1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
|
(*
Copyright (c) 2000
Cambridge University Technical Services Limited
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*
Title: Code Generator Routines.
Author: Dave Matthews, Cambridge University Computer Laboratory
Copyright Cambridge University 1985
*)
(*
This module contains the code vector and operations to insert code into
it. Each procedure is compiled into a separate segment. Initially it is
compiled into a fixed size segment, and then copied into a segment of the
correct size at the end.
*)
functor INTCODECONS (
(*****************************************************************************)
(* DEBUG *)
(*****************************************************************************)
structure DEBUG :
sig
val assemblyCodeTag : bool Universal.tag
val compilerOutputTag: (string->unit) Universal.tag
val getParameter :
'a Universal.tag -> Universal.universal list -> 'a
end;
(*****************************************************************************)
(* MISC *)
(*****************************************************************************)
structure MISC :
sig
exception InternalError of string
end
) :
(*****************************************************************************)
(* CODECONS export signature *)
(*****************************************************************************)
sig
type machineWord;
type address;
type code;
type opcode;
eqtype addrs; (*hacky! *)
type labels;
val noJump: labels;
val jumpFalse : opcode;
val jump : opcode;
val setHandler : opcode;
val delHandler : opcode;
val addrPlus : addrs * int -> addrs;
val addrMinus : addrs * addrs -> int;
val codeCreate: bool * string * Universal.universal list -> code; (* makes the initial segment. *)
(* ic - Address for the next instruction in the segment. *)
val ic: code -> addrs;
(* putBytes : puts "length" bytes of "val" into locations "addr", "addr"+1 *)
val putBytes: int * int * addrs * code -> unit;
(* GEN- routines all put a value at the instruction counter and add
an appropriate amount to it. *)
(* genWord - Puts 2 bytes. *)
val genWord : int * code -> unit;
(* gen... - put instructions and their operands. *)
val genCallClosure : code -> unit;
val genRaiseEx : code -> unit;
val genLock : code -> unit;
val genLdexc : code -> unit;
val genPushHandler : code -> unit;
val genReturn : int * code -> unit;
val genGetStore : int * code -> unit;
val genLocal : int * code -> unit;
val genIndirect : int * code -> unit;
val genMoveToVec : int * code -> unit;
val genSetStackVal : int * code -> unit;
val genCase : int * code -> unit;
val genTuple : int * code -> unit;
val genTailCall : int * int * code -> unit;
val genNonLocal : int * int * int * code -> unit;
(* genEnter instructions are only needed when machine-code routines
can call interpreted routines or vice-versa. The enterInt instruction
causes the interpreter to be entered and the argument indicates the
reason. *)
val genEnterIntCatch : code -> unit;
val genEnterIntProc : code * int -> unit;
val genEnterIntCall : code * int -> unit;
(* pushConst - Generates code to push a constant. *)
val pushConst : machineWord * code -> unit;
(* genCallSl - Generate callSl instructions which refer to either
constants or are forward references to procedures which have not yet
been compiled. *)
val genCallSl : int * int * code * code -> unit;
(* genRecRef - Recursive reference to a procedure. *)
val genRecRef: code * code -> unit
(* Create a container on the stack *)
val genContainer : int * code -> unit;
(* Copy a tuple into a container. *)
val genSetContainer : int * code -> unit;
(* Create a tuple from a container. *)
val genTupleFromContainer : int * code -> unit;
(* copyCode - Finish up after compiling a procedure. *)
val copyCode : code -> address;
(* getBytes - gets "length" bytes from locations "addr", "addr"+1...
