File: CODECONS.ML

package info (click to toggle)
polyml 5.2.1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 19,692 kB
  • ctags: 17,567
  • sloc: cpp: 37,221; sh: 9,591; asm: 4,120; ansic: 428; makefile: 203; ml: 191; awk: 91; sed: 10
file content (4178 lines) | stat: -rw-r--r-- 146,157 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
(*
	Copyright (c) 2000
		Cambridge University Technical Services Limited

	This library is free software; you can redistribute it and/or
	modify it under the terms of the GNU Lesser General Public
	License as published by the Free Software Foundation; either
	version 2.1 of the License, or (at your option) any later version.
	
	This library is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
	Lesser General Public License for more details.
	
	You should have received a copy of the GNU Lesser General Public
	License along with this library; if not, write to the Free Software
	Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
*)

(* This module contains the code vector and operations to insert code into
   it. Each procedure is compiled into a separate segment. Initially it is
   compiled into a fixed size segment, and then copied into a segment of the
   correct size at the end.
   This module contains all the definitions of the Sparc opcodes and registers.
   It uses "codeseg" to create and operate on the segment itself.
 *)

(*
 Linkage conventions:

; Register Usage
; --------------
; 
; %r0  = pseudo register (constant 0)
; 
; %r1  = scratch register (used as target of ADDIL)
; 
; %r2  = scratch register
; 
; %r3  = regStackPtr  (dedicated)
; %r4  = regStackLim  (dedicated)
; %r5  = regHeapPtr   (dedicated)
; %r6  = regHeapLim   (dedicated)
; %r7  = regHandler   (dedicated)
; 
; %r8  = regCode
; %r9  = regClosure
; 
; %r10 - %r22 = general purpose registers
; 
; %r23 = argReg3
; %r24 = argReg2
; %r25 = argReg1
; %r26 = argReg0
; 
; %r27 = DON'T TOUCH
; 
; %r28 = regResult
; %r29 = scratch register
; 
; %r30 = DON'T TOUCH
; %r31 = regReturn (used as BLE link register)

%r1 is junked by any instruction that may trap; %rt1 and %rt2 are literally preserved
across traps, so they must never contain any tagged valuesm as the GC won't
recognise these as such.

Function Prologues
------------------
Unlike the SPARC, we make it the caller's resposibility to tag the
return address (in the BLE delay slot). This means that functions
have a maximum of 2 entry points:

  (1) L1/L2 Standard entry point - tagged return address is in regReturn
  (2) L3/L4 Self-call entry point - doesn't change regCode

L1, L2: 
        ADDIL	L%<code-size>,regCode
        LDO	R%<code-size>(%r1),regCode
L3, L4: 
        <stack-check code>

Note: most code segements will be short, in which case we won't need
the "ADDIL, LDO" sequenece at all.

Calling a Function
------------------
We make the global assumption that we are running in the segment addressed by %sr0.

Call:
	BLE	0(%sr0,regCode)
	DEPI	2,32,2,regReturn	(* tag return address *)

Self-call:
	BL	L3,%regReturn
	DEPI	2,32,2,regReturn	(* tag return address *)

Tail-call:
	BV	%r0(regCode)
	COPY	returnReg,regReturn	(* If returnReg <> regReturn *)

Self-tail-call:
	MOVB	returnReg,regReturn,L4  (* If branch is less than 2^11 words *)
	NOP
or
        ADDIL	L%(L4-L1)-<code-size>,regCode (* If we have a long branch *)
        LDO	R%(L4-L1)-<code-size>(%r1),%r1
	BV	%r0(%r1)
	COPY	returnReg,regReturn

Note that generating a "long" self-call implies we're going to need a "long" function
prelude.

Return:
	LDO	-2(returnReg),%rt1  (* N.B. not regReturn *)
	BV	%r0(%rt1)
	NOP

*)

functor CODECONS (

(*****************************************************************************)
(*                  DEBUG                                                    *)
(*****************************************************************************)
structure DEBUG :
sig
  val assemblyCode:    bool ref;
  
  (* This is true if we are code-generating for the persistent store and
     have to be careful about traps etc. *)
  val persistentStore: bool
  
  (* If we are running with the distributed memory we cannot compile
     in load instructions. *)
  val allowMutableLoads: bool
end;

(*****************************************************************************)
(*                  MISC                                                     *)
(*****************************************************************************)
structure MISC :
  sig
    exception InternalError of string
    val quickSort : ('a -> 'a -> bool) -> 'a list -> 'a list;
  end

(*****************************************************************************)
(*                  CODECONS sharing constraints                             *)
(*****************************************************************************)

(* removed SPF 24/9/94 ...
sharing type
  ADDRESS.word
= CODESEG.word
       
sharing type
  ADDRESS.short
= CODESEG.short
       
sharing type
  ADDRESS.address
= CODESEG.address
... *)

) :

(*****************************************************************************)
(*                  CODECONS export signature                                *)
(*****************************************************************************)
sig
  type word;  (* added 13/7/94 SPF *)
  type short;
  type code;
  type reg;   (* Machine registers *)
  type address;
  
  val regNone:     reg;
  val regResult:   reg;
  val regClosure:  reg;
  val regCode:     reg;
  val regStackPtr: reg;
  val regHandler:  reg;
  val regReturn:   reg;
  
  val regs:    int;     (* No of registers. *)
  val argRegs: int;     (* No of args in registers. *)
  
  val regN:   int -> reg;
  val nReg:   reg -> int;
  val argReg: int -> reg;
  
  val regEq:    reg * reg -> bool;
  val regNeq:   reg * reg -> bool;
  
  val regPrint: reg -> unit;
  val regRepr:  reg -> string;

  type addrs

  val codeCreate: bool * string -> code;  (* makes the initial segment. *)

  (* Operations. *)
  type instrs;
  
  val instrMove:       instrs;
  val instrAddA:       instrs;
  val instrSubA:       instrs;
  val instrRevSubA:    instrs;
  val instrMulA:       instrs;
  val instrOrW:        instrs;
  val instrAndW:       instrs;
  val instrXorW:       instrs;
  val instrLoad:       instrs;
  val instrLoadB:      instrs;
  val instrVeclen:     instrs;
  val instrPush:       instrs;
  val instrUpshiftW:   instrs;
  val instrDownshiftW: instrs;
  val instrBad:        instrs;
  
  (* Can the we use the same register as the source and destination
     of an instructions? (it would be more flexible to make this
     a function of type "instrs -> bool", but a simple flag will
     suffice for now. SPF 17/1/97
  *)
  val canShareRegs : bool;
  
  (* Enquire about operations. *)
  val instrIsRR: instrs -> bool;         (* Is the general form implemented? *)
  val instrIsRI: instrs * word -> bool; (* Is the immediate value ok? *)

  (* Code generate operations. *)
  val genRR: instrs * reg * reg * reg * code -> unit;
  val genRI: instrs * reg * word * reg * code -> unit;

  type tests;
  
  val testNeqW:  tests;
  val testEqW:   tests;
  val testGeqW:  tests;
  val testGtW:   tests;
  val testLeqW:  tests;
  val testLtW:   tests;
  val testNeqA:  tests;
  val testEqA:   tests;
  val testGeqA:  tests;
  val testGtA:   tests;
  val testLeqA:  tests;
  val testLtA:   tests;
  val Short:     tests;
  val Long:      tests;

  type labels; (* The source of a jump. *)

  val noJump: labels;
  
  (* Compare and branch for fixed and arbitrary precision. *)
  
  val isCompRR: tests -> bool;
  val isCompRI: tests * word -> bool;
  
  val compareAndBranchRR: reg * reg * tests * code -> labels;
  val compareAndBranchRI: reg * word * tests * code -> labels;

  val genLoad:        int * reg * reg * code -> unit;
  val genStore:       reg * int * reg * code -> unit;
  val isStoreI:       word -> bool;
  val genStoreI:      word * int * reg * code -> unit;
  val genPush:        reg * code -> unit;
  val genLoadPush:    int * reg * code -> unit;
  val preferLoadPush: bool;
  val genLoadConst:   word * reg * reg * code -> unit;
  val genLoadCoderef: code * reg * reg * code -> unit;

  val allocStore:      int * short * reg * code -> unit;
  val setFlag:         reg * code * short -> unit;
  val completeSegment: code -> unit;

  type callKinds;
  val StaticLink : callKinds;
  val FullCall   : callKinds;
  val IoCall     : callKinds;
  val Recursive  : callKinds;
  val PureCode   : callKinds;
  
  val callFunction:       callKinds * code -> unit;
  val jumpToFunction:     callKinds * reg * code -> unit;
  val returnFromFunction: reg * int * code -> unit;
  val raiseEx:            code -> unit;
  val setSl:              int * code -> unit;

  val copyCode: code * int -> address;

  val unconditionalBranch: code -> labels;
  
  type handlerLab;
  
  val pushAddress:  reg * code -> handlerLab;
  val fixupHandler: handlerLab * code -> unit;
  
  val fixup:        labels * code -> unit; (* Fix up a jump. *)

  (* ic - Address for the next instruction in the segment. *)
  val ic : code -> addrs;
  
  val jumpback: addrs * bool * code -> unit; (* Backwards jump. *)

  val resetStack: int * code -> unit; (* Set a pending reset *)
  val procName:   code -> string;      (* Name of the procedure. *)
  
  type cases
  type jumpTableAddrs
  val constrCases : int * addrs -> cases;
  val useIndexedCase: int * int * int * bool -> bool;
  val indexedCase : reg * reg * int * int * bool * code -> jumpTableAddrs;
  val makeJumpTable : jumpTableAddrs * cases list * addrs * int * int * code -> unit;
end (* CODECONS export signature *) =


let

(*****************************************************************************)
(*                  ADDRESS                                                  *)
(*****************************************************************************)
structure ADDRESS :
sig
  type word;    (* NB *not* eqtype, 'cos it might be a closure *)
  eqtype short;
  type address;
  type handler;
  val toAddress: 'a -> address

  val wordSize : int; (* still 4, but will change one day *)

  val wordEq : 'a * 'a -> bool
  
  val isShort:  'a     -> bool;
  val toShort:  'a     -> short;
  val toWord:   'a     -> word;
  val toInt:     short -> int;
  val toAddress: 'a -> address

  val loadByte:   address * short -> short 
  val loadWord:   address * short -> word
  val nameOfCode: address -> string
  val unsafeCast: 'a -> 'b

  val Or:  short * short -> short;
  val And: short * short -> short; 
  val << : short * short -> short; 
  val >> : short * short -> short; 
  
  val offsetAddr : address * short -> handler
 
  val alloc:  (short * short * word) -> address
  val length: address -> short
  val flags:  address -> short

  val F_words : short
 
  val isWords : address -> bool;
  val isBytes : address -> bool;
  val isCode  : address -> bool;
  
  val isString : word -> bool;
  val toString : word -> string;

  val lock : address -> unit;
end = Address;

(*****************************************************************************)
(*                  CODESEG                                                  *)
(*****************************************************************************)
structure CODESEG :
sig
  type word;
  type short;
  type address;
  type cseg;
  
  val csegMake:          int  -> cseg;
  val csegConvertToCode: cseg -> unit;
  val csegLock:          cseg -> unit;
  val csegGet:           cseg * int -> short;
  val csegSet:           cseg * int * short -> unit;
  val csegPutWord:       cseg * int * word -> unit;
  val csegCopySeg:       cseg * cseg * int * int -> unit;
  val csegAddr:          cseg -> address;
end = CodeSeg;

in

(*****************************************************************************)
(*                  CODECONS functor body                                    *)
(*****************************************************************************)
struct
  open CODESEG;
  open DEBUG;
  open ADDRESS;
  open MISC;
  infix 8 >> <<;
  infix 7 And;
  infix 6 Or;

  fun applyList (f, [])   = ()
    | applyList (f, h::t) =
    let
      val U : unit = f h;
    in
      applyList (f, t)
    end;
  
  fun applyCountList (f, n, [])   = ()
    | applyCountList (f, n, h::t) = 
    let
      val U : unit = f (n, h);
    in
      applyCountList (f, n + 1, t)
    end;
    
  fun revOnto ([], l) = l
    | revOnto (h :: t, l) = revOnto (t, h :: l);
  
  fun printString (s: string) = output(std_out,s);
  
  fun reprBool true  = "true"
    | reprBool false = "false";
  
  local
    fun hexDigit (n:int) : string =
      if n < 10 then chr (ord "0" + n) else chr (ord "a" - 10 + n);
  
    fun revHexDigits (width : int, x : int) : string list =
    let
      val lo = x mod 16
      val hi = x div 16
    in
      hexDigit lo ::
      (if x >= 16 orelse width > 1 then revHexDigits (width - 1, hi) else [])
    end;
  
    fun phex (width: int, x : int) : unit =
    let
      val hi = x div 16
      val lo = x mod 16
    in
      if x >= 16 orelse width > 1 then phex (width - 1, hi) else ();
      output (std_out, hexDigit lo)
    end;
  in
     (* prints a string representation of a number, padded to width characters *)
    fun reprHexN (width : int, n : int) : string =
      if n < 0
      then implode ("-" :: rev (revHexDigits (width, ~n)))
      else implode (rev (revHexDigits (width, n)))

    fun reprHex (n : int) : string = reprHexN (0, n);

    (* prints a string representation of a number, padded to width characters *)
    fun printHexN (width : int, n : int) =
      if n < 0
      then (output (std_out, "-"); phex (width - 1, ~ n))
      else phex (width, n)

    fun printHex (n : int) : unit = printHexN (0, n);
  end;

(*****************************************************************************)
(*                  Useful constants                                         *)
(*****************************************************************************)
  (* These are specified as explicit constants, rather than calls to exp2
     so that the code-generator can in-line them when it compiles itself.
  *)
  val exp2_1  =          2;
  val exp2_2  =          4;
  val exp2_3  =          8;
  val exp2_4  =         16;
  val exp2_5  =         32;
  val exp2_6  =         64;
  val exp2_7  =        128;
  val exp2_8  =        256;
  val exp2_10 =       1024;
  val exp2_11 =       2048;
  val exp2_13 =       8192;
  val exp2_16 =      65536;
  val exp2_20 =    1048576;
  val exp2_24 =   16777216;
  val exp2_29 =  536870912;
    
  (* Let's check that we got them right! *)
  local
    fun exp2 0 = 1
      | exp2 n = 2 * exp2 (n - 1);
  in
    val U : bool = 
      (
        exp2_1  = exp2 1  andalso
        exp2_2  = exp2 2  andalso
        exp2_3  = exp2 3  andalso
        exp2_4  = exp2 4  andalso
        exp2_5  = exp2 5  andalso
        exp2_6  = exp2 6  andalso
        exp2_7  = exp2 7  andalso
        exp2_8  = exp2 8  andalso
        exp2_10 = exp2 10 andalso
        exp2_11 = exp2 11 andalso
        exp2_13 = exp2 13 andalso
        exp2_16 = exp2 16 andalso
        exp2_20 = exp2 20 andalso
        exp2_24 = exp2 24 andalso
        exp2_29 = exp2 29
      )
         orelse raise InternalError "CodeCons: Powers of 2 incorrectly specified";
  end;
  
  val short0    = toShort 0;
  val short1    = toShort 1;
  val short2    = toShort 2;
  val short3    = toShort 3;
  val short4    = toShort 4;
  val short5    = toShort 5;
  val short6    = toShort 6;
  val short7    = toShort 7;
  val short8    = toShort 8;
  val short9    = toShort 9;
  val short10   = toShort 10;
  val short11   = toShort 11;
  val short12   = toShort 12;
  val short13   = toShort 13;
  val short14   = toShort 14;
  val short16   = toShort 16;
  val short18   = toShort 18;
  val short19   = toShort 19;
  val short20   = toShort 20;
  val short21   = toShort 21;
  val short22   = toShort 22;
  val short24   = toShort 24;
  val short25   = toShort 25;
  val short26   = toShort 26;
  val short27   = toShort 27;
  val short28   = toShort 28;
  val short30   = toShort 30;
  val short32   = toShort 32;
  val short33   = toShort 33;
  val short34   = toShort 34;
  val short35   = toShort 35;
  val short36   = toShort 36;
  val short37   = toShort 37;
  val short38   = toShort 38;
  val short40   = toShort 40;
  val short44   = toShort 44;
  val short50   = toShort 50;
  val short51   = toShort 51;
  val short52   = toShort 52;
  val short53   = toShort 53;
  val short56   = toShort 56;
  val short57   = toShort 57;
  val short58   = toShort 58;
  
  (* Masks for the least significant n bits *)
  val mask1Bit   = toShort (exp2_1  - 1);
  val mask2Bits  = toShort (exp2_2  - 1);
  val mask3Bits  = toShort (exp2_3  - 1);
  val mask4Bits  = toShort (exp2_4  - 1);
  val mask5Bits  = toShort (exp2_5  - 1);
  val mask6Bits  = toShort (exp2_6  - 1);
  val mask7Bits  = toShort (exp2_7  - 1);
  val mask8Bits  = toShort (exp2_8  - 1);
  val mask10Bits = toShort (exp2_10 - 1);
  val mask11Bits = toShort (exp2_11 - 1);

  (* These are defined here as explicit constants, so the     *)
  (* code-generator can in-line them as immediates (I think). *)
  val TAGSHIFT   = 1;
  val CODETAG    = 2;
  val FLAGLENGTH = 8; (* There are 8 flag bits in the length word *)

  (* tag a short constant *)
  fun semiTagged c   = exp2_1 * c;
  fun tagged c       = exp2_1 * c + 1;

(*****************************************************************************)
(*                 21-bit immediates                                         *)
(*****************************************************************************)
  (* 21-bit signed immediates are used with ADDIL *)
  abstype int21 = Int21 of int
  with
    fun getInt21 (Int21 i) = i;
    
    (* is21Bit is the test for signed 21-bit immediates *) 
    fun is21Bit i = ~exp2_20 <= i andalso i <= exp2_20 - 1;
    
    fun int21 i =
      if is21Bit i
      then Int21 i
      else let
        val msg = 
          implode
           [
             "int21: can't convert ",
             Int.toString i,
             " into a 21-bit signed immediate"
           ]
      in
        raise InternalError msg
      end;
  end;


(*****************************************************************************)
(*                 17-bit immediates                                         *)
(*****************************************************************************)
  (* 17-bit signed immediates are used for unconditional branches *)
  abstype int17 = Int17 of int
  with
    fun getInt17 (Int17 i) = i;
    
    (* We check for shorts first because that saves us an expensive
       compile-time trap if i is actually a long value.
       SPF 11/12/97
    *)
       
    (* is17Bit is the test for signed 17-bit immediates *) 
    fun is17Bit i = 
      isShort i andalso ~exp2_16 <= i andalso i <= exp2_16 - 1;
    
    fun int17 i =
      if is17Bit i
      then Int17 i
      else let
        val msg = 
          implode
           [
             "int17: can't convert ",
             Int.toString i,
             " into a 17-bit signed immediate"
           ]
      in
        raise InternalError msg
      end;
      
    (* various small constants *)
    val int17_0 = Int17 0;
  end;

