File: G_CODE.ML

package info (click to toggle)
polyml 5.2.1-1
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 19,692 kB
  • ctags: 17,567
  • sloc: cpp: 37,221; sh: 9,591; asm: 4,120; ansic: 428; makefile: 203; ml: 191; awk: 91; sed: 10
file content (3422 lines) | stat: -rw-r--r-- 129,887 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
(*
	Copyright (c) 2000
		Cambridge University Technical Services Limited

	This library is free software; you can redistribute it and/or
	modify it under the terms of the GNU Lesser General Public
	License as published by the Free Software Foundation; either
	version 2.1 of the License, or (at your option) any later version.
	
	This library is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
	Lesser General Public License for more details.
	
	You should have received a copy of the GNU Lesser General Public
	License along with this library; if not, write to the Free Software
	Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
*)

(*
    Title:      General purpose code generator.
    Author:     Dave Matthews, Edinburgh University / Prolingua Ltd.
    Copyright   D.C.J. Matthews 1991
*)

(* Code is generated into a vector which is handled largely by the
   "codecons" module, and then copied into a vector of the correct size when
   complete.
   There are two kinds of linkage conventions according to whether a procedure
   requires a closure or only a static link. Procedures with no non-local
   references are considered as closure calls but are optimised by combining
   the closure into the code itself.

  Note that the garbage collector assumes that all registers contain either
  numbers (tagged) or valid addresses (the word before contains
  length and flags).
*)


functor G_CODE (

(*****************************************************************************)
(*                  CODECONS                                                 *)
(*****************************************************************************)
structure CODECONS :
sig
  type machineWord;
  type short = Word.word;
  type address;
  type addrs; (* NB this is *not* the same as "address" *)
  type code;
  type reg;   (* Machine registers *)
  datatype storeWidth = STORE_WORD | STORE_BYTE
       
  val regNone:     reg;
  val regResult:   reg;
  val regClosure:  reg;
  val regStackPtr: reg;
  val regHandler:  reg;
  val regReturn:   reg;
  
  val argReg:  int -> reg;
  val argRegs: int;     (* No of args in registers. *)
  
  val regEq  : reg * reg -> bool
  val regNeq : reg * reg -> bool

  val codeCreate: bool * string * Universal.universal list -> code;  (* create - Makes the initial segment. *)
  val copyCode:   code * int * reg list -> address;

  val resetStack: int * code -> unit; (* Set a pending reset *)

  (* Comparison operations. *)
  type tests;

  val testNeqW:  tests;
  val testEqW:   tests;
  val testGeqW:  tests;
  val testGtW:   tests;
  val testLeqW:  tests;
  val testLtW:   tests;
  val testNeqA:  tests;
  val testEqA:   tests;
  val testGeqA:  tests;
  val testGtA:   tests;
  val testLeqA:  tests;
  val testLtA:   tests;
  val Short:     tests;
  val Long:      tests;

  type labels; (* The source of a jump. *)
  
  val isCompRR: tests -> bool; (* Is the general form implemented? *)
  val isCompRI: tests * machineWord -> bool; (* Is the immediate value ok? *)

  (* Binary operations. veclen isn't binary but it makes things easier. *)
  type instrs;
  
  val instrMove:    instrs;
  val instrAddA:    instrs;
  val instrSubA:    instrs;
  val instrRevSubA: instrs;
  val instrMulA:    instrs;
  val instrOrW:     instrs;
  val instrAndW:    instrs;
  val instrXorW:    instrs;
  val instrAddW:    instrs;
  val instrSubW:    instrs;
  val instrRevSubW: instrs;
  val instrMulW:    instrs;
  val instrDivW:    instrs;
  val instrModW:    instrs;
  val instrLoad:    instrs;
  val instrLoadB:   instrs;
  val instrVeclen:  instrs;
  val instrVecflags:   instrs;
  val instrUpshiftW:   instrs;
  val instrDownshiftW: instrs;
  val instrDownshiftArithW: instrs;
  val instrGetFirstLong:	instrs;
  val instrStringLength: instrs;
  val instrSetStringLength: instrs;
  val instrBad:     instrs;

  val instrIsRR: instrs -> bool; (* Is the general form implemented? *)
  val instrIsRI: instrs * machineWord -> bool; (* Is the immediate value ok? *)
  
  val genRR: instrs * reg * reg * reg * code -> unit;

  val genLoad:        int * reg * reg * code -> unit;
  val genPush:        reg * code -> unit;

 (* Store allocation. *)
  val allocStore:      int  * Word8.word * reg * code -> unit;
  val setFlag:         reg * code * Word8.word -> unit;
  val completeSegment: code -> unit;

   (* Backward jumps. *)
  val ic: code -> addrs;

  (* Function call and linkage. *)
  datatype callKinds =
		Recursive
	|	ConstantFun of machineWord * bool
	|	CodeFun of code
	|	FullCall
  
  val callFunction:       callKinds * code -> unit;
  val jumpToFunction:     callKinds * reg * code -> unit;
  val returnFromFunction: reg * int * code -> unit;
  val genStackOffset:     reg * int * code -> unit;
  val raiseException:     code -> unit;
  
  type cases
  type jumpTableAddrs
  val constrCases : int * addrs -> cases;
  val useIndexedCase: int * int * int * bool -> bool;
  val indexedCase : reg * reg * int * int * bool * code -> jumpTableAddrs;
  val makeJumpTable : jumpTableAddrs * cases list * addrs * int * int * code -> unit;
  val inlineAssignments: bool;
  val isIndexedStore: storeWidth ->bool
  val traceContext: code -> string
end (* CODECONS *);


(*****************************************************************************)
(*                  TRANSTAB                                                 *)
(*****************************************************************************)
structure TRANSTAB :
sig
  type machineWord;
  type ttab;
  type reg;
  type code;
  type tests;
  type instrs;
  type addrs;
  type storeWidth;
  type regSet;
  
  val ttabCreate: Universal.universal list -> ttab;
  
  (* Register allocation *)
  val getRegister:    ttab * code * reg -> unit;
  val getAnyRegister: ttab * code -> reg;
  val freeRegister:   ttab * reg -> unit;
  val clearCache:     ttab -> unit;
  val removeRegistersFromCache: ttab * regSet -> unit;

  (* Stack handling *)
  type stackIndex;
  
  val noIndex: stackIndex;   
  
  (* Push entries *)
  val pushReg:      ttab * reg -> stackIndex;
  val pushStack:    ttab * int  -> stackIndex;
  val pushConst:    ttab * machineWord -> stackIndex;
  val pushCodeRef:  ttab * code -> stackIndex;
  val pushNonLocal: ttab * ttab * stackIndex * 
                       (unit -> stackIndex) * code -> stackIndex;
  val incsp:        ttab -> stackIndex;
  val decsp:        ttab * int -> unit;
  val pushAll:      ttab * code -> unit;
  val pushAllBut:   ttab * code * ((stackIndex -> unit) -> unit) * regSet -> unit;
  val pushNonArguments: ttab * code * stackIndex list * regSet -> reg list;
  val pushSpecificEntry: ttab * code * stackIndex -> unit;
  val reserveStackSpace: ttab * code * int -> stackIndex;

  (* Code entries *)
  val loadToSpecificReg: code * ttab * reg * stackIndex * bool -> stackIndex;
  val containsLocal:     ttab * reg  -> unit;
  val loadEntry:         code * ttab * stackIndex * bool -> reg*stackIndex;
  val lockRegister:      ttab * reg -> unit;
  val unlockRegister:    ttab * reg -> unit;
  val loadIfArg:         code * ttab * stackIndex -> stackIndex
  val indirect:          int * stackIndex * code * ttab -> stackIndex;
  val moveToVec:         stackIndex * stackIndex * int * storeWidth * code * ttab -> unit;

  val removeStackEntry: ttab*stackIndex -> unit;

  val resetButReload:   code * ttab * int -> unit;
  val pushValueToStack: code * ttab * stackIndex * int -> stackIndex;
  val storeInStack:     code * ttab * stackIndex * int -> unit;
  val isProcB:          ttab * int  -> bool;
  val pstackForDec:     ttab * int  -> stackIndex;
  val realstackptr:     ttab -> int;
  val maxstack:         ttab -> int;
  val makeEntry:        ttab * code * stackIndex * int * int * bool -> unit;
  val incrUseCount:     ttab * stackIndex * int -> unit;
  
(* ...
  (* for debugging *)
  val printStack:       ttab -> string -> string -> unit;
... *)

  type stackMark;
   
  val markStack: ttab -> stackMark;
  val unmarkStack: ttab * stackMark -> unit;
  
  type labels;

  val noJump: labels;
  val isEmptyLabel: labels -> bool
  
  datatype mergeResult = NoMerge | MergeIndex of stackIndex;
  val unconditionalBranch: mergeResult * ttab * code -> labels;
  val jumpBack: addrs * ttab * code -> unit;
  
  val fixup: labels * ttab * code -> unit;
  val merge: labels * ttab * code * mergeResult * stackMark -> mergeResult;
  val mergeList: labels list * ttab * code * mergeResult * stackMark -> mergeResult;
   
  type handler;

  val pushAddress: ttab * code * int -> handler;
  val fixupH:      handler * int * ttab * code -> unit;

  val exiting: ttab -> unit;
  val haveExited: ttab -> bool;

  datatype regHint = UseReg of reg | NoHint;
  val binaryOp: stackIndex * stackIndex * instrs * instrs * ttab * code * regHint -> stackIndex;
  val assignOp: stackIndex * stackIndex * stackIndex * storeWidth * ttab * code -> unit;
  val compareAndBranch: stackIndex * stackIndex * tests * tests * ttab * code -> labels;

  type savedState;
  val saveState : ttab * code -> savedState
  val startCase : ttab * code * savedState -> addrs
  
  val chooseRegister : ttab -> reg
  val addRegUse : ttab * reg -> unit

  val getRegisterSet: machineWord -> regSet
  val allRegisters : regSet
  val regSetUnion: regSet * regSet -> regSet
  val listToSet: reg list -> regSet
  val getFunctionRegSet: stackIndex * ttab -> regSet
  val addModifiedRegSet: ttab * regSet -> unit

  val getModifedRegSet: ttab -> reg list

  datatype argdest = ArgToRegister of reg | ArgToStack of int
  val getLoopDestinations: stackIndex list * ttab -> argdest list

  val callCode: stackIndex * bool * ttab * code -> unit
  val jumpToCode: stackIndex * bool * reg * ttab * code -> unit

end (* TRANSTAB *);

(*****************************************************************************)
(*                  MISC                                                     *)
(*****************************************************************************)
structure MISC :
sig
  exception InternalError of string;
end;

structure ADDRESS:
sig
  type machineWord;  (* NB *not* an eqtype *)
  type short = Word.word;
  type address;
  
  val wordEq:  'a * 'a -> bool;
  val isShort: 'a -> bool;
  
  val unsafeCast : 'a -> 'b;

  val toMachineWord:   'a  -> machineWord;
  val toShort:  'a -> short;
  val toAddress: machineWord -> address;

  val loadByte:  (address * short) -> Word8.word;
  val loadWord:  address * short -> machineWord
  val flags:     address -> Word8.word;
  val length:    address -> short;
  
  val F_words:   Word8.word;
  val F_bytes :  Word8.word;
  val F_mutable: Word8.word;
 
  val alloc:     short * Word8.word * machineWord -> address
  
  val isCode :   address -> bool
  val isWords :   address -> bool

  val call: address * machineWord -> machineWord

  val wordSize: int

  val isIoAddress : address -> bool
end;

structure BASECODETREE: BaseCodeTreeSig

(*****************************************************************************)
(*                  GCODE sharing constraints                                *)
(*****************************************************************************)
sharing type
  CODECONS.code
= TRANSTAB.code
  
sharing type
  CODECONS.instrs
= TRANSTAB.instrs
  
sharing type
  CODECONS.reg
= TRANSTAB.reg
  
sharing type
  CODECONS.tests
= TRANSTAB.tests 
  
sharing type
  CODECONS.addrs
= TRANSTAB.addrs  
  
sharing type
  ADDRESS.machineWord
= CODECONS.machineWord
= TRANSTAB.machineWord
= BASECODETREE.machineWord

sharing type
  ADDRESS.short
= CODECONS.short

sharing type
  ADDRESS.address
= CODECONS.address

sharing type
  CODECONS.storeWidth
= TRANSTAB.storeWidth

) :  
  
(*****************************************************************************)
(*                  GCODE export signature                                   *)
(*****************************************************************************)
sig
  type codetree
  type machineWord
  val gencode: codetree * Universal.universal list -> unit -> machineWord;
end =

(*****************************************************************************)
(*                  GCODE functor body                                       *)
(*****************************************************************************)
struct
  open CODECONS;
  open TRANSTAB;
  open ADDRESS;
  open MISC; (* after address, so we get MISC.length, not ADDRESS.length *)
  open RuntimeCalls; (* for POLY_SYS numbers *)
  open BASECODETREE;
  
  val F_mutable_words = Word8.orb (F_mutable, F_words);
  val F_mutable_bytes = Word8.orb (F_mutable, F_bytes);
 
  val objLength = ADDRESS.length;
  
  infix 7 regEq regNeq;

(*************************** end of copied code *****************************)  
   
  (* gets a value from the run-time system; 
    usually this is a closure, but sometimes it's an int.  *)
  val ioOp : int -> machineWord = RunCall.run_call1 POLY_SYS_io_operation;
  
  (* minor HACKS *)
  fun forLoop f i n = if i > n then () else (f i; forLoop f (i + 1) n);
       
  val word0 = toMachineWord 0;
  val word1 = toMachineWord 1;
  
  val DummyValue : machineWord = word0; (* used as result of "raise e" etc. *)
  val UnitValue : machineWord = word0; (* unit *)
  val False : machineWord = word0;     (* false *)
  val True  : machineWord = word1;     (* true *)
  val Zero  : machineWord = word0;     (* 0 *)
  
  val constntTrue  = Constnt True;
  val constntFalse = Constnt False;
  (* Where the result, if any, should go *)
  datatype whereTo =
    NoResult     (* discard result *)
  | ToReg of reg (* put result in a specific register *)
  | ToPstack     (* Need a result but it can stay on the pseudo-stack *);
  
  fun isNoResult NoResult     = true | isNoResult _ = false;
  fun isToReg    (ToReg    _) = true | isToReg    _ = false;
  fun isToPstack ToPstack     = true | isToPstack _ = false;
  
  (* Are we at the end of the procedure. *)
  datatype tail =
    EndOfProc
  | NotEnd;
  
  fun isEndOfProc EndOfProc = true | isEndOfProc _ = false;

  fun chooseMergeRegister (transtable: ttab, whereto : whereTo, tailKind : tail) : whereTo =
    case tailKind of
      EndOfProc => ToReg regResult
    | NotEnd    =>
       (case whereto of
	  ToPstack => 
	  let
	    val rr : reg = chooseRegister transtable;
	  in
	    if rr regEq regNone  (* No register is free *)
	    then ToReg regResult (* So choose an arbitrary register *)
	    else ToReg rr
	  end
       | _ => whereto);
 