Returns a negative number if the first bit was set. *)
val getBytes: int * addrs * code -> int;
(* putBranchInstruction puts in an instruction which involves
a forward reference. *)
val putBranchInstruction: opcode * code -> labels;
(* Instruction to delete a handler and skip round it. *)
val fixup: labels * code -> unit; (* Fix up a forward reference. *)
val linkLabels: labels * labels * code -> labels; (* Link label lists. *)
val jumpback: addrs * code -> unit (* Backwards jump. *)
val resetStack: int * bool * code -> unit; (* Set a pending reset *)
val alignOffWord: code * int -> unit; (* Add a pad byte if the value would
be word-aligned. *)
end (* CODECONS export signature *) =
let
(*****************************************************************************)
(* CODESEG *)
(*****************************************************************************)
structure CODESEG :
sig
type machineWord;
type short;
type address;
type cseg;
val csegMake: int -> cseg;
val csegConvertToCode: cseg -> unit;
val csegLock: cseg -> unit;
val csegGet: cseg * int -> Word8.word;
val csegSet: cseg * int * Word8.word -> unit;
val csegPutWord: cseg * int * machineWord -> unit;
val csegCopySeg: cseg * cseg * int * int -> unit;
val csegAddr: cseg -> address;
end = CodeSeg;
(*****************************************************************************)
(* ADDRESS *)
(*****************************************************************************)
structure ADDRESS :
sig
type machineWord; (* NB *not* eqtype, 'cos it might be a closure *)
type short = Word.word;
type address;
type handler;
val wordEq : 'a * 'a -> bool
val isShort: 'a -> bool;
val toShort: 'a -> short;
val toMachineWord: 'a -> machineWord;
val toAddress: 'a -> address
val loadByte: address * short -> Word8.word
val loadWord: address * short -> machineWord
val unsafeCast: 'a -> 'b
val alloc: (short * Word8.word * machineWord) -> address
val length: address -> short
val flags: address -> Word8.word
val F_words : Word8.word
val isWords : address -> bool;
val isBytes : address -> bool;
val isCode : address -> bool;
val lock : address -> unit;
val isIoAddress : address -> bool
end = Address;
in
(*****************************************************************************)
(* CODECONS functor body *)
(*****************************************************************************)
struct
open CODESEG;
open DEBUG;
open ADDRESS;
open MISC;
(*
The original way of dealing with constants was to store the offset (in bytes)
of the constant from the end of the instruction. That has a problem when
the database is ported to a different word-length machine because while the
byte count to the end of the interpreted code does not change the marker word
and other constants will all have a different length. I've changed it to use
new instructions which take an extra argument which is the number of the
constant. The byte offset is then always the number of bytes to the end of
the code. DCJM 25/9/00.
*)
val usePortableConstantOffset = true;
(* To make the code portable these are both functions. Note that
similar changes are needed in Code_seg.ML and in the basis library.
DCJM 28/9/00. *)
(* Unfortunately the code-generator always evaluates these at compile time
if it can. We need to use a ref to force it not to. It's too
complicated making this completely word-length independent but it's
useful to have it byte-order independent. *)
local
val bigEndian = ref RuntimeCalls.POLY_SYS_is_big_endian
in
fun littleEndian () : bool = not (RunCall.run_call0 (! bigEndian) ())
end;
val wordLength : unit->int =
RunCall.run_call0 RuntimeCalls.POLY_SYS_bytes_per_word;
val MAXINTARGS = (* 31 *) 126;
fun forLoop f i n = if i > n then () else (f i; forLoop f (i + 1) n);
fun applyList (f, []) = ()
| applyList (f, h::t) =
let
val U : unit = f h;
in
applyList (f, t)
end;
fun applyCountList (f, n, []) = ()
| applyCountList (f, n, h::t) =
let
val U : unit = f (n, h);
in
applyCountList (f, n + 1, t)
end;
(*****************************************************************************)
(* Abstype for instruction addresses *)
(*****************************************************************************)
infix 6 addrPlus addrMinus;
infix 4 (* ? *) addrLt;
(* All indexes into the code vector have type "addrs" *)
(* This should be an abstype, but it's exported as an eqtype *)
datatype addrs = Addr of int
(* + is defined to add an integer to an address *)
fun (Addr a) addrPlus b = Addr (a + b);
(* The difference between two addresses is an integer *)
fun (Addr a) addrMinus (Addr b) = a - b;
fun (Addr a) addrLt (Addr b) = a < b;
fun mkAddr n = Addr n; (* addr.up *)
fun getAddr (Addr a) = a; (* addr.down *)
val addrZero = mkAddr 0;
val addrLast = mkAddr (Word.toInt (Word.<<(0w1, 0w29)) - 1); (* A big number. *)
(*****************************************************************************)
(* Opcodes *)
(*****************************************************************************)
(* These instructions are only needed during porting between
interpreted and machine-code versions. The first should be the
interrupt or break-point instruction of the host machine-code and
causes the machine to enter the interpreter. It is ignored by the
interpreter except immediately after the interpreter has been
entered when result registers may be pushed depending on the
argument. The second instruction should be a no-op in the machine
code instruction set and has the reverse effect. It is never
generated by this code-generator but it is needed in machine-code
code-generators.