(*****************************************************************************)
(*                 14-bit immediates                                         *)
(*****************************************************************************)
  (* 14-bit signed immediates are used for load and store instructions *)
  abstype int14 = Int14 of int
  with
    fun getInt14 (Int14 i) = i;
    
    (* is14Bit is the test for signed 14-bit immediates *) 
    fun is14Bit i =
      isShort i andalso ~exp2_13 <= i andalso i <= exp2_13 - 1;
    
    fun int14 i =
      if is14Bit i
      then Int14 i
      else let
        val msg = 
          implode
           [
             "int14: can't convert ",
             Int.toString i,
             " into a 14-bit signed immediate"
           ]
      in
        raise InternalError msg
      end;
      
    (* various small constants *)
    val int14_0      = Int14 0;
    val int14_1      = Int14 1;
    val int14_minus1 = Int14 ~1;
    val int14_minus2 = Int14 ~2;
    val int14_minus4 = Int14 ~4;
  end;
  
(*****************************************************************************)
(*                 12-bit immediates                                         *)
(*****************************************************************************)
  (* 12-bit signed immediates are used for conditional branches *)
  abstype int12 = Int12 of int
  with
    fun getInt12 (Int12 i) = i;
    
    (* is12Bit is the test for signed 12-bit immediates *) 
    fun is12Bit i = 
      isShort i andalso ~exp2_11 <= i andalso i <= exp2_11 - 1;

    fun isPositive12Bit i = 
      isShort i andalso 0 <= i andalso i <= exp2_11 - 1;
    
    fun int12 i =
      if is12Bit i
      then Int12 i
      else let
        val msg = 
          implode
           [
             "int12: can't convert ",
             Int.toString i,
             " into a 12-bit signed immediate"
           ]
      in
        raise InternalError msg
      end;
      
    (* various small constants *)
    val int12_0 = Int12 0;
  end;
  
(*****************************************************************************)
(*                 11-bit immediates                                         *)
(*****************************************************************************)
  (* 11-bit signed immediates are used for arithmetic instructions *)
  abstype int11 = Int11 of int
  with
    fun getInt11 (Int11 i) = i;
    
    (* is11Bit is the test for signed 11-bit immediates *) 
    fun is11Bit i = 
      isShort i andalso ~exp2_10 <= i andalso i <= exp2_10 - 1;
    
    fun int11 i =
      if is11Bit i
      then Int11 i
      else let
        val msg = 
          implode
           [
             "int11: can't convert ",
             Int.toString i,
             " into a 11-bit signed immediate"
           ]
      in
        raise InternalError msg
      end;

    (* various small constants *)
    val int11_minus1 = Int11 ~1;
  end;

(*****************************************************************************)
(*                  5-bit immediates (signed)                                *)
(*****************************************************************************)
  (* 5-bit signed immediates are used by the MOVIB and COMIV instructions. *)
  abstype int5 = Int5 of int
  with
    fun getInt5 (Int5 i) = i;
    
    (* is5Bit is the test for signed 5-bit immediates *) 
    fun is5Bit i = 
      isShort i andalso ~exp2_4 <= i andalso i <= exp2_4 - 1;
    
    fun int5 i =
      if is5Bit i
      then Int5 i
      else let
        val msg = 
          implode
           [
             "int5: can't convert ",
             Int.toString i,
             " into a 5-bit signed immediate"
           ]
      in
        raise InternalError msg
      end;
      
    (* various small constants *)
    val int5_0       = Int5  0;
    val int5_CODETAG = Int5 CODETAG;
  end;
  
(*****************************************************************************)
(*                  5-bit immediates (unsigned)                              *)
(*****************************************************************************)
  (* 5-bit unsigned immediates are used to designate registers and shifts. *)

  abstype nat5 = Nat5 of int
  with
    fun getNat5 (Nat5 i) = i;
    
    (* isUnsigned5Bit is the test for a unsigned 5-bit immediates *) 
    fun isUnsigned5Bit i = 
      isShort i andalso 0 <= i andalso i <= exp2_5 - 1;
    
    fun nat5 i =
      if isUnsigned5Bit i
      then Nat5 i
      else let
        val msg = 
          implode
           [
             "nat5: can't convert ",
             Int.toString i,
             " into a 5-bit unsigned immediate"
           ]
      in
        raise InternalError msg
      end;
      
    (* various small constants *)
    val nat5_TAGSHIFT   = Nat5 TAGSHIFT;
    val nat5_FLAGLENGTH = Nat5 FLAGLENGTH;
    val nat5_FLminusTS  = Nat5 (FLAGLENGTH - TAGSHIFT);
  end; (* nat5 *)
  
(*****************************************************************************)
(*                  splitLeftRight                                           *)
(*****************************************************************************)

  (* Note: we're only using the LSB 11 bits of the int14,
     so we don't have to worry about sign-extension vs zero-extension.
     SPF 19/2/97
  *)
  fun splitLeftRight (n : int) : (int21 * int14) =
  let
    val left  : int = n div exp2_11;
    val right : int = n mod exp2_11;
  in
    (int21 left, int14 right)
  end


(*****************************************************************************)
(*                  Abstype for registers                                    *)
(*****************************************************************************)
  infix 7 regEq regNeq regLeq regGeq regMinus;

  abstype reg = Reg of int  (* registers. *)
  with
    val regZero     = Reg 0;   (* zero-source and dummy destination *)
    val regUnsafe   = Reg 1;   (* a very unsafe temporary - not saved across traps *)
    val regTemp1    = Reg 2;   (* temporary for untagged values *)
    val regStackPtr = Reg 3;   (* current ML stack pointer *)
    val regStackLim = Reg 4;   (* lower limit of stack (pointer) *)
    val regHeapPtr  = Reg 5;   (* current heap allocation pointer *)
    val regHeapLim  = Reg 6;   (* number of available heap bytes (words?) *)
    val regHandler  = Reg 7;   (* pointer into the stack *)
    val regCode     = Reg 8;   (* address of code or constants *)
    val regClosure  = Reg 9;   (* address of closure (or static link) *)
    (* Reg 10 - Reg 22 are general purpose registers *)
    (* Reg 23 - Reg 26 are used for function arguments *)
    (* Reg 27 is the C static closure pointer - DON'T TOUCH *)
    val regResult   = Reg 28;  (* function results *)
    val regTemp2    = Reg 29;  (* temporary for untagged values *)
    (* Reg 30 is the C stack pointer - DON'T TOUCH *)
    val regReturn   = Reg 31;  (* return address *)
 
    val regNone     = regZero; (* Dummy register *)

    fun getReg (Reg r) = r;      (* reg.down *)
    fun mkReg   n      = Reg n;  (* reg.up   *)
  
    fun getReg5 (Reg r) = nat5 r;

    (* The number of general registers.
       Includes result, closure, code, return and arg regs
       but not stackptr, handler, stack limit or heap ptrs. *)
    val regs = 21; (* r8-r26, r28, r31 *)

    (* The nth register (counting from 0). *)
    fun regN i =
      if i < 0 orelse i >= regs
      then let
        val msg =
          implode
            [
              "regN: Bad register number ",
              Int.toString i
            ]
      in
        raise InternalError msg
      end
      else if i = 20 then mkReg 31 
      else if i = 19 then mkReg 28 
      else mkReg (26 - i)
      
    fun a regEq  b = getReg a  = getReg b;
    fun a regNeq b = getReg a <> getReg b;
    fun a regLeq b = getReg a <= getReg b;
    fun a regGeq b = getReg a >= getReg b;
    fun (Reg a) regMinus (Reg b) = a - b;
  
    (* The number of the register. *)
    fun nReg (Reg n) =
      if n = 31 then 20 else
      if n = 28 then 19 else
      if 8 <= n andalso n <= 26 then 26 - n
      else let
        val msg =
          implode
            [
              "nReg: Bad register number ",
              Int.toString n
            ]
      in
        raise InternalError msg
      end;

    fun regRepr (Reg n) = 
      case n of
        3 => "%rsp"
      | 4 => "%rsl"
      | 5 => "%rhp"
      | 6 => "%rhl"
      | 7 => "%rhr"
      | _ => "%r" ^ Int.toString n;

    fun regPrint r = output (std_out, regRepr r);
    val argRegs = 4;

    (* Args 0, 1, 2, 3 correspond to r26, r25, r24, r23. *)
    fun argReg i =
      if 0 <= i andalso i < 4 then mkReg (26 - i)
      else let
        val msg =
          implode
            [
              "argReg: bad register number ",
              Int.toString i
            ]
      in
        raise InternalError msg
      end;
  end; (* reg *)

(*****************************************************************************)
(*                  Abstype for instruction addresses                        *)
(*****************************************************************************)
  infix 6 wordAddrPlus wordAddrMinus byteAddrMinus;
  infix 4 addrLt addrEq;

  (* All indexes into the code vector have type "addrs".
     In this version of the code generator, we're using
     WORD addresses. Earlier versions use BYTE addresses,
     so don't get confused!. SPF 18/2/97
  *)
  abstype addrs = Addr of int
  with
    (* + is defined to add an integer to an address *)
    fun (Addr a) wordAddrPlus b = Addr (a + b);
    
    (* The difference between two addresses is an integer *)
    fun (Addr a) wordAddrMinus (Addr b) = a - b; 
    fun (Addr a) byteAddrMinus (Addr b) = wordSize * (a - b); 

    fun (Addr a) addrLt (Addr b) = a < b; 
    fun (Addr a) addrEq (Addr b) = a = b; 

    fun mkWordAddr n = Addr n;
  
    fun getWordAddr (Addr a) = a;
    fun getByteAddr (Addr a) = a * wordSize;
  
    val addrZero = mkWordAddr 0;
    val addrLast = mkWordAddr (exp2_29 - 1); (* A big number. *)
  end;


(*****************************************************************************)
(*                  The "quad" datatype (used for instruction words)         *)
(*****************************************************************************)

  datatype quad =  (* the 4 bytes of the instruction word *)
    Quad of short * short * short * short

  (* break an instruction word into 4 bytes; try to do it in a way that *)
  (* will minimise the arithmetic - particularly for long values. *)
  fun toQuad (w : int) : quad =
  let
    val topHw    = toShort (w div exp2_16);
    val bottomHw = toShort (w mod exp2_16);
  in
    Quad (topHw    >> short8, mask8Bits And  topHw,
          bottomHw >> short8, mask8Bits And bottomHw)
  end;

  (* returns *unsigned* integer *)
  fun fromQuad (Quad (b1,b2,b3,b4)) : int =
  let
    val topHw    = toInt ((b1 << short8) Or b2);
    val bottomHw = toInt ((b3 << short8) Or b4);
  in
    topHw * exp2_16 + bottomHw
  end;
  
  val zeroQuad : quad = Quad (short0, short0, short0, short0);

(*****************************************************************************)
(*                  Getting and setting quads                                *)
(*****************************************************************************)
  (* We're using a big-endian machine *)
  fun setQuad (Quad (b0, b1, b2, b3), addr : addrs, seg : cseg) : unit =
  let
    val a : int = getByteAddr addr;
    val U : unit = csegSet (seg, a,     b0);
    val U : unit = csegSet (seg, a + 1, b1);
    val U : unit = csegSet (seg, a + 2, b2);
  in
    csegSet (seg, a + 3, b3)
  end;

  fun getQuad (addr : addrs, seg : cseg) : quad =
  let
    val a : int = getByteAddr addr;
    val b0  = csegGet (seg, a);
    val b1  = csegGet (seg, a + 1);
    val b2  = csegGet (seg, a + 2);
    val b3  = csegGet (seg, a + 3);
  in
    Quad (b0, b1, b2, b3)
  end;
  
(*****************************************************************************)
(*                  Types for branch labels                                  *)
(*****************************************************************************)

  datatype 'a option =
    None
  | Some of 'a

  datatype label = 
    Label of addrs option ref;
    
  type labels = label list; (* for now *)

  val noJump : labels = []; 
  
(*****************************************************************************)
(*                  The condition datatype                                   *)
(*****************************************************************************)
  (* We don't use the unsigned conditions, except for the stack check. *)
  datatype condition =
    NEVER
  | EQ
  | LT
  | LE
  | OD
  | TR
  | NE
  | GE
  | GT
  | EV
  ;
  
 fun reprCond (cond : condition) : string =
    case cond of
      NEVER => "NEVER"
    | EQ    => "EQ"
    | LT    => "LT"
    | LE    => "LE"
    | OD    => "OD"
    | TR    => "TR"
    | NE    => "NE"
    | GE    => "GE"
    | GT    => "GT"
    | EV    => "EV"
    ;
  
  (* The tests are set up for an RI comparison, but we actually have an IR instruction *)
  fun swapArgs (cond : condition) : condition =
    case cond of
      NEVER => NEVER
    | EQ    => EQ
    | LT    => GT
    | LE    => GE
    | OD    => OD
    | TR    => TR
    | NE    => NE
    | GE    => LE
    | GT    => LT
    | EV    => EV
    ;

  (* When we do branch extension, we need to invert the test in a COMIB/COMB instruction *)
  fun invert (cond : condition) : condition =
    case cond of
      NEVER => TR
    | EQ    => NE
    | LT    => GE
    | LE    => GT
    | OD    => EV
    | TR    => NEVER
    | NE    => EQ
    | GE    => LT
    | GT    => LE
    | EV    => OD
    ;

  fun isEqTest (cond : condition) : bool =
    case cond of
      EQ => true
    | NE => true
    | _  => false

  (* Use for COMBT, COMIBT instructions *)
  fun encodeArithCond (cond : condition) : (bool * short) =
    case cond of
      NEVER => (true, short0)
    | EQ    => (true, short1)
    | LT    => (true, short2)
    | LE    => (true, short3)
    | OD    => (true, short7)
    | TR    => (false, short0)
    | NE    => (false, short1)
    | GE    => (false, short2)
    | GT    => (false, short3)
    | EV    => (false, short7)
    ;
 
  (* Encoding of c,f fields for arithmetic/logical instructions.
     N.B these encoding are DIFFERENT from the ones we would have to
     use with the Shift/Extract/Deposit conditions. For the logical
     instructions, the encodings are correct, but not all are valid. 
  *)
  val NEVER_short : short = (short0 << short1) Or short0;
  val LT_short    : short = (short2 << short1) Or short0;
  val OD_short    : short = (short7 << short1) Or short0;
  val EV_short    : short = (short7 << short1) Or short1;
  val UGT_short   : short = (short5 << short1) Or short1;
  
(*****************************************************************************)
(*                  The instruction datatype                                 *)
(*****************************************************************************)
  type nullify = bool;
  
  (* Number of instructions between address loaded by LOADCODEADDR and 
     actual JUMPTABLE instruction. *)
  val jumpTableOffset : int = 4;
  
  (* The (synthetic) instructions we'll actually use. *)
  datatype instruction =
    COPY       of reg * reg         (* OR r,%r0,t     *)
  | AND        of reg * reg * reg 
  | OR         of reg * reg * reg 
  | XOR        of reg * reg * reg
  | TESTTAG1   of reg * reg         (* OR,OD     r1,r2,%r0        *) 
  | TESTTAG2   of reg * reg         (* AND,OD    r1,r2,%r0        *) 
  
  | ADDO       of reg * reg * reg
  | ADDL       of reg * reg * reg
  | SUB        of reg * reg * reg
  | ARBSUB     of reg * reg * reg   (* SUBTO,EV  r1,r2,rd *)
  | STACKCHECK of reg               (* SUBT,>>   %rsl,r,%r0       *)
  | HEAPCHECK  of reg               (* SUBT,<    %rhl,r,%rhl      *)

  | LSHR       of nat5 * reg * reg  (* EXTRU r,31-n,32-n,t *)
  | ASHR       of nat5 * reg * reg  (* EXTRS r,31-n,32-n,t *)
  | SHL        of nat5 * reg * reg  (* ZDEP  r,31-n,32-n,t *)
  | TAGCODEREG of int5 * reg        (* DEPI  n,31,2,r *)
 
  | ARBADDI    of int11 * reg * reg (* ADDITO,EV n,r1,rd  *)
  | UNTAGCHECK of reg * reg         (* ADDIT,OD  -1,rs,rd *)
  | HEAPCHECKI of int11             (* ADDIT,<   n,%rhl,%rhl      *)
  
  | ADDIL      of int21 * reg
  | LDO        of int14 * reg * reg
  | LDB        of int14 * reg * reg
  | LDW        of int14 * reg * reg
  | STB        of reg * int14 * reg 
  | STW        of reg * int14 * reg 
  | STWM       of reg * int14 * reg 
  | LOADCONST  of int * reg * reg   (* LDW      <4*n+offset>(b),t *)

  | LDBXSH     of reg * reg * reg   (* we're only interested in the LDWB,S variant *)
  | LDWXSH     of reg * reg * reg   (* we're only interested in the LDWX,S variant *)

  (* Unconditional calls and branches. CALLREG and CALLSELF never nullify. *)
  | BRANCH     of nullify * label   (* BL,?  lab,regZero     *)
  | CALLREG    of reg               (* BLE   0(%sr0,%r)      *)
  | CALLSELF                        (* BL    L3,regReturn    *) 
  | JUMPREG    of nullify * reg     (* BV,?  %r0(%r)         *) 
  | JUMPSELF   of nullify           (* BL,?  L4,regZero      *) 
  
  | LOADCODEADDR of reg             (* BL    0,%r            *)
  | JUMPTABLE   of int * (label list ref)
  | BYTEOFFSET  of addrs * label
  
  (* The "nullify" flag indicates whether we nullify the instruction
     in the delay slot for taken branches. Since this is NOT the
     HPPA semantics (for backwards conditional branches the HPPA
     nullifies the NON-taken branch), we have to ensure that the
     low-level code generator sees only forward branches (where
     our semantics agree with what HPPA  provides). There's
     some code in revExpand that ensures that this is the case.
     SPF 7/3/97
  *)
  | COMB       of condition * nullify * reg * reg * label 
  | COMIB      of condition * nullify * int5 * reg * label
  
  (* Logically speaking, ARBCOMB etc should have nullify flags too, but
     the RTS emulation code isn't good enough to support delay slots
     so we have to ensure that taken branches are ALWAYS nullified.
     SPF 7/3/97
  *)
  | ARBCOMB    of condition * reg * reg * label
  | ARBCOMBAUX of condition * reg * reg * label  (* used when r1 is known to be short *)
  | ARBCOMIB   of condition * int5 * reg * label
   
  (* Pseudo-code for a branch-in point. *)
  | JUMPTARGET of label list
  
(* Not yet used ...  
  | MOVBTR     of nullify * reg * reg * label  (* we're only interested in the MOVB,TR variant *)
  | MOVIBTR    of nullify * int5 * reg * label (* we're only interested in the MOVIB,TR variant *)
... *) 
  ;

(*****************************************************************************)
(*                  Macro-instruction expander                               *)
(*****************************************************************************)

  fun fixupLabel (target : addrs) (Label (r as (ref None))) = r := Some target
    | fixupLabel (target : addrs) (Label (r as (ref (Some _)))) =
        raise InternalError "fixupLabel: label already fixed up"
  
  fun inList (x, [])     = false
    | inList (x, h :: t) = x = h orelse inList (x, t)

  fun remove (x, [])     = []
    | remove (x, h :: t) = if x = h then t else h :: remove (x, t);