  (* We're marking the pstack prior to splitting and (probably) rejoining
     the code streams. If the code streams produce a value, try to ensure
     that we have a register free prior to the split, as otherwise we may
     not have a register free to put the return value into, which will
     cause mergeState (in TRANSTAB) to fail.
     SPF 13/11/1998
  *)
  (* I've reverted to the original markStack in order to test my changes
     to Transtab which should fix this problem along with others.
	 DCJM 28/6/2000 *)
  fun markStack (transtable : ttab, cvec : code, carry : bool) : stackMark =
  let
(*    val U : unit =
      if carry 
      then let
        val freeReg : reg = getAnyRegister (transtable, cvec);
      in
        freeRegister (transtable, freeReg)
      end
      else ();
*)
  in
    TRANSTAB.markStack transtable
  end;

  (* Code generate a procedure or global declaration *)
  fun codegen
       (pt               : codetree,
        cvec             : code,
        declOnPrevLevel  : int * (unit -> stackIndex) * ttab * code -> stackIndex,
        isStaticLink     : int -> bool,
        loadStaticLink   : int * (unit -> stackIndex) * ttab * code -> stackIndex*stackIndex,
		staticLinkRegSet : int -> regSet,
        discardClosure   : bool,
        numOfArgs		 : int,
        closureRefs      : int,
        debugSwitches    : Universal.universal list) : address =
  let
    fun matchFailed _ = raise InternalError "codegen: unhandled pattern-match failure"

    (* make the translation table *)
    val transtable = ttabCreate debugSwitches;

    (* Header code for procedure. *)
    
(* Put the arguments and closure/static link register onto the pseudo-stack. *)
    fun registerArg reg uses =
      if uses > 0
      then let
        val U : unit = getRegister (transtable, cvec, reg);
        val addrInd  = pushReg (transtable, reg);
      in
        incrUseCount (transtable, addrInd, uses - 1);
        addrInd
      end
      else noIndex;

    (* Push the return address - may have multiple references because
       we may exit at any of the "tails". *)
    val returnAddress = 
      if regReturn regEq regNone
      then let
        (* The return address has already been pushed onto the stack,
            probably because the normal call sequence does it. *)
         val addr = incsp transtable;
         val U : unit = incrUseCount (transtable, addr, 1000000);
       in
         addr
       end
       else registerArg regReturn 1000000;

    (* If discardClosure is true, all uses of the closure are
       directly-recursive calls which will be handled as "Recursive".
       This doesn't require the function closure as a parameter.
       SPF 22/5/95 
       
       Unfortunately, this is not quite true - we can still embed
       the function in a datatype, so we still require access to
       the closure. However, this is handled by storing the closure
       in the constants section (it *is* a constant) if we have
       any such uses of it.
       SPF 30/5/95 
       
       Note that it's important for correctness that we load "embedded"
       uses of an empty closure from the constants section. If we
       tried to be clever and use the value that we find in closureReg
       at function entry, we would generate bad code. That's because 
       functions with empty closures may get called using the PureCode
       calling convention, which doesn't actually initialise closureReg.
       
       Note also that it's the *calls* to codegen that have to be right,
       since the function that loads the closure is actually a parameter
       to codegen.
       SPF 2/1/97
    *)
	val closureOrSlAddr = registerArg regClosure (if discardClosure then 0 else 1)
      
    (* A vector to map argument numbers into offsets on the pseudo stack. *)
    val argRegTab : stackIndex Array.array =
      Array.array (argRegs:int, noIndex: stackIndex);

    (* off-by-ones adjusted SPF 7/6/94 *)
    local
      fun pushArgRegs i =
        if i < numOfArgs andalso i < argRegs
        then let
		(* DCJM 29/11/99.  Changed to use lastRef rather than reference counts. *)
          val U : unit = Array.update (argRegTab, i, registerArg (argReg i) 1);
        in
          pushArgRegs (i + 1) 
        end
        else ();
    in  
      val U = pushArgRegs 0;
    end;
    
    fun exit () =
    let
      val stackArgs = if numOfArgs < argRegs then 0 else numOfArgs - argRegs;

    in
      if regReturn regEq regNone
      then let
          (* Reset to just above the return address. *)
          val U : unit  =  resetStack (realstackptr transtable - 1,  cvec);
      in
          returnFromFunction (regNone, stackArgs, cvec)
      end
      else let
          val (returnReg, returnOffset) =
		  	loadEntry (cvec, transtable, returnAddress, false);
		  val U : unit = removeStackEntry (transtable, returnOffset)
          val U : unit  = resetStack (realstackptr transtable, cvec);
      in
          returnFromFunction (returnReg, stackArgs, cvec)
      end;
      exiting transtable
    end
      

    (* Allocate a segment of the required size. *)
    fun callgetvec (csize, flag : Word8.word, whereto) : stackIndex =
    let
       (* Get a register for the result. We cannot use the local ptr. for the
          result because it's supposed always to point to the bottom of the
          local area. If we get a persistent store trap which results
           in a garbage-collection the newly allocated object might well be
           moved. The local ptr would be updated to point to this new location
           but would then be set to the bottom of store. *)
      (* Use the preferred reg if we can. *)
      val resultReg = 
        case whereto of
          ToReg rr => ( getRegister (transtable, cvec, rr); rr )
        | _ => getAnyRegister (transtable, cvec);
        
      val U = allocStore (csize, flag, resultReg, cvec);
      val resAddr = pushReg (transtable, resultReg);
      val U : unit = containsLocal (transtable, resultReg); (* Not persistent address. *)
    in
      resAddr
    end;

    (* Remove the mutable bit without affecting the use-count. *)
    fun lockSegment (entry, flag) : unit =
    let
      val U = incrUseCount (transtable, entry, 1);
      val (baseReg, baseIndex) = loadEntry (cvec, transtable, entry, false);
    in
      CODECONS.setFlag (baseReg, cvec, flag);
	  removeStackEntry(transtable, baseIndex)
    end;
    
    infix 9 sub; (* was only 5 - gave subtle bugs. SPF 11/8/94 *)
    
    (* Loads a local, argument or closure value; translating local
       stack addresses to real stack offsets.
	   N.B. In the case of non-local variables lastRef is true only for
	   the last non-local variable, not the last use of this particular
	   variable. *)
    fun locaddr ({ addr, fpRel, lastRef, ...}: loadForm): stackIndex =
      if fpRel 
      then 
        if addr < 0 (* Args. *)
        then let (* First four args are on the stack. *)
          val argOffset = numOfArgs + addr;
        in
          if argOffset < argRegs
          then
		  	 let
			 	val regEntry = Array.sub (argRegTab, argOffset)
			 in
				(* If this is NOT the last reference we need to increment the
				   use count on the entry. *)
				if lastRef then () else incrUseCount(transtable, regEntry, 1);
				regEntry
			 end
          else pushStack (transtable, addr * ~wordSize)
        end
        
        (* positive address - reference to entry on the pstack. *)
        else
			let
				val resIndex = pstackForDec (transtable, addr)
			in
				if lastRef then () else incrUseCount(transtable, resIndex, 1);
				resIndex
			end
          
      else  (* cp relative *)
	     let
		 (* If this is the last reference to the closure we want
		    it to be removed afterwards.  makeSl is not always called
			if, for example, the value is constant.  To ensure the
			use-count is correct we increment it if it is used and
			then decrement it afterwards.  DCJM 2/12/99. *)
		 val dec = declOnPrevLevel 
           (addr,
            fn () => (
				incrUseCount(transtable, closureOrSlAddr, 1);
				closureOrSlAddr),
            transtable,
            cvec)
		  in
		  if lastRef andalso not discardClosure
		  then incrUseCount(transtable, closureOrSlAddr, ~1) else ();
		  dec
		  end
     (* locaddr *);
    
    (* For each load of a local in the tree it calls the `add' procedure. *)
    fun identifyLoads (expList : codetree list, transtable) : (stackIndex -> unit) -> unit =
      fn (add : stackIndex -> unit) =>
      let 
       (* Need to identify declarations within the current block.
          The declaration numbers are reused so we have to identify
          new declarations. *)
        val newDecs : bool StretchArray.stretchArray =
           StretchArray.stretchArray (4, false);
           
        fun loads (pt: codetree) : unit =
          case pt of
            MatchFail => ()
            
          | AltMatch (exp1, exp2) =>
            let
              val U : unit = loads exp1;
            in
              loads exp2
            end
          
          | Extract {fpRel = true, addr = locn, lastRef, ...} =>
		  	 (* DCJM 29/11/99.  Only call add if this is the last reference. *)
              if locn < 0 (* args - only look at those in the registers. *)
              then let
                val argOffset = numOfArgs + locn;
              in
                if argOffset < argRegs andalso lastRef
                then add (Array.sub (argRegTab, argOffset)) (* SPF 7/6/94 *)
                else ()
              end
              else if not (StretchArray.sub (newDecs,locn)) andalso lastRef
                (* Ignore new declarations. *)
                then add (pstackForDec (transtable, locn))
              else ()

	   (* If discardClosure is true, then we've already zeroed the
	      use-count for closureOrSlAddr, so don't adjust it now.
	      SPF 22/5/95 *)
          | Extract {fpRel = false, addr = _, level = _, lastRef, ...} =>
              if not discardClosure  (* Non-local *) andalso lastRef (* DCJM 1/12/99. *)
              then add closureOrSlAddr (* Reference to the closure. *)
              else ()
          
          | Eval {function, argList, ...} =>
            let
              val U : unit = loads function;
            in
              List.app loads argList
            end
            
          | Declar {addr, value, ...} =>
            let
               (* Indicate that this is a new declaration. *)
              val U : unit = StretchArray.update (newDecs, addr, true);
            in
              loads value (* Check the expression. *)
            end
            
          | Indirect {base, ...} => loads base
            
          | Newenv vl => List.app loads vl
            
          | Recconstr vl => List.app loads vl

		  | BeginLoop(body, args) => (List.app loads args; loads body)

		  | Loop argList => List.app loads argList

		  | Handle{exp, taglist, handler} =>
		  		(List.app loads taglist; loads exp; loads handler)

		  | MutualDecs decs =>
		  		(
				 (* First process the declarations to ensure that new declarations
				    are marked as such then process the values being declared. *)
				 List.app(
					fn Declar{addr, ...} => StretchArray.update (newDecs, addr, true)
					 | _ => raise InternalError "MutualDecs: not Declar") decs;
				 List.app loads decs
				)

          | _ => ();
      in
        List.app loads expList
      end;
      
    (* code-generates code from the tree *)
    (* SPF 2/5/95 - primBoolOps added to prevent loop when
       trying to inline unsupported boolean primitives. We might
       get the calling sequence:
       
         genEval -> genCond -> genTest -> genOtherTests -> gencde -> genEval
         
       where both versions of genEval are for the same (unsupported)
       boolean comparison. If this occurs, the second call will have
       primBoolOps set to false, and will generate a call to the RTS.
       
       Note that "whereto" is only a HINT. There is no guarantee that specifying
       "ToReg r" will actually get the value loaded into that register. For example,
       the code that handles constants completely ignores this hint.
       SPF 15/8/96
     *)
    fun gencde (pt, primBoolOps, whereto, tailKind, matchFailFn, loopAddr) : mergeResult =
    let 
      val needsResult : bool = not (isNoResult whereto);
      
      val result : mergeResult = 
        case pt of
          MatchFail => (* A bit like Raise *)
          let
            val U : unit = matchFailFn ();
          in
            if needsResult
            then MergeIndex(pushConst (transtable, DummyValue))
            else NoMerge (* Unused. *)
          end
        
        | AltMatch (exp1, exp2) => (* A bit like Cond *)
          let
            val mergeResult : bool = needsResult andalso not (isEndOfProc tailKind);
		    val mark1 : stackMark = markStack (transtable, cvec, mergeResult);
		    val mark2 : stackMark = markStack (transtable, cvec, mergeResult);
	          
		    val failLabs = ref ([] : labels list);
            fun newMatchFailFn () = 
            let
              val thisFailure : labels = 
                unconditionalBranch (NoMerge, transtable, cvec);
            in
              failLabs := thisFailure :: !failLabs
            end;
            
            (* SPF 27/11/96 - merged values don't necessarily go into regResult *)
            val whereto : whereTo = chooseMergeRegister (transtable, whereto, tailKind);

            val exp1Result = 
               genToRegister (exp1, whereto, tailKind, newMatchFailFn, loopAddr);
              
            (* Optimisation: return immediately, if possible, rather than
               jumping and then returning. This may turn the following
               unconditional branch into dead code, in which case it
               will be removed by the lower-level code generator.
               SPF 25/11/96
             *)
		    val U : unit =
		      if (isEndOfProc tailKind) andalso not (haveExited transtable)
		      then exit ()
		      else ();

            (* If exp1 succeeded, we skip exp2 *)
            val suceedLab : labels =
				unconditionalBranch (exp1Result, transtable, cvec);
            
            (* If exp1 failed, we come here (with NO result). *)
            val discard = 
              mergeList (!failLabs, transtable, cvec, NoMerge, mark2)
            
            (* Compile exp2 using the OLD matchFailFn *)
            val exp2result = 
               genToRegister (exp2, whereto, tailKind, matchFailFn, loopAddr);
 
          in
            (* If exp1 succeeded, we merge back in here. *)
            merge (suceedLab, transtable, cvec, exp2result, mark1)
          end
            
        | Eval {function, argList, ...} =>
            genEval (function, argList, primBoolOps, whereto, tailKind, matchFailFn)
          
        | Declar {addr, value, references} =>
          let
            val decl : stackIndex = genToStack (value, matchFailFn);