Note: indirect forms of jumps are assumed to have the opcode 4
more than the corresponding direct form.
*)
local
(* Not an abstype, because we we require the equality attribute *)
datatype opcode = Opcode of int;
in
type opcode = opcode;
fun opcode_down (Opcode n) : int = n;
fun opcode_up (n : int) : opcode = Opcode n;
val opcode_enterInt = Opcode 0;
(* Opcode 1 reserved for Interpreter's internal use *)
val opcode_jump = Opcode 2;
val opcode_jumpFalse = Opcode 3;
val opcode_containerW = Opcode 4; (* Added DCJM 5/10/05. *)
val opcode_delHandler = Opcode 5;
val opcode_jumpI = Opcode 6;
val opcode_jumpIFalse = Opcode 7;
val opcode_set_containerW = Opcode 8; (* Added DCJM 5/10/05. *)
val opcode_delHandlerI = Opcode 9;
val opcode_caseSwitch = Opcode 10;
val opcode_callSl = Opcode 11;
val opcode_callClosure = Opcode 12;
val opcode_returnW = Opcode 13;
val opcode_pad = Opcode 14;
(* val opcode_projectW = Opcode 15; *)
val opcode_raiseEx = Opcode 16;
val opcode_getStoreW = Opcode 17;
val opcode_nonLocal = Opcode 18;
val opcode_localW = Opcode 19;
val opcode_indirectW = Opcode 20;
val opcode_moveToVecW = Opcode 21;
val opcode_callSlX = Opcode 22; (* Added DCJM 25/9/00. *)
val opcode_setStackValW = Opcode 23;
val opcode_resetW = Opcode 24;
val opcode_resetR_w = Opcode 25;
val opcode_constAddr = Opcode 26;
val opcode_constIntW = Opcode 27;
val opcode_ioVecEntry = Opcode 28;
val opcode_constNil = Opcode 29;
val opcode_jumpBack = Opcode 30;
val opcode_returnB = Opcode 31;
(* val opcode_projectB = Opcode 32; *)
val opcode_getStoreB = Opcode 33;
val opcode_localB = Opcode 34;
val opcode_indirectB = Opcode 35;
val opcode_moveToVecB = Opcode 36;
val opcode_setStackValB = Opcode 37;
val opcode_resetB = Opcode 38;
val opcode_resetRB = Opcode 39;
val opcode_constIntB = Opcode 40;
val opcode_local_0 = Opcode 41;
val opcode_local_1 = Opcode 42;
val opcode_local_2 = Opcode 43;
val opcode_local_3 = Opcode 44;
val opcode_local_4 = Opcode 45;
val opcode_local_5 = Opcode 46;
val opcode_local_6 = Opcode 47;
val opcode_local_7 = Opcode 48;
val opcode_local_8 = Opcode 49;
val opcode_local_9 = Opcode 50;
val opcode_local_10 = Opcode 51;
val opcode_local_11 = Opcode 52;
val opcode_indirect_0 = Opcode 53;
val opcode_indirect_1 = Opcode 54;
val opcode_indirect_2 = Opcode 55;
val opcode_indirect_3 = Opcode 56;
val opcode_indirect_4 = Opcode 57;
val opcode_indirect_5 = Opcode 58;
val opcode_const_0 = Opcode 59;
val opcode_const_1 = Opcode 60;
val opcode_const_2 = Opcode 61;
val opcode_const_3 = Opcode 62;
val opcode_const_4 = Opcode 63;
val opcode_const_10 = Opcode 64;
val opcode_return_0 = Opcode 65;
val opcode_return_1 = Opcode 66;
val opcode_return_2 = Opcode 67;
val opcode_return_3 = Opcode 68;
val opcode_moveToVec_0 = Opcode 69;
val opcode_moveToVec_1 = Opcode 70;
val opcode_moveToVec_2 = Opcode 71;
val opcode_moveToVec_3 = Opcode 72;
val opcode_moveToVec_4 = Opcode 73;