  (* instrLength is the number of quads that the instruction will expand to. *)
  fun instrLength (COMB _ )       = raise InternalError "instrLength: COMB has variable length (branch extension possible)"
    | instrLength (COMIB _ )      = raise InternalError "instrLength: COMIB has variable length (branch extension possible)"
    | instrLength (ARBCOMB _ )    = raise InternalError "instrLength: ARBCOMB has variable length (branch extension possible)"
    | instrLength (ARBCOMBAUX _ ) = raise InternalError "instrLength: ARBCOMBAUX has variable length (branch extension possible)"
    | instrLength (JUMPTARGET _ ) = 0
    | instrLength (JUMPTABLE (size, _))  = size
    | instrLength _               = 1
    ;

  fun instrListLengthLoop (n, [])     = n
    | instrListLengthLoop (n, h :: t) = instrListLengthLoop (n + instrLength h, t);
 
  fun instrListLength l = instrListLengthLoop (0, l);
 
  (* Notes:
       (1) Labels are now fixed-up relative to the END of the code.
       (2) Before the code is expanded, the nullify flag in COMB/COMIB
           assumes that we're going to have a forwards jump (this should
           always be the case unless we've chained them onto a backwards
           unconditional branch). After the code is expanded, it has its
           normal HPUX interpretation (but notice that we never create
           any backwards conditional jumps, so we can say that it
           still has the previous "nullify if jump is taken" interpretation).
  *)
  fun revExpandOnto (here : addrs, [], l)     = (l, ~ (getWordAddr here))
    | revExpandOnto (here : addrs, h :: t, l) =
    case h of
      COMB (cond : condition, nullify : bool, r1 : reg, r2 : reg, lab : label) =>
      let
	val isShortForwardJump : bool =
	  case lab of
	    Label (ref (Some target)) => 
	      isPositive12Bit (target wordAddrMinus (here wordAddrPlus 1))
	  | _ => 
	      false;
      in
        if isShortForwardJump
        then revExpandOnto (here wordAddrPlus ~1, t, h :: l)
        else let
          val newLab : label = Label (ref (Some here));
        in
          revExpandOnto (here wordAddrPlus ~2, t,
            COMB (invert cond, true, r1, r2, newLab) ::
            BRANCH (nullify, lab) ::
            JUMPTARGET [newLab] ::
            l)
        end
      end
    
    | COMIB (cond : condition, nullify : bool, imm : int5, r : reg, lab : label) =>
      let
	val isShortForwardJump : bool =
	  case lab of
	    Label (ref (Some target)) => 
	      isPositive12Bit (target wordAddrMinus (here wordAddrPlus 1))
	  | _ => 
	      false;
      in
        if isShortForwardJump
        then revExpandOnto (here wordAddrPlus ~1, t, h :: l)
        else let
          val newLab : label = Label (ref (Some here));
        in
          revExpandOnto (here wordAddrPlus ~2, t,
            COMIB (invert cond, true, imm, r, newLab) ::
            BRANCH (nullify, lab) ::
            JUMPTARGET [newLab] ::
            l)
        end
      end
        
    | ARBCOMB (cond : condition, r1 : reg, r2 : reg, lab : label) => 
      let
	val TESTTAGS : reg * reg -> instruction = 
	  if isEqTest cond then TESTTAG1 else TESTTAG2;
	  
	val isShortForwardJump : bool =
	  case lab of
	    Label (ref (Some target)) => 
	      isPositive12Bit (target wordAddrMinus (here wordAddrPlus 1))
	  | _ => 
	      false;
      in
        if isShortForwardJump
        then 
	  revExpandOnto (here wordAddrPlus ~3, t, 
	    TESTTAGS (r1, r2) ::
	    UNTAGCHECK (regZero, regZero) :: 
	    COMB (cond, true, r1, r2, lab) ::
	    l)
        else let
          val newLab : label = Label (ref (Some here));
        in
          revExpandOnto (here wordAddrPlus ~4, t,
	    TESTTAGS (r1, r2) ::
	    UNTAGCHECK (regZero, regZero) :: 
	    COMB (invert cond, true, r1, r2, newLab) ::
            BRANCH (true, lab) ::
            JUMPTARGET [newLab] ::
	    l)
        end
      end
    
    | ARBCOMBAUX (cond : condition, r1 : reg, r2 : reg, lab : label) =>
      let
	val isShortForwardJump : bool =
	  case lab of
	    Label (ref (Some target)) => 
	      isPositive12Bit (target wordAddrMinus (here wordAddrPlus 1))
	  | _ => 
	      false;
      in
        if isShortForwardJump
        then 
	  revExpandOnto (here wordAddrPlus ~2, t, 
	    UNTAGCHECK (r2, regZero) ::
	    COMB (cond, true, r1, r2, lab) :: 
	    l)
        else let
          val newLab : label = Label (ref (Some here));
        in
          revExpandOnto (here wordAddrPlus ~3, t,
	    UNTAGCHECK (r2, regZero) ::
            COMB (invert cond, true, r1, r2, newLab) ::
            BRANCH (true, lab) ::
            JUMPTARGET [newLab] ::
            l)
        end
      end
 
    | ARBCOMIB (cond : condition, imm : int5, r : reg, lab : label) =>
      let
	val isShortForwardJump : bool =
	  case lab of
	    Label (ref (Some target)) => 
	      isPositive12Bit (target wordAddrMinus (here wordAddrPlus 1))
	  | _ => 
	      false;
      in
        if isShortForwardJump
        then 
	  revExpandOnto (here wordAddrPlus ~2, t, 
	    UNTAGCHECK (r, regZero) ::
	    COMIB (cond, true, imm, r, lab) :: 
	    l)
        else let
          val newLab : label = Label (ref (Some here));
        in
          revExpandOnto (here wordAddrPlus ~3, t,
	    UNTAGCHECK (r, regZero) ::
            COMIB (invert cond, true, imm, r, newLab) ::
            BRANCH (true, lab) ::
            JUMPTARGET [newLab] ::
            l)
        end
      end
	  
    | JUMPTARGET labs => 
      let
        val U : unit = applyList (fixupLabel here, labs);
      in
        revExpandOnto (here, t, h :: l)
      end
    
      (* The labels are in reverse order (highest index first) *)
    | JUMPTABLE (tableSize, ref labList) =>
      let
        val nextAddr  : addrs = here wordAddrPlus (~ tableSize);
        val tableBase : addrs = nextAddr wordAddrPlus (~ jumpTableOffset);
      
        fun fillTable ([], l) = l
          | fillTable (lab :: labs, l) = fillTable (labs, BYTEOFFSET (tableBase, lab) :: l)
      in
        revExpandOnto (nextAddr, t, fillTable (labList, l))
      end
  
    | _ => revExpandOnto (here wordAddrPlus ~1, t, h :: l);

 
  fun revExpand (l : instruction list) : instruction list * int = revExpandOnto (addrZero, l, []);
  
(*****************************************************************************)
(*                  The pretty-printer (for code)                            *)
(*****************************************************************************)

  fun reprInstruction (segStartAddr : addrs, instr : instruction) : string =
    case instr of
      COPY (r1 : reg, rt : reg) =>
	implode ["COPY (", regRepr r1, ", ", regRepr rt, ")"]
    
    | AND (r1 : reg, r2 : reg, rt : reg) =>
	implode ["AND (", regRepr r1, ", ", regRepr r2, ", ", regRepr rt, ")"]
    
    | OR (r1 : reg, r2 : reg, rt : reg) =>
	implode ["OR (", regRepr r1, ", ", regRepr r2, ", ", regRepr rt, ")"]
    
    | XOR (r1 : reg, r2 : reg, rt : reg) =>
	implode ["XOR (", regRepr r1, ", ", regRepr r2, ", ", regRepr rt, ")"]
    
    | TESTTAG1 (r1 : reg, r2 : reg) => 
	implode ["TESTTAG1 (", regRepr r1, ", ", regRepr r2, ")"]
   
    | TESTTAG2  (r1 : reg, r2 : reg) => (* AND,OD r1,r2,%r0 *) 
	implode ["TESTTAG2 (", regRepr r1, ", ", regRepr r2, ")"]

    | ADDO (r1 : reg, r2 : reg, rt : reg) =>
	implode ["ADDO (", regRepr r1, ", ", regRepr r2, ", ", regRepr rt, ")"]
    
    | ADDL (r1 : reg, r2 : reg, rt : reg) =>
	implode ["ADDL (", regRepr r1, ", ", regRepr r2, ", ", regRepr rt, ")"]
    
    | SUB (r1 : reg, r2 : reg, rt : reg) =>
	implode ["SUB (", regRepr r1, ", ", regRepr r2, ", ", regRepr rt, ")"]
    
    | ARBSUB (r1 : reg, r2 : reg, rt : reg) =>
	implode ["ARBSUB (", regRepr r1, ", ", regRepr r2, ", ", regRepr rt, ")"]
    
    | STACKCHECK (r1 : reg) =>
	implode ["STACKCHECK (", regRepr r1, ")"]
    
    | HEAPCHECK (r1 : reg) =>
	implode ["HEAPCHECK (", regRepr r1, ")"]

    | ARBADDI (imm : int11, r1 : reg, rt : reg) =>
	implode ["ARBADDI (", Int.toString (getInt11 imm), ", ",  regRepr r1, ", ", regRepr rt, ")"]
    
    | UNTAGCHECK (r1 : reg, rt : reg) => (* ADDIT,OD  -1,rs,rd *)
	implode ["UNTAGCHECK (", regRepr r1, ", ", regRepr rt, ")"]
    
    | HEAPCHECKI (imm : int11) => (* ADDIT,<  n,%rhl,%rhl *)
	implode ["HEAPCHECKI (", Int.toString (getInt11 imm), ")"]

    | LSHR (sh : nat5, r1 : reg, rt : reg) =>
	implode ["LSHR (", Int.toString (getNat5 sh), ", ", regRepr r1, ", ", regRepr rt, ")"]
    
    | ASHR (sh : nat5, r1 : reg, rt : reg) => (* EXTRS r,31-n,32-n,t *)
	implode ["ASHR (", Int.toString (getNat5 sh), ", ", regRepr r1, ", ", regRepr rt, ")"]
    
    | SHL (sh : nat5, r1 : reg, rt : reg) => (* ZDEP  r,31-n,32-n,t *)
	implode ["SHL (", Int.toString (getNat5 sh), ", ", regRepr r1, ", ", regRepr rt, ")"]

    | TAGCODEREG (imm : int5, r : reg) =>
	implode ["TAGCODEREG (", Int.toString (getInt5 imm), ", ", regRepr r, ")"]

    | ADDIL (imm : int21, r : reg) =>
	implode ["ADDIL (", Int.toString (getInt21 imm), ", ", regRepr r, ")"]

    | LDO (imm : int14, rb : reg, rt : reg) =>
	implode ["LDO (", Int.toString (getInt14 imm), ", ",  regRepr rb, ", ", regRepr rt, ")"]

    | LDB (imm : int14, rb : reg, rt : reg) =>
	implode ["LDB (", Int.toString (getInt14 imm), ", ",  regRepr rb, ", ", regRepr rt, ")"]

    | LDW (imm : int14, rb : reg, rt : reg) =>
	implode ["LDW (", Int.toString (getInt14 imm), ", ",  regRepr rb, ", ", regRepr rt, ")"]

    | STB (rs : reg, imm : int14, rb : reg) =>
	implode ["STB (", regRepr rs, ", ", Int.toString (getInt14 imm), ", ",  regRepr rb, ")"]

    | STW (rs : reg, imm : int14, rb : reg) =>
	implode ["STW (", regRepr rs, ", ", Int.toString (getInt14 imm), ", ",  regRepr rb, ")"]

    | STWM (rs : reg, imm : int14, rb : reg) =>
	implode ["STWM (", regRepr rs, ", ", Int.toString (getInt14 imm), ", ",  regRepr rb, ")"]

    | LOADCONST (constNum : int, rb : reg, rt : reg) => (* LDW <4*n+offset>(b),t *)
	implode ["LOADCONST (", Int.toString constNum, ", " ,regRepr rb, ", ",  regRepr rt, ")"]
 
    | LDBXSH (rx : reg, rb : reg, rt : reg) =>
	implode ["LDBXSH (", regRepr rx, ", ", regRepr rb, ", ",  regRepr rt, ")"]
	
    | LDWXSH (rx : reg, rb : reg, rt : reg) =>
	implode ["LDWXSH (", regRepr rx, ", ", regRepr rb, ", ",  regRepr rt, ")"]
    
    | BRANCH (nullify : bool, Label (ref None)) =>
	implode ["BRANCH (", reprBool nullify, ", ???label???)"]

    | BRANCH (nullify : bool, Label (ref (Some targetAddr))) =>
      let
	val byteAddr : int = targetAddr byteAddrMinus segStartAddr;
      in
	implode ["BRANCH (", reprBool nullify, ", ", Int.toString byteAddr, ")"]
      end
    
    | JUMPREG (nullify : bool, r : reg) => 
	implode ["JUMPREG (", reprBool nullify, ", ", regRepr r, ")"]
    
    | JUMPSELF (nullify : bool) =>
	implode ["JUMPSELF (", reprBool nullify, ")"]
    
    | LOADCODEADDR (r : reg) =>
	implode ["LOADCODEADDR (", regRepr r, ")"]

    | BYTEOFFSET (tableAddr : addrs, Label (ref None)) =>
      let
	val tableOffset  : int = tableAddr  byteAddrMinus segStartAddr;
      in
	implode ["BYTEOFFSET (", Int.toString tableOffset, ", ???label???)"]
      end
      
    | BYTEOFFSET (tableAddr : addrs, Label (ref (Some targetAddr))) =>
      let
	val tableOffset  : int = tableAddr  byteAddrMinus segStartAddr;
	val targetOffset : int = targetAddr byteAddrMinus segStartAddr;
      in
	implode ["BYTEOFFSET (", Int.toString tableOffset, ", ", Int.toString targetOffset, ")"]
      end

    | CALLREG (r : reg) =>
	implode ["CALLREG (", regRepr r, ")"]
    
    | CALLSELF =>
	"CALLSELF"
    
    | COMB (cond : condition, nullify : bool, r1 : reg, r2 : reg, Label (ref None)) =>
	implode ["COMB (", reprCond cond, ", ", reprBool nullify, ", ", 
		 regRepr r1, ", ",  regRepr r2, ", ???label???)"]

    | COMB (cond : condition, nullify : bool, r1 : reg, r2 : reg, Label (ref (Some targetAddr))) =>
      let
	val byteAddr : int = targetAddr byteAddrMinus segStartAddr;
      in
	implode ["COMB (", reprCond cond, ", ", reprBool nullify, ", ", 
		 regRepr r1, ", ",  regRepr r2, ", ", Int.toString byteAddr, ")"]
      end

    | COMIB (cond : condition, nullify : bool, imm : int5, r : reg, Label (ref None)) =>
	implode ["COMIB (", reprCond cond, ", ", reprBool nullify, ", ", 
		 Int.toString (getInt5 imm) , ", ",  regRepr r, ", ???label???)"]

    | COMIB (cond : condition, nullify : bool, imm : int5, r : reg, Label (ref (Some targetAddr))) =>
      let
	val byteAddr : int = targetAddr byteAddrMinus segStartAddr;
      in
	implode ["COMIB (", reprCond cond, ", ", reprBool nullify, ", ", 
		 Int.toString (getInt5 imm) , ", ",  regRepr r, ", ", Int.toString byteAddr, ")"]
      end
      
    | ARBCOMB (cond : condition, r1 : reg, r2 : reg, _) =>
	implode ["ARBCOMB (", reprCond cond, ", ", regRepr r1, ", ",  regRepr r2, ", ???)"]

    | ARBCOMBAUX (cond : condition, r1 : reg, r2 : reg, _) =>
	implode ["ARBCOMBAUX (", reprCond cond, ", ", regRepr r1, ", ",  regRepr r2, ", ???)"]

    | ARBCOMIB (cond : condition, imm : int5, r : reg, _) =>
	implode ["ARBCOMIB (", reprCond cond, ", ",  Int.toString (getInt5 imm) , ", ",  regRepr r, ", ???)"]

    | JUMPTARGET labs =>
        implode ["JUMPTARGET (", Int.toString (length labs), ")"]

    | JUMPTABLE (size, _) =>
        implode ["JUMPTABLE (", Int.toString size, " entries)"]

(* ...
    | MOVBTR (nullify : bool, r1 : reg, rt : reg, Label (ref None)) =>
	implode ["MOVBTR (", reprBool nullify, ", ", 
		 regRepr r1, ", ",  regRepr rt, ", ???label???)"]

    | MOVBTR (nullify : bool, r1 : reg, rt : reg, Label (ref (Some targetAddr))) =>
      let
	val byteAddr : int = targetAddr byteAddrMinus segStartAddr;
      in
	implode ["MOVBTR (", reprBool nullify, ", ", 
		 regRepr r1, ", ",  regRepr rt, ", ", Int.toString byteAddr, ")"]
      end

    | MOVIBTR (nullify : bool, imm : int5, rt : reg, Label (ref None)) =>
	implode ["MOVIBTR (", reprBool nullify, ", ", 
		 Int.toString (getInt5 imm) , ", ",  regRepr rt, ", ???label???)"]

    | MOVIBTR (nullify : bool, imm : int5, rt : reg, Label (ref (Some targetAddr))) =>
      let
	val byteAddr : int = targetAddr byteAddrMinus segStartAddr;
      in
	implode ["MOVIBTR (", reprBool nullify, ", ", 
		 Int.toString (getInt5 imm) , ", ",  regRepr rt, ", ", Int.toString byteAddr, ")"]
      end;
... *)

  (* end reprInstruction *) 

(*****************************************************************************)
(*                  The low-level code-generator                             *)
(*****************************************************************************)

  local
    (* encoding of opcode2 field for arithmetic/logical instructions *)
    val ANDop2    : short = short8;
    val ORop2     : short = short9;
    val XORop2    : short = short10; (* 0x0A *)
    val SUBop2    : short = short16; (* 0x10 *)
    val SUBTop2   : short = short19; (* 0x13 *)
    val ADDLop2   : short = short40; (* 0x28 *)
    val SUBTOop2  : short = short51; (* 0x33 *)
    val ADDOop2   : short = short56; (* 0x38 *)
  
    fun mkALUquad (opcode2 : short, r1 : reg, r2 : reg, rt : reg, cf : short) : quad =
    let
      val opcode   : short = short2;
      val r1_short : short = toShort (getReg r1);
      val r2_short : short = toShort (getReg r2);
      val rt_short : short = toShort (getReg rt);
    
      val b0 : short = (opcode << short2) Or ((r2_short >> short3) And mask2Bits);
      val b1 : short = ((r2_short And mask3Bits) << short5) Or r1_short;
      val b2 : short = (cf << short4) Or ((opcode2 >> short2) And mask4Bits);
      val b3 : short = ((opcode2 And mask2Bits) << short6) Or rt_short; (* bit 26 is zero *)
    in
      Quad (b0, b1, b2, b3)
    end;
  