            (* Put the entry for this declaration in the table and set its use-count. *)
            (* Is it a procedure which can be called with a static link? *)
            val slProc : bool = 
              case value of
                Lambda {makeClosure = false, ...} => true
              | _ => false;
              
            val U : unit= 
              makeEntry (transtable, cvec, decl, addr, 
			  	if references = 0 then 0 else 1, (* DCJM 29/11/99. *)
				slProc);
          in
            MergeIndex decl
          end

        | Extract ext =>
			let
				val loc = locaddr ext
			in
				if needsResult
				then MergeIndex loc
				else (* If the result is not required discard it.  This is used
						to remove variables which are not used on this path. *)
					(
					removeStackEntry(transtable, loc);
					NoMerge
					)
			end

        | Indirect {base, offset} =>
          let
            val byteOffset : int        = offset * wordSize;
            val baseCode   : stackIndex = genToStack (base, matchFailFn);
          in  (* Get the value to be indirected on. *)
            MergeIndex(indirect (byteOffset, baseCode, cvec, transtable))
          end

        | Lambda lam =>
            MergeIndex(genProc (lam, fn si => (), true, whereto, matchFailFn))

        | Constnt w =>
            MergeIndex(pushConst (transtable, w))

        | Cond (testPart, thenPart, elsePart) =>
            genCond (testPart, thenPart, elsePart, whereto, tailKind, matchFailFn, loopAddr)

        | Newenv vl =>
          let (* Processes a list of entries. *)
            fun codeList []    whereto =
              (* Either the list is empty or the previous entry was a 
                declaration. Generate a value to represent void.empty so
                that there is something on the stack. *)
                if needsResult
                then MergeIndex(pushConst (transtable, DummyValue))
                else NoMerge (* Ignored *)
                
              | codeList ((valu as Declar _) :: valus) whereto =
                  (* Declaration. *)
                  let
                    val discard =
                      gencde (valu, true, NoResult, NotEnd, matchFailFn, loopAddr);
                  in
                    codeList valus whereto
                  end

			  | codeList [valu] whereto =
                  (* Last entry is an expression. *)
                  gencde (valu, true, whereto, tailKind, matchFailFn, loopAddr)
			  	
              | codeList (valu :: valus) whereto =
			  	  (* Expression in a sequence. *)
                  let
                    val discard =
                      gencde (valu, true, NoResult, NotEnd, matchFailFn, loopAddr);
                  in
                    codeList valus whereto
                  end

          in
            codeList vl whereto
          end

		| BeginLoop(body, args) =>
          let
		    (* Execute the body which will contain at least one Loop instruction.
		  	   There will also be path(s) which don't contain Loops and these
			   will drop through. *)
		  	(* We must ensure that everything apart from the arguments has been
			   pushed onto the stack.  This may be unnecessary if the loop body
			   is simple but is the only way to ensure that when we jump back to
			   the start we have the same state as when we started. *)
			val U : unit =
				pushAllBut(transtable, cvec, identifyLoads (args, transtable), allRegisters);
			(* Load the arguments.  We put them into registers at this stage
			   to ensure that constants and "direct" entries are loaded.  They
			   may go onto the stack, which is fine. It could be worth doing
			   this in two passes, the first simply evaluating the arguments
			   onto the pstack, the second loading them into registers since
			   that would generate better code when some arguments are constants
			   but others are expressions that push those constants onto the stack. *)
			fun genLoopArg (Declar {addr, value, references}) =
			let
				(* This is almost the same as a normal declaration except
				   that we have to make sure that we use a new location, stack or
				   register, since we're going to be changing the contents of
				   this location.  The easiest way to do that is to load it into
				   a register.  We could do better if we are loading the last
				   reference to the initial value in which case we could reuse
				   its location. *)
				val index = genToStack(value, matchFailFn)
				val (_, decl) = loadEntry(cvec, transtable, index, true)
				(* It should not be a static-link function - just check. *)	
	            val _ = 
	              case value of
	                Lambda {makeClosure = false, ...} => 
						raise InternalError "LoopArg: static link function"
	              | _ => ()
			in
	            makeEntry (transtable, cvec, decl, addr, 
				  	if references = 0 then 0 else 1, (* DCJM 29/11/99. *)
					false);
				decl
			end
			|	genLoopArg _ = raise InternalError "genLoopArg: not a declaration"
			val argIndexList = map genLoopArg args;
			(* Now we have loaded the registers we can find out the destinations
			   i.e. the register or stack location they were in at the start of
			   the loop.  We have to do this after we've loaded all the arguments
			   because we may have pushed some onto the stack as we loaded the
			   later ones.  That's fine so long as when we loop we put the new
			   values in the same place.  *)
			val U : unit = clearCache transtable;
			val argDestList = getLoopDestinations(argIndexList, transtable)
			(* Start of loop *)
			val startLoop (* L1 *) = ic cvec;
			val startSp            = realstackptr transtable;
          in
			gencde (body, true, whereto, tailKind, matchFailFn,
				SOME(startLoop, startSp, argDestList))
          end

		| Loop argList =>
			let
				val (startLoop, startSp, argDestList) =
					case loopAddr of
						SOME l => l
					|	NONE =>
						raise InternalError "No BeginLoop for Loop instr"
				(* Evaluate the arguments.  Try to put them in the destination
				   register if we can.  It doesn't matter at this stage too much. *)
				fun evalArg(arg, dest) =
			    let
					val whereto =
				  	  case dest of
					  		ArgToRegister reg => ToReg reg
						|	ArgToStack _ => ToPstack
					val res = gencde (arg, true, whereto, NotEnd, matchFailFn, NONE)
			    in
					case res of
						MergeIndex index => index
					|   NoMerge => raise InternalError "evalArg: no result"
			    end
					
				val argsOnPstack : stackIndex list =
					ListPair.map evalArg (argList, argDestList)

				fun moveArgs([], []) = []
				|   moveArgs(arg :: args, ArgToRegister reg :: dests) =
					let
			            (* Do it in reverse order so that we can delay locking
			               the register arguments. *)
						val argEntries = moveArgs(args, dests)
						val argEntry =
							loadToSpecificReg (cvec, transtable, reg, arg, false)
					in
						lockRegister(transtable, reg);
						argEntry :: argEntries
					end
				|	moveArgs(arg :: args, ArgToStack offset :: dests) =
					(
						storeInStack (cvec, transtable, arg, offset);
						moveArgs(args, dests) (* storeInStack removes its table entry *)
					)
				|	moveArgs _ =
						raise InternalError "moveArgs: Mismatched arguments"

				(* the arguments are now all in their rightful places. *)
				val argEntries = moveArgs(argsOnPstack, argDestList);
			in
				(* Remove the entries and unlock the registers.  It may
				   be unnecessary to remove the entries because we're about
				   to fix up a jump but there's no harm in it. *)
				List.app (
					fn (ArgToRegister reg) => unlockRegister(transtable, reg)
					  | _ => ()) argDestList;
				List.app (fn index => removeStackEntry(transtable, index))
					argEntries;
				(* We have to make sure that the real stack pointer is consistent.
				   Don't have to record any change on the pseudo-stack because we
		           are about to do a fixup and that will set
		           the state to whatever it was when the test was done. *)
				resetStack (realstackptr transtable - startSp, cvec);
		    
				(* Repeat. *)
				jumpBack (startLoop, transtable, cvec);
				(* Put on a dummy result. *)
	            if needsResult
	            then MergeIndex(pushConst (transtable, DummyValue))
	            else NoMerge (* Unused. *)
			end

        | Raise exp =>
          let (* movl <exception>,resultReg; jmp raisex *)
            val _ =
			   (* Ensure the return address is on the stack in case
			      we are tracing exceptions. *)
               pushSpecificEntry (transtable, cvec, returnAddress);
               
            val excVal = genToStack (exp, matchFailFn);
            
            val resultIndex = 
               loadToSpecificReg (cvec, transtable, regResult, excVal, true);

          in
            raiseException cvec;
            
            removeStackEntry(transtable, resultIndex);
            
            exiting transtable; (* Nothing further *)

            (* Generate a value to represent void.empty so that there *)
            (* is something on the stack. *)
            if needsResult
            then MergeIndex(pushConst (transtable, DummyValue))
            else NoMerge (* Unused. *)
          end

        | Handle {exp, taglist, handler} =>
        let
          (* Push all regs - we don't know what the state will be when 
             we reach the handler. *)
(* ...    val U : unit = pushAll (transtable, cvec);    ... *)
          (* Experiment: don't push registers that aren't used in the handler. SPF 25/11/96 *)
		  (* i.e. Push all registers except those whose last use occurs in the expression
		     we're handling or in the set of exceptions we're catching. *) 
          val U : unit = 
            pushAllBut (transtable, cvec, identifyLoads (exp :: taglist, transtable),
						allRegisters);
		  (* It's not clear what registers will be modified as a result of raising
		     and handling an exception.  Many functions may result in exceptions
			 being raised and rather than add the registers to the register set of
			 those functions it's probably better to include them in the modification
			 set here. DCJM 26/11/00. *)
		  val _ = addModifiedRegSet(transtable, allRegisters);

          (* This is the real stack state at the start of the handler *)
          val startOfHandler = realstackptr transtable;
          
		  (* Remember this pseudo-stack position for later merge *)
		  val mark : stackMark = markStack (transtable, cvec, needsResult);

          (* Save old handler - push regHandler *)
          val U : unit = genPush (regHandler, cvec);
          val oldIndex = incsp transtable;
          
          (* Now it's on the real stack we can remove it from the pstack. *)
          val U : unit = removeStackEntry(transtable, oldIndex);
          
          fun genTag (tag : codetree) : handler =
          let
		    (* Push address of new handler. *)
		    val rsp         = realstackptr transtable;
		    val handlerLab  = pushAddress (transtable, cvec, rsp + 1);
	
		    (* Push the exception to be caught. Ensure that it is the
		       only item added to the stack. *)
		    val locn        = genToStack (tag, matchFailFn)
		    val stackLocn   = pushValueToStack (cvec, transtable, locn, rsp + 2);
	
		    (* Now it's on the real stack we can remove it from the pstack. *)
		    val U : unit    = removeStackEntry(transtable, stackLocn);
		  in
		    handlerLab
		  end;

          (* Generate the list of tags and handler addreses. We reverse
             the taglist so the tags that are first in the list are
             put on the stack last, so they are checked first.
             We reverse the result so that they get fixed up in
             stack order. (I don't think this is important, but
             I'm not sure.) Did you get all that? SPF 26/11/96 *)
		  (* The checking order is important because we might have
			 duplicate tags (unless the higher levels have removed them)
			 e.g. exception X = Y ... handle X => ...| Y => ... .
			 I don't think the fix-up order matters now.  I think it had
			 something to do with avoiding converting short branches into
			 long ones.  DCJM June 2000. *)
		  val handlerList : handler list = rev (map genTag (rev taglist));
	  
		  (* Initialise regHandler from regStackPtr *)
		  val U : unit = genRR (instrMove, regStackPtr, regNone, regHandler, cvec);

          (* SPF 27/11/96 - merged values don't necessarily go into regResult *)
          val whereto : whereTo = chooseMergeRegister (transtable, whereto, tailKind);
 
		  (* Code generate body, putting the result in result register. *)
		  (* "NotEnd" because we have to come back to remove the handler. *)
		  val bodyResult = genToRegister (exp, whereto, NotEnd, matchFailFn, loopAddr);
 
          (* Reload the old value of regHandler i.e. remove handler. *)
          val U : unit =
            genLoad ((realstackptr transtable - startOfHandler - 1) * wordSize,
               regStackPtr, regHandler, cvec)

		  (* Optimisation: return immediately, if possible, rather than
		     jumping and then returning. This may turn the following
		     unconditional branch into dead code, in which case it
		     will be removed by the lower-level code generator.
		     SPF 25/11/96
		   *)
		  val U : unit =
		    if (isEndOfProc tailKind) andalso not (haveExited transtable)
		    then exit ()
		    else ();
	
		  (* Skip over the handler. *)
		  val skipHandler = unconditionalBranch (bodyResult, transtable, cvec);
		  
		  (* Remove any result at the start of the handler.
		     Need this because fixupH does not do setState.
		     (It probably should do, though the state is fairly simple). *)
		  val U : unit =
		  	case bodyResult of
				MergeIndex bodyIndex => removeStackEntry(transtable, bodyIndex)
		      | NoMerge => ();
	 
		  (* Fix up the handler entry point - this resets the stack pointer
		     and clears the cache since the state is not known. *)
		  val U : unit list = 
		    map (fn handlerLab => fixupH (handlerLab, startOfHandler, transtable, cvec))
		      handlerList;
		  
		  (* The code for the handler body itself *)
		  val handlerRes =
		  	genToRegister (handler, whereto, tailKind, matchFailFn, loopAddr);
		  
		  in
		  (* Merge the results. SPF 25/11/96 *)
          merge (skipHandler, transtable, cvec, handlerRes, mark)
          end
        
        | Ldexc =>
		  ((* Exception packet is returned in result register. *)
            getRegister (transtable, cvec, regResult);
            MergeIndex(pushReg (transtable, regResult))
          )

        | Case {cases, test, default, min, max} =>
          let
		  	(* Cases are constructed by the optimiser out of if-then-else
			   expressions.
			   There was a previous comment which suggested that an empty
			   default case meant the case was exhaustive.  I think this
			   is a mistake which probably came from an early attempt at
			   improving the handling of ML pattern matching.  In fact
			   an expression such as
			   case x of Red=>.. | Green=>... | Blue => ...
			   which is exhaustive will result in the Blue clause being the
			   default case.  *)
            val noDefault  = case default of CodeNil => true | _ => false;
            val mergeResult = needsResult andalso not (isEndOfProc tailKind);
            
            (* Don't bother if the default is a constant and we don't
               actually want a result.  This occurs as a result of ifs
               without elses (in Poly) being converted into cases. *)
            val needsDefaultCase =
              not noDefault (* andalso
               (needsResult orelse not (isConstnt default)) *);
                
            (* SPF 14/9/94; for ML:  needsDefaultCase = not exhaustive *)
			(* DCJM: I think this is wrong.  The Case codetree entry is
			   constructed by the codetree optimiser out of if-then-else
			   expressions.  There are a very few instances of the ML code
			   producing the equivalent of if-then without an else but they
			   are all cas*)
			val U: unit = if noDefault andalso needsResult
				then raise InternalError "Case - no default" else ();
                
            val testValue = genToStack (test, matchFailFn);

            (* SPF 27/11/96 - merged values don't necessarily go into regResult *)
            val whereto : whereTo = chooseMergeRegister (transtable, whereto, tailKind);

            (* Count the total number of cases. *)
            fun countCases [] = 0
              | countCases ((caseExp : codetree, caseLabels : int list) :: cps) =
                List.length caseLabels + countCases cps;

	    (* This procedure decides whether to use a case instruction
	       or a comparison depending on whether the cases are sparse.
	       A more efficient algorithm, possibly using a binary chop,
	       should probably be used for the sparse cases. *)
	    fun caseCode (min:int) (max:int) (numberOfCases:int) [] : mergeResult =
	      (* Put in the default case. *)
	       if needsDefaultCase
	       then genToRegister (default, whereto, tailKind, matchFailFn, loopAddr)
	       else NoMerge (* Assume that we don't have a result. *)
	       
	     | caseCode (min:int) (max:int) (numberOfCases:int) (cp::cps) =
	       if useIndexedCase (min, max, numberOfCases, noDefault)
	       then let
		 val mark = markStack (transtable, cvec, mergeResult);
		 
		 (* Get exclusive use so that
		    indexedCase can modify the registers. *)
		 val (testReg, testIndex)  =
		 	loadEntry (cvec, transtable, testValue, true);
		 val U: unit = removeStackEntry (transtable, testIndex);
      
		 (* Need a work register. *)
		 val U : unit = lockRegister (transtable, testReg);
		 val workReg = getAnyRegister(transtable, cvec);
		 val U: unit = freeRegister (transtable, workReg);
		 val U : unit = unlockRegister (transtable, testReg);
      
		 val caseInstr : jumpTableAddrs = 
		   indexedCase (testReg, workReg, min, max, noDefault, cvec);
		   
		 val startOfCase = saveState (transtable, cvec);
      
		 (* Put in the default case, if there is one. *)
		 val defaultCase = startCase (transtable, cvec, startOfCase);
		 
		 val exitDefault =
		   if needsDefaultCase
		   then let
		     val defaultRes =
		       genToRegister (default, whereto, tailKind, matchFailFn, loopAddr);
		       
		    (* Optimisation: return immediately, if possible, rather than
		       jumping and then returning. This may turn the following
		       unconditional branch into dead code, in which case it
		       will be removed by the lower-level code generator.
		       SPF 25/11/96
		     *)
		     val U : unit =
		       if (isEndOfProc tailKind) andalso not (haveExited transtable)
		       then exit ()
		       else ();
		      
		     val lab =
		       unconditionalBranch (defaultRes, transtable, cvec);
		       
		     val U : unit =
		       case defaultRes of
			   	  MergeIndex defaultIndex =>
					removeStackEntry (transtable, defaultIndex)
				| NoMerge => ()
		   in
		     lab
		   end
		   else unconditionalBranch (NoMerge, transtable, cvec);

		 (* Generate the cases.  N.B.  We generate the list of
		    cases in reverse order.  makeJumpTable relies on this
			if we have any duplicates, which could arise if the
			higher level has turned an if-then-else into a case.
			e.g. if x = 1 then a else if x = 1 then b else c. *)
		 fun genCases ((caseExp, caseLabels) :: cps) ccl =
		 let
		   val caseAddr = startCase (transtable, cvec, startOfCase);
		   val mark = markStack (transtable, cvec, mergeResult);
		   