val opcode_moveToVec_5 = Opcode 74;
val opcode_moveToVec_6 = Opcode 75;
val opcode_moveToVec_7 = Opcode 76;
val opcode_constAddrX_b = Opcode 77; (* Added DCJM 25/9/00. *)
val opcode_constAddrX_w = Opcode 78; (* Added DCJM 25/9/00. *)
val opcode_callSlCX = Opcode 79; (* Added DCJM 25/9/00. *)
val opcode_reset_1 = Opcode 80;
val opcode_reset_2 = Opcode 81;
val opcode_getStore_2 = Opcode 82;
val opcode_getStore_3 = Opcode 83;
val opcode_getStore_4 = Opcode 84;
val opcode_tuple_containerW = Opcode 85; (* Added DCJM 5/10/05. *)
val opcode_nonLocalL_1 = Opcode 86;
val opcode_nonLocalL_2 = Opcode 87;
val opcode_nonLocalL_3 = Opcode 88;
val opcode_callSlC = Opcode 89;
val opcode_ioVec_5 = Opcode 90;
val opcode_ioVec_6 = Opcode 91;
val opcode_integerAdd = Opcode 92;
val opcode_integerMinus = Opcode 93;
val opcode_integerEqual = Opcode 94;
val opcode_integerLeq = Opcode 95;
val opcode_integerGreater = Opcode 96;
val opcode_booleanOr = Opcode 97;
val opcode_wordEqual = Opcode 98;
val opcode_assignWord = Opcode 99;
val opcode_resetR_1 = Opcode 100;
val opcode_resetR_2 = Opcode 101;
val opcode_resetR_3 = Opcode 102;
val opcode_tupleW = Opcode 103;
val opcode_tupleB = Opcode 104;
val opcode_tuple_2 = Opcode 105;
val opcode_tuple_3 = Opcode 106;
val opcode_tuple_4 = Opcode 107;
val opcode_lock = Opcode 108;
val opcode_ldexc = Opcode 109;
val opcode_ioVec_225 = Opcode 110;
val opcode_ioVec_226 = Opcode 111;
val opcode_ioVec_229 = Opcode 112;
val opcode_ioVec_233 = Opcode 113;
val opcode_ioVec_236 = Opcode 114;
val opcode_ioVec_251 = Opcode 115;
val opcode_ioVec_253 = Opcode 116;
val opcode_ioVec_255 = Opcode 117;
val opcode_setHandler = Opcode 118;
(* Opcode 119 not used *)
val opcode_pushHandler = Opcode 120;
(* Opcode 121 not used *)
val opcode_setHandlerI = Opcode 122;
val opcode_tailbb = Opcode 123;
val opcode_tail = Opcode 124;
val opcode_tail3b = Opcode 125;
val opcode_tail4b = Opcode 126;
val opcode_tail3_2 = Opcode 127;
val opcode_tail3_3 = Opcode 128;
(* val opcode_last = opcode_ioVec_225; *)
local
val repArray : string Array.array =
Array.tabulate (256, fn (i : int) => "<UNKNOWN " ^ Int.toString i ^ ">");
fun repUpdate (Opcode n, s) = Array.update (repArray, n, s);
val U : unit = repUpdate(opcode_enterInt, "enterInt");
val U : unit = repUpdate(opcode_jump, "jump");
val U : unit = repUpdate(opcode_jumpFalse, "jumpFalse");
val U : unit = repUpdate(opcode_delHandler, "delHandler");
val U : unit = repUpdate(opcode_jumpI, "jumpI");
val U : unit = repUpdate(opcode_jumpIFalse, "jumpIFalse");
val U : unit = repUpdate(opcode_delHandlerI, "delHandlerI");
val U : unit = repUpdate(opcode_caseSwitch, "caseSwitch");
val U : unit = repUpdate(opcode_callSl, "callSl");
val U : unit = repUpdate(opcode_callSlX, "callSlX");
val U : unit = repUpdate(opcode_callClosure, "callClosure");
val U : unit = repUpdate(opcode_returnW, "returnW");
val U : unit = repUpdate(opcode_pad, "pad");
(* ...