    (* encoding of opcode field for ALU immediate instructions *)
    val ADDITop  : short = short44 (* 0x2C *);
  
    fun mkALUimmedQuad
      (opcode : short, opcode2 : bool,
       imm : int11, r1 : reg, rt : reg, cf : short) : quad =
    let
      (* The only tricky part is that the sign bit of the immediate
	 is stored in the LSB (not the nomal MSB) position.
      *)
      val r1_short  : short = toShort (getReg r1);
      val rt_short  : short = toShort (getReg rt);
      val imm_short : short = toShort (getInt11 imm);
      val op2_short : short = if opcode2 then short1 else short0;
      
      val b0 : short = (opcode << short2) Or ((r1_short >> short3) And mask2Bits);
      val b1 : short = ((r1_short And mask3Bits) << short5) Or rt_short;
      val b2 : short = (cf << short4) Or (op2_short << short3) Or ((imm_short >> short7) And mask3Bits);
      val b3 : short = ((imm_short And mask7Bits) << short1) Or ((imm_short >> short10) And mask1Bit);
    in
      Quad (b0, b1, b2, b3)
    end;
  
    (* encoding of opcode field for extract/deposit instructions *)
    val EXTRop   : short = short52 (* 0x34 *);
    val DEPop    : short = short53 (* 0x35 *);
    
    (* encoding of opcode2 field for extract/deposit instructions *)
    val EXTRUop2 : short = short6;
    val EXTRSop2 : short = short7;
    val ZDEPop2  : short = short2;
    val DEPIop2  : short = short7;
  
    fun mkExtrDepQuad 
	 (opcode : short, opcode2 : short, 
	  r2 : short, r1 : short, pos : short, len : short) : quad =
    let
      (* We generate the c field as zero (NEVER) *)
      val b0 : short = (opcode << short2) Or ((r2 >> short3) And mask2Bits);
      val b1 : short = ((r2 And mask3Bits) << short5) Or r1;
      val b2 : short = (opcode2 << short2) Or ((pos >> short3) And mask2Bits); (* c=0 *)
      val b3 : short = ((pos And mask3Bits) << short5) Or len;
    in
      Quad (b0, b1, b2, b3)
    end
  
    (* encoding of opcode field for load/store instructions *)
    val LDOop  : short = short13; (* 0x0D *)
    val LDBop  : short = short16; (* 0x10 *)
    val LDWop  : short = short18; (* 0x12 *)
    val STBop  : short = short24; (* 0x18 *)
    val STWop  : short = short26; (* 0x1A *)
    val STWMop : short = short27; (* 0x1B *)
  
    fun mkLoadStoreQuad (opcode : short, rb : reg, rt : reg, offset : int14) : quad =
    let
      (* The only tricky part is that the sign bit of the offset
	 is stored in the LSB (not the nomal MSB) position.
      *)
      val rb_short  : short = toShort (getReg rb);
      val rt_short  : short = toShort (getReg rt);
      val off_short : short = toShort (getInt14 offset);
  
      val b0 : short = (opcode << short2) Or ((rb_short >> short3) And mask2Bits);
      val b1 : short = ((rb_short And mask3Bits) << short5) Or rt_short;
      val b2 : short = (off_short >> short7) And mask6Bits; (* s field is zero *)
      val b3 : short = ((off_short And mask7Bits) << short1) Or ((off_short >> short13) And mask1Bit);
    in
      Quad (b0, b1, b2, b3)
    end;

    (* encoding of opcode2 field for indexed load instructions *)
    val LDWXop2 : short = short2;
    val LDBXop2 : short = short0;
    
    fun mkLoadXSHquad (opcode2 : short, rx : reg, rb : reg, rt : reg) : quad =
    let
      val opcode    : short = short3;  
      val rb_short  : short = toShort (getReg rb);
      val rx_short  : short = toShort (getReg rx);
      val rt_short  : short = toShort (getReg rt);
  
      (* We generate the s, cc and m fields as zero; bit 19 must also be zero *)
      val b0 : short = (opcode << short2) Or ((rb_short >> short3) And mask2Bits);
      val b1 : short = ((rb_short And mask3Bits) << short5) Or rx_short;
      val b2 : short = (short1 << short5) Or ((opcode2 >> short2) And mask2Bits); (* u=1 *)
      val b3 : short = ((opcode2 And mask2Bits) << short6) Or rt_short;
    in
      Quad (b0, b1, b2, b3)
    end;
    
    (* encoding of opcode field for 17-bit unconditional branch instructions *)
    val BLop  : short = short58; (* 0x3A *)
    val BLEop : short = short57; (* 0x39 *)
    
    (* encoding of opcode2 field for 17-bit unconditional branch instructions *)
    val BLop2 : short = short0;
    (* For BLE the opcode2 field encode the space register. *)
    
    fun mkUncondBranch17Quad (opcode : short, opcode2 : short, r : reg, offset : int17, nullify : bool) : quad =
    let
      (* The tricky part is that the offset gets horribly munged. *)
      val r_short   : short = toShort (getReg r);
      val n_short   : short = if nullify then short1 else short0;
      val off_short : short = toShort (getInt17 offset);
      val w1_short  : short = (off_short >> short11) And mask5Bits; 
      val w2_short  : short = ((off_short And mask10Bits) << short1) Or ((off_short >> short10) And mask1Bit);
      val w3_short  : short = (off_short >> short16) And mask1Bit;
  
      val b0 : short = (opcode << short2) Or ((r_short >> short3) And mask2Bits);
      val b1 : short = ((r_short And mask3Bits) << short5) Or w1_short;
      val b2 : short = (opcode2 << short5) Or ((w2_short >> short6) And mask5Bits);
      val b3 : short = ((w2_short And mask6Bits) << short2) Or (n_short << short1) Or w3_short;
    in
      Quad (b0, b1, b2, b3)
    end;
    
    fun mkBVquad (rx : reg, rb : reg, nullify : bool) : quad =
    let
      val opcode   : short = short58; (* 0x3A *) (* same major opcode as BL *)
      val rb_short : short = toShort (getReg rb);
      val rx_short : short = toShort (getReg rx);
      val n_short  : short = if nullify then short1 else short0;
      val opcode2  : short = short6;             (* BL has 0 here *)
      
      val b0 : short = (opcode << short2) Or ((rb_short >> short3) And mask2Bits);
      val b1 : short = ((rb_short And mask3Bits) << short5) Or rx_short;
      val b2 : short = opcode2 << short5; (* displacement field is zero *)
      val b3 : short = n_short << short1; (* displacement field is zero *)
    in
      Quad (b0, b1, b2, b3)
    end;

    (* encoding of opcode field for conditional branch instructions *)
    val COMBTop  : short = short32; (* 0x20 *)
    val COMBFop  : short = short34; (* 0x22 *)
    val COMIBTop : short = short33; (* 0x21 *)
    val COMIBFop : short = short35; (* 0x23 *)
    val MOVBop   : short = short50; (* 0x32 *)
    val MOVIBop  : short = short51; (* 0x33 *)

    fun mkCondBranchQuad 
       (opcode : short, dest : short, source : short,
        cond : short, offset : int12, nullify : bool) : quad =
    let
      (* The only tricky part is that the top 2 bits of the immediate
	 is stored in the LSB (not the normal MSB) positions.
      *)
      val off_short : short = toShort (getInt12 offset);
      val n_short   : short = if nullify then short1 else short0;
  
      val b0 : short = (opcode << short2) Or ((dest >> short3) And mask2Bits);
      val b1 : short = ((dest And mask3Bits) << short5) Or source;
      val b2 : short = (cond << short5) Or ((off_short >> short5) And mask5Bits)
      val b3 : short = ((off_short And mask5Bits) << short3) Or
                       (((off_short >> short10) And mask1Bit) << short2) Or     
                       (n_short << short1) Or
                       ((off_short >> short11) And mask1Bit);
    in
      Quad (b0, b1, b2, b3)
    end;

    fun mkQuad 
       (thisAddr : addrs,      (* relative to end of prelude *)
        instr : instruction,
        constByteOffset : int14,
        selfCallAddr : addrs ) : quad =
      case instr of
        COPY (r1 : reg, rt : reg) =>
	  mkALUquad (ORop2 : short, r1, regZero, rt, NEVER_short : short)
      
      | AND (r1 : reg, r2 : reg, rt : reg) =>
	  mkALUquad (ANDop2 : short, r1 : reg, r2 : reg, rt : reg, NEVER_short : short)
      
      | OR (r1 : reg, r2 : reg, rt : reg) =>
	  mkALUquad (ORop2 : short, r1 : reg, r2 : reg, rt : reg, NEVER_short : short)
      
      | XOR (r1 : reg, r2 : reg, rt : reg) =>
	  mkALUquad (XORop2 : short, r1 : reg, r2 : reg, rt : reg, NEVER_short : short)
      
      | TESTTAG1 (r1 : reg, r2 : reg) => (* OR,OD r1,r2,%r0 *) 
	  mkALUquad (ORop2 : short, r1 : reg, r2 : reg, regZero : reg, OD_short : short)
     
      | TESTTAG2  (r1 : reg, r2 : reg) => (* AND,OD r1,r2,%r0 *) 
	  mkALUquad (ANDop2 : short, r1 : reg, r2 : reg, regZero : reg, OD_short : short)
  
      | ADDO (r1 : reg, r2 : reg, rt : reg) =>
	  mkALUquad (ADDOop2 : short, r1 : reg, r2 : reg, rt : reg, NEVER_short : short)
      
      | ADDL (r1 : reg, r2 : reg, rt : reg) =>
	  mkALUquad (ADDLop2 : short, r1 : reg, r2 : reg, rt : reg, NEVER_short : short)
      
      | SUB (r1 : reg, r2 : reg, rt : reg) =>
	  mkALUquad (SUBop2 : short, r1 : reg, r2 : reg, rt : reg, NEVER_short : short)
      
      | ARBSUB (r1 : reg, r2 : reg, rt : reg) => (* SUBTO,EV  r1,r2,rd *)
	  mkALUquad (SUBTOop2 : short, r1 : reg, r2 : reg, rt : reg, EV_short : short)
      
      | STACKCHECK (r1 : reg) => (* SUBT,>>  %rsl,r,%r0 *)
	  mkALUquad (SUBTop2 : short, regStackLim : reg, r1 : reg, regZero : reg, UGT_short : short)
      
      | HEAPCHECK (r1 : reg) => (* SUBT,<  %rhl,r,%rhl *)
	  mkALUquad (SUBTop2 : short, regHeapLim : reg, r1 : reg, regHeapLim : reg, LT_short : short)
  
      | ARBADDI (imm : int11, r1 : reg, rt : reg) => (* ADDITO,EV n,r1,rd  *)
	  mkALUimmedQuad (ADDITop, true, imm, r1, rt, EV_short)
      
      | UNTAGCHECK (r1 : reg, rt : reg) => (* ADDIT,OD  -1,rs,rd *)
	  mkALUimmedQuad (ADDITop, false, int11_minus1, r1, rt, OD_short)
      
      | HEAPCHECKI (imm : int11) => (* ADDIT,<  n,%rhl,%rhl *)
	  mkALUimmedQuad (ADDITop, false, imm, regHeapLim, regHeapLim, LT_short)
  
  
      | LSHR (sh : nat5, r1 : reg, rt : reg) => (* EXTRU r,31-n,32-n,t *)
	let
	  (* p   = 31 - sh;
	     len = 32 - sh; clen = 32 - len = sh;
	  *)
	  val rt_short   : short = toShort (getReg rt);
	  val r1_short   : short = toShort (getReg r1);
	  val sh_short   : short = toShort (getNat5 sh);
	  val p_short    : short = toShort (31 - getNat5 sh);
	  val clen_short : short = sh_short;
	in
	  mkExtrDepQuad (EXTRop, EXTRUop2, r1_short, rt_short, p_short, clen_short)
	end
      
      | ASHR (sh : nat5, r1 : reg, rt : reg) => (* EXTRS r,31-n,32-n,t *)
	let
	  (* p   = 31 - sh;
	     len = 32 - sh; clen = 32 - len = sh;
	  *)
	  val rt_short   : short = toShort (getReg rt);
	  val r1_short   : short = toShort (getReg r1);
	  val sh_short   : short = toShort (getNat5 sh);
	  val p_short    : short = toShort (31 - getNat5 sh);
	  val clen_short : short = sh_short;
	in
	  mkExtrDepQuad (EXTRop, EXTRSop2, r1_short, rt_short, p_short, clen_short)
	end
      
      | SHL (sh : nat5, r1 : reg, rt : reg) => (* ZDEP  r,31-n,32-n,t *)
	let
	  (* p   = 31 - sh; cp   = 31 - p   = sh;
	     len = 32 - sh; clen = 32 - len = sh;
	  *)
	  val rt_short   : short = toShort (getReg rt);
	  val r1_short   : short = toShort (getReg r1);
	  val sh_short   : short = toShort (getNat5 sh);
	  val cp_short   : short = sh_short;
	  val clen_short : short = sh_short;
	in
	  mkExtrDepQuad (DEPop, ZDEPop2, rt_short, r1_short, cp_short, clen_short)
	end
  
      | TAGCODEREG (imm : int5, rt : reg) => (* DEPI  imm,31,2,rt *)
	let
	  (* p   = 31; cp   = 31 - p   = 0;
	     len = 2;  clen = 32 - len = 30;
	  *)
	  val rt_short    : short = toShort (getReg rt);
	  val imm5_short  : short = toShort (getInt5 imm);
	  val imm5_rep    : short = ((imm5_short And mask4Bits) << short1) Or ((imm5_short >> short4) And mask1Bit);
	  val cp_short    : short = short0;
	  val clen_short  : short = short30;
	in
	  mkExtrDepQuad (DEPop, DEPIop2, rt_short, imm5_rep, cp_short, clen_short)
	end

      | ADDIL (imm : int21, r : reg) =>
	let
	  (* The tricky part is that the offset gets horribly munged.
	     The following use more instructions that strictly necessary,
	     but I value correctness over speed!
	     SPF 20/2/97
	  *)
	  val opcode    : short = short10; (* 0x0A *)
	  val r_short   : short = toShort (getReg r);
	  val imm_short : short = toShort (getInt21 imm);
	  
	  val field0 : short = (imm_short >> short20) And mask1Bit;
          val field1 : short = (imm_short >> short9)  And mask11Bits;
          val field2 : short = (imm_short >> short7)  And mask2Bits;
          val field3 : short = (imm_short >> short2)  And mask5Bits;
          val field4 : short =  imm_short             And mask2Bits;
          
          val rep_short : short =
            (field3 << short16) Or
            (field2 << short14) Or
            (field4 << short12) Or
            (field1 << short1)  Or
             field0;

	  val b0 : short = (opcode << short2) Or ((r_short >> short3) And mask2Bits);
	  val b1 : short = ((r_short And mask3Bits) << short5) Or ((rep_short >> short16) And mask5Bits);
	  val b2 : short = (rep_short >> short8) And mask8Bits;
	  val b3 : short = rep_short And mask8Bits;
	in
	  Quad (b0, b1, b2, b3)
	end

      | LDO (imm : int14, rb : reg, rt : reg) =>
	  mkLoadStoreQuad (LDOop, rb, rt, imm)
  
      | LDB (imm : int14, rb : reg, rt : reg) =>
	  mkLoadStoreQuad (LDBop, rb, rt, imm)
  
      | LDW (imm : int14, rb : reg, rt : reg) =>
	  mkLoadStoreQuad (LDWop, rb, rt, imm)
  
      | STB (rs : reg, imm : int14, rb : reg) =>
	  mkLoadStoreQuad (STBop, rb, rs, imm)
  
      | STW (rs : reg, imm : int14, rb : reg) =>
	  mkLoadStoreQuad (STWop, rb, rs, imm)
  
      | STWM (rs : reg, imm : int14, rb : reg) =>
	  mkLoadStoreQuad (STWMop, rb, rs, imm)
  
      | LOADCONST (constNum : int, rb : reg, rt : reg) => (* LDW <4*n+offset>(b),t *)
        let
          (* It's the responsibility of the prelude-generation code to
             ensure that constByteOffset is sufficiently small that
             this never overflows. SPF 20/2/1997
             
             Unfortunately, if we have too many constants, this may not
             be possible. I need to look at where the LOADCONSTs are
             generated, and change the code to use a temporary register
             to bridge this gap. For now, I'll just make the error
             message more informative. SPF 23/3/1998
          *)
          val imm : int = getInt14 constByteOffset + wordSize * constNum;
        in
          if is14Bit imm
	  then mkLoadStoreQuad (LDWop, rb, rt, int14 imm)
	  else raise InternalError 
	               (implode ["mkQuad: LOADCONST - constant number ",
	                         Int.toString constNum,
	                         " requires an offset of ",
	                         Int.toString imm,
	                         " which is too large for a signed 14-bit field"])
        end
   
      | LDBXSH (rx : reg, rb : reg, rt : reg) =>
          mkLoadXSHquad (LDBXop2, rx, rb, rt)
          
      | LDWXSH (rx : reg, rb : reg, rt : reg) =>
          mkLoadXSHquad (LDWXop2, rx, rb, rt)
      
      | BRANCH (nullify : bool, Label (ref None)) =>
          raise InternalError "mkQuad: BRANCH - jump has not been fixed-up"

      | BRANCH (nullify : bool, Label (ref (Some targetAddr))) => (* BL,? lab,regZero *)
	let
	  val wordOffset : int = targetAddr wordAddrMinus (thisAddr wordAddrPlus 2);
	in
	  if is17Bit wordOffset
	  then mkUncondBranch17Quad (BLop, BLop2, regZero, int17 wordOffset, nullify)
	  else raise InternalError "mkQuad: BRANCH - jump exceeds 17 bit range"
	end
      
      | JUMPREG (nullify : bool, destReg : reg) => (* BV,?  regZero(destReg) *) 
          mkBVquad (regZero, destReg, nullify)
      
      | JUMPSELF (nullify : bool) => (* BL,? L4,regZero *)
	let
	  (* Offsets are calculated from 2 words beyond the current instruction *)
	  val wordOffset : int = selfCallAddr wordAddrMinus (thisAddr wordAddrPlus 2);
	in
	  if is17Bit wordOffset
	  then mkUncondBranch17Quad (BLop, BLop2, regZero, int17 wordOffset, nullify)
	  else raise InternalError "mkQuad: JUMPSELF - jump exceeds 17 bit range"
	end
      
	(* Load the absolute address of here+2 into destReg *)
      | LOADCODEADDR (destReg : reg) => (* BL,? $+2,destReg *)
	   mkUncondBranch17Quad (BLop, BLop2, destReg, int17_0, false)
      
