and then return
a special entry which when we apply the "env" environment
function to it gives us returns. That way if we never actually
use this tuple as a single entity it won't be created.
If we don't actually use a field the corresponding declaration
will be removed in cleanCode. *)
val optCont = optimise(container, NONE)
(* Since "container" will always be an Extract entry we can have multiple
references to it in the declarations. Include an assertion to that
effect just in case future changes make that no longer true. *)
val _ =
case optGeneral optCont of
Extract _ => ()
| _ => raise InternalError "optimise - container is not Extract"
val baseAddr = !spval
val _ = spval := baseAddr + size
val specialDecs =
List.tabulate(size, fn n => mkDec(n+baseAddr, mkInd(n, optGeneral optCont)))
val specialEntries = List.tabulate(size, fn n => mkLoad(n+baseAddr, 0))
fun env (l:loadForm, depth, levels) : optVal =
changeLevel (simpleOptVal(Extract l)) (depth - nestingOfThisProcedure)
in
optVal
{
general = TupleFromContainer(optGeneral optCont, size),
special = Recconstr specialEntries,
environ = env,
decs = optDecs optCont @ specialDecs,
recCall = ref false
}
end
| optimise (SetContainer{container, tuple, size}, _) =
(
(* Push the set-container down the tree and then process it. If we've
expanded an inline function we want to be able to find any
tuple we're creating. *)
case tuple of
Cond _ => optimise(mkSetContainer(container, tuple, size), NONE)
| Newenv _ => optimise(mkSetContainer(container, tuple, size), NONE)
| _ =>
let
val optCont = general container
and optTuple = general tuple
(* If the "tuple" is an expanded inline function it may well
contain an if-expression. If both branches were tuples
we will have expanded it already and the result will be
a TupleFromContainer. *)
fun pushSetContainer(Cond(ifpt, thenpt, elsept), decs) =
Cond(ifpt,
wrapEnv(List.rev(pushSetContainer(thenpt, []))),
wrapEnv(List.rev(pushSetContainer(elsept, [])))
) :: decs
| pushSetContainer(Newenv env, decs) =
let
(* Get the declarations off the block and apply
pushSetContainer to the last. *)
fun applyToLast (d, []) = raise List.Empty
| applyToLast (d, [last]) = pushSetContainer(last, d)
| applyToLast (d, hd :: tl) =
applyToLast(hd :: d, tl)
in
applyToLast(decs, env)
end
| pushSetContainer(tuple as
TupleFromContainer(
Extract{addr=innerAddr, level=0, fpRel=true, ...}, innerSize),
decs) =
if innerSize = size
then
(
case optCont of
Extract{addr=containerAddr, level=0, fpRel=true, ...} =>
let
(* We can remove the inner container and replace it by
a reference to the outer. *)
fun replaceContainerDec [] =
raise InternalError "replaceContainerDec"
| replaceContainerDec ((hd as Declar{addr, ...}) :: tl) =
if addr = innerAddr
then mkDec(addr, mkLoad(containerAddr, 0)) :: tl
else hd :: replaceContainerDec tl
| replaceContainerDec(hd :: tl) =
hd :: replaceContainerDec tl
in
(* Just replace the declaration. *)
replaceContainerDec decs
end
| _ => SetContainer{container = optCont, tuple = tuple, size = size}
:: decs
)
else SetContainer{container = optCont, tuple = tuple, size = size} :: decs
| pushSetContainer(tuple, decs) =
SetContainer{container = optCont, tuple = tuple, size = size} :: decs
in
simpleOptVal(wrapEnv(List.rev(pushSetContainer(optTuple, []))))
end
)
| optimise (Global g, _) = g
| optimise _ = raise InternalError "unknown instruction"
(* optimise *);
(*****************************************************************************)
(* body of optimiseProc *)
(*****************************************************************************)
in
optimise(pt, tailCallEntry)
end (* optimiseProc *);
(*****************************************************************************)
(* genCode *)
(*****************************************************************************)
fun genCode(pt, debugSwitches) =
let
val printCodeTree = DEBUG.getParameter DEBUG.codetreeTag debugSwitches
and printCodeTreeAfter = DEBUG.getParameter DEBUG.codetreeAfterOptTag debugSwitches
and maxInlineSize = DEBUG.getParameter DEBUG.maxInlineSizeTag debugSwitches
and stringPrint = DEBUG.getParameter DEBUG.compilerOutputTag debugSwitches
(* This ensures that everything is printed just before
it is code-generated. *)
val codeGenAndPrint =
if printCodeTreeAfter
then (fn code =>
let
val pprint = prettyPrint(77, stringPrint);
in
pretty (code, pprint);
codegen(code, debugSwitches)
end
)
else fn code => codegen(code, debugSwitches);