val U : unit = repUpdate(opcode_projectW, "projectW");
... *)
val U : unit = repUpdate(opcode_raiseEx, "raiseEx");
val U : unit = repUpdate(opcode_getStoreW, "getStoreW");
val U : unit = repUpdate(opcode_nonLocal, "nonLocal");
val U : unit = repUpdate(opcode_localW, "localW");
val U : unit = repUpdate(opcode_indirectW, "indirectW");
val U : unit = repUpdate(opcode_moveToVecW, "moveToVecW");
val U : unit = repUpdate(opcode_setStackValW, "setStackValW");
val U : unit = repUpdate(opcode_resetW, "resetW");
val U : unit = repUpdate(opcode_resetR_w, "resetR_w");
val U : unit = repUpdate(opcode_constAddr, "constAddr");
val U : unit = repUpdate(opcode_constAddrX_b, "constAddrX_b");
val U : unit = repUpdate(opcode_constAddrX_w, "constAddrX_w");
val U : unit = repUpdate(opcode_constIntW, "constIntW");
val U : unit = repUpdate(opcode_ioVecEntry, "ioVecEntry");
val U : unit = repUpdate(opcode_constNil, "constNil");
val U : unit = repUpdate(opcode_jumpBack, "jumpBack");
val U : unit = repUpdate(opcode_returnB, "returnB");
(* ...
val U : unit = repUpdate(opcode_projectB, "projectB");
... *)
val U : unit = repUpdate(opcode_getStoreB, "getStoreB");
val U : unit = repUpdate(opcode_localB, "localB");
val U : unit = repUpdate(opcode_indirectB, "indirectB");
val U : unit = repUpdate(opcode_moveToVecB, "moveToVecB");
val U : unit = repUpdate(opcode_setStackValB, "setStackValB");
val U : unit = repUpdate(opcode_resetB, "resetB");
val U : unit = repUpdate(opcode_resetRB, "resetRB");
val U : unit = repUpdate(opcode_constIntB, "constIntB");
val U : unit = repUpdate(opcode_local_0, "local_0");
val U : unit = repUpdate(opcode_local_1, "local_1");
val U : unit = repUpdate(opcode_local_2, "local_2");
val U : unit = repUpdate(opcode_local_3, "local_3");
val U : unit = repUpdate(opcode_local_4, "local_4");
val U : unit = repUpdate(opcode_local_5, "local_5");
val U : unit = repUpdate(opcode_local_6, "local_6");
val U : unit = repUpdate(opcode_local_7, "local_7");
val U : unit = repUpdate(opcode_local_8, "local_8");
val U : unit = repUpdate(opcode_local_9, "local_9");
val U : unit = repUpdate(opcode_local_10, "local_10");
val U : unit = repUpdate(opcode_local_11, "local_11");
val U : unit = repUpdate(opcode_indirect_0, "indirect_0");
val U : unit = repUpdate(opcode_indirect_1, "indirect_1");
val U : unit = repUpdate(opcode_indirect_2, "indirect_2");
val U : unit = repUpdate(opcode_indirect_3, "indirect_3");
val U : unit = repUpdate(opcode_indirect_4, "indirect_4");
val U : unit = repUpdate(opcode_indirect_5, "indirect_5");
val U : unit = repUpdate(opcode_const_0, "const_0");
val U : unit = repUpdate(opcode_const_1, "const_1");
val U : unit = repUpdate(opcode_const_2, "const_2");
val U : unit = repUpdate(opcode_const_3, "const_3");
val U : unit = repUpdate(opcode_const_4, "const_4");
val U : unit = repUpdate(opcode_const_10, "const_10");
val U : unit = repUpdate(opcode_return_0, "return_0");
val U : unit = repUpdate(opcode_return_1, "return_1");