		   (* For each case label make an entry in the list.  Add
		      new entries at the beginning. *)
		   val newCaseList =
		      map (fn i => constrCases (i, caseAddr)) caseLabels
		      @ ccl;
			  
		   (* Generate this case and exit if tail-recursive. *)
		   val expResult =
		     genToRegister (caseExp, whereto, tailKind, matchFailFn, loopAddr);
		   
		   val U : unit =
		     if (isEndOfProc tailKind) andalso not (haveExited transtable)
		     then exit ()
		     else ();
		 in
		   if null cps
		   then
		   	  (
				(*  Finished. *)
				makeJumpTable (caseInstr, newCaseList, defaultCase, min, max, cvec);
				expResult (* Last expression. *)
			  )
		   else let
		     val lab = unconditionalBranch (expResult, transtable, cvec);
		       
		     val U : unit =
			 	case expResult of
					MergeIndex expIndex => removeStackEntry(transtable, expIndex)
				  | NoMerge => ();
      
		     val lastResult = genCases cps newCaseList;
		   in
		     (* Now fix up the exit label. *)
		     merge (lab, transtable, cvec, lastResult, mark)
		   end
		 end
		 | genCases [] _ = 
		 	  raise InternalError "genCase - null case list"; (* genCases *)

		 val caseResult = genCases (cp::cps) []
	       in
		 merge (exitDefault, transtable, cvec, caseResult, mark)
	       end (* useIndexedCase *)
      
	      else let
		(* Don't use indexing. *)
		val mark  = markStack (transtable, cvec, mergeResult);
		
		val lastCase = noDefault;
		val lastTest = null cps;
      
		(* If this is not the last test we increment the use count for
		   the case expression so that it will not be thrown away.
		   We need to do this because we're converting the case
		   expression, which has a single "last reference" marker
		   into a series of if-then-elses. *)
		val U : unit =
		  if not lastTest
		  then incrUseCount (transtable, testValue, 1)
		  else ()

		(* Compare the value with each of the case labels for this
		   case. Returns the label jumped to if none of the cases
		   match. *)
		fun putInCases [] =
		      raise InternalError "putInCases has no cases"
		
		  | putInCases [x] =
		      (* last one - skip if value does not match. *)
		     let
		       val locn = pushConst (transtable, toMachineWord x);
		     in
		       (* should do arbitrary precision test here? Yes. *)
		       compareAndBranch (testValue, locn,
			 testNeqA, testNeqA, transtable, cvec)
		     end 
				     
		 | putInCases (x :: xs) =
		   let
		     (* More than one. If this one matches skip the
			other tests. *)
		     val mark = markStack (transtable, cvec, mergeResult);
		     
		     (* Increment the use count so it doesn't get
			thrown away. *)
		     val U    = incrUseCount (transtable, testValue, 1);
		     val locn = pushConst (transtable, toMachineWord x);
		     val lab  = 
		       (* should do arbitrary precision test here???? SPF *)
		       compareAndBranch (testValue, locn,
			 testEqA, testEqA, transtable, cvec);
      
		     (* Drop through to other tests if it does not match. *)
		     val rLab = putInCases xs;
		   in
		     merge (lab, transtable, cvec, NoMerge, mark);
		     rLab
		   end; (* putInCases *)
		   
		val (caseExp : codetree, caseLabels : int list) = cp;
		
		val lab = putInCases caseLabels;

		(* If we have incremented the use count on the
		   test value we need to decrement it here.  That's
		   because on this branch we are not going to test it
		   again.  DCJM 7/12/00. *)
		val U : unit =
		  if not lastTest
		  then incrUseCount (transtable, testValue, ~1)
		  else ()
      
		(* Generate this case and exit if tail-recursive. *)
		val thisCaseRes =
			genToRegister (caseExp, whereto, tailKind, matchFailFn, loopAddr);
      
		val U : unit = 
		  if isEndOfProc tailKind andalso not (haveExited transtable)
		  then exit () 
		  else ();
		  
		(* Jump round the other cases. *)
		val lab1 = unconditionalBranch (thisCaseRes, transtable, cvec);
		
		(* remove result of this case from pstack *)
		val U : unit =
		  case thisCaseRes of
		  	MergeIndex resIndex => removeStackEntry(transtable, resIndex)
		  | NoMerge => ();
      
		(* Do the other cases. *)
		val U : unit = fixup (lab, transtable, cvec);
	       
		val caseResult =
			if lastCase
		    then thisCaseRes
			else caseCode min max (numberOfCases - List.length caseLabels) cps
	      in
		(* Merge all the results together. *)
		merge (lab1, transtable, cvec, caseResult, mark)
	      end (* caseCode *);

            val result = caseCode min max (countCases cases) cases;

            (* v2.08 code-generator no longer clears the cache here *)
            (* val U : unit = clearCache transtable; *)
         in
           result 
         end      

        | MutualDecs dl =>
          let
            (* Mutually recursive declarations. For the moment assume
               that these can only be procedures. Recurse down the list
               pushing the addresses of the closure vectors or forward
               references to the code, then unwind the recursion and fill
               in closures or compile the code. *)
            fun genMutualDecs []      = ()
              | genMutualDecs ((Declar{value=dec, addr, references, ...})::ds) =
              (
			  	case dec of
					Lambda (lam as { makeClosure,...}) =>
                  let
                  val discard =
                    genProc
                      (lam,
                       (* This procedure is called once the closure has been
                          created but before the entries have been filled in. *) 
                       fn (r : stackIndex) =>
						 let
						   val U : unit =
						     makeEntry (transtable, cvec, r, addr,
							        references, not makeClosure);
						 in (* Now time to do the other closures. *)
						    genMutualDecs ds
						 end,
                       null ds, (* Last one? *)
                       ToPstack,
                       matchFailFn)
	                in
	                  ()
	                end
                 | _ =>
					let (* should only be constants i.e. procedures already compiled. *)
					  val U : unit =
 	                   makeEntry (transtable, cvec, genToStack (dec, matchFailFn),
                               addr, references, false);
	                in
	                  genMutualDecs ds
	                end
              ) (* genMutualDecs *)
              | genMutualDecs (_) =
			  	raise InternalError "genMutualDecs - Not a declaration";
              
            val U : unit = genMutualDecs dl;
          in
            NoMerge (* Unused. *)
          end

        | Recconstr reclist =>
            let
              val vecsize = List.length reclist;
            in
              if vecsize = 0 (* shouldn't occur *)
              then MergeIndex(pushConst (transtable, UnitValue))
                
              (* This code used to allocate a mutable vector for
                 large (more than 5 word) allocations. The idea
                 of this was to avoid calculating the values onto
                 the stack. It didn't work, because the values
                 have already been calculated by the time we get
                 here. Furthermore, mutable allocations are
                 more expensive (especially when we move the
                 responsiblity for zeroing the heap from the RTS
                 to the compiler), so I've now deleted this code.
                 SPF 22/10/96
              *)
              else let 
	                (* Since the vector is immutable, we have to evaluate
	                   all the values before we can allocate it. *)    
				fun loadSmallVector []     byteOffset = 
				       callgetvec (vecsize, F_words, whereto)
				       
				  | loadSmallVector (h::t) byteOffset =
				  let
				    val v   = genToStack (h, matchFailFn);
				    val vec = loadSmallVector t (byteOffset + wordSize)
				    val U : unit =
				      moveToVec (vec, v, byteOffset, STORE_WORD, cvec, transtable)
				  in
				    vec
				  end;
				val vec : stackIndex = loadSmallVector reclist 0;
		                (* we have to make sure that the code-generator is not going to
		                  reorder the instructions so an instruction which might trap
		                  is put in the sequence of loads. *)
				val U : unit = completeSegment cvec;
		      in
				MergeIndex vec
		      end
            end
	    
        | Container size =>
			(* Reserve a number of words on the stack for use as a tuple on the
			   stack.  The result is the address of this space. *)
			MergeIndex(reserveStackSpace(transtable, cvec, size))

        | SetContainer{container, tuple, size} =>
			(* Copy the contents of a tuple into a container. *)
			let
				val vec = genToStack (container, matchFailFn);
			in
				case tuple of
					Recconstr cl =>
						(* Simply set the container from the values. *)
					let
						fun setValue(v, byteOffset) =
						let
							val entry = genToStack (v, matchFailFn)
						in
							(* Move the entry into the container.  Does not affect the
							   use count for the container entry. *)
							moveToVec (vec, entry, byteOffset, STORE_WORD, cvec, transtable);
							byteOffset + wordSize
						end
					in
						List.foldl setValue 0 cl;
						()
					end

				|	_ =>
					let
						val tup = genToStack (tuple, matchFailFn);
		
						fun copy n =
						if n = size
						then ()
						else
						let
							(* We need to ensure that the tuple entry is only removed
							   when we load the last item from it. *)
							val byteOffset = n * wordSize
							val _ =
								if n = size - 1
								then ()
								else incrUseCount(transtable, tup, 1)
							val entry = indirect (byteOffset, tup, cvec, transtable)
						in
							moveToVec (vec, entry, byteOffset, STORE_WORD, cvec, transtable);
							copy (n+1)
						end
					in
						copy 0
					end;

				removeStackEntry(transtable, vec); (* Free the container entry. *)
				(* Return a void result if necessary. *)
				if isNoResult whereto then NoMerge
				else MergeIndex(pushConst (transtable, DummyValue))
			end

        | TupleFromContainer(container, size) =>
			(* Create a tuple from the contents of a container. *)
			let
				val vec = genToStack (container, matchFailFn);
				val tup = callgetvec (size, F_words, whereto);

				fun copy n =
					if n = size
					then ()
					else
					let
						(* We need to ensure that the container entry is only removed
						   when we load the last item from it. *)
						val byteOffset = n * wordSize
						val _ =
							if n = size - 1
							then ()
							else incrUseCount(transtable, vec, 1)
						val entry = indirect (byteOffset, vec, cvec, transtable)
					in
						moveToVec (tup, entry, byteOffset, STORE_WORD, cvec, transtable);
						copy (n+1)
					end
			in
				copy 0;
				MergeIndex tup (* Result is the tuple. *)
			end

        | CodeNil => 
            raise InternalError "gencde: can't code-generate CodeNil value"

        | Global _ =>
            raise InternalError "gencde: can't code-generate Global value";
    in 
      result
    end (* gencde *) 

    (* Generate an expression putting the result in any register, and return
       the location of it on the stack. *)
    and genToStack (pt : codetree, matchFailFn) : stackIndex =
		let
			val res = gencde (pt, true, ToPstack, NotEnd, matchFailFn, NONE)
		in
			case res of
				MergeIndex index => index
			  | NoMerge => raise InternalError "genToStack: no result"
		end

    (* Generate an expression, with a hint that it should go into
       an argument register. SPF 15/8/96 *) 
    and genArg (argNo : int, pt, matchFailFn) : stackIndex =
    let
      val whereto = if argNo < argRegs then ToReg (argReg argNo) else ToPstack
      val res = gencde (pt, true, whereto, NotEnd, matchFailFn, NONE)
    in
			case res of
				MergeIndex index => index
			  | NoMerge => raise InternalError "genArg: no result"
    end

(* ...
   (* Used when the result must be put in a register. *)
   and genToResult (pt, whereto, tailKind, matchFailFn, loopAddr) : unit =
   let
     (* Stack results are forced into result register *)
     val toWhere = if isToPstack whereto then ToReg regResult else whereto;
	 
     val result = gencde (pt, true, toWhere, tailKind, matchFailFn, loopAddr);
   in
     (* If we need a result put it in the result reg.  We request exclusive use
	of it because otherwise there is a problem when merging the results
	of an if-then-else if the result register is somewhere else on the
	pstack (e.g. let a == ...; if ... then a else ...) *)
      case toWhere of
        ToReg rr => loadToSpecificReg (cvec, transtable, rr, result, true)
      | _        => ()
   end (* genToResult *)
... *)

   (* Used when the result must be put in a register. *)
   and genToRegister (pt, whereto, tailKind, matchFailFn, loopAddr) : mergeResult =
   let
     val result : mergeResult =
	 	gencde (pt, true, whereto, tailKind, matchFailFn, loopAddr);
   in
     (* If we need a result put it in the result reg.  We request exclusive use
	of it because otherwise there is a problem when merging the results
	of an if-then-else if the result register is somewhere else on the
	pstack (e.g. let a == ...; if ... then a else ...),
	
	If we're at the end of a function, we're not merging, so we don't need
	exclusive use. However, I don't think we actually save anything by trying
	to make use of this fact so let's just be naive.
	SPF 27/11/96
      *)
      case whereto of
        NoResult => NoMerge
      | ToReg rr =>
	  	  (
		  	case result of
				MergeIndex index =>
					MergeIndex(loadToSpecificReg (cvec, transtable, rr, index, true))
		      | NoMerge => raise InternalError "genToRegister: no result"
		  )
      | ToPstack => raise InternalError "genToRegister: not a register"
   end (* genToRegister *)

    (* `mutualRecursive' is only used for mutually recursive procedures
       where a procedure may not be able to fill in its closure if it does
       not procedure address has been pushed but before the code is generated. 
       `lastDec' is true if there are no more mutually recursive declarations.
    *)
    and genProc ({ closure=closureList, makeClosure, name=lambdaName,
				   body=lambdaBody, numArgs, closureRefs, ... }: lambdaForm,
				 mutualRecursive, lastDec, whereto, matchFailFn) =
    let
      fun allConstnt [] = true
        | allConstnt (Constnt _ :: t) = allConstnt t
		| allConstnt _ = false;

      (* Finds the nth. item in the closure and returns the entry *)
      fun findClosure (h::t) 1 = (* found it *) h
		| findClosure (h::t) n = findClosure t (n - 1) 
		| findClosure _      _ = raise InternalError "findClosure";
    in
      if not makeClosure
      then let (* static link form *)
        (* If a procedure can be called by static link references then
           non-locals can be loaded by following the static chain. The offset
           is the entry in the (pseudo-)closure as with a procedure that
           requires a closure, but these can be translated into real stack
           offsets. A stack value which is loaded into a real or pseudo closure
           always has that load treated as one reference as far as the use
           counts are concerned, even though it may be loaded several times
           in an inner procedure or by different calls. `pushNonLocal' must
           not decrement the use count so that the stack values remain on the
           stack to be referenced by the procedure, and are only removed when
           the containing block is removed. *)
        val newCode = codeCreate (true (* just the code *), lambdaName, debugSwitches);
        
        (* Generates code for non-local references or recursive references. *)
        fun previous (prevloc, makeSl, newtab, cvec) =
		(* Although directly-recursive references do not involve calls to
		  `previous' (the only directly-recursive references are recursive
		  calls and they are dealt with in `loadSl') they may be produced
		  as "kill entries" whose only effect is to indicate that the
		  closure/static-link register is no longer required on a particular
		  flow of control.  DCJM 2/12/99. *)
		if prevloc = 0 then makeSl()
		else
        let
          (* The closure entry will usually be an Extract, but may have been
             compiled down to a real constant. This wouldn't happen if earlier
             phases were better at keeping constants out of closures (but that
             requires "sophisticated" analysis of mutually recursive
             declarations). SPF 8/3/96
             