        (* Compute the byte offset lab - baseAddr *)
      | BYTEOFFSET (baseAddr : addrs, Label (ref None)) =>
          raise InternalError "mkQuad: BYTEOFFSET - label has not been fixed-up"

      | BYTEOFFSET (tableAddr : addrs, Label (ref (Some targetAddr))) =>
        let
          val byteOffset : int = targetAddr byteAddrMinus tableAddr;
        in
          toQuad byteOffset
        end

      | CALLREG (r : reg) => (* BLE 0(%sr0, %r) *)
          mkUncondBranch17Quad (BLEop, short0 (* %sr0 *), r, int17_0, false)
      
      | CALLSELF => (* BL L3,regReturn *)
	let
	  (* Offsets are calculated from 2 words beyond the current instruction *)
	  val wordOffset : int = selfCallAddr wordAddrMinus (thisAddr wordAddrPlus 2);
	in
	  if is17Bit wordOffset
	  then mkUncondBranch17Quad (BLop, BLop2, regReturn, int17 wordOffset, false)
	  else raise InternalError "mkQuad: CALLSELF - jump exceeds 17 bit range"
	end
      
      | COMB (cond : condition, nullify : bool, r1 : reg, r2 : reg, Label (ref None)) =>
          raise InternalError "mkQuad: COMB - jump has not been fixed-up"

      | COMB (cond : condition, nullify : bool, r1 : reg, r2 : reg, Label (ref (Some targetAddr))) =>
	let
	  val r2_short : short = toShort(getReg r2);
	  val r1_short : short = toShort(getReg r1);
	  val (posCond : bool, cond_short : short) = encodeArithCond cond;
	  val wordOffset : int = targetAddr wordAddrMinus (thisAddr wordAddrPlus 2);
	in
	  (* Nullification doesn't work "properly" for backwards condtional branches *)
	  if wordOffset < 0 andalso nullify
	  then raise InternalError "mkQuad: COMB - can't nullify backwards jump"
	
	  else if is12Bit wordOffset
	    then if posCond
	      then mkCondBranchQuad (COMBTop, r2_short, r1_short, cond_short, int12 wordOffset, nullify)
	      else mkCondBranchQuad (COMBFop, r2_short, r1_short, cond_short, int12 wordOffset, nullify)
	    else raise InternalError "mkQuad: COMB - jump exceeds 12 bit range"
	end

      | COMIB (cond : condition, nullify : bool, imm : int5, r : reg, Label (ref None)) =>
          raise InternalError "mkQuad: COMIB - jump has not been fixed-up"

      | COMIB (cond : condition, nullify : bool, imm : int5, r : reg, Label (ref (Some targetAddr))) =>
	let
	  val r_short   : short = toShort(getReg r);
	  val imm_short : short = toShort (getInt5 imm);
	  val imm_rep   : short = ((imm_short And mask4Bits) << short1) Or 
	                          ((imm_short >> short4) And mask1Bit);
	  val (posCond : bool, cond_short : short) = encodeArithCond cond;
	  val wordOffset : int = targetAddr wordAddrMinus (thisAddr wordAddrPlus 2);
	in
	  if wordOffset < 0 andalso nullify
	  then raise InternalError "mkQuad: COMIB - can't nullify backwards jump"
	
	  else if is12Bit wordOffset
	    then if posCond
	      then mkCondBranchQuad (COMIBTop, r_short, imm_rep, cond_short, int12 wordOffset, nullify)
	      else mkCondBranchQuad (COMIBFop, r_short, imm_rep, cond_short, int12 wordOffset, nullify)
	    else raise InternalError "mkQuad: COMIB - jump exceeds 12 bit range"
	end

      | ARBCOMB _ =>
          raise InternalError "mkQuad: ARBCOMB not expanded"

      | ARBCOMBAUX _ =>
          raise InternalError "mkQuad: ARBCOMBAUX not expanded"

      | ARBCOMIB _ =>
          raise InternalError "mkQuad: ARBCOMIB not expanded"
          
      | JUMPTARGET _ =>
          raise InternalError "mkQuad: JUMPTARGET doesn't generate code"

      | JUMPTABLE _ =>
          raise InternalError "mkQuad: JUMPTABLE not expanded"

(* ...
      | MOVBTR (nullify : bool, r1 : reg, rt : reg, Label (ref None)) =>
          raise InternalError "mkQuad: MOVBTR - jump has not been fixed-up"

      | MOVBTR (nullify : bool, r1 : reg, rt : reg, Label (ref (Some targetAddr))) =>
	let
	  val rt_short   : short = toShort (getReg rt);
	  val r1_short   : short = toShort (getReg r1);
	  val cond_short : short = short4; (* encoding of TR using the shift/extract/deposit table *)
	  val wordOffset : int = targetAddr wordAddrMinus (thisAddr wordAddrPlus 2);
	in
	  if wordOffset < 0 andalso nullify
	  then raise InternalError "mkQuad: MOVBTR - can't nullify backwards jump"

	  else if is12Bit wordOffset
	    then mkCondBranchQuad (MOVBop, rt_short, r1_short, cond_short, int12 wordOffset, nullify)
	    else raise InternalError "mkQuad: MOVBTR - jump exceeds 12 bit range"
	end

      | MOVIBTR (nullify : bool, imm : int5, rt : reg, Label (ref None)) =>
          raise InternalError "mkQuad: MOVIBTR - jump has not been fixed-up"

      | MOVIBTR (nullify : bool, imm : int5, rt : reg, Label (ref (Some targetAddr))) =>
	let
	  val rt_short  : short = toShort (getReg rt);
	  val imm_short : short = toShort (getInt5 imm);
	  val imm_rep   : short = ((imm_short And mask4Bits) << short1) Or 
	                          ((imm_short >> short4) And mask1Bit);
	  val cond_short : short = short4; (* encoding of TR using the shift/extract/deposit table *)
	  val wordOffset : int = targetAddr wordAddrMinus (thisAddr wordAddrPlus 2);
	in
	  if wordOffset < 0 andalso nullify
	  then raise InternalError "mkQuad: MOVIBTR - can't nullify backwards jump"

	  else if is12Bit wordOffset
	    then mkCondBranchQuad (MOVIBop, rt_short, imm_rep, cond_short, int12 wordOffset, nullify)
	    else raise InternalError "mkQuad: MOVIBTR - jump exceeds 12 bit range"
	end
... *)
    (* end mkQuad *) 
  in 
    
    fun genQuadsToSeg
      (seg : cseg,
       constByteOffset : int14,
       segStartAddr : addrs,
       selfCallAddr : addrs,
       instrList : instruction list) : unit =
    let
      fun genQuadToSeg (wordIndex : int, instr : instruction) : unit =
      let
	(* Relative to start of code segment *)
	val realAddr : addrs = mkWordAddr wordIndex;
	
	(* Relative to end of code segment *)
	val thisAddr : addrs = segStartAddr wordAddrPlus wordIndex;

        (* Quad generation uses addresses that are relative to the end of the segment.
           That's because branch labels are relative to the end of the segment, because
           that makes branches extension in revExpandOnto somewhat easier to implement.
         *)
	val thisQuad : quad  = mkQuad (thisAddr, instr, constByteOffset, selfCallAddr);
	
	val U : unit =
	  if (!assemblyCode)
	  then let
	    val U : unit = printString (Int.toString (getByteAddr realAddr));
	    val U : unit = printString "\t";
	    val U : unit = printHexN (8, fromQuad thisQuad);
	    val U : unit = printString "\t";
	    val U : unit = printString (reprInstruction (segStartAddr, instr));
	  in
	    printString "\n"
	  end
	  else ()
      in
	setQuad (thisQuad, realAddr, seg)
      end;
      
      fun genQuadLoop (wordIndex, []) = ()
        | genQuadLoop (wordIndex, instr :: rest) =
        case instr of
          JUMPTARGET labs => genQuadLoop (wordIndex, rest)
        | _ =>
	  let
	    val U : unit = genQuadToSeg (wordIndex, instr)
	  in
	    genQuadLoop (wordIndex + 1, rest)
	  end;
    in
      genQuadLoop (0, instrList)
    end;
    
  end; (* local *)

(***************************************************************************  
  Functions that deal with 32-bit immediates (for convenience). If
  these functions are called with regStackPtr as an argument, it's
  the caller's responsibility to keep the stack-offset caching scheme
  in a consistent state.
***************************************************************************)  

  (* Possibly we could be even more clever with our instruction choice
     for special cases. I'll look at this later. SPF 18/2/97 *)
  fun addImmed (imm : int, ra : reg, rt : reg) : instruction list =
    if imm = 0 then if ra regEq rt then [] else [COPY (ra, rt)]
    else if is14Bit imm
    then [LDO (int14 imm, ra, rt)]
    else let 
      val (imm_left : int21, imm_right : int14) = splitLeftRight imm;
    in
      [
        ADDIL (imm_left, ra),
        LDO   (imm_right, regUnsafe, rt)
      ]
   end;
    
  fun loadImmed (imm : int, rt : reg) : instruction list =
    addImmed (imm, regZero, rt);

(*****************************************************************************)
(*                  The main "code" datatype                                 *)
(*****************************************************************************)

  datatype const =
      WVal of word        (* an existing constant *)
    | CVal of code        (* a forward-reference to another function *)
    | HVal of label       (* a handler *)

  (* Constants which are too far to go inline in the code are put in
     a list and put at the end of the code. They are arranged so that
     the garbage collector can find them and change them as necessary.
     A reference to a constant is treated like a forward reference to a
     label. *)

  (* A code list is used to hold a list of code-vectors which must have the
     address of this code-vector put into it. *)

  and setCodeseg =
      Unset
    | Set of (cseg * addrs)  (* Used for completing forward references. *)

  and code = Code of 
    { 
      procName:       string,         (* Name of the procedure. *)
      noClosure:      bool,           (* should we make a closure from this? *)
      codeVec:        instruction list ref, (* The code we're generating (in reverse order) *)
      constVec:       (int * const) list ref, (* Vector of words to be put at end *)
      numOfConsts:    int ref,        (* Number of constants that haven't been fixed up yet *)
(*    stackReset:     int ref,     *) (* Distance to reset the stack before the next instr. *)
      otherCodes:     code list ref,  (* Other code vectors with forward references to this vector. *)
      resultSeg:      setCodeseg ref, (* The segment as the final result. *)
      mustCheckStack: bool ref,       (* Set to true if stack check must be done. *)
      exited:         bool ref,       (* False if we can fall-through to here *)
      regTemp1Next:   bool ref        (* Used to share work between regTemp1 and regTemp2 *)
    };

(*****************************************************************************)
(*                  Auxiliary functions on "code"                            *)
(*****************************************************************************)

  fun procName       (Code {procName,...})         = procName;
  fun noClosure      (Code {noClosure,...})        = noClosure;
  fun codeVec        (Code {codeVec,...})          = codeVec;
  fun constVec       (Code {constVec,...})         = constVec;
  fun numOfConsts    (Code {numOfConsts,...})      = numOfConsts;
(*fun stackReset     (Code {stackReset ,...})      = stackReset;*)
  fun otherCodes     (Code {otherCodes,...})       = otherCodes;
  fun resultSeg      (Code {resultSeg,...})        = resultSeg;
  fun mustCheckStack (Code {mustCheckStack,...})   = mustCheckStack;
  fun exited         (Code {exited,...})           = exited;
  
  fun chooseTempReg  (Code {regTemp1Next,...}) : reg =
  let
    val regTemp1Now : bool = !regTemp1Next;
    val U : unit = regTemp1Next := not regTemp1Now;
  in
    if regTemp1Now then regTemp1 else regTemp2
  end;

  fun unreachable cvec = ! (exited cvec);

  (* Need not be exhaustive, but must be conservative! *)
  fun noFallThrough (instrList : instruction list) : bool =
   case instrList of
     (BRANCH (true, lab)  :: _ ) => true
   | (JUMPSELF true       :: _ ) => true
   | (JUMPREG (true, reg) :: _ ) => true
   | _ => false;

  (* Test for identity of the code segments by testing whether
     the resultSeg ref is the same. N.B. NOT its contents. *)
  infix is;
  fun a is b = (resultSeg a = resultSeg b);
  
  fun sameConst (WVal w1, WVal w2) = wordEq (w1, w2)
    | sameConst (HVal h1, HVal h2) = h1 = h2
    | sameConst (CVal c1, CVal c2) = c1 is c2
    | sameConst (_,       _)       = false;

  (* create and initialise a code segment *)
  fun codeCreate (noClosure : bool, name : string) : code = 
    Code
      { 
         procName         = name,
         noClosure        = noClosure,
         codeVec          = ref [],
         constVec         = ref [(0, WVal (if name = "" then toWord 0 else toWord name))],
         numOfConsts      = ref 1,
(*       stackReset       = ref 0, *) (* stack adjustment in WORDs *)
         otherCodes       = ref [],
         resultSeg        = ref Unset,   (* Not yet done *)
         mustCheckStack   = ref false,
         exited           = ref false,
         regTemp1Next     = ref true (* ref false would work just as well, I hope! *)
      };

(*****************************************************************************)
(*                  Functions dealing with constants                         *)
(*****************************************************************************)

  fun printConstVec (constants : (int * const) list, segStartAddr : addrs, constStartAddr : addrs) : unit =
    case constants of 
      [] => ()
    | _  =>
    let
      val sortedConstants : (int * const) list =
	quickSort (fn (n1, _) => fn (n2, _) => n1 < n2) constants;
    
      fun printConstCode (a : address) : unit =
	printString ("code:\t" ^ nameOfCode a);
      
      fun printConstClosure (a : address) : unit =
	printString ("clos:\t" ^ nameOfCode a);
      
      fun printWords (a : address) : unit =
	let
	  val objLength : int = toInt (ADDRESS.length a)
	in
	  if objLength = 1
	  then printString ("words:\t1 word")
	  else printString ("words:\t" ^ Int.toString objLength ^ " words")
	end;
      
      fun printBytes (a : address) : unit =
	let
	  val objLength  : int = toInt (ADDRESS.length a)
	in
	  if objLength = 1
	  then printString ("bytes:\t1 word")
	  else printString ("bytes:\t" ^ Int.toString objLength ^ " words")
	end;
  
      fun printConst (constNum : int, value : const) : unit =
      let
        val constAddr : addrs = constStartAddr wordAddrPlus constNum;
	val U : unit = printString (Int.toString (getByteAddr constAddr));
	val U : unit = printString "\tconst "; 
	val U : unit = printString (Int.toString constNum);
	val U : unit = printString " = \t"; 
	val U : unit = 
	  case value of
	    CVal c =>
	      let
		val U : unit = printString (if noClosure c then "code:\t" else "clos:\t");
	      in
		printString (procName c)
	      end
	      
	  | HVal (Label (ref None)) =>
	      printString "handle:\t????? (not fixed up)"
	      
	  | HVal  (Label (ref (Some targetAddr))) =>
	      let
		val U : unit = printString "handle:\t";
	      in
		printString (Int.toString (targetAddr byteAddrMinus segStartAddr))
	      end
	      
	  | WVal w => 
	      if isShort w
	      then let
		val value : int = toInt (toShort w);
		val U : unit = printString "short:\t";
		val U : unit = printHex value;
		val U : unit = printString " (";
		val U : unit = printString (Int.toString value);
	      in
		printString ")"
	      end
	      
	      else if isString w
	      then let
		val U : unit = printString "string:\t";
	      in
		printString (String.toString (toString w))
	      end
	      
	      else let
		val a : address = toAddress w;
	      in
		if 256 <= toInt (flags a)
		  then printString "RTS entry"
		else if isCode a
		  then printConstCode a
		else if isBytes a
		  then printBytes a
		else if isWords a andalso 1 <= toInt (ADDRESS.length a)
		  then let
		    val w' : word = loadWord (a, short0)
		  in
		    if not (isShort w')
		    then let
		      val a' : address = toAddress w';
		    in
		      if toInt (flags a') < 256 andalso isCode a'
		      then printConstClosure a'
		      else printWords a (* First element of tuple is not a code segment *) 
		    end
		    else printWords a (* First element of tuple is a short *)
		  end
		  else printWords a (* Not a proper tuple (shouldn't occur) *)
	      end;
      in
	printString "\n"
      end (* printConst *)
      
      val U : unit = printString "Constants section:\n";
    in
      applyList (printConst, sortedConstants)
    end; (* printConstVec *)


  (* Find the offset in the constant area of a constant. *)
  (* The first has offset 0.                             *)
  fun addConstToVec (valu : const, cvec : code) : int =
  let
     (* Search the list to see if the constant is already there. Handlers
        are never matched because they are assumed always to be different. *)
    fun findConst (valu, (n, v) :: t) =
         if sameConst (valu, v) then n else findConst (valu, t)
      | findConst (valu, []) =
     let
        val num : int = ! (numOfConsts cvec);
        val U : unit  = numOfConsts cvec := num + 1;
        val U : unit  = constVec cvec := (num, valu) :: ! (constVec cvec);
      in
         num
      end
  in
    findConst (valu, !(constVec cvec))
  end;

  (* Make a reference to another procedure. Usually this will be a forward *)
  (* reference but it may have been compiled already, in which case we can *)
  (* put the code address in now. *)
  fun codeConst (r : code, cvec : code) : int =
    case ! (resultSeg r) of
      Set (seg : cseg, _)  =>
      let
	 val addr : address = csegAddr seg;
       in
	 addConstToVec (WVal (toWord addr), cvec)
       end
    
    | Unset => (* forward *)
      (* Add the referring procedure onto the list of the procedure
         referred to if it is not already there. This makes sure that when
         the referring procedure is finished and its address is known the
         address will be plugged in to every procedure which needs it.
      *)
      let
        fun onList (x, [])     = false
          | onList (x, c::cs) = (x is c) orelse onList (x, cs);
          
        val codeList = ! (otherCodes r);
        val U : unit =
          if onList (cvec, codeList) then ()
          else otherCodes r := cvec :: codeList;
      in
        addConstToVec (CVal r, cvec)
      end;

(*****************************************************************************)
(*                  Functions dealing with labels                            *)
(*****************************************************************************)

(*****************************************************************************)
(*                  Code-generation functions (1)                            *)
(*****************************************************************************)
 
(* ...
  (* We start by being very simple-minded *)
  fun gen (cvec : code, instr : instruction) : unit =
    if unreachable cvec then ()
    else codeVec cvec := instr :: (! (codeVec cvec))
    
  fun genList (cvec : code, instrList : instruction list) : unit =
    if unreachable cvec then ()
    else codeVec cvec := revOnto (instrList, ! (codeVec cvec))
... *)

  (* A small, very local, optimisation *)
  fun optimisePushes (instrList : instruction list) : instruction list =
    case instrList of
      (STWM (rs1, n1, rb1) :: STWM (rs2, n2, rb2) :: rest) =>
        if rb1 regEq rb2 andalso rb1 regNeq rs1 andalso rb1 regNeq rs2
        then let
          val n : int = getInt14 n1 + getInt14 n2
        in
          if is14Bit n
          then (STWM (rs1, int14 n, rb1) :: STW (rs2, n2, rb2) :: rest)
          else instrList
        end
        else instrList
    | _ => instrList
  
  (* Catch multiple pushes *)
  fun gen (cvec : code, instr : instruction) : unit =
    if unreachable cvec then ()
    else codeVec cvec := optimisePushes (instr :: (! (codeVec cvec)))
    
  fun genList (cvec : code, [] : instruction list) : unit = ()
    | genList (cvec : code, instr :: instrList) : unit =
    let
      val U : unit = gen (cvec, instr)
    in
      genList (cvec, instrList)
    end
  