val U : unit = repUpdate(opcode_return_2, "return_2");
val U : unit = repUpdate(opcode_return_3, "return_3");
val U : unit = repUpdate(opcode_moveToVec_0, "moveToVec_0");
val U : unit = repUpdate(opcode_moveToVec_1, "moveToVec_1");
val U : unit = repUpdate(opcode_moveToVec_2, "moveToVec_2");
val U : unit = repUpdate(opcode_moveToVec_3, "moveToVec_3");
val U : unit = repUpdate(opcode_moveToVec_4, "moveToVec_4");
val U : unit = repUpdate(opcode_moveToVec_5, "moveToVec_5");
val U : unit = repUpdate(opcode_moveToVec_6, "moveToVec_6");
val U : unit = repUpdate(opcode_moveToVec_7, "moveToVec_7");
val U : unit = repUpdate(opcode_reset_1, "reset_1");
val U : unit = repUpdate(opcode_reset_2, "reset_2");
val U : unit = repUpdate(opcode_getStore_2, "getStore_2");
val U : unit = repUpdate(opcode_getStore_3, "getStore_3");
val U : unit = repUpdate(opcode_getStore_4, "getStore_4");
val U : unit = repUpdate(opcode_nonLocalL_1, "nonLocalL_1");
val U : unit = repUpdate(opcode_nonLocalL_2, "nonLocalL_2");
val U : unit = repUpdate(opcode_nonLocalL_3, "nonLocalL_3");
val U : unit = repUpdate(opcode_callSlC, "callSlC");
val U : unit = repUpdate(opcode_callSlCX, "callSlCX");
val U : unit = repUpdate(opcode_ioVec_5, "ioVec_5");
val U : unit = repUpdate(opcode_ioVec_6, "opcode_ioVec_6");
(* ...
(* added missing instructions (not used yet!) SPF 28/6/95 *)
(* Removed them again, becuase I'd rather see UNKNOWN if they
ever get generated. SPF 9/1/96 *)
val U : unit = repUpdate(opcode_integerAdd, "integerAdd");
val U : unit = repUpdate(opcode_integerMinus, "integerMinus");
val U : unit = repUpdate(opcode_integerEqual, "integerEqual");
val U : unit = repUpdate(opcode_integerLeq, "integerLeq");
val U : unit = repUpdate(opcode_integerGreater,"integerGreater");
val U : unit = repUpdate(opcode_booleanOr, "booleanOr");
val U : unit = repUpdate(opcode_wordEqual, "wordEqual");
val U : unit = repUpdate(opcode_assignWord, "assignWord");
... *)
val U : unit = repUpdate(opcode_resetR_1, "resetR_1");
val U : unit = repUpdate(opcode_resetR_2, "resetR_2");
val U : unit = repUpdate(opcode_resetR_3, "resetR_3");
val U : unit = repUpdate(opcode_tupleW, "tupleW");
val U : unit = repUpdate(opcode_tupleB, "tupleB");
val U : unit = repUpdate(opcode_tuple_2, "tuple_2");
val U : unit = repUpdate(opcode_tuple_3, "tuple_3");
val U : unit = repUpdate(opcode_tuple_4, "tuple_4");
val U : unit = repUpdate(opcode_lock, "lock");
val U : unit = repUpdate(opcode_ldexc, "ldexc");
val U : unit = repUpdate(opcode_ioVec_225, "ioVec_225");
val U : unit = repUpdate(opcode_ioVec_226, "ioVec_226");
val U : unit = repUpdate(opcode_ioVec_229, "ioVec_229");
val U : unit = repUpdate(opcode_ioVec_233, "ioVec_233");
val U : unit = repUpdate(opcode_ioVec_236, "ioVec_236");
val U : unit = repUpdate(opcode_ioVec_251, "ioVec_251");
val U : unit = repUpdate(opcode_ioVec_253, "ioVec_253");
val U : unit = repUpdate(opcode_ioVec_255, "ioVec_255");