             We have to ensure that the constant value gets pushed onto
             "newtab" NOT "transtable", as otherwise we get very confusing
             bugs - as I found out the hard way! SPF 12/3/96
          *)
          val closureEntry = findClosure closureList prevloc;
        in
          case closureEntry of
            Constnt w =>
	      (* Should we decrement the use count for closureOrSlAddr here?
			 Probably, but I'm not yet absolutely convinced that it's
			 safe, so I'm going to do nothing (carefully). I'll have
			 to come back and look at this again later.
			 SPF 2/5/97
	       *)
              pushConst (newtab, w) (* SPF 8/3/96 *)
              
          | Extract {fpRel = true, addr = locn, ...} => (* argument or on stack *)
		      if locn < 0 (* argument *)
		      then let
				val argOffset = numOfArgs + locn;
		      in
				if argOffset < argRegs
				then pushNonLocal (transtable, newtab, Array.sub (argRegTab, argOffset), makeSl, cvec)
				else indirect (~locn * wordSize, makeSl (), cvec, newtab)
		      end
		      else (* on the stack *)
				pushNonLocal (transtable, newtab, pstackForDec (transtable, locn), makeSl, cvec)
		 
          | Extract {fpRel = false, addr = locn, lastRef, ...} => (* Try the next level *)
		      declOnPrevLevel
				(locn,
				 fn () =>
				 	pushNonLocal (transtable, newtab, closureOrSlAddr, makeSl, cvec),
				 newtab,
				 cvec)
		 
          | _ =>
             raise InternalError "previous: bad codetree in closure"
        end;

        (* Returns true if the procedure is to be called with a static link *)
        fun isSl prevloc =
          if prevloc = 0 then true (* Recursive call. It's this procedure *)
          else let (* Not directly recursive. *)
            val closureEntry = findClosure closureList prevloc;
          in
            (* 
               We may have already compiled a "mutually recursive" function
               to a constant, if it doesn't actually depend on this one.
               (This wouldn't occur if the earlier stages were better at
               removing such fake dependencies.)
               SPF 8/3/96
               
               If the constant is a closure, it doesn't need a static link;
               if it's a pure code segment, it may do. Is it safe to
               assume that it does?
               SPF 10/4/96
            *)
            case closureEntry of
              Constnt (w : machineWord) => isCode (toAddress w)

            | Extract {fpRel = true, addr = correctedLoc, ...} =>
		        correctedLoc > 0 andalso isProcB (transtable, correctedLoc)
              
            | Extract {fpRel = false, addr = correctedLoc, ...} =>
                isStaticLink correctedLoc (* Non-local *)
            
            | _ =>
               raise InternalError "isSl: bad codetree in function closure"
          end;
         
        (* Loads the static link if the procedure is called with one
           and returns the entry point of the procedure on the stack. *)
        fun loadSl (prevloc, makeSl, callingTab, callingCvec): stackIndex*stackIndex =
          if prevloc = 0
          then let (* Recursive call. *)
            val sl = makeSl(); (* Push the static link. *)
            val closureIndex =  (* Load into regClosure *)
              loadToSpecificReg (callingCvec, callingTab, regClosure, sl, false);
          in
             (* And push the address of this procedure as the entry point. *)
            (pushCodeRef (callingTab, newCode), closureIndex)
          end

          else (* Non-recursive. *)
		  	case findClosure closureList prevloc of
				Extract { addr=correctedLoc, fpRel, lastRef, ...} =>
	            if fpRel
	            then (* On this level *)
					let
						val closureIndex =
							(* Load closure/sl register with the static link. *)
							loadToSpecificReg (callingCvec, callingTab,
								regClosure, makeSl(), false)
						val procAddr =
							(* Get the address of the procedure. *)
							previous (prevloc, makeSl, callingTab, callingCvec)
				  	in
						(procAddr, closureIndex)
					end
	            else (* Non-local *)
	              loadStaticLink 
	                (correctedLoc,
	                 fn () => pushNonLocal (transtable, callingTab, 
	                             closureOrSlAddr, makeSl, callingCvec),
	                 callingTab,
	                 callingCvec)
			| _ => raise InternalError "loadSl - closure not extract"
          (* loadSl *);

        (* Returns the register set for a static link function. *)
        fun slRegSet prevloc =
          if prevloc = 0 then allRegisters (* Recursive call - all registers. *)
          else let (* Not directly recursive. *)
            val closureEntry = findClosure closureList prevloc;
          in
            case closureEntry of
              Constnt (w : machineWord) => getRegisterSet w
            | Extract {fpRel = true, addr, ...} =>
				if addr > 0
				then getFunctionRegSet(pstackForDec (transtable, addr), transtable)
				else raise InternalError "slRegSet: argument"
            | Extract {fpRel = false, addr, ...} =>
                staticLinkRegSet addr (* Non-local *)
            | _ =>
               raise InternalError "slRegSet: bad codetree in function closure"
          end;
		
        (* Make sure all the closure values in registers are on the stack,
		   in case they are used as non-locals.  Changed this from the
		   original code which pushed everything. DCJM 30/11/00. *)
		local
			fun pushClosure (Extract{fpRel=true, addr, ...}) =
				(* Local *)
			  if addr < 0
		      then let
				val argOffset = numOfArgs + addr;
		      in
				if argOffset < argRegs
				then pushSpecificEntry(transtable, cvec,
							Array.sub (argRegTab, argOffset))
				else ()
		      end
		      else (* on the stack *)
			    pushSpecificEntry(transtable, cvec,
						pstackForDec (transtable, addr))
			| pushClosure (Extract{fpRel=false, ...}) =
					(* Non-local or recursive reference: make sure the closure/static
					   link pointer is on the stack. *)
				(
				if discardClosure
				then () (* May not have a closure/sl. *)
				else pushSpecificEntry(transtable, cvec, closureOrSlAddr)
				)
			| pushClosure _ = () (* Constant. *)
			
		in
			val _ = List.app pushClosure closureList
		end;
         
        (* Push a forward reference to the code in case of mutually
           recursive references.  This is left as the result for normal
           references. *)
		val result = pushCodeRef (transtable, newCode);
		val U = mutualRecursive result; (* Any recursive references. *)
		(* Now code-generate the procedure, throwing away the result which
		   will be put into the forward reference. *)
		val discard : address = 
		  codegen
		   (lambdaBody,
		    newCode,
		    previous,
		    isSl,
		    loadSl,
			slRegSet,
		    false,  (* Presumably we need the static link, so don't discard regClosure. *)
		    numArgs, 
		    closureRefs,
            debugSwitches);
		(* Note: we could sometimes discard the static link, but it's difficult
		   to work out when this would be safe. That's because it would be unsafe
		   if loadSl were ever called. This is in contrast to the "closure" case below,
		   where loadSl is never called, so we can just check that the immediate closure
		   contains only constants. 
		   SPF 2/5/97
		*)
      in
		result
      end
     
      (* This is how DCJM optimises self-calls - rather than use
         "previous" to find out-of-scope references, he knows
         that the only such reference can be the closure itself,
         and so returns it as a codeRef. Treating the closure as
         a constant allows him to release closureReg (by setting
         its useCount to zero). I've removed that optimisation,
         and pick up self-references directly. This should allow
         a more general treatement eventually. SPF 20/5/95.
         
         Oops - we can have recursive references to the function
         that are not just simple calls (e.g. embedding it in
         a data-object). In such cases, we must store the
         closure in the constants section (since we've thrown
         away the copy that was in the closure register!).
         SPF 30/5/95.
         
         I've replaced the "isNil (lambdaClosure lam)" test with
         a test that all the items in the closure are constants.
         I've had to modify the "previous" code slightly, so that
         it can tell the difference between a load of a constant
         from the closure (translated into a load from the constants
         section) and a recursive reference to the closure itself.
         Later, we might want extend this by allowing codeRefs, not
         just pre-compiled constants and indirections, in the (logical)
         closure. SPF 2/5/97
       *)  
      else if allConstnt closureList
        (* Procedure with no non-local refererences. *)
        then let 
         (* The only non-local references will be constants and references
            to the closure itself. We have to fetch these from the constants
            section because:
              (1) we don't save the closure register in the function body
              (2) we don't even initialise it if we use the PureCode
                  calling convention
            SPF 2/1/97
          *)
          val newCode = codeCreate (false (* make a closure *), lambdaName, debugSwitches);

          (* Should "previous" decrement the reference count for closureOrSlAddr?
             Probably, but I'm not quite sure that it's safe yet. It would be
             better to set discardClosure anyway so that we don't tie up a register
             in the first place, but for now I'll do nothing (carefully).
             SPF 2/5/97
          *)
          fun previous (locn, _, newtab, code) =
            if locn = 0
            then  (* load the address of the closure itself *)
              pushCodeRef (newtab, newCode)
            else (* load a constant (item locn of the logical closure) *)
				case findClosure closureList locn of
					Constnt cval => pushConst (newtab, cval)
				 | _ => raise InternalError "previous: closure not constant";
          
          val closureAddr : address = 
		    codegen 
		     (lambdaBody,
		      newCode,
		      previous,
		      fn n => false,
		      fn (t,  _, newtab, code) => raise InternalError "Not static link",
		      fn _ => raise InternalError "Not static link",
		      true, (* Discard regClosure *)
		      numArgs,
		      closureRefs,
              debugSwitches);
                
          val result = pushConst (transtable, toMachineWord closureAddr);
          
          val U : unit = mutualRecursive result;
        in
          result
        end
        
      else let (* Full closure required. *)
        (* Item n of the logical closure is which item of the physical closure? *)
        fun translateClosureIndex (Constnt _ :: t) 1 =
              raise InternalError "translateClosureIndex: constants don't belong in physical closure"

          | translateClosureIndex (h :: t) 1 = 1
          
          | translateClosureIndex (Constnt _ :: t) n =
              translateClosureIndex t (n - 1)

          | translateClosureIndex (h :: t) n =
              translateClosureIndex t (n - 1) + 1
              
          | translateClosureIndex [] _ = 
              raise InternalError "translateClosureIndex: bad index into logical closure"
      
	(* Some of the non-local references will be references to the
	   closure itself (for example, to embed it into a data-structure).
	   We have to treat these slightly specially. They're still handled
	   in the normal way by the reference-counting mechanism, so
	   we don't have to do anything *too* clever here.
	   SPF 2/1/97
	   
	   If we're accessing a known constant in the closure, load it
	   from the constants section rather than from the closure itself.
	   Should we decrement the reference count for closureOrSlAddr
	   here? Probably, but I'm not yet entirely sure that it would be safe.
	   SPF 6/5/97
	 *)
        fun previous (locn, makeSl, newtab, cvec) =
          if locn = 0
          then makeSl () (* load the address of the closure itself *)
          else let
            val closureItem = findClosure closureList locn;
          in
		  	case closureItem of
				Constnt cval =>
					pushConst (newtab, cval) (* load the value as a constant *)
			  | _ =>
            let
              val newLocn : int = translateClosureIndex closureList locn 
              val sl : stackIndex = makeSl (); (* load the closure *)
            in
              indirect (newLocn * wordSize, sl, cvec, newtab) (* load value from the closure *)
            end
          end;
        
        val newCode = codeCreate (true (* just the code *), lambdaName, debugSwitches);
        
        val codeAddr : address = (* code-gen procedure *)
		  codegen 
		   (lambdaBody,
		    newCode,
		    previous,
		    fn i => false,
		    fn (n ,  _, tt, code) => raise InternalError "Not static link",
		    fn _ => raise InternalError "Not static link",
		    false, (* We need regClosure *)
		    numArgs,
		    closureRefs,
            debugSwitches);
		
        val res : machineWord = toMachineWord codeAddr;
      in
        if lastDec
        then let
          (* Can avoid having to set and clear the mutable bit. *)
          (* Load items for the closure. *)
          
          (* Compare with the code for Recconstr *)  
          fun loadItems [] offset =
		    let
		      (* get store for closure *)
		      val vector = callgetvec (offset, F_words, whereto)
		    in
		      (* Put code address into closure *)
			  moveToVec (vector, pushConst (transtable, res), 0, STORE_WORD, cvec, transtable);
		      vector
		    end
            
            | loadItems (Constnt _ :: t) offset =
              	(* constants don't belong in the physical closure *)
              	loadItems t offset

            | loadItems (h :: t) offset =
              let
				val valIndex : stackIndex = genToStack (h, matchFailFn);
				val vec = loadItems t (offset + 1)
		      in
			    moveToVec (vec, valIndex, offset * wordSize, STORE_WORD, cvec, transtable);
				vec
		      end;
              
          val vector = loadItems closureList 1;
          
        in
          (* Prevent any traps before the last store. *)
          completeSegment cvec;
          (* Have to call this mutualRecursive to register the address. *)
          mutualRecursive vector; 
          vector
        end
         
        else let
         (* 
            More mutually recursive declarations. We have to allocate as a
            mutable segment and then clear the mutable bit. We no longer need
            to explicitly clear the closure, because that is now handled by the
            allocation routine in the low-level code generator. SPF 21/11/96
           *)
          
          fun nonConstntCount [] = 0
            | nonConstntCount (Constnt _ :: t) = nonConstntCount t
            | nonConstntCount (h :: t) = nonConstntCount t + 1;
           
          val closureSize = nonConstntCount closureList + 1;
          
          (* get store for closure *)
          val vector  = callgetvec (closureSize, F_mutable_words, whereto);
          
          (* Put code address into closure *)
          local
            val locn = pushConst (transtable, res);
          in
            val U : unit = moveToVec (vector, locn, 0, STORE_WORD, cvec, transtable);
          end;

          local
	    (*
	       Must clear each word of the closure in case we get a
	       garbage collection. We didn't use to need this on AHL RTS,
	       because the RTS initialised the store itself, but we've
	       now removed this major overhead. Then we didn't need it
	       because CODECONS always initialised mutable allocations,
	       but that's not a good way to do refs, so I've reinstated
	       this code. SPF 11/12/96
	       
	       We would like use binary zero rather than DummyValue (tagged 0),
	       here since we could generate better code for it on some
	       machines (e.g. the SPARC), but the lower-level code generator
	       doesn't expect to see this (non) value, and it actually causes
	       a core dump. SPF 11/12/96
	    *)
            val locn = pushConst (transtable, DummyValue);
            val wordsToClear : int = closureSize - 1;
            val U : unit = incrUseCount (transtable, locn, wordsToClear -1);
           
            (* N.B. moveToVec doesn't count as a use of vector. *)
            fun storeWord i = 
              moveToVec (vector, locn, i * wordSize, STORE_WORD, cvec, transtable)
          in
            val U : unit = forLoop storeWord 1 wordsToClear
          end;
          
          (* Have to ensure that the closure remains on the psuedo-stack until
             we've filled in all uses of it. The only references may be in the
             closures of other procedures so it's possible that its use-count
             could be zero when `mutualRecursive' returns. Have to  increment
             the use-count and then decrement it afterwards to make sure it
              is still on the stack. *)
          val U : unit = incrUseCount (transtable, vector, 1);
	
	          (* Any mutually recursive references. *)
		  val U : unit = mutualRecursive vector;
		   
	          (* Load items for the closure. *)
		  fun loadItems []     addr = ()
		    | loadItems (Constnt _ ::t) addr =
				(* constants don't belong in the physical closure *)
				loadItems t addr
		    | loadItems (h::t) addr =
		    let 
		      val U : unit =
		        moveToVec (vector, genToStack (h, matchFailed), addr, STORE_WORD, cvec, transtable);
		    in
		      loadItems t (addr + wordSize)
		    end;
	
		  val U : unit = loadItems closureList wordSize;
		  val U : unit = lockSegment (vector, F_words);
		  val U : unit = incrUseCount (transtable, vector, ~1);
		in
		  vector
        end
      end
    end (* genProc *)