(*****************************************************************************)
(*              Non-naive jump fixup.                                        *)
(*****************************************************************************)
  (* This code deletes jumps to the immediately following instruction. It assumes
     that we generate a unique label for each jump, so that we can delete the label
     when we delete the jump. SPF 18/3/97
  *)
  fun addLabels ([]   : label list, instrList : instruction list) : instruction list = instrList
    | addLabels (labs : label list, instrList : instruction list) : instruction list =
  let
    val default : instruction list = JUMPTARGET labs :: instrList;
  in
    case instrList of
      []             => default
   | (instr :: rest) =>
        case instr of
          JUMPTARGET labList => addLabels (labs @ labList, rest)

	| COMB (_, true, _, _, lab : label) =>
	    if inList (lab, labs) then addLabels (remove (lab, labs), rest) else default
    
	| COMIB (_, true, _, _, lab : label) =>
	    if inList (lab, labs) then addLabels (remove (lab, labs), rest) else default
    
	| ARBCOMB (_, _, _, lab : label) => 
	    if inList (lab, labs) then addLabels (remove (lab, labs), rest) else default
	
	| ARBCOMBAUX (_, _, _, lab : label) =>
	    if inList (lab, labs) then addLabels (remove (lab, labs), rest) else default
     
	| ARBCOMIB  (_, _, _, lab : label) =>
	    if inList (lab, labs) then addLabels (remove (lab, labs), rest) else default
	      
	| BRANCH (true, lab : label) =>
	    if inList (lab, labs) then addLabels (remove (lab, labs), rest) else
	   (case rest of
              COMB (cond : condition, true, r1 : reg, r2 : reg, lab2 : label) :: rest2 =>
		if inList (lab2, labs)
		then addLabels (remove (lab2, labs), COMB (invert cond, true, r1, r2, lab) :: rest2)
		else default
	
	    | COMIB (cond : condition, true, imm : int5, r : reg, lab2 : label) :: rest2  =>
		if inList (lab2, labs)
		then addLabels (remove (lab2, labs), COMIB (invert cond, true, imm, r, lab) :: rest2)
		else default
	
	    | ARBCOMB (cond : condition, r1 : reg, r2 : reg, lab2 : label) :: rest2  => 
		if inList (lab2, labs)
		then addLabels (remove (lab2, labs), ARBCOMB (invert cond, r1, r2, lab) :: rest2)
		else default
	    
	    | ARBCOMBAUX (cond : condition, r1 : reg, r2 : reg, lab2 : label) :: rest2  => 
		if inList (lab2, labs)
		then addLabels (remove (lab2, labs), ARBCOMBAUX (invert cond, r1, r2, lab) :: rest2)
		else default
	 
	    | ARBCOMIB (cond : condition, imm : int5, r : reg, lab2 : label) :: rest2 =>
		if inList (lab2, labs)
		then addLabels (remove (lab2, labs), ARBCOMIB (invert cond, imm, r,  lab) :: rest2)
		else default
	      
	    | _ => default)
    
	| _ => default
   end;
    
  (* addSpecialLabel does NOT attempt to optimise jumps to this label. That's
     because it's only used for the default case for jump tables where
       (1) No optimisations should apply.
       (2) They would be unsafe because we use the same label for multiple
           branch instructions.
  *)

  fun addSpecialLabel (lab : label, instrList : instruction list) : instruction list =
    JUMPTARGET [lab] :: instrList;

(*****************************************************************************)
(* Functions that need to know about the stack-pointer adjustment cache.     *)
(*****************************************************************************)

  (* Exported: adds in the reset. Very naive version - will be changed later *)
  fun resetStack (wordOffset : int, cvec : code) : unit =
    genList (cvec, addImmed (wordOffset * wordSize, regStackPtr, regStackPtr));

  fun genPendingStackAdjustment (cvec : code) : unit = ();

  fun genLimitStackReset (cvec : code) : unit = ();
  
  (* Exported: very naive version - will be changed later! *)
  fun setSl (wordOffset : int, cvec : code) : unit = 
    genList (cvec, addImmed (wordOffset * wordSize, regStackPtr, regClosure));

  (* Exported: very naive version - will be changed later! *)
  fun genPush (r : reg, cvec) : unit =
    gen (cvec, STWM (r, int14 (~ wordSize), regStackPtr));

(* Caching versions - actually appear to generate worse code ...
  (* Adds in the reset. *)
  fun resetStack (wordOffset : int, cvec) : unit =
    stackReset cvec := ! (stackReset cvec) + wordOffset;

  fun genPendingStackAdjustment (cvec : code) : unit =
  let
    val wordAdjustment : int = !(stackReset cvec);
    val byteAdjustment : int = wordAdjustment * wordSize;
    val U : unit = stackReset cvec := 0;
  in
    genList (cvec, addImmed (byteAdjustment, regStackPtr, regStackPtr))
  end;
 
  fun genLimitStackReset (cvec : code) : unit =
  let
    (* Use isSafe12Bit rather than is12Bit to ensure that
       adjustedWordOffset in genPush remains a 12-bit quantity.
       SPF 16/10/1997
    *)
    fun isSafe12Bit (i : int) : bool = 
      ~exp2_11 + 1 <= i andalso i <= exp2_11 - 1;
  in
    if not (isSafe12Bit (!(stackReset cvec)))
    then genPendingStackAdjustment cvec
    else ()
  end;
  
  fun setSl (wordOffset : int, cvec : code) : unit = 
  let
    val U : unit = genLimitStackReset cvec;
    val adjustedWordOffset : int = wordOffset + !(stackReset cvec);
    val adjustedByteOffset : int = adjustedWordOffset * wordSize;
  in
    genList (cvec, addImmed (adjustedByteOffset, regStackPtr, regClosure))
  end;
  
  fun genPush (r : reg, cvec : code) : unit =
  let
    val U : unit = genLimitStackReset cvec;
    val wordOffset : int = !(stackReset cvec);
    val adjustedWordOffset : int = wordOffset - 1;
    val U : unit = stackReset cvec := adjustedWordOffset;
    val adjustedByteOffset : int = adjustedWordOffset * wordSize;
  in
    gen (cvec, STW (r, int14 adjustedByteOffset, regStackPtr))
  end;
  
  (* We want the peephole optimiser to combine the STW for the last push
     with the eventual stack adjustment (giving a STWM instead) but I haven't
     implemented this yet.
     SPF 16/10/1997
  *)
... *)

  (* When we implement code reordering, this will have to change. *)
  fun genBlock (cvec : code, instrList : instruction list) : unit =
  let
    val U : unit = genPendingStackAdjustment cvec;
  in
    genList (cvec, instrList)
  end;
  
  fun fixup (labs : labels, cvec : code) : unit =
    case labs of
      [] => () (* Don't fixup a branch-in from dead code! *)
    | _  =>
      let
        val U : unit = genPendingStackAdjustment cvec;
	val U : unit = exited cvec := false;
      in
	codeVec cvec := addLabels (labs, ! (codeVec cvec))
      end;
  
  (* Used when the label may be the target of several branch instructions *)
  fun fixupSpecialLabel (lab : label, cvec : code) : unit =
  let
    val U : unit = genPendingStackAdjustment cvec;
    val U : unit = exited cvec := false;
  in
    codeVec cvec := addSpecialLabel (lab, ! (codeVec cvec))
  end;

(***************************************************************************  
  Load and Store operations.
***************************************************************************)  
  (* Exported *)
  fun genLoad (byteOffset : int, ra : reg, rt : reg, cvec : code) : unit =
    (* It's safe to have rt = regUnsafe  and genLoadPush uses this fact! *)
    if ra regEq regUnsafe
    then raise InternalError ("genStore: can't use " ^ regRepr regUnsafe)
    else let
      (* Do we need to fix-up the stack pointer? *)
      val U : unit = 
	if rt regEq regStackPtr
	then genPendingStackAdjustment cvec
        else ();
        
      val adjustedOffset : int = byteOffset;
(* ...
      val adjustedOffset : int =
        if ra regEq regStackPtr
        then let
          val U : unit = genLimitStackReset cvec;
          val wordAdjustment : int = !(stackReset cvec);
        in
          byteOffset + wordAdjustment * wordSize
        end
        else byteOffset;
... *)
   in
     if is14Bit adjustedOffset
      then gen (cvec, LDW (int14 adjustedOffset, ra, rt))
      else let
	val (adjustedOffset_left : int21, adjustedOffset_right : int14) =
	  splitLeftRight adjustedOffset;
      in
	genList (cvec,
	  [
	    ADDIL (adjustedOffset_left, ra),
	    LDW   (adjustedOffset_right, regUnsafe, rt)
	  ])
      end
    end;

  (* Exported *)
  fun genStore (rs : reg, byteOffset : int, ra : reg, cvec : code) : unit =
    if rs regEq regUnsafe orelse ra regEq regUnsafe
    then raise InternalError ("genStore: can't use " ^ regRepr regUnsafe)
    else let
      (* Do we need to fix-up the stack pointer? *)
      val U : unit = 
	if rs regEq regStackPtr
	then genPendingStackAdjustment cvec
        else ();

      val adjustedOffset : int = byteOffset;
(* ...
      val adjustedOffset : int =
        if ra regEq regStackPtr
        then let
          val U : unit = genLimitStackReset cvec;
          val wordAdjustment : int = !(stackReset cvec);
        in
          byteOffset + wordAdjustment * wordSize
        end
        else byteOffset;
... *)
   in
      if is14Bit adjustedOffset
      then gen (cvec, STW (rs, int14 adjustedOffset, ra))
      else let
	val (adjustedOffset_left : int21, adjustedOffset_right : int14) =
	  splitLeftRight adjustedOffset;
      in
	genList (cvec,
	  [
	     ADDIL (adjustedOffset_left, ra),
	     STW   (rs, adjustedOffset_right, regUnsafe)
	  ])
      end
    end;

  (* Exported - Can we store the value without going through a register? No. *)
  fun isStoreI (cnstnt: word) : bool = false;

  fun genStoreI (cnstnt: word, offset: int, rb: reg, cvec: code) : unit =
    raise InternalError "Not implemented: genStoreI";

  (* Load a value and push it on the stack. Used when all
     the allocatable registers have run out. We must be very careful
     if we try to reorder this code, because it puts a tagged value
     into an untagged register. That's why we use regUnsafe - to
     remind ourseleves of the problem! *)
  fun genLoadPush (offset : int, base : reg, cvec : code) : unit =
  let 
    (* We need to call genLimitStackReset here; otherwise genPush
       might call genPendingStackAdjustment which could corrupt
       regUnsafe. SPF 16/10/1997
    *)
    val U : unit = genLimitStackReset cvec;
    val U : unit = genLoad (offset, base, regUnsafe, cvec);
  in
    genPush (regUnsafe, cvec)
  end;

  (* This is false because there's no quicker way than loading
     into a register and then pushing that. *) 
  val preferLoadPush = false;

(*****************************************************************************)
(*              Functions to generate (non-naive) branch instructions        *)
(*****************************************************************************)

  fun unconditionalBranch (cvec : code) : labels =
    let
      (* We have to do this before we look for old labels,
         as otherwise we might try to combine branches that
         require different stack adjustments!
      *)
      val U : unit = genPendingStackAdjustment cvec;

      val oldLabs : label list =
	case ! (codeVec cvec) of
	  JUMPTARGET labs :: rest =>
	  let
	    (* Ungenerate branch-in *)
	    val U : unit = codeVec cvec := rest;
	    val U : unit = exited cvec  := noFallThrough rest;
	  in
	    labs
	  end
	| _ => []
    in
      if unreachable cvec then oldLabs
      else let (* branch-out required *)
	val lab : label = Label (ref None);
	val U   : unit  = genBlock (cvec, [BRANCH (true, lab)])
	val U   : unit  = exited cvec := false;
      in
	lab :: oldLabs
      end
    end;
  
(***************************************************************************  
  Functions for handling compiled constants
***************************************************************************)  

  type handlerLab = label option;

  local
    (* Generating pseudo-instructions make this SO much easier. SPF 18/2/97 *)
    fun genLoadConstant (constNum : int, constR : reg, destR : reg, cvec : code) : unit =
      gen (cvec, LOADCONST (constNum, constR, destR));
  in 
    fun genLoadConst (v : word, constR : reg, destR : reg, cvec : code) : unit =
      if unreachable cvec then ()
      else let
	val constNum : int = addConstToVec (WVal v, cvec);
      in
	genLoadConstant (constNum, constR, destR, cvec)
      end;
  
    fun genLoadCoderef (rf : code, constR : reg, destR : reg, cvec : code) : unit =
      if unreachable cvec then ()
      else let
	val constNum : int = codeConst (rf : code, cvec);
      in
	genLoadConstant (constNum, constR, destR, cvec)
      end;
  
    fun pushAddress (constR : reg, cvec : code) : handlerLab =
      if unreachable cvec then None
      else let
	val lab : label = Label (ref None);
	val constNum : int = addConstToVec (HVal lab, cvec);
	val regTemp  : reg = chooseTempReg cvec;
	val U : unit = genLoadConstant (constNum, constR, regTemp, cvec);
	val U : unit = genPush (regTemp, cvec);
      in
	Some lab
      end;
  end;

  (* Less naive now - even allows branch chaining! SPF 27/2/97 *)
  fun fixupHandler (None : handlerLab, cvec : code) : unit = ()
    | fixupHandler (Some lab : handlerLab, cvec : code) : unit =
    fixup ([lab], cvec);

(***************************************************************************  
  Functions calls and returns (plus raising exceptions)
***************************************************************************)  
  datatype callKinds =
    StaticLink   (* Static link call.  *)
  | FullCall     (* Full closure call. Includes calls to the run-time system. *)
  | Recursive    (* The function calls itself. *)
  | PureCode     (* The function calls a pre-compiled function. *);
  
  (* I/O calls are treated as full closure-calls; pure-code calls are
     just static-link calls where the caller hasn't initialised the
     closure.  *)
  val IoCall   : callKinds = FullCall;

(*****************************************************************************
Calling conventions:
   FullCall:
     the caller loads the function's closure into regClosure and then
     (the code here) loads regCode from the closure and jumps to
     that address. Since this code-generator doesn't support
     combined closure/code segments, regCode will always contain a valid
     pointer (unlike the SPARC, where the Poly version of compiler
     use optimised closures, which can cause a lot of grief). 
     
     Note: actually there's still a problem calling RTS functions,
     since the RTS code address is NOT a valid ML value. We'll
     have to ensure that the RTS always zaps it. I discovered
     this problem in the SPARC version, but it occurs here too.
     SPF 18/7/96
     
   IoCall:
     same as FullCall (on this architecture). We could use a
     temporary register rather than regCode, but this wouldn't
     actually gain us anything, as the RTS still has to handle
     the possibility of FullCall entry.
     SPF 18/7/96
     
   StaticLink:
     the caller loads the function's static-link into regClosure and
     its code address into regCode and then (the code here) jumps
     to the code.
     
   Recursive:
     the caller loads its own function's closure/static-link into regClosure
     and its constants address into regCode and then (the code here) jumps
     to the start of its segment.

    (N.B. on architectures which don't have relative calls, we can always
     store the code address in the constants section, fetch it via the
     constants register and jump via a register.
     
   PureCode:
     the caller loads the functions' code address into regCode and then
     (the code here) jumps to the code. regClosure is treated as a
     scratch register.

*****************************************************************************)
  (* Call a function. We have to set the stack-check flag 
     to ensure that the called procedure receives its full
     minStackCheck words allocation of "free" stack. *)
  fun callFunction (callKind, cvec) : unit =
    let
      val U : unit = 
	case callKind of 
	  Recursive =>
	    genBlock (cvec, [CALLSELF, TAGCODEREG (int5_CODETAG, regReturn)])
	    
	| PureCode =>
	    genBlock (cvec, [CALLREG regCode, TAGCODEREG (int5_CODETAG, regReturn)])
    
	| StaticLink => 
	    genBlock (cvec, [CALLREG regCode, TAGCODEREG (int5_CODETAG, regReturn)])
	    
	| FullCall =>
	  let
	    (* This is NOT generated as part of the following genBlock, because we
	       want to allow the code-reordering phase (when written!) to move
	       this instruction further back into the basic block. SPF 19/2/97
	    *)
	    val U : unit = gen (cvec, LDW (int14_0, regClosure, regCode));
	  in
	    genBlock (cvec, [CALLREG regCode, TAGCODEREG (int5_CODETAG, regReturn)])
	  end
    in
      mustCheckStack cvec := true
    end

  (* The exception argument has already been loaded into regResult and the
     address of raiseEx in the ioVector has been loaded into regCode.
     We use a call, not just a jump, so that the RTS exception handler
     can find (the name of) this code segment if it needs to do
     a stack trace. We also must ensure that the stack pointer is
     updated, since otherwise the handler register might point
     beyond the end of the stack. SPF 8/9/95
  *)
  fun raiseEx cvec = 
  let
    val U : unit = genBlock (cvec, [CALLREG regCode, TAGCODEREG (int5_CODETAG, regReturn)]);
  in
    (* we're not coming back, even though we've "called" the handler *)
    exited cvec := true
  end;
  
  (* Tail recursive jump to a function. We have to set the stack-check
     flag to enable the user to break out of loops. Exception: (hack!)
     we don't have to do this if we are calling a pre-compiled function
     (PureCode) because that can't possibly lead to an infinite regress. *)
  fun jumpToFunction (callKind, returnReg, cvec) : unit =
    let
      val U : unit = 
	case callKind of
	  Recursive =>
	    if returnReg regEq regReturn
	    then genBlock (cvec, [JUMPSELF true])
	    else genBlock (cvec, [JUMPSELF false, COPY (returnReg, regReturn)])
          
	| PureCode =>
	  let
	    val U : unit = 
	      if returnReg regEq regCode
	      then raise InternalError "jumpToFunction: returnReg is regCode"
	      else ();
          in
	    if returnReg regEq regReturn
	    then genBlock (cvec, [JUMPREG (true, regCode)])
	    else genBlock (cvec, [JUMPREG (false, regCode), COPY (returnReg, regReturn)])
          end
          
	| StaticLink =>
	  let
	    val U : unit = 
	      if returnReg regEq regCode
	      then raise InternalError "jumpToFunction: returnReg is regCode"
	      else ();
          in
	    if returnReg regEq regReturn
	    then genBlock (cvec, [JUMPREG (true, regCode)])
	    else genBlock (cvec, [JUMPREG (false, regCode), COPY (returnReg, regReturn)])
          end
	    
	| FullCall =>
	  let
	    val U : unit = 
	      if returnReg regEq regCode
	      then raise InternalError "jumpToFunction: returnReg is regCode"
	      else ();

	    val U : unit = gen (cvec, LDW (int14_0, regClosure, regCode));
	  in
	    if returnReg regEq regReturn
	    then genBlock (cvec, [JUMPREG (true, regCode)])
	    else genBlock (cvec, [JUMPREG (false, regCode), COPY (returnReg, regReturn)])
	  end;
	  
      val U : unit =
        case callKind of
          PureCode => () 
        | _        => mustCheckStack cvec := true 
    in
      exited cvec := true
    end;