val U : unit = repUpdate(opcode_setHandler, "setHandler");
val U : unit = repUpdate(opcode_pushHandler, "pushHandler");
val U : unit = repUpdate(opcode_setHandlerI, "setHandlerI");
val U : unit = repUpdate(opcode_tailbb, "tailbb");
val U : unit = repUpdate(opcode_tail, "tail");
val U : unit = repUpdate(opcode_tail3b, "tail3b");
val U : unit = repUpdate(opcode_tail4b, "tail4b");
val U : unit = repUpdate(opcode_tail3_2, "tail3_2");
val U : unit = repUpdate(opcode_tail3_3, "tail3_3");
in
fun repr (Opcode n) : string = Array.sub (repArray, n);
end;
local
val sizeArray : int Array.array = Array.array (256, 1);
fun sizeUpdate (Opcode n, s) = Array.update (sizeArray, n, s);
fun sizeUpdate (Opcode n, s) = Array.update (sizeArray, n, s);
val U : unit = sizeUpdate(opcode_enterInt , 2); (* Restored DCJM 22/9/00. *)
(* val U : unit = sizeUpdate(opcode_enterInt , 4); *)(* SPF 30/1/97 *)
val U : unit = sizeUpdate(opcode_jump , 2);
val U : unit = sizeUpdate(opcode_jumpFalse , 2);
val U : unit = sizeUpdate(opcode_delHandler , 2);
val U : unit = sizeUpdate(opcode_jumpI , 2);
val U : unit = sizeUpdate(opcode_jumpIFalse , 2);
val U : unit = sizeUpdate(opcode_delHandlerI , 2);
val U : unit = sizeUpdate(opcode_caseSwitch , 3);
val U : unit = sizeUpdate(opcode_callSl , 7);
val U : unit = sizeUpdate(opcode_callSlX , 9);
val U : unit = sizeUpdate(opcode_returnW , 3);
(* val U : unit = sizeUpdate(opcode_projectW , 3); *)
val U : unit = sizeUpdate(opcode_getStoreW , 3);
val U : unit = sizeUpdate(opcode_nonLocal , 7);
val U : unit = sizeUpdate(opcode_localW , 3);
val U : unit = sizeUpdate(opcode_indirectW , 3);
val U : unit = sizeUpdate(opcode_moveToVecW , 3);
val U : unit = sizeUpdate(opcode_setStackValW, 3);
val U : unit = sizeUpdate(opcode_resetW , 3);
val U : unit = sizeUpdate(opcode_resetR_w , 3);
val U : unit = sizeUpdate(opcode_constAddr , 3);
val U : unit = sizeUpdate(opcode_constAddrX_b , 4);
val U : unit = sizeUpdate(opcode_constAddrX_w , 5);
val U : unit = sizeUpdate(opcode_constIntW , 3);
val U : unit = sizeUpdate(opcode_ioVecEntry , 2);
val U : unit = sizeUpdate(opcode_jumpBack , 2);
val U : unit = sizeUpdate(opcode_returnB , 2);
(* val U : unit = sizeUpdate(opcode_projectB , 2); *)
val U : unit = sizeUpdate(opcode_getStoreB , 2);
val U : unit = sizeUpdate(opcode_localB , 2);
val U : unit = sizeUpdate(opcode_indirectB , 2);
val U : unit = sizeUpdate(opcode_moveToVecB , 2);
val U : unit = sizeUpdate(opcode_setStackValB, 2);
val U : unit = sizeUpdate(opcode_resetB , 2);
val U : unit = sizeUpdate(opcode_resetRB , 2);
val U : unit = sizeUpdate(opcode_constIntB , 2);
val U : unit = sizeUpdate(opcode_nonLocalL_1 , 2);
val U : unit = sizeUpdate(opcode_nonLocalL_2 , 2);
val U : unit = sizeUpdate(opcode_nonLocalL_3 , 2);
val U : unit = sizeUpdate(opcode_callSlC , 4);
val U : unit = sizeUpdate(opcode_callSlCX , 5);
val U : unit = sizeUpdate(opcode_tupleW , 3);
val U : unit = sizeUpdate(opcode_tupleB , 2);
val U : unit = sizeUpdate(opcode_setHandler , 2);