    (* Generates test for if..then..else or while..do. Returns address of address field of jump.
       If jumpOn is true the jump is taken if the condition is true,
       if false it is taken if the condition is false. *)
    and genTest (pt, jumpOn, matchFailFn) : labels =
    let (* See if we can generate a conditional instruction. *)
      (* Those we can't deal with specially are evaluated to the stack and tested. *)
      fun genOtherTests () =
      let
        val top = gencde (pt, false, ToPstack, NotEnd, matchFailFn, NONE);
         (* Compare the result with false (tagged (0))
            and skip if it does not match. *)
        val tst = if jumpOn then testNeqW else testEqW;
        val constFalse = pushConst (transtable, False);
      in
	  	case top of
			MergeIndex topIndex =>
				compareAndBranch (topIndex, constFalse, tst, tst, transtable, cvec)
		  | NoMerge => raise InternalError "genTest: No result"
      end (* genOtherTests *);
    in
      case pt of
        Cond (testPart, thenPart, elsePart) =>
        let
		  val mark1 = markStack (transtable, cvec, false);
		  val mark2 = markStack (transtable, cvec, false);
		  
		  (* Test the condition part. *)
		  val a : labels = genTest (testPart, false, matchFailFn)
		in
		  if isEmptyLabel a
		  then (* The test evaluated to true.  We must only generate
		          the then-part.  This is more than an optimisation.
				  "Nojump" does not set the correct state for the
				  else-part which can cause problems. *)
		  	 (
			 unmarkStack(transtable, mark2);
			 unmarkStack(transtable, mark1);
			 genTest (thenPart, jumpOn, matchFailFn)
			 )
		  else if haveExited transtable
		  then (* Unconditional jump.  Only need the else-part. *)
		  	 (
			 unmarkStack(transtable, mark2);
			 unmarkStack(transtable, mark1);
			 fixup (a, transtable, cvec);
			 genTest (elsePart, jumpOn, matchFailFn)
			 )
		  else
		  let
			  
			  (* Now the `then-part' *)
			  val b : labels = genTest (thenPart, jumpOn, matchFailFn);
			  
			  (* Put in an unconditional jump round the `else-part'.
			     This will be taken if the `then-part' drops through. *)
			  val notB = unconditionalBranch (NoMerge, transtable, cvec);
			  
			  (* Fill in the label for the then-part part. *)
			  val U : unit = fixup (a, transtable, cvec);
			  
			  (* Now do the `else-part' and jump on the inverse of the condition. *)
			  val notC = genTest (elsePart, not jumpOn, matchFailFn);
			  
			  (* i.e. we drop though if the condition is the one we should have
			     jumped on. Now merge in the first label so we have both cases
			     when we should jump together, *)
			  val U = merge (b, transtable, cvec, NoMerge, mark2);
			  
			  (* and now take the jump. *)
			  val resultLab = unconditionalBranch (NoMerge, transtable, cvec);
			  
			  (* Come here if we are not jumping. *)
			  val U : unit = fixup (notB, transtable, cvec);
			  val U = merge (notC, transtable, cvec, NoMerge, mark1);
			in 
			  resultLab
			end
		end

        (* Simple Cases generate better jumping code like this,
           rather than creating a boolean return value, then testing it
           and jumping on the result. We could be less special-case here,
           but this particular case is exceptionally important for
           handling inlined selector functions. SPF 24/2/1998
        *)
      | Case {cases = [(result, [tag])], test, default, min, max} =>
        let
          val equalFun  : codetree = Constnt (ioOp POLY_SYS_equala);
          val arguments : codetree list = [test, Constnt (toMachineWord tag)];
          val eqTest    : codetree = 
             Eval {function = equalFun, argList = arguments, earlyEval = true};
        in
          genTest (Cond (eqTest, result, default), jumpOn, matchFailFn) 
        end

      (* Constants - primarily for andalso/orelse. *)
      | Constnt w =>
          (* If true and we jump on true or false and jump on false *)
          (* then put in an unconditional jump. *)
          if wordEq (w, True) = jumpOn
          then unconditionalBranch (NoMerge, transtable, cvec)
          else noJump (* else drop through. *)

      | Newenv vl =>
      let (* Blocks and particularly inline procedures. *)
        (* Process the list up to the last item with "gencde",
           and the last item with "genTest". *)
        fun codeBlock []       = noJump
          | codeBlock [h]      = genTest (h, jumpOn, matchFailFn)
          | codeBlock (h :: t) = 
          let
            val U : mergeResult =
				gencde (h, true, NoResult, NotEnd, matchFailFn, NONE);
          in
            codeBlock t
          end;
      in
        codeBlock vl 
      end

      | Eval {function = Constnt oper, argList = args, ...} =>
      (* May be an interface operation which can be put in line. *)
      let
        (* Generate a compare instruction. *)
        fun genCompare (arg1, arg2, t, f, ti, fi) =
        let
          val test    = if jumpOn then t  else f;
          val revTest = if jumpOn then ti else fi;
        in
		  (* Check that the instruction is implemented.
		     N.B. if the first argument is a constant we will use
		     the reversed instruction.  It may only be implemented
		     for constant values so it is not sufficient to check that
		     the general form is implemented. *)
		   if isCompRR test orelse
		     (case arg1 of Constnt w => isCompRI (revTest, w) | _ => false) orelse
		     (case arg2 of Constnt w => isCompRI (test, w)    | _ => false)
		   then let (* Generate the instruction and get the direction. *)
		     val locnOfArg1 = genToStack (arg1, matchFailFn);
		     val locnOfArg2 = genToStack (arg2, matchFailFn);
		   in
		     compareAndBranch (locnOfArg1, locnOfArg2, test, revTest, transtable, cvec)
		   end
		   else genOtherTests () 
		end (* genCompare *);

      in
        case args of
		  [] => (* We don't currently have any nullary special cases *)
		     genOtherTests ()
	      
        | [arg] =>
            (* unary special cases *)
	    if wordEq (oper,ioOp POLY_SYS_not_bool)
	      then genTest (arg, not jumpOn, matchFailFn)
    
	    else if wordEq (oper,ioOp POLY_SYS_is_short)
	    then
	    (
	      case arg of
		Constnt (w : machineWord) =>
		  if isShort w
		  then genTest (constntTrue,  jumpOn, matchFailFn)
		  else genTest (constntFalse, jumpOn, matchFailFn)
		
	      (* Since "isShort" is a monadic operation we pretend that
		 it has a second argument of 0. *)
	      | _ =>
		if isCompRI (Short, Zero)
		then let
		  val locnOfArg1 = genToStack (arg, matchFailFn);
		  val locnOfArg2 = pushConst (transtable, Zero);
		  val testOp     = if jumpOn then Short else Long;
		in
		  compareAndBranch
		    (locnOfArg1, locnOfArg2, testOp, testOp, transtable, cvec)
		end
		else genOtherTests ()
	    )
            
        else (* Non-special unary function.*)
              genOtherTests ()
           
        | [arg1, arg2] =>
            (* binary special cases *)
	    if wordEq (oper,ioOp POLY_SYS_int_eq) (* intEq (tag tests) *)
	      then genCompare (arg1, arg2, testEqW, testNeqW, testEqW, testNeqW)
    
	    else if wordEq (oper,ioOp POLY_SYS_int_neq) (* intNeq (tag tests) *)
	      then genCompare (arg1, arg2, testNeqW, testEqW, testNeqW, testEqW)
	      
	    else if wordEq (oper,ioOp POLY_SYS_word_eq)
	      then genCompare (arg1, arg2, testEqW, testNeqW, testEqW, testNeqW)
	      
	    else if wordEq (oper,ioOp POLY_SYS_word_neq)
	      then genCompare (arg1, arg2, testNeqW, testEqW, testNeqW, testEqW)
	      
	    else if wordEq (oper,ioOp POLY_SYS_equala)
	      then genCompare (arg1, arg2, testEqA, testNeqA, testEqA, testNeqA)
	      
	    else if wordEq (oper,ioOp POLY_SYS_int_geq)
	      then genCompare (arg1, arg2, testGeqA, testLtA, testLeqA, testGtA)
	      
	    else if wordEq (oper,ioOp POLY_SYS_int_leq)
	      then genCompare (arg1, arg2, testLeqA, testGtA, testGeqA, testLtA)
	      
	    else if wordEq (oper,ioOp POLY_SYS_int_gtr)
	      then genCompare (arg1, arg2, testGtA, testLeqA, testLtA, testGeqA)
	      
	    else if wordEq (oper,ioOp POLY_SYS_int_lss)
	      then genCompare (arg1, arg2, testLtA, testGeqA, testGtA, testLeqA)
	      
	    else if wordEq (oper,ioOp POLY_SYS_word_geq)
	      then genCompare (arg1, arg2, testGeqW, testLtW, testLeqW, testGtW)
	      
	    else if wordEq (oper,ioOp POLY_SYS_word_leq)
	      then genCompare (arg1, arg2, testLeqW, testGtW, testGeqW, testLtW)
	      
	    else if wordEq (oper,ioOp POLY_SYS_word_gtr)
	      then genCompare (arg1, arg2, testGtW, testLeqW, testLtW, testGeqW)
	      
	    else if wordEq (oper,ioOp POLY_SYS_word_lss)
	      then genCompare (arg1, arg2, testLtW, testGeqW, testGtW, testLeqW)
	      
	    else (* Non-special binary function. *) 
	      genOtherTests ()
	  
	 | _ => (* Functions with more than 2 arguments. *)
	   genOtherTests ()
      end (* constant functions *)

      | _ => (* Anything else *)
         genOtherTests ()

    end

    (* if/then/else, cand and cor. NB if/then/else may be translated
       into a CASE by the optimiser and code-generated there. *)
    and genCond (testExp, thenExp, elseExp, whereto, tailKind, matchFailFn, loopAddr) : mergeResult =
    let
      val needsResult = not (isNoResult whereto);
      val mergeResult : bool = needsResult andalso not (isEndOfProc tailKind);
	  val mark = markStack (transtable, cvec, mergeResult);
	  val lab  = genTest (testExp, false, matchFailFn); (* code for condition *)
	  (* There used to be code in here to handle specially the case where the
	     test expression was a constant.  I've taken that out, partly because
		 the simple cases are dealt with by the optimiser but more seriously
		 because it's necessary to deal with the slightly more general case
		 where the test expression results in a constant (e.g. "if not false"
		 or "if (print "something"; true)" ).  There was a bug in the case
		 where the expression resulted in "true" since "lab" becomes "noJump"
		 if the jump is never taken.  "fixup" leaves "exited" as true so no
		 code is generated for the else-part but it doesn't set the pseudo-stack
		 properly which can cause problems while processing the else-part.
		 DCJM 27 June 2000. *)
	in  (* brb L1; ..then.. brb L2; L1: ..else..; L2: *)
	  case elseExp of
	  	CodeNil => (* No else-part - used for pattern-matching too *)
		  let
		    (* code for "then part" - noResult 'cos we generate "void" below*)
		    val discard =
				genToRegister (thenExp, NoResult, tailKind, matchFailFn, loopAddr);
		    val discard = merge (lab, transtable, cvec, NoMerge, mark);
		  in
		    if needsResult
		    then MergeIndex(pushConst (transtable, DummyValue)) (* Generate a void result. *)
		    else NoMerge (* Unused *) 
		  end
	  
	  | _ => 
	  	if isEmptyLabel lab
		then
		    ( (* Only the "then" part will be executed.  Don't generate the else-part. *)
			unmarkStack(transtable, mark);
			gencde (thenExp, true, whereto, tailKind, matchFailFn, loopAddr)
			)
		else if haveExited transtable
		then
			( (* Jump was unconditional - just generate the else-part. *)
			unmarkStack(transtable, mark);
			fixup (lab, transtable, cvec);
			gencde (elseExp, true, whereto, tailKind, matchFailFn, loopAddr)
			)
		else
		  let
	        (* SPF 27/11/96 - merged values don't necessarily go into regResult *)
	        val whereto : whereTo = chooseMergeRegister (transtable, whereto, tailKind);
	
		    (* code for "then part" *)
		    val thenResult =
				genToRegister (thenExp, whereto, tailKind, matchFailFn, loopAddr);
	    
		    val U : unit = 
		      if isEndOfProc tailKind andalso not (haveExited transtable)
		      then exit()
		      else ();
		      
		    val lab1     = unconditionalBranch (thenResult, transtable, cvec);
		    
		    (* Get rid of the result from the stack. If there is a result
		       then the "else-part" will push it. *)
		    val U : unit =
				case thenResult of
					MergeIndex thenIndex => removeStackEntry(transtable, thenIndex)
				  | NoMerge => ();
		      
		    (* start of "else part" *)
		    val U : unit = fixup (lab, transtable, cvec);
		    val elseResult =
				genToRegister (elseExp, whereto, tailKind, matchFailFn, loopAddr)
		  in 
		    merge (lab1, transtable, cvec, elseResult, mark)
		  end
    end (* genCond *)

    (* Call a function. Detects special cases of calls to the run-time system
       to do simple operations such as int arithmetic and generates the
       instructions directly. For ordinary calls it has to distinguish between
       those called with a static-link and those called with a closure. *) 
    and genEval (evalFun, argList, primBoolOps, whereto, tailKind, matchFailFn) : mergeResult =
    let
      val needsResult : bool = not (isNoResult whereto);
      val argsToPass  : int  = List.length argList;

	  (* First evaluate all the arguments to the pseudo stack.  This returns
	     a list of pseudo-stack indexes for the registers. *)
      fun evalArgs (argList : codetree list) : stackIndex list =
      let
        fun ldArgs []     (argNo : int) = []
          | ldArgs (h::t) (argNo : int) =
		  	let
			    val argLocn =
		            if argNo < argRegs
		            then let (* Put into a register. *)
		              val argReg = argReg argNo;
		              (* If we are evaluating an expression we might as well put the
		                 result in the register we want to use. They may not stay
		                 there because loading other arguments may involve function
		                 calls which will use these registers. For that reason we
		                 don't put constants in yet. *)
		              val whereto = case h of Constnt _ => ToPstack | _ => ToReg argReg
		            in
		                case gencde (h, true, whereto, NotEnd, matchFailFn, NONE) of
							MergeIndex index => index
						 |  NoMerge => raise InternalError "ldArgs: No result"
		            end
		            else genToStack (h, matchFailFn)
            in
               argLocn :: ldArgs t (argNo + 1)
            end (* ldArgs *);
      in
        ldArgs argList 0
      end (* evalArgs *);

	  (* Second phase of argument evaluation.  Push the values onto the real stack
	     or load them into the argument registers.  The result is the stack base
		 for stack arguments together with a list of pseudo-stack entries for
		 the arguments. *)
      fun pushArgs (argList : stackIndex list) : int * stackIndex list =
      let
        fun ldArgs []     (stackAddr : int) (argNo : int) = (stackAddr, [])
          | ldArgs (argLoc::t) (stackAddr : int) (argNo : int) =
            if argNo < argRegs
            then let (* Put into a register. *)
              val argReg = argReg argNo;
              (* Load the first before putting these into the registers. *)
              val (rAddr : int, others) = ldArgs t stackAddr (argNo + 1);
              val regEntry = loadToSpecificReg (cvec, transtable, argReg, argLoc, false);
            in
			  lockRegister (transtable, argReg);
              (rAddr, regEntry :: others)
            end
            else let (* Store on the real stack. *)
              (* We take the current stack pointer as the base for the stack args. *)
              val sAddr : int = 
                if stackAddr < 0 then realstackptr transtable else stackAddr;
              val pushedEntry =
                pushValueToStack (cvec, transtable, argLoc, sAddr + 1);
			  val (rAddr, others) = ldArgs t (sAddr + 1) (argNo + 1)
            in
              (rAddr, pushedEntry :: others)
            end (* ldArgs *);
      in
        ldArgs argList ~1 0
      end (* pushArgs *);