fun preCodeAndPrint code =
(
if printCodeTree
then pretty (code, prettyPrint(77, stringPrint))
else ();
preCode (codeGenAndPrint, code)
)
(* Optimise it. *)
val oldAddrTab = stretchArray (initTrans, NONE);
val newAddrTab = stretchArray (initTrans, NONE);
val insertedCode =
let
(* Strip off a surrounding declaration. *)
val pt =
case pt of Declar{value, ...} => value | _ => pt;
fun lookupOldAddr ({addr, ...}: loadForm, depth, 0) =
changeLevel (getSome (oldAddrTab sub addr)) depth
| lookupOldAddr _ = raise InternalError "outer level reached in lookupOldAddr";
fun lookupNewAddr ({addr, ...}: loadForm, depth, 0) =
(
case newAddrTab sub addr of
NONE => simpleOptVal(mkGenLoad (addr, depth, true, false))
| SOME v => changeLevel v depth
)
| lookupNewAddr _ = raise InternalError "outer level reached in lookupNewAddr";
fun enterNewDec (addr, tab) = update (newAddrTab, addr, SOME tab)
fun enterDec (addr, tab) =
(
(* If the general part is an Extract entry we need to add an entry to
the new address table as well as the old one. This is sufficient
while newDecl does not treat Indirect entries specially. *)
case optGeneral tab of
Extract{addr=newAddr, ...} => enterNewDec (newAddr, tab)
| _ => ();
update (oldAddrTab, addr, SOME tab)
);
fun eval pt = evaluate (preCodeAndPrint pt) codeGenAndPrint;
val resultCode =
optimiseProc
(pt,
lookupNewAddr,
lookupOldAddr,
enterDec,
enterNewDec,
0, (* nesting *)
ref 1,
false, (*Not inline*)
eval,
NONE,
[],
maxInlineSize)
in
(* Turn the arrays into vectors. *)
StretchArray.freeze oldAddrTab;
StretchArray.freeze newAddrTab;
resultCode
end; (* insertedCode *)
val gen = optGeneral insertedCode;
val spec = optSpecial insertedCode;
val decs = optDecs insertedCode;
(* No longer treat top-level tuples as special (experiment!).
This avoids building an extra environment around the tuple
containing the values needed to build it. SPF 1/5/95 *)
(* ...
val notSpecial =
if isLambda spec
then (lambdaInline (cLambda spec) = NonInline)
else (isCodeNil spec orelse isRecconstr spec) (* SPF 1/5/95 *)
... *)
(*
Treat top-level tuples as "special" again. Why?
Suppose we have the declaration:
val foo = fn (x,y) => ...
This generates a tuple (a 1-tuple, actually), containing
the naive code (arguments as a pair) for foo. However,
if foo is small enough to in-line, it will be treated
as "special" and the "special" code to construct the
tuple will contain the "special" code to call the function
with arguments in registers. Since we are keen to get the
latter code (VERY keen for RTS calls), we just have to pay
the cost of building the second (environment) tuple. SPF 9/5/95 *)
val notSpecial =
case spec of
Lambda{isInline, ...} => isInline = NonInline
| CodeNil => true
| _ => false
in
if notSpecial
then let
(* Nothing special or it is a non-inline procedure - Code-generate it. *)
val optCode = wrapEnv(decs @ [gen])
;
in
if isConstnt optCode (* Save code-generating it. *)
then (fn () => optCode)
else let
val code = codeGenAndPrint (preCodeAndPrint optCode);
in (* Return procedure to execute it *)
(fn () => Global (simpleOptVal (mkConst (code ()))))
end
end
else (* There is something in "special". *)
if null decs
then (* Simply return it - it can have no non-local references. *)
(fn () => Global insertedCode)
else let
(* We have some declarations to evaluate but we can't do that until
we execute the code. Expand out any mutual declarations and
remove any expressions which are being evaluated only for their
side-effects. *)
fun expandMutual [] = []
| expandMutual (MutualDecs dec :: decs) =
expandMutual dec @ expandMutual decs
| expandMutual ((dec as Declar _) :: decs) =
dec :: expandMutual decs
| expandMutual (dec :: decs) =
expandMutual decs; (* expression *)
(* There seems to be a problem with this code - we put declarations
in the tuple even if those declarations are unused. In fact we can't
tell whether the declarations are used, because we haven't computed
their reference counts yet. This means that we can generate a LOT
of junk if someone writes "open Motif" without first constraining
it with a signature. I'll have to come back and look at this some
time. SPF 3/4/97
*)
(* It's more difficult than that. We need the declarations for
the "special" entries so the reference counts won't help. Because
of the optimisations we may well have declarations which are unused
in the general entries but which are referred to by special entries.