  (* Return and remove args from stack. *)
  fun returnFromFunction (returnReg : reg, stackArgs : int, cvec : code) : unit =
  let
    val regTemp : reg = chooseTempReg cvec;
    val U : unit = gen (cvec, LDO (int14_minus2, returnReg, regTemp));
    val U : unit = resetStack (stackArgs, cvec); (* Add in the reset. *)
    (* We could try to be clever and put the stack adjustment in the
       delay slot here! However, it might be better to improve the
       peephole optimiser instead. SPF 16/10/1997
    *)
    val U : unit = genBlock (cvec, [JUMPREG (true, regTemp)])
  in
    exited cvec := true
  end;

  fun allocStore (length : int, flag : short, resultReg : reg, cvec : code) : unit =
    if length < 1 orelse exp2_24 <= length
    then raise InternalError "allocStore: bad length"
    else let
      val words : int      = length + 1;
      val bytes : int      = words * wordSize;
      val decrement : int  = ~ bytes;
      val lengthWord : int = length + (toInt flag * exp2_24);
    in
      if is11Bit decrement (* should we use words instead? *)
      then let
        val regTemp : reg = chooseTempReg cvec;
        val U : unit = genBlock (cvec, [HEAPCHECKI (int11 decrement)]);
      in
        genList (cvec,
          loadImmed (lengthWord, regTemp) @
          [
            LDO  (int14 (wordSize + decrement), regHeapPtr, resultReg),
            STWM (regTemp, int14 decrement, regHeapPtr)
          ])
      end
      else let
        val regTempA : reg = chooseTempReg cvec;
        val regTempB : reg = chooseTempReg cvec;
        val U : unit = genList (cvec, loadImmed (bytes, regTempA));
        val U : unit = genBlock (cvec, [HEAPCHECK regTempA]);
      in
        (* Carefully coded to work even if regTempA = regTempB *)
        genList (cvec,
           SUB (regHeapPtr, regTempA, regHeapPtr) ::
          (loadImmed (lengthWord, regTempB) @
          [
           LDO (int14 wordSize, regHeapPtr, resultReg),
           STW (regTempB, int14_0, regHeapPtr)
          ]))
      end
    end;
  
  (* Remove the mutable bit; not safe for code objects. *)
  fun setFlag (baseReg : reg, cvec : code, flag : short) : unit =
  let
    val U : unit = 
      if baseReg regEq regStackPtr
      then raise InternalError "setFlag: can't set flags on stack"
      else ();
    val flagRep : int = toInt flag;
  in
    if flagRep = 0
    then gen (cvec, STB (regZero, int14_minus4, baseReg))
    else let
      val regTemp : reg = chooseTempReg cvec;
    in
      genList (cvec,
        loadImmed (flagRep, regTemp) @
        [STB (regTemp, int14_minus4, baseReg)])
    end
  end;

  (* Don't need to do anything (until we implement code re-ordering). *)
  val completeSegment = (fn code => ());

(***************************************************************************  
  General operations
***************************************************************************)
  datatype instrs = 
    InstrMove
  | InstrAddA
  | InstrSubA
  | InstrRevSubA
  | InstrMulA
  | InstrOrW
  | InstrAndW
  | InstrXorW
  | InstrLoad
  | InstrLoadB
  | InstrVeclen
  | InstrPush
  | InstrUpshiftW    (* logical shift left *)
  | InstrDownshiftW  (* logical shift right *)
  | InstrBad;
  
  (* Can the we use the same register as the source and destination
     of an instructions? On this machine - yes. *)
  val canShareRegs : bool = true;

  fun isInstrBad     InstrBad     = true | isInstrBad      _ = false;

  (* exported versions *)
  val instrMove       = InstrMove;
  val instrAddA       = InstrAddA;
  val instrSubA       = InstrSubA;
  val instrRevSubA    = InstrRevSubA;
  val instrMulA       = InstrMulA;
  val instrOrW        = InstrOrW;
  val instrAndW       = InstrAndW;
  val instrXorW       = InstrXorW;
  val instrLoad       = InstrLoad;
  val instrLoadB      = InstrLoadB;
  val instrVeclen     = InstrVeclen;
  val instrPush       = InstrPush;
  val instrUpshiftW   = InstrUpshiftW;
  val instrDownshiftW = InstrDownshiftW;
  val instrBad        = InstrBad;
  

  
  datatype tests =
    Arb of condition (* Not EV/OD, TR/NEVER *)
  | Wrd of condition (* Not TR/NEVER *)
  | TagTest of bool (* true = Short, false = Long *)
  
  val testNeqW  = Wrd NE;
  val testEqW   = Wrd EQ;
  val testGeqW  = Wrd GE;
  val testGtW   = Wrd GT;
  val testLeqW  = Wrd LE;
  val testLtW   = Wrd LT;
  val testNeqA  = Arb NE;
  val testEqA   = Arb EQ;
  val testGeqA  = Arb GE;
  val testGtA   = Arb GT;
  val testLeqA  = Arb LE;
  val testLtA   = Arb LT;
  
  val Short     = TagTest true;
  val Long      = TagTest false;
  
(***************************************************************************  
  RR implementation of general operations
***************************************************************************)  

  (* Is there a general register/register operation? Some operations may not
     be implemented because this machine does not have a suitable instruction
     or simply because they have not yet been added to the code generator. It
     is possible for an instruction to be implemented as a register/immediate
     operation but not as a register/register operation (e.g. multiply) *) 
  fun instrIsRR (instr : instrs) : bool = 
    case instr of
      InstrMove       => true
    | InstrAddA       => true
    | InstrSubA       => true
    | InstrRevSubA    => true
    | InstrMulA       => false (* for now *)
    | InstrOrW        => true
    | InstrAndW       => true
    | InstrXorW       => true
    | InstrLoad       => allowMutableLoads
    | InstrLoadB      => allowMutableLoads
    | InstrVeclen     => false (* immediate form only *)
    | InstrUpshiftW   => false (* not very useful *)
    | InstrDownshiftW => false (* not very useful *)
    | InstrPush       => true
    | InstrBad        => false
    ;

  (* General register/register operation. *)
  fun genRR (instr : instrs, r1 : reg, r2 : reg, rd : reg, cvec : code) : unit =
  let
    val U : unit =
      (* 
         We shouldn't do arithmetic on the stack pointer,
         but we ought to check, just in case. 
       *)
      if rd regEq regStackPtr orelse 
         r1 regEq regStackPtr orelse 
         r2 regEq regStackPtr
      then genPendingStackAdjustment cvec
      else ();
  in
    case instr of
      InstrMove =>
        gen (cvec, COPY (r1, rd))
	
    | InstrAddA =>
      let
        val regTemp : reg = chooseTempReg cvec;
      in
        if r1 regEq r2
        then
	  genBlock (cvec,
	  [
	    UNTAGCHECK (r1, regTemp),
	    ADDO  (r1, regTemp, rd)
	  ])
        else
	  genBlock (cvec,
	  [
	    UNTAGCHECK (r2, regTemp),
	    UNTAGCHECK (r1, regZero),
	    ADDO  (r1, regTemp, rd)
	  ])
      end
      
    | InstrSubA =>
        if r1 regEq r2
        then genList (cvec, loadImmed (tagged 0, rd))
	else let
	  val regTemp : reg = chooseTempReg cvec;
	in
	  genBlock (cvec,
	  [
	    UNTAGCHECK (r2, regTemp),
	    ARBSUB    (r1, regTemp, rd)
	  ])
	end
    
    | InstrRevSubA =>
        if r1 regEq r2
        then genList (cvec, loadImmed (tagged 0, rd))
	else let
	  val regTemp : reg = chooseTempReg cvec;
	in
	  genBlock (cvec,
	  [
	    UNTAGCHECK (r1, regTemp),
	    ARBSUB    (r2, regTemp, rd)
	  ])
	end
    
    | InstrOrW =>
        gen (cvec, OR (r1, r2, rd))
    
    | InstrAndW =>
        gen (cvec, AND (r1, r2, rd))
    
    | InstrXorW =>
        if r1 regEq r2
        then genList (cvec, loadImmed (tagged 0, rd))
	else let
          val regTemp : reg = chooseTempReg cvec;
	in
	  genList (cvec,
	  [
	    XOR  (r1, r2, regTemp),
	    LDO  (int14_1, regTemp, rd)
	  ])
	end

    | InstrLoad =>
      let
        val regTemp : reg = chooseTempReg cvec;
      in
        genList (cvec,
        [
          ASHR   (nat5_TAGSHIFT, r2, regTemp),
          LDWXSH (regTemp, r1, rd)
        ])
      end

    | InstrLoadB =>
      let
        val regTemp : reg = chooseTempReg cvec;
      in
        genList (cvec,
        [
          ASHR    (nat5_TAGSHIFT, r2, regTemp),
          LDBXSH  (regTemp, r1, regTemp),
          SHL     (nat5_TAGSHIFT, regTemp, regTemp),
          LDO     (int14_1, regTemp, rd)
        ])
      end
        
    | InstrPush => (* Both rd and r2 are ignored. *)
        genPush (r1, cvec)
    
    | _ =>
      raise InternalError "genRR: Unimplemented instruction"
  end; (* genRR *)
  
(***************************************************************************  
  RI implementation of general operations
***************************************************************************)  
    
  (* Is this argument acceptable as an immediate
     or should it be loaded into a register? *) 
  fun instrIsRI (instr : instrs, cnstnt : word) : bool =
    isShort cnstnt andalso
    let
      val c : int = toInt (toShort cnstnt);
    in
      case instr of
	InstrMove       => true          (* is32Bit (tagged c) *)
      | InstrAddA       => isShort (~ c) (* is32Bit (semiTagged (~ c)); false for MININT *)
      | InstrSubA       => true          (* is32Bit (semiTagged c) *)
      | InstrRevSubA    => true          (* is32Bit (tagged c)     *)
      | InstrMulA       => (~2 <= c andalso c <= 2) orelse c = 4 (* for now *)
      | InstrOrW        => false (* for now *)
      | InstrAndW       => false (* for now *)
      | InstrXorW       => false (* for now *)
      | InstrLoad       => true
      | InstrLoadB      => true
      | InstrVeclen     => true
      | InstrUpshiftW   => 0 <= c andalso c < (32 - TAGSHIFT)
      | InstrDownshiftW => 0 <= c andalso c < (32 - TAGSHIFT)
      | InstrPush       => false 
      | InstrBad        => false
    end; (* instrIsRI *)  
  
  (* Register/immediate operations.  In many of these operations
     we have to tag the immediate value. *)
  fun genRI (instr : instrs, rs : reg, constnt : word, rd : reg, cvec) : unit =
  let
    (* The constant value will always be a short integer
       so we can convert it directly. *)
    val c : int = toInt (toShort constnt);

    val U : unit =
      (* 
         We shouldn't do arithmetic on the stack pointer,
         but we ought to check, just in case. 
       *)
      if rd regEq regStackPtr orelse 
         rs regEq regStackPtr
      then genPendingStackAdjustment cvec
      else ();
  in
    case instr of
      InstrMove =>
        (* Load a constant into a register. rs is ignored. *)
        genList (cvec, loadImmed (tagged c, rd))

    | InstrAddA => (* Arbitrary precision addition. *)
      let
         val c' : int = semiTagged c;
      in
        if is11Bit c'
        then genBlock (cvec, [ARBADDI (int11 c', rs, rd)])
        else let
          val regTemp : reg = chooseTempReg cvec;
          val U : unit = genList(cvec, loadImmed (semiTagged (~ c), regTemp));
        in
          genBlock (cvec, [ARBSUB  (rs, regTemp, rd)])
        end
      end
      
    | InstrSubA => (* Arbitrary precision subtraction. *)
      let
         val c' : int = semiTagged (~ c);
      in
        if is11Bit c'
        then genBlock (cvec, [ARBADDI (int11 c', rs, rd)])
        else let
          val regTemp : reg = chooseTempReg cvec;
          val U : unit = genList(cvec, loadImmed (semiTagged c, regTemp));
        in
          genBlock (cvec, [ARBSUB  (rs, regTemp, rd)])
        end
      end
      
    | InstrRevSubA => (* Arbitrary precision reverse subtraction. *)
      (* Must be very careful so that this works even if rs contains MININT, or if rs=rd *)
      let
        val regTemp : reg = chooseTempReg cvec;
        val U : unit = genList(cvec, LDO (int14_minus1, rs, regTemp) :: loadImmed (tagged c, rd));
      in
        genBlock (cvec, [ARBSUB (rd, regTemp, rd)])
      end
    
    | InstrMulA =>
      let
      in
        case c of 
          ~2 => (genRI (InstrRevSubA, rs, toWord 0, rd, cvec); genRR (InstrAddA, rd, rd, rd, cvec))
        | ~1 => genRI (InstrRevSubA, rs, toWord 0, rd, cvec)
        |  0 => genRR (InstrMove, regZero, regZero, rd, cvec)
        |  1 => genRR (InstrMove, rs, regZero, rd, cvec)
        |  2 => genRR (InstrAddA, rs, rs, rd, cvec)
        |  4 => (genRR (InstrAddA, rs, rs, rd, cvec); genRR (InstrAddA, rd, rd, rd, cvec))
        |  _ =>
             raise InternalError ("genRI: MulA - bad value " ^ Int.toString c)
      end
        
     (* It might be worth implementing these if the bits form a contiguous field *)
    | InstrOrW =>
        raise InternalError "genRI: InstrOrW is not implemented"

    | InstrAndW =>
        raise InternalError "genRI: InstrAndW is not implemented"
      
    | InstrXorW =>
        raise InternalError "genRI: InstrXorW is not implemented"
    
    | InstrLoad => (* offset is in words *)
        genLoad (wordSize * c, rs, rd, cvec)
        
    | InstrLoadB => (* offset is in bytes *)
        if is14Bit c
        then let
          val regTemp : reg = chooseTempReg cvec;
        in
          genList (cvec,
          [
            LDB  (int14 c, rs, regTemp),
            SHL  (nat5_TAGSHIFT, regTemp, regTemp),
            LDO  (int14_1, regTemp, rd)
          ])
        end
           
        else let
          val (byteOffset_left : int21, byteOffset_right : int14) =
            splitLeftRight c;
          val regTemp : reg = chooseTempReg cvec;
        in
          genList (cvec,
	    [
	      ADDIL (byteOffset_left, rs),
	      LDB   (byteOffset_right, regUnsafe, regTemp),
	      SHL   (nat5_TAGSHIFT, regTemp, regTemp),
	      LDO   (int14_1, regTemp, rd)
	    ])
        end

    | InstrVeclen =>
      let
        val regTemp : reg = chooseTempReg cvec;
      in
	genList (cvec,
	[
	  LDW  (int14_minus4, rs, regTemp),
	  SHL  (nat5_FLAGLENGTH, regTemp, regTemp),
	  LSHR (nat5_FLminusTS, regTemp, regTemp),
	  LDO  (int14_1, regTemp, rd)
	])
      end

    | InstrUpshiftW =>   (* logical shift left *)
      let
        val regTemp : reg = chooseTempReg cvec;
      in
	genList (cvec,
	[
	  LSHR (nat5_TAGSHIFT, rs, regTemp),
	  SHL  (nat5 (c + TAGSHIFT), regTemp, regTemp),
	  LDO  (int14_1, regTemp, rd)
	])
      end

    | InstrDownshiftW =>  (* logical shift right *)
      let
        val regTemp : reg = chooseTempReg cvec;
      in
	genList (cvec,
	[
	  LSHR (nat5 (c + TAGSHIFT), rs, regTemp),
	  SHL  (nat5_TAGSHIFT, regTemp, regTemp),
	  LDO  (int14_1, regTemp, rd)
	])
      end
    
    | InstrPush =>
        raise InternalError "genRI: Unimplemented instruction (InstrPush)"
    
    | InstrBad =>
        raise InternalError "genRI: Unimplemented instruction (InstrBad)"
  end; (* genRI *)
  
  
(***************************************************************************  
  RI implementation of comparisons
***************************************************************************)  

  (* Short/Long are not implemented *)
  fun isCompRR tc =
    case tc of
      TagTest _ => false
    | _         => true;

  (* Is this argument acceptable as an immediate or should it be *)
  (* loaded into a register? *) 
  fun isCompRI (tc, cnstnt:word) : bool =
    isShort cnstnt;

  (* If this instruction is unreachable, we want to avoid generating a label
     (which would get fixed up, possibly making some other code spuriously
     reachable), which is why we have the "unreachable" test here. Without
     this test, we would correctly generate no code here but would generate
     code at the target of the non-generated branch, which would be silly.
  *)
  fun compareAndBranchRR (r1 : reg, r2 : reg, test : tests, cvec : code) : labels =
    if unreachable cvec then []
    else case test of
      Wrd cond =>
      let
        val lab : label = Label (ref None);
        val U : unit =
	  genBlock (cvec, [COMB (cond, true, r1, r2, lab)])
      in
        [lab]
      end
      
    | Arb cond =>
      let
        val lab : label = Label (ref None);
        val U : unit = genBlock (cvec, [ARBCOMB (cond, r1, r2, lab)]);
      in
        [lab]
      end
      
    | _ =>
       raise InternalError "compareAndBranchRR: Unimplemented test";

   (* GCODE replaces Arb EQ/NE with Word EQ/NE for short constants, so 
      there's no point generating clever code for Arb EQ/NE here.
      SPF 18/2/97
      Oh. Apparently it doesn't actually do this, so let's do it here.
      SPF 21/2/97
   *)
  fun compareAndBranchRI (r : reg, cnstnt : word, test : tests, cvec : code) : labels =
    if unreachable cvec then []
    else case test of 
      Wrd cond =>
      let
        val c : int = tagged (toInt (toShort cnstnt));
        val lab : label = Label (ref None);
        val U : unit =
	  if is5Bit c
	  then
	    genBlock (cvec, [COMIB (swapArgs cond, true, int5 c, r, lab)])
	    
	  else let
	    (* It's safe to load a tagged SHORT into an untagged register *)
	    val regTemp : reg = chooseTempReg cvec;
	    val U : unit = genList (cvec, loadImmed (c, regTemp));
	  in
	    genBlock (cvec, [COMB (cond, true, r, regTemp, lab)])
	  end
      in
        [lab]
      end
      
    | Arb EQ => compareAndBranchRI (r, cnstnt, Wrd EQ, cvec)
    | Arb NE => compareAndBranchRI (r, cnstnt, Wrd NE, cvec)
    | Arb cond =>
      let
        val c : int = tagged (toInt (toShort cnstnt));
        val lab : label = Label (ref None);
        val U : unit =
	  if is5Bit c
	  then genBlock (cvec, [ARBCOMIB (swapArgs cond, int5 c, r,  lab)])
	    
	  else let
	    (* It's safe to load a tagged SHORT into an untagged register *)
	    val regTemp : reg = chooseTempReg cvec;
	    val U : unit = genList (cvec, loadImmed (c, regTemp));
	  in
	    genBlock (cvec, [ARBCOMBAUX (swapArgs cond, regTemp, r, lab)])
	  end
      in
        [lab]
      end
      

    | TagTest b => (* The immediate is ignored *)
      let
        val lab : label = Label (ref None);
        val U : unit =
	   genBlock (cvec, [COMB (if b then OD else EV, true, r, regZero, lab)])
     in
       [lab]
     end; (* compareAndBranchRI *)
    