      (* Load arguments for a normal call. First argRegs arguments go into
         registers, the rest are pushed onto the stack. Returns the stack offset
         of the last argument if there are more than argRegs. *)
      (* Called after a function call, to reflect the results of the function call. *)
      fun setupResult 
         (argsPassed     : int,
          needsResult    : bool,
          tailCall       : bool,
          transtable     : ttab) : mergeResult =
      let
        val argRegsUsed : int =
          if argsPassed < argRegs then argsPassed else argRegs;
      in
		(* Unlock  the argument registers *)
	    forLoop (fn argNo => unlockRegister (transtable, argReg argNo))
	            0 (argRegsUsed - 1);
	
        (* Remove any stack arguments. For tail-calls, we mustn't do this, because
           the stack arguments have already vanished from the pstack - that's
           because storeInStack consumes its argument. Conversely, pushValueToStack,
           used to set up stack arguments normal calls, does NOT consume its pstack
           argument. This means that we mustn't call decsp for tail-calls, which
           in turn means that the real stack pointer doesn't get correctly adjusted.
           Fortunately, this is (just about) OK because this code is unreachable,
           and TRANSTAB.mergeLab is clever enough to avoid merging unreachable states. 
           This whole area is a right mess, which I must sort out some time.
           SPF 13/3/97
		   Agreed.  I've tried to tidy this up a bit.  decsp now ONLY affects the
		   real stack pointer rather than popping items from the pstack as
		   well.  It still needs more work.
		   DCJM 25/11/99
         *)
        if tailCall then exiting transtable else ();

		if argsPassed > argRegsUsed
        then decsp(transtable, argsPassed-argRegsUsed)
		else ();

		if not needsResult
		then NoMerge (* Unused *)
		else
		( (* Result is returned in regResult. *)
		  addRegUse (transtable, regResult); (* Needed? *)
		  MergeIndex(pushReg (transtable, regResult))
		)
      end;

	  (* Call a function.  Used in cases when it's not tail-recursive. *)
      fun callProc (argList, procLocn, modifiedRegisters,
	  			    loadProc: unit->(stackIndex option * bool * stackIndex list * reg list)) =
	    let
          (* evaluate the arguments *)
		  val evaluatedArgs = evalArgs argList
		  (* Save any values to the stack other than those that are being
		     used in this call.  Values in registers not modified by the
			 call are locked in their current registers. *)
		  val lockedRegs =
		  	 pushNonArguments(transtable, cvec,
			 		procLocn @ evaluatedArgs, modifiedRegisters);

		  (* Push the arguments onto the real stack and/or load them
		     into the argument registers. *)
          val (endOfArgs, argEntries) = pushArgs evaluatedArgs;
              
          (* load regClosure *)
          val (codeAddrOpt, isIndirect, codeEntries, regsLocked) = loadProc ();
              
        in
          (* Make sure that the arguments are contiguous on the
             stack and that there is nothing beyond them on it. *)
          if endOfArgs >= 0
          then resetButReload (cvec, transtable, endOfArgs)
          else ();

		  case codeAddrOpt of
		 	 NONE => callFunction (Recursive, cvec)
		  |  SOME codeAddr => callCode(codeAddr, isIndirect, transtable, cvec);

		  (* Unlock any registers we locked. *)
		  List.app (fn r => unlockRegister (transtable, r)) (lockedRegs @ regsLocked);
	      (* Remove the arguments and code/closure registers. *)
		  List.app (fn index => removeStackEntry(transtable, index))
		  	(codeEntries @ argEntries);

          (* Remove any registers from the cache which may have been modified
		     by the function. *)
          removeRegistersFromCache(transtable, modifiedRegisters);

		  setupResult (argsToPass, needsResult, false, transtable)
        end; (* callProc *)

      (* Enter a procedure by jumping rather than calling. *)
      fun jumpToProc (argList,
	  		loadProc: unit->(stackIndex option * bool * stackIndex list * reg list)) =
      let
	(* Compute the arguments, loading them into registers if they are
	   in the argument area, and therefore could be overwritten. Values
	   elsewhere on the stack will not be overwritten.
	   
	   (Of course, we might have to spill the registers again, but if that
	   occurs the arguments will go into the reference-counted part of the
	   real stack, so we can still guaranteee that moveArgs - below - won't
	   zap old arguments while we still need them to initialise the new
	   arguments.)
	   
	   Now try to generate the argument into the RIGHT register, to
	   minimise the moveArgs-generated register-shuffling. SPF 15/8/96
	 *)
        fun genArgList n []            = [] : stackIndex list
          | genArgList n (arg :: args) =
        let
          val unsafelocn : stackIndex      = genArg (n, arg, matchFailFn);
          val safeLocn   : stackIndex      = loadIfArg (cvec, transtable, unsafelocn);
          val safeLocns  : stackIndex list = genArgList (n + 1) args;
        in 
          safeLocn :: safeLocns
        end;
        
		val argsOnPstack : stackIndex list = genArgList 0 argList;

        (* Now move the arguments to their final destination. *)
        fun moveArgs []          argNo = []
          | moveArgs (arg::args) argNo =
          if argNo < argRegs
          then let
            (* Do it in reverse order so that we can delay locking
               the register arguments. *)
             val argEntries = moveArgs args (argNo + 1);
             val argReg = argReg argNo;
             val argEntry = loadToSpecificReg (cvec, transtable, argReg, arg, false);
          in  
            lockRegister (transtable, argReg);
			argEntry :: argEntries
          end
          else let
            val offset =
              if numOfArgs < argRegs
              then argNo - argRegs
              else argNo - numOfArgs;
              
            (* Store it in the stack, reloading anything it displaces. *)
            val U : unit = storeInStack (cvec, transtable, arg, offset);
          in
            moveArgs args (argNo + 1);
			[] (* storeInStack removes its table entry *)
          end;

	         (* the arguments are now all in their rightful places *)
		 val argEntries = moveArgs argsOnPstack 0;
	
	 	 (* Now load regClosure as appropriate. We delay this
	 	    until now, because we don't want to zap regCode before
	 	    we've loaded all the constant arguments. *)
	 	 val (codeAddrOpt, isIndirect, callEntries, registersLocked) = loadProc ();
	 	
		 (* Get the return address. *)
		 val returnReg : reg =
		   if regReturn regEq regNone
		   then
		     (* The return address is on the stack.  Do we need to load it? *)
		     (* Only if we're passing a different number of arguments on
				stack - this would change the offset of the return address. *)
		     if argsToPass = numOfArgs orelse 
			 (numOfArgs <= argRegs andalso argsToPass <= argRegs)
		     then regNone (* Leave it there. *)
		     else let
		       val (reg, regIndex) = loadEntry (cvec, transtable, returnAddress, false)
		     in
		   	   removeStackEntry(transtable, regIndex);
		       reg
		     end
		   else let
		     (* Reload the return address into the return register. *)
		     val regIndex =
		       loadToSpecificReg (cvec, transtable, regReturn, returnAddress, false);
		   in
		   	   removeStackEntry(transtable, regIndex);
		       regReturn
		   end;

		 (* Move the stack pointer if necessary. *)
		 val stackArgs =
		    if numOfArgs  <= argRegs then 0 else numOfArgs  - argRegs;
		    
		 val stackArgsToPass =
		    if argsToPass <= argRegs then 0 else argsToPass - argRegs;
	       
		 val diffInArgs = stackArgs - stackArgsToPass;
		 
		 (* One more "arg" if the return address is passed on the stack. *)
		 val adjust    : int = if returnReg regEq regNone then 1 else 0;
		 val stackMove : int = realstackptr transtable + diffInArgs - adjust;
      in
		 resetStack (stackMove, cvec);

		 (* Call the function.  If it's not recursive we have to get the
		    entry point. *)
		 case codeAddrOpt of
		 	NONE => jumpToFunction (Recursive, returnReg, cvec)
		 |  SOME codeAddr => 
		 		jumpToCode(codeAddr, isIndirect, returnReg, transtable, cvec);

		 (* Unlock any registers we locked. *)
		 List.app (fn r => unlockRegister (transtable, r))
		 	registersLocked;
	     (* Remove the arguments and code/closure registers. *)
		 List.app (fn index => removeStackEntry(transtable, index))
		 	(argEntries @ callEntries);
		 (* Since we've exited we don't need to clear the cache. *)

		 setupResult (argsToPass, needsResult, true, transtable)
      end;  (* jumpToProc *)
          
          
      (* Call a closure function, i.e. not one that requires a static link. *)
      fun callClosure (clos : codetree option): mergeResult =
      let
        val tailCall = isEndOfProc tailKind;
        val bodyCall = not tailCall;

		local
			fun getArgRegs n =
				if n >= argRegs orelse n >= argsToPass then []
				else argReg n :: getArgRegs(n+1)
		in
			val argRegs = getArgRegs 0
		end

		(* Get the set of registers modified by this call.  We have to include
		   the argument, closure and code registers even if they're not actually
		   modified because otherwise we may find that we've locked them. *)
		val registerSet =
			case clos of
				SOME (Constnt w) =>
					regSetUnion(listToSet(regClosure :: argRegs), getRegisterSet w)
			  | _ (* Recursive or not a constant. *) => allRegisters;

		(* Add the registers to the set modified by this function.
		   We don't need to do this for recursive calls.  In that
		   case we must push all the registers (so we set registerSet
		   to allRegisters) but the modification set for this function
		   is simply the registers modified by everything else. *)
		val _ =
			case clos of
				NONE => ()
			|	_ => addModifiedRegSet(transtable, registerSet);

        (* Have to guarantee that the expression to return
           the procedure is evaluated before the arguments. *)
		(* In the recursive case the use count for closureOrSlAddr
		   is set by the caller. DCJM 1/12/99. *)
		val procLocn = 
		  case clos of
		    SOME(Constnt _) => noIndex (* Unused. *)
		  |	SOME c          => genToStack (c, matchFailFn) (* the closure *)
		  | NONE            => noIndex  (* Unused. *);

		local
		    fun loadReg reg addr : stackIndex =
				let
				  (* We don't need exclusive use of this value, because it
				     only gets modified by the function call itself, not
				     here. We either don't return from the function
				     (tail-call: we set exited) or we explicitly clear
				     the cache in setUpResult. *)
				  val regIndex =
				    loadToSpecificReg 
				      (cvec, transtable, reg, addr, false (* was bodyCall *));
				in	
				  (* Lock the register down so that it doesn't get
				     used to move values onto the stack. *)
				  lockRegister (transtable, reg);
				  regIndex
				end
		in
			fun loadClosureProc (): (stackIndex option * bool * stackIndex list * reg list) =
			  case clos of
			     SOME(c as Constnt w) =>
				 	(* Do we need to load the closure register? *)
				 	let
						val addr = toAddress w;
					in
						if isIoAddress addr
						then (* We don't need the closure register but we can't
								do the indirection here.  That's because the
								code address isn't valid.  We have to do the
								indirection at run time. *)
							(SOME(pushConst(transtable, w)), true, [], [])
						else
						let
							val code : machineWord = loadWord (addr, 0w0)
							val codeLocn = pushConst(transtable, code)
						in
							if objLength addr = 0w1
							then (* The closure is just one word - we don't need to
									put it in the closure register since the function
									won't need it.  Do the indirection now. *)
								(SOME codeLocn, false, [], [])
							else (* We need to load the closure register. 
								We have a choice here.  We could either return
								the closure register as the address as we do
								in the general case, in which case we would do
								an indirect call through the closure register,
								or we can do the indirection here and do a
								direct call.  On the i386 the latter is definitely
								better but on the PPC it will generate longer
								code, although possibly no slower if there was
								a pipeline stall. *)
								(SOME codeLocn, false,
									[loadReg regClosure (pushConst(transtable, w))],
									[regClosure])
						end
					end
			   | SOME _ =>
			   		(* Calling a non-constant - load the closure register and
					   set the code address as this with the "indirection"
					   flag set to true. *)
			   		(SOME(loadReg regClosure procLocn), true, [], [regClosure])
			   | NONE => (* Recursive *)
			  	  (* If this function requires a closure we need to reload
				     the closure register with our original closure. *)
			      if discardClosure then (NONE, false, [], [])
				  else (NONE, false, [loadReg regClosure closureOrSlAddr], [regClosure])
		end;

      in
        if tailCall
        then jumpToProc (argList, loadClosureProc)
        else callProc (argList, [procLocn], registerSet, loadClosureProc)
      end (* callClosure *)

    in (* body of genEval *)
      case evalFun of
        Constnt (oper : machineWord) =>
	let
	  val args = argList;
	  val addr = toAddress oper;
  
	  (* Unary operations are generated as binary operations where the second
	     argument is a constant.  e.g. neg(x) is generated as revsub(x, 0). *)
	  fun genU i ri (constnt:machineWord): mergeResult =
	    case args of
	      [arg] => 
	       (* Check that the instruction is implemented. *)
		if instrIsRR i orelse instrIsRI (i, constnt)
		then let
		  val locnOfArg1 : stackIndex = genToStack (arg, matchFailFn);
		  val locnOfArg2 : stackIndex = pushConst (transtable, constnt);
		  val regHint =
		    case whereto of
		      ToReg prefReg => UseReg prefReg
		    | _             => NoHint
		in
		  MergeIndex(binaryOp (locnOfArg1, locnOfArg2, i, ri, transtable, cvec, regHint))
		end
		else callClosure (SOME evalFun) (* Have to use a function call *)
	    | _ => raise InternalError 
		       "genU: compiling unary operator (argcount <> 1)";
  
	  fun genB i ri : mergeResult =
	    case args of
	      [arg1,arg2] =>
	     (* Check that the instruction is implemented.  N.B. if the
		first argument is a constant we  will use the reversed
		instruction. It may only be implemented for constant values
		so it  is not sufficient to check that the general form is
		implemented. *)
		if instrIsRR i orelse
		  (case arg1 of Constnt w => instrIsRI (ri, w) | _ => false) orelse
		  (case arg2 of Constnt w => instrIsRI (i, w)  | _ => false)
		then let
		  val locnOfArg1 : stackIndex = genToStack (arg1, matchFailFn);
		  val locnOfArg2 : stackIndex = genToStack (arg2, matchFailFn);
		  val regHint =
		    case whereto of
		      ToReg prefReg => UseReg prefReg
		    | _             => NoHint
		in
		  MergeIndex(binaryOp (locnOfArg1, locnOfArg2, i, ri, transtable, cvec, regHint))
		end
		else (* Have to use a function call *) callClosure (SOME evalFun)
	    | _ => raise InternalError "genB: compiling binary operator (argcount <> 2)";