The purpose of this vector is to provide the "general" value (always
a constant because it's been evaluated) for any declarations used
in the special values.
DCJM 19/3/01. *)
(* For each declaration in the sequence generate a corresponding load
instruction to get its value. The declarations will normally be in
ascending order but there may be gaps if a declaration contains
a block with declarations in it. The gaps are replaced with zero
values. However mutually recursive declarations may be in a random
order so the list may have to be sorted. *)
fun getValues ([]: codetree list) (addr: int): codetree list =
[] (* Last of all the general value. *)
| getValues (decs as (Declar{addr=declAddr, ...} :: vs)) (addr: int): codetree list =
if declAddr < addr (* Already done? *)
then getValues vs addr (* remove *)
else let
fun findEntry [] = CodeZero (* Not found. *)
| findEntry (Declar{addr=dAddr, value, ...} :: rest) =
if dAddr <> addr
then findEntry rest
else (* Found the declaration. *)
(
case value of
Container size =>
(* We mustn't put container values in the result since
they won't persist after the code that creates them
has exited. We replace them with TupleFromContainer
entries. *)
TupleFromContainer(mkLoad (addr, 0), size)
| _ => mkLoad (addr, 0) (* Found - put in a load. *)
)
| findEntry _ =
raise InternalError "findEntry: not Declar"
in
findEntry decs :: getValues decs (addr + 1)
end
| getValues _ _ =
raise InternalError "getValues: not a Declar";
val ext = gen :: getValues (expandMutual decs) 1;
val newDecs = mkEnv (decs @ [mkTuple ext]);
val code = codeGenAndPrint (preCodeAndPrint(newDecs));
in (* We now have the values of the declarations. *)
fn () =>
let
(* Execute the code - the result is a vector with the
declarations in it. *)
val decVals : address =
let
val res = code ()
in
if isShort res
then raise InternalError "Result vector is not an address"
else toAddress res
end;
(* Construct a new environment so that when an entry is looked
up the corresponding constant is returned. *)
fun newEnviron oldEnv (lval, depth, levels) =
let
val oldVal = oldEnv (lval, depth, levels);
(* Get the constant out of the table. *)
fun look (Extract{addr, ...}) : codetree =
let
val base = decVals;
val offset = toShort addr;
in
mkConst (loadWord (base, offset))
end
| look (g as Indirect{base, offset}) : codetree =
let
val v = look base;
in
case v of
Constnt caddr =>
let
val base = toAddress caddr;
val offset = toShort offset;
in
mkConst (loadWord (base, offset))
end
| _ => g
end
| look g = g; (* end look *)
val specVal = optSpecial oldVal;
val envVal = (* SPF 10/12/96 *)
if isCodeNil specVal
then errorEnv
else newEnviron (optEnviron oldVal)
in
optVal
{
general = look (optGeneral oldVal),
special = specVal,
environ = envVal,
decs = optDecs oldVal, (* should be nil *)
recCall = optRec oldVal
}
end (* newEnviron *);
(* Get the general value, the zero'th entry in the vector. *)
val generalVal = loadWord (decVals, toShort 0);
in
(* and return the whole lot as a global value. *)
Global
(optVal
{
general = mkConst generalVal,
special = spec, (* <> CodeNil *)
environ = newEnviron (optEnviron insertedCode),
decs = [],
recCall = optRec insertedCode
})
end
end
end; (* genCode *)
end (* CODETREE functor body *);
|