  (* set the num'th constant in seg to be value *)
  fun setConst (seg : cseg, constStartAddr : addrs, constNum : int, value : word) : unit =
  let
    val constAddr : addrs = constStartAddr wordAddrPlus constNum;
  in
    csegPutWord (seg, getWordAddr constAddr, value)
  end

  (* Fix up references from other vectors to this one. *)
  fun fixOtherRefs (refTo : code, value : word) : unit =
  let
    fun fixRef refFrom =
      case ! (resultSeg refFrom) of
        Unset =>
	let (* The "refFrom" code hasn't allocated its code segment yet. *)
	  fun replaceNonLocalConst (constEntry as (num : int, const : const)) : int * const =
	    case const of
	      CVal c => if c is refTo then (num, WVal value) else constEntry
	    | _      => constEntry;
	in
	  constVec refFrom := map replaceNonLocalConst (! (constVec refFrom))
	end
      
      | Set (seg : cseg, constStartAddr : addrs) =>
	let (* The "refFrom" code has already allocated its code segment. *)
	  val noc = numOfConsts refFrom;
	  
	  fun putNonLocalConst (num : int, const : const) : unit =
	    case const of
	      CVal c =>
		if c is refTo
		then let (* A reference to this one. *)
		  (* Fix up the forward reference. *)
		  val U : unit = setConst (seg, constStartAddr, num, value);
		in
		  (* decrement the "pending references" count *)
		  noc := !noc - 1
		end
		else ()
	    | _ => ();
    
	  (* look down its list of forward references until we find ourselves. *)
	  val U : unit =
	    applyList (putNonLocalConst, !(constVec refFrom))
	in
	 (* If there are no more references, we can lock it. *)
	  if !noc = 0 then csegLock seg else ()
	end (* fixRef *);
  in
    (* For each `code' which needs a forward reference
       to `refTo' fixing up. *)
    applyList (fixRef, !(otherCodes refTo))
  end; (* fixOtherRefs *)


  (* The stack limit register is set at least twice this far from the end
     of the stack so we can simply compare the stack pointer with the stack
     limit register if we need less than this much. Setting it at twice
     this value means that procedures which use up to this much stack and
     do not call any other procedures do not need to check the stack at all. *)
  val minStackCheck = 20; 
  
  (* Create the actual code segment. Fortunately, GCODE passes us the maximum
     stack usage (as calculated by TRANSTAB) so we don't need to recalculate
     it here.
  *)
  fun copyCode (cvec : code, stackRequired : int) : address =
  let
    (* Optimise the instructions for the body of the function *)
    val (bodyCode : instruction list, bodySize : int) = revExpand (! (codeVec cvec));
    val U : unit = codeVec cvec := []; (* To reduce space requirements *)

    val numOfConst = !(numOfConsts cvec);
    val callsAProc = !(mustCheckStack cvec);

    (* Generate the prelude (iterative!) *)
    local 
      val stackCheckCode : instruction list =
        if stackRequired >= minStackCheck
        then let
          val regTemp : reg = chooseTempReg cvec;
        in
          addImmed (~ (stackRequired * wordSize), regStackPtr, regTemp) @
          [STACKCHECK regTemp]
        end
        (* If we call another function, we have to perform the following
           stack check to ensure that there are at least two minimal
           (minStackCheck words each) stack frames available - one for us,
           one for the (possibly leaf) function that we're calling.
           We don't need to do this if we make only tail calls (our
           caller has reserved a stack frame for us, which we share
           with our callee), but we'll normally perform the stack
           check anyway, to check for user interrupt. SPF 19/2/97
        *)
        else if callsAProc
        then
          [STACKCHECK regStackPtr]
           
        (* Leaf or tail-call-only function - no stack check required. *)
        else 
	  []; 
    in
      (* code segment size minimised (iteratively!) SPF 12/8/94 *)
      fun getPreludeCode (preludeSize : int) : int * int * instruction list * int * addrs =
      let
        val codeSize : int = preludeSize + bodySize;
      
        (* +4 for zero word, code size, profile count and constants count *)
        val segSize = codeSize + numOfConst + 4;
        
        (* This is the address of the end-of-code marker *)
        val lastAddr : addrs = mkWordAddr codeSize;
       
        (* This is the address of the zero'th constant
          +3 for zero word, code size, profile count *)
        val constStartAddr : addrs = lastAddr wordAddrPlus 3;
      
       (* What's going on here?
         
	  We want to be able to address the constants using regCode.
	  If we have a short segment, that's no problem. However,
	  if we have a long code segment, the 14-bit offset in a
	  LDW instruction isn't large enough to reach the constants section
	  unless we adjust regCode first. If we need to do this,
	  regCode will be pointing into the middle of the code
	  segment, so we must tag it as a code pointer, and ensure
	  that it address real code (before the zero word) rather
	  than data.
       
	  Subtracting 16 would skip the 3 "overhead" words:
	      end-of-code marker word
	      byte offset of start of code segment
	      profiling word
	   and make regCode point at the last real code word. We then
	   subtract another 2 to get the tagging right. (We could add 2
	   instead, but I'm happier doing the subtraction, in case I've
	   got an off-by-one somewhere.) 
	   SPF 21/2/97.
       *)
    
       val (constByteOffset : int, loadConstSegCode : instruction list) =
         if is14Bit (segSize * wordSize)
         then (getByteAddr constStartAddr, [])
         else let
           val offsetFromCodePtr = 18;

           val offsetOfConsts : int =
             getByteAddr constStartAddr - offsetFromCodePtr;
         in
           (offsetFromCodePtr, addImmed (offsetOfConsts, regCode, regCode))
         end;
   
        val preludeCode : instruction list = 
           (* L1,L2 here *) loadConstSegCode @
           (* L3,L4 here *) stackCheckCode;

        (* Branch addresses are relative to the END of the code. SPF 7/3/97 *)
        val segStartAddr : addrs = mkWordAddr (~ codeSize);

        val selfCallAddr : addrs =
          segStartAddr wordAddrPlus (instrListLength loadConstSegCode);
      in
        (* does it fit? *)
        if instrListLength preludeCode = preludeSize
        then (codeSize, segSize, preludeCode, constByteOffset, selfCallAddr)
        else getPreludeCode (preludeSize + 1)
      end
   
      val (codeSize, segSize, preludeCode, constByteOffset, selfCallAddr) =
        (* iterate to find size of loadConstSegCode *)
        getPreludeCode (instrListLength stackCheckCode); 
     end; (* local *)
    
    (* Get the intermediate code *)
    val instrList : instruction list = preludeCode @ bodyCode;
    
    (* Display the intermediate code *)
    val U : unit =
      if !assemblyCode
      then  
        case procName cvec of
           ""   => printString "<anonymous>:\n"
         | name => printString (name ^ ":\n")
      else ();
      
    (* Now make the byte segment that we'll turn into the code segment *)
    val seg : cseg = csegMake segSize;

    (* Perform the low-level code-generation into the byte segment,
       printing the code as we do so. Note that code labels are now
       calculated relative to the END of the code, which explains the
       following.
    *)
    
    val segStartAddr : addrs = mkWordAddr (~ codeSize);
    val U : unit = genQuadsToSeg (seg, int14 constByteOffset, segStartAddr, selfCallAddr, instrList);

    (* This is the address of the zero word, relative to the start of the code segment *)
    val lastAddr : addrs = mkWordAddr codeSize;

    (* This is the address of the zero'th constant (the name string)
       +3 for zero word, code size, profile count *)
    val constStartAddr : addrs = lastAddr wordAddrPlus 3;
    
    (* Print the constants *)
    val U : unit =
      if !assemblyCode
      then let
        val U : unit = printConstVec (! (constVec cvec), segStartAddr, constStartAddr)
      in
        printString "\n"
      end
      else ();

    (* Zero end-of-code marker *)
    local
      val addr : addrs = lastAddr;
      val quad : quad  = zeroQuad;
    in
      val U : unit = setQuad (quad, addr, seg);
    end;
 
    (* Byte offset of start of code. *)
    local
      val addr : addrs = lastAddr wordAddrPlus 1;
      val quad : quad  = toQuad (getByteAddr addr);
    in
      val U : unit = setQuad (quad, addr, seg);
    end;
    
    (* Next the profile count. *)
    local
      val addr : addrs = lastAddr wordAddrPlus 2;
      val quad : quad  = toQuad 0;
    in
      val U : unit = setQuad (quad, addr, seg);
    end;
    
    (* Put in the number of constants (including the name string). *)
    local
      val addr : addrs = constStartAddr wordAddrPlus numOfConst;
      val quad : quad = toQuad numOfConst;
    in
      val U : unit = setQuad (quad, addr, seg);
    end;
    
    (* Now we've filled in all the C integers; now we need to convert the segment
       into a proper code segment before it's safe to put in any ML values.
       SPF 13/2/97
    *)
    val U : unit = csegConvertToCode seg;
    val U : unit = resultSeg cvec := Set (seg, constStartAddr);

    (* Copy the objects (including the name string) from the constant list. *)
    fun putLocalConst (num : int, const : const) : unit =
      case const of
	WVal w => (* an ordinary (non-short) constant *)
	let
	  val U : unit = setConst (seg, constStartAddr, num, w);
	in
	  numOfConsts cvec := ! (numOfConsts cvec) - 1
	end
	
      (* a handler *)
      | HVal (Label (ref None)) =>
          raise InternalError "putLocalConst: handler not fixed-up"
      
      | HVal (Label (ref (Some targetAddr))) =>
	let 
	  (* The following comment applies to offsetAddr *)
	  (* Special function to add to an address.
	     This only works if the resulting value is 
	     in a code segment and is on a word  + 2 byte boundary. *)
	  val handlerByteOffset : int = targetAddr byteAddrMinus segStartAddr;
	  val handlerAddr : handler = 
	    offsetAddr (csegAddr seg, toShort (handlerByteOffset + 2));
	  val U :unit = setConst (seg, constStartAddr, num, toWord handlerAddr);
	in
	  numOfConsts cvec := ! (numOfConsts cvec) - 1
	end
      
      (* forward-reference - fix up later when we compile
	 the referenced code *) 
      | CVal _ => ();

    val U : unit = applyList (putLocalConst, (! (constVec cvec)));
  
    (* Switch off "mutable" bit now if we have no
       forward or recursive references to fix-up *)
    val U : unit = 
      if !(numOfConsts cvec) = 0
      then csegLock seg
      else ();

    (* Do we need to make a closure, or just return the code? *)
    val addr : address =
      if noClosure cvec
      then csegAddr seg
      else let
	val addr : address = alloc (short1, F_words, toWord (csegAddr seg));
	
	(* Logically unnecessary; however the RTS currently allocates everything
	   as mutable because Dave's code assumed that things were done this
	   way and I'm not completely sure that everything that needs a mutable
	   allocation actually asks for it yet. SPF 19/2/97
	*)
	val U : unit = lock addr;
      in
	addr
      end

    (* Now we know the address of this object we can fix up
       any forward references outstanding. This is put in here
       because there may be directly recursive references. *)
    val U : unit = fixOtherRefs (cvec, toWord addr);
  in
    addr 
  end (* copyCode *);

  (* Only used for while-loops. *)
  fun jumpback (lab : label, stackCheck : bool, cvec : code) : unit =
  let
    (* Put in a stack check. This is used to allow
       the code to be interrupted. *)
    val U : unit =
      if stackCheck
      then genBlock (cvec, [STACKCHECK regStackPtr])
      else ();
    (* N.B. we don't do branch-chaining here, as otherwise we might
       end up with conditional backward jumps, which we can't nullify properly.
       SPF 27/2/97
    *)
    (* We need genBlock here to force any pending stack adjustment to be taken. *)
    val U : unit = genBlock (cvec, [BRANCH (true, lab)])
  in
    exited cvec := true
  end;

  (* ic function exported to gencode. Currently only used for backward jumps. *)
  (* We use a label (not an addrs), so this doesn't interfere with jump 
     chaining and optimisation.
     SPF 28/2/97
  *)
  val ic : code -> label = 
    fn (cvec : code) => 
    let
      val lab : label = Label (ref None);
      val U : unit = fixupSpecialLabel (lab, cvec);
    in
      lab
    end;
    
  (* The interface to GCODE isn't abstract enough; it thinks
     ic and jumpback manipulate the raw "addrs" type, (which
     is true in older versions of the code-generator). So ...
  *)
  type addrs = label;

  (* We need these types although we don't generate indexed cases. *)
  type cases = int * addrs; (* should tag be a short??? *)

  fun constrCases (p as (i,a)) = p;

(* Dummy implementation ... 
  type jumpTableAddrs = unit;

  fun useIndexedCase (min, max, numberOfCases, exhaustive) : bool =
    false; (* Never use indexed case. *)

  fun indexedCase (reg, reg2, min, max, exhaustive, cvec) : jumpTableAddrs =
    raise InternalError "Not implemented: indexedCase";

  fun makeJumpTable (startTab, cl, default, min, max, cvec) : unit =
    raise InternalError "Not implemented: makeJumpTable";
... *)

  type jumpTableAddrs = int * int * label * (label list ref);

  (* Used in quickSort *)
  fun ltCases ((i1, a1) : cases) ((i2, a2) : cases) = i1 < i2;
  
  fun useIndexedCase (min : int, max : int, numberOfCases : int, exhaustive : bool) : bool =
    isShort min andalso
    isShort max andalso
    isShort (~min + jumpTableOffset) andalso
    isShort (max - min + jumpTableOffset) andalso
    numberOfCases > 7 andalso
    numberOfCases >= (max - min) div 3;

  fun indexedCase (valReg : reg, constReg : reg, min : int, max : int,
                   exhaustive : bool, cvec : code) : jumpTableAddrs =
  let 
    (* Problem: we need multiple copies of defaultLabel, because the
       optimiser assumes that each label is used for only one jump.
       Solution: treat this label very carefully when we fix it up so
       that it doesn't get optimised away.
    *)
    val defaultLabel : label = Label (ref None);
    val entryList : label list ref = ref []; (* To be completed by makeJumpTable *)
    val jumptable : jumpTableAddrs = (min, max, defaultLabel, entryList)
  in
    if unreachable cvec then jumptable
    else let (* we need to generate code *)
      val taggedMin : int = tagged min;
      val taggedMax : int = tagged max;
  
      val rangeCheck : unit =
	if exhaustive then ()
	else let
	  (* Is it long? If so, jump to the default. We need this because we might be 
	     doing case-analysis on integers. For other types this is a waste of
	     time - we know the tag must be a short - and we should change GCODE
	     so we can eliminate this test.
	     SPF 23/11/1997
	     
	     We have to be *very* careful here, though. For optimised data-types,
	     we might be comparing a pointer with a (short) integer. This means
	     that we're not really testing long/short, we're testing pointer/short
	     so we need to keep the test even if we know we're dealing with datatype
	     tags (for some kinds of datatypes). This requires more work in the
	     high-level code generator to distinguish these cases properly.
	     SPF 11/12/1997
	  *)
	  val U : unit = genBlock (cvec, [COMB (EV, true, valReg, regZero, defaultLabel)]);
     
	  (* Is it less than the minimum? If so, jump to the default. *)
	  val U : unit =
	    if is5Bit taggedMin
	    then
	      genBlock (cvec, [COMIB (GT, true, int5 taggedMin, valReg, defaultLabel)])
	    else let
	      val regTemp : reg = chooseTempReg cvec;
	      val U : unit = genList (cvec, loadImmed (taggedMin, regTemp));
	    in
	      genBlock (cvec, [COMB (LT, true, valReg, regTemp, defaultLabel)])
	    end;
	 
	  (* Is it greater than the maximum? If so, jump to the default. *)
	  val U : unit =
	    if is5Bit taggedMax
	    then
	      genBlock (cvec, [COMIB (LT, true, int5 taggedMax, valReg, defaultLabel)])
	    else let
	      val regTemp : reg = chooseTempReg cvec;
	      val U : unit = genList (cvec, loadImmed (taggedMax, regTemp));
	    in
	      genBlock (cvec, [COMB (GT, true, valReg, regTemp, defaultLabel)])
	    end;
	in
	  ()
	end;
	
      val indexReg : reg = chooseTempReg cvec;
      val baseReg  : reg = chooseTempReg cvec;
      
      val U : unit =
	if indexReg regEq baseReg
	then raise InternalError "indexedCase: run out of temporary registers"
	else ();
	
      val entryCount : int = max - min + 1;


      (* We have 3 overhead instructions between the table base and the
         actual JUMPTABLE instruction. This means that we want to map
            min     => 4
            min + 1 => 5
            ....
            max     => max - min + 4
            
         We do this by subtracting (min - 4) from the value. Since
         everything is tagged, we have to tag this value first.
         Since we don't have a subtract immediate instruction, we add
         the negation of this number.
      *)
      val offset : int = min - jumpTableOffset;

      val U : unit =
	genBlock (cvec, 
	  addImmed (~ (tagged offset), valReg, indexReg) @
	  (* indexReg now contains a value in the range 4 .. max - min + 4, but shifted *)
	  [
	    LOADCODEADDR baseReg,
	    ASHR (nat5_TAGSHIFT, indexReg, indexReg), (* in DELAY slot *)
	    (* indexReg now contains an untagged value in the range 3 .. max - min + 3;
	       baseReg now contains the address of the base of the table, which is HERE;
	       except that its lower 2 bits contain unknown values, so we have
	       to mask these out. Were using a temporary register for "baseReg", so
	       it doesn't matter that this isn't a legal code-pointer.
	       SPF 11/12/1997
	    *)
            TAGCODEREG (int5_0, baseReg),
            LDWXSH (indexReg, baseReg, indexReg),
	    ADDL   (indexReg, baseReg, baseReg),
	    JUMPREG (true, baseReg),
	    
	    JUMPTABLE (entryCount, entryList)
	  ]);
  
      (* We don't fall through the JUMPTABLE instruction *)
      val U : unit = exited cvec := true;
      
      (* The default cases come here *)
      val U : unit = 
	if exhaustive then () else fixupSpecialLabel (defaultLabel, cvec);
    in
      jumptable
    end (* we need to generate code *)
  end; (* indexedCase *)

  fun makeJumpTable (jumptab : jumpTableAddrs, caseList : cases list, default : label,
                     min : int, max : int, cvec : code) : unit =
  let
    val (oldmin : int, oldmax : int, defaultLabel : label, entryList : label list ref)
      = jumptab;
    
    val U : unit = 
      if (min = oldmin andalso max = oldmax) then ()
      else raise InternalError "makeJumpTable: jump table has inconsistent range information"
      
    val U : unit = 
      case !entryList of
        [] => ()
      | _  => raise InternalError "makeJumpTable: jump table already created"
  
    val sortedList = quickSort ltCases caseList;
   
    (* We create the label list in reverse order (highest index first) *)
    fun createLabList (i, cl, labList) =
      if max < i then labList
      else
	case cl of
	  [] => createLabList (i + 1, cl, defaultLabel :: labList)
	 
	| ((j,caseLabel) :: t) =>
	    if i < j 
	    then createLabList (i + 1, cl, defaultLabel :: labList)
	    else createLabList (i + 1, t,  caseLabel :: labList)
  in
    entryList := createLabList (min, sortedList, [])
  end;
end (* CODECONS functor body *)

end (* structure-level let *)