	  fun genAllocStore () : mergeResult =
	    case args of
	      [Constnt lengthCnst, Constnt flagsCnst, value] =>
		 if isShort lengthCnst andalso isShort flagsCnst
		 then let
		   (* Allocstore always constructs mutable segments and sets the mutable bit. *)
		   val flags = Word8.orb(Word8.fromLargeWord(Word.toLargeWord(toShort flagsCnst)), F_mutable);
		 in
		   if flags = F_mutable_words
			  (* Add byte segments if/when we have byte assignment. *)
			 (* orelse
		      wordEq (flags, F_mutable_bytes) *)
		   then let (* only do easy cases *)
		     val length : int = Word.toInt (toShort lengthCnst);
		   in
		     (* only in-line small allocations (principally refs) *)
		     if 0 < length andalso length < 5
		     then let (* do it *)
		       val locn     = genToStack (value, matchFailFn);
		       val U : unit = incrUseCount (transtable, locn, length - 1) 
		       val vec      = callgetvec (length, flags, whereto);
		       val (storeKind, unitSize) =
			   	  if wordEq (flags, F_mutable_words)
				  then (STORE_WORD, wordSize)
				  else (STORE_BYTE, 1)

		       fun fillVec byteOffset =
				 if byteOffset < 0 then ()
				 else
				 	(
					moveToVec (vec, locn, byteOffset, storeKind, cvec, transtable);
					fillVec (byteOffset - unitSize)
				    )

		     in
		       fillVec ((length - 1) * wordSize);
		       MergeIndex vec
		     end
		     else (* too big to in-line (could use loop?) *)
		       callClosure (SOME evalFun)
		   end
		   else (* byte/code segments are too tricky to in-line *) 
		     callClosure (SOME evalFun)
		 end
		 
		 else (* crazy length or flag *)
		   callClosure (SOME evalFun)
  
	    | _ => (* probably non-constant length *)
	       callClosure (SOME evalFun);

	  fun genAssign isWord : mergeResult =
	    case args of
	      [addr,offset,value] =>
		  	if isIndexedStore isWord orelse
				(case offset of
					Constnt w =>
						(* The index ought always to be short.  If it is we
						   can use the normal store functions, which are always
						   provided. *)
						isShort w
					| _ => false)
			then
			let
			  val locnOfAddr : stackIndex = genToStack (addr, matchFailFn);
			  val locnOfOffset : stackIndex = genToStack (offset, matchFailFn);
			  val locnOfValue : stackIndex = genToStack (value, matchFailFn);
			in
			  assignOp (locnOfAddr, locnOfOffset, locnOfValue, isWord, transtable, cvec);
			  (* Put in a unit result if necessary. *)
              if needsResult
              then MergeIndex(pushConst (transtable, DummyValue))
              else NoMerge (* Unused. *)
			end
			else (* Have to use a function call *) callClosure (SOME evalFun)
	    | _ => raise InternalError "genAssign: argcount <> 3)";

	in
	  if isIoAddress addr
	  then
	    (
  
	      if wordEq (oper,ioOp POLY_SYS_get_length)
		 then genU instrVeclen  instrBad     Zero (* dummy argument *)

		  else if wordEq (oper,ioOp POLY_SYS_get_flags)
		 then genU instrVecflags  instrBad   Zero (* dummy argument *)

	     else if wordEq (oper,ioOp POLY_SYS_get_first_long_word)
		 then genU instrGetFirstLong  instrBad  Zero (* dummy argument *)

		  else if wordEq (oper,ioOp POLY_SYS_string_length)
		 then genU instrStringLength instrBad   Zero (* dummy argument *)
		 
	      else if wordEq (oper,ioOp POLY_SYS_set_string_length)
		then genB instrSetStringLength    instrBad
		
	      else if wordEq (oper,ioOp POLY_SYS_aplus)
		then genB instrAddA    instrAddA
		
	      else if wordEq (oper,ioOp POLY_SYS_aminus)
		then genB instrSubA    instrRevSubA
		
	      else if wordEq (oper,ioOp POLY_SYS_amul)
		then genB instrMulA    instrMulA 
		
	      else if wordEq (oper,ioOp POLY_SYS_aneg)
		then genU instrRevSubA instrSubA    Zero
		
	      else if wordEq (oper,ioOp POLY_SYS_not_bool)
		then genU instrXorW    instrXorW    True (* xor with "true" *)
		
	      else if  wordEq (oper,ioOp POLY_SYS_or_word)
		then genB instrOrW  instrOrW 
		
	      else if  wordEq (oper,ioOp POLY_SYS_and_word)
		then genB instrAndW  instrAndW 
		
	      else if wordEq (oper,ioOp POLY_SYS_xor_word)
		then genB instrXorW  instrXorW
		
	      else if wordEq (oper,ioOp POLY_SYS_shift_left_word)
		then genB instrUpshiftW instrBad
		
	      else if wordEq (oper,ioOp POLY_SYS_shift_right_word)
		then genB instrDownshiftW instrBad
		
	      else if wordEq (oper,ioOp POLY_SYS_shift_right_arith_word)
		then genB instrDownshiftArithW instrBad
		
	      else if wordEq (oper,ioOp POLY_SYS_xor_word)
		then genB instrXorW  instrXorW
		
	      else if wordEq (oper,ioOp POLY_SYS_mul_word)
		then genB instrMulW  instrMulW
		
	      else if wordEq (oper,ioOp POLY_SYS_plus_word)
		then genB instrAddW  instrAddW
		
	      else if wordEq (oper,ioOp POLY_SYS_minus_word)
		then genB instrSubW  instrRevSubW
		
	      else if wordEq (oper,ioOp POLY_SYS_div_word)
		then genB instrDivW  instrBad
		
	      else if wordEq (oper,ioOp POLY_SYS_mod_word)
		then genB instrModW  instrBad
		
	      else if wordEq (oper,ioOp POLY_SYS_load_byte)
		then genB instrLoadB instrBad
		
	      else if wordEq (oper,ioOp POLY_SYS_load_word)
		then genB instrLoad instrBad
      
	      else if wordEq (oper,ioOp POLY_SYS_alloc_store)
		then genAllocStore ()

		  else if wordEq (oper,ioOp POLY_SYS_assign_word) andalso inlineAssignments
		  then genAssign STORE_WORD

		  else if wordEq (oper,ioOp POLY_SYS_assign_byte) andalso inlineAssignments
		  then genAssign STORE_BYTE

  
  (* The point of the following code is to call genCond, which will call genTest
     which will hopefully use machine instructions for these operations.
     We could avoid this by duplicating most of the body of genTest
     (the "jumping" boolean code generator) here, but we would like to
     avoid that. SPF 21/11/96
  *)
	      else if primBoolOps andalso
		(wordEq (oper,ioOp POLY_SYS_int_eq)   orelse
		 wordEq (oper,ioOp POLY_SYS_int_neq)  orelse
		 wordEq (oper,ioOp POLY_SYS_word_eq)  orelse
		 wordEq (oper,ioOp POLY_SYS_word_neq) orelse
		 wordEq (oper,ioOp POLY_SYS_equala)   orelse
		 wordEq (oper,ioOp POLY_SYS_int_geq)  orelse
		 wordEq (oper,ioOp POLY_SYS_int_leq)  orelse
		 wordEq (oper,ioOp POLY_SYS_int_gtr)  orelse
		 wordEq (oper,ioOp POLY_SYS_int_lss)  orelse
		 wordEq (oper,ioOp POLY_SYS_word_geq)  orelse
		 wordEq (oper,ioOp POLY_SYS_word_leq)  orelse
		 wordEq (oper,ioOp POLY_SYS_word_gtr)  orelse
		 wordEq (oper,ioOp POLY_SYS_word_lss))
		then
		  genCond
		    (Eval {function = evalFun, argList = argList, earlyEval = false},
		     constntTrue, constntFalse, whereto, tailKind, matchFailFn, NONE)
	      else (* unoptimised I/O call *)
		callClosure (SOME evalFun)
	    )
  
	  else (* All other constant functions. *) callClosure (SOME evalFun)
	end

      | Extract {fpRel, addr, level, lastRef, ...} =>
	let
	  (* The procedure is being loaded from the stack or closure
	     so it may be a static-link procedure. *)

	  (* DCJM 1/12/99.  TODO: We have a problem if the function is a
	     closure reference (e.g. a recursive call) and the last reference
		 to the closure is one of the arguments.  In some cases at any rate
		 we don't process the function until after we've processed the
		 arguments resulting in us not being able to find something.
		 I think it's probably only if we have static-linked functions
		 that there is a problem when the something is start of the static
		 link.  I think if the function requires a closure then the closure
		 is evaluated first even if it's a simple load. 
		 No, it's also needed in the recursive case at least. 
		 
		 There was a definite bug in the case of a static-link call to
		 a function where the last reference to the function was within
		 the argument.  DCJM 21/12/00.
		 *)

	  (* SPF 20/5/95 *)
	  val selfCall = not fpRel andalso level = 0 andalso addr = 0;
	  
	  val staticCall = 
	    if fpRel (* Local or parameter *)
	    then addr > 0 (* If not it must be a parameter - must be closure *)
		andalso isProcB (transtable, addr) (* local - look in table *)
	    else isStaticLink addr;  (* Non-local or recursive. *)
	in 
	  (* Is this a static link call? *)
	  if staticCall
	  then let
	     (* Cannot use a jump to local static-link procedures because 
		we may want local declarations on the current stack. *)
	    val tailCall = isEndOfProc tailKind andalso not fpRel;
	    val bodyCall = not tailCall;
  
	    (* Load and lock regClosure. Returns the indexes of
		   these entries in the stack. *)
	    fun loadStaticLinkProc (): (stackIndex option * bool * stackIndex list * reg list) =
	      if selfCall (* recursive *)
	      then let
			(* Do we really need *exclusive* use of this register? 
			   Perhaps this is to force the old value onto the stack if
			   we haven't saved it yet, but we should have done this
			   in pushAllBut (below) unless we're in a tail-call in
			   which case we're not coming back. SPF 23/5/95 *)
			val SL = closureOrSlAddr
			val closureIndex =
			  loadToSpecificReg (cvec, transtable, regClosure, SL, false);
			val U : unit = lockRegister (transtable, regClosure);
	      in
			(NONE, false, [closureIndex], [regClosure])
	      end
			     
	      else if fpRel (* Local *)
	      then let
			(* Load entry point - this must be a local not an argument. *)
			val entryPt = pstackForDec (transtable, addr);
			(* We have already incremented the reference count when
			   this is not the last reference so we don't need to do
			   anything here.  DCJM 21/12/00. *)
			
			(* Get the static link register. Will set its value later. *)
			val U : unit = getRegister (transtable, cvec, regClosure);
			val closureIndex = pushReg (transtable, regClosure);
			val U : unit = lockRegister (transtable, regClosure);
		  in 
			(* Set value of static link register now. The static link entry
			   is now the address of the frame.  DCJM 2/1/01. *)
			genStackOffset (regClosure, (realstackptr transtable - 1)*wordSize, cvec);
			(SOME entryPt, false, [closureIndex], [regClosure])
	      end
	      
	      else let (* Non-local or recursive. *)
			fun pushIt () = closureOrSlAddr;
			
			(* load SL register and return code address *)
			val (entryPt, slIndex) = 
			  loadStaticLink (addr, pushIt, transtable, cvec);
		  in
			lockRegister (transtable, regClosure);
			(SOME entryPt, false, [slIndex], [regClosure])
	      end (* loadStaticLinkProc *);

		local
			fun getArgRegs n =
				if n >= argRegs orelse n >= argsToPass then []
				else argReg n :: getArgRegs(n+1)
			val argRegs = listToSet(regClosure :: getArgRegs 0)
		in
			val registerSet =
				if selfCall then allRegisters (* Have to push everything. *)
				else if fpRel (* Local *)
				then if addr < 0
				then raise InternalError "static link function is an argument"
				else regSetUnion(argRegs,
						getFunctionRegSet(pstackForDec (transtable, addr), transtable))
				else (* Non local *) regSetUnion(argRegs, staticLinkRegSet addr)
		end
	  in
	    (* Add the registers modified by the function we're calling to those
		   modified by this function.  Don't need to do that in the recursive
		   case. *)
		if selfCall then ()
		else addModifiedRegSet(transtable, registerSet);
		(* Set the use count on the static link.  I don't know whether this
		   is needed in all cases so it could result in us incrementing it
		   unnecessarily.  It isn't needed if this function is local.
		   DCJM 1/12/99. *)
		(* Increment the reference on the code if it's local and this is
		   not the last reference.  If it's non-local we don't actually
		   change the reference count when we load it.
		   DCJM 21/12/00. *)
		if lastRef 
		then ()
		else if fpRel (* It's local. *)
		then incrUseCount(transtable, pstackForDec (transtable, addr), 1)
		else incrUseCount(transtable, closureOrSlAddr, 1);

	    if tailCall
	    then jumpToProc (argList, loadStaticLinkProc)
	    else callProc(argList, [], registerSet, loadStaticLinkProc)
	  end
   
	  (* Closure call - check for recursive calls. *)
	  else
	  	(
		(* Set the use count on the closure register if this is a
		   recursive call.  We have to do that for the recursive case
		   because we don't pass the Extract entry in to callClosure.
		   DCJM 1/12/99. *)
		if selfCall andalso not lastRef andalso not discardClosure
		then incrUseCount(transtable, closureOrSlAddr, 1)
		else();
	    callClosure (if selfCall then NONE else SOME evalFun)
		)
	end

      | _ => (* The procedure is not being found by simply loading a value
              from the stack or the closure and is not a constant. *)
        callClosure (SOME evalFun)
    end (* genEval *);


    val resultReg = genToRegister (pt, ToReg regResult, EndOfProc, matchFailed, NONE);

    val U : unit = if not (haveExited transtable) then exit () else ()
  in
    
    (* Having code generated the body of the procedure,
       it is copied into a new data segment. *)
    copyCode (cvec, maxstack transtable, getModifedRegSet transtable)
  end (* codegen *);

  fun gencode (Lambda { name, body, numArgs, closureRefs, ...}, debugSwitches) =
    let (* We are compiling a procedure. *)
      (* It is not essential to treat this specially, but it saves generating
         a piece of code whose only function is to return the address of the
         procedure. *)
       
      (* make the code buffer for the new procedure. *)
      val newCode = codeCreate (false (* make a closure *), name, debugSwitches); 

     (* The only non-local references will be references to the
        closure itself. We have to fetch these from the constants
        section because:
	    (1) we don't save the closure register in the function body
        (2) we don't even initialise it if we use the PureCode
        calling convention
        SPF 2/1/97
      *)
      val closureAddr : address =
        codegen
            (body,
            newCode,
            fn (i , _, newtab, code) => pushCodeRef (newtab, newCode),
            fn i => false,
            fn (i,  _, tt, c) => raise InternalError "Not static link",
            fn _ => raise InternalError "Not static link",
            true, (* Discard regClosure *)
            numArgs,
            closureRefs,
            debugSwitches);

      val res : machineWord = toMachineWord closureAddr;
    in
      (* Result is a procedure which returns the address of the procedure. *)
      (fn () => res)
    end
 
  | gencode (pt, debugSwitches) =
    let (* Compile a top-level expression. *)
      val newCode = codeCreate (false (* make a closure *), "<top level>", debugSwitches);

     (* There should be *no* non-local references. SPF 2/1/97 *)
      val closureAddr : address =
        codegen 
            (pt,
            newCode,
            fn (i, _, tt, c) => raise InternalError "top level reached",
            fn i => false,
            fn (i, _, tt, c) => raise InternalError "Not static link",
            fn _ => raise InternalError "Not static link",
            true,  (* Discard regClosure *)
            0,    (* No args. *)
            0,    (* No recursive references *)
            debugSwitches);
    in (* Result is a procedure to execute the code. *)
      fn () => call (closureAddr, toMachineWord ())
    end (* gencode *);
    
end; (* GCODE functor body *)