val U : unit = sizeUpdate(opcode_setHandlerI , 2);
val U : unit = sizeUpdate(opcode_tailbb , 3);
val U : unit = sizeUpdate(opcode_tail , 5);
val U : unit = sizeUpdate(opcode_tail3b , 2);
val U : unit = sizeUpdate(opcode_tail4b , 2);
in
fun size (Opcode n) : int = Array.sub (sizeArray, n);
end;
end; (* opcode abstype *)
(*****************************************************************************)
(* Types for branch labels *)
(*****************************************************************************)
(* The addrs is the address of the branch instruction, so we can fix up
the branch later, NOT the address we're branching to, which we
don't know when we generate the label. The cacheState indicates whether
what was cached at the source of the jump.
*)
datatype jumpFrom =
Jump8From of addrs (* branch instruction has 8-bit offset field *)
| Jump16From of addrs; (* branch instruction has 16-bit offset field *)
(* We need a jumpFrom ref, because we may have to indirect short branches
via long branches if the offset won't fit into 14 bits *)
type labels = (jumpFrom ref) list;
val noJump : labels = [];
(* This is the list of outstanding labels. Use a separate type from
"labels" for extra security. *)
type labList = (jumpFrom ref) list;
(*****************************************************************************)
(* The main "code" datatype *)
(*****************************************************************************)
datatype const =
WVal of machineWord (* an existing constant *)
| CVal of code (* a forward-reference to another function *)
and setCodeseg =
Unset
| Set of cseg (* Used for completing forward references. *)
and code = Code of
{ codeVec: cseg, (* This segment is used as a buffer. When the
procedure has been code generated it is
copied into a new segment of the correct size *)
ic: addrs ref, (* Pointer to first free location in "codevec" *)
constVec: const list ref, (* Vector of words to be put at end *)
numOfConsts: int ref, (* size of constVec *)
stackReset: int ref, (* Distance to reset the stack before the next instr. *)
carry: bool ref, (* Should a value be moved down if stackReset <> 0? *)
labelList: labList ref, (* List of outstanding short branches. *)
longestBranch: addrs ref, (* Address of the earliest short branch.*)
procName: string, (* Name of the procedure. *)
otherCodes: code list ref, (* Other code vectors with forward references to this vector. *)
resultSeg: setCodeseg ref, (* The segment as the final result. *)
noClosure: bool, (* should we make a closure from this? *)
constLoads: (addrs * int) list ref, (* where do we load constants? *)
printAssemblyCode:bool, (* Whether to print the code when we finish. *)
printStream: string->unit (* The stream to use *)
};
(*****************************************************************************)
(* Auxiliary functions on "code" *)
(*****************************************************************************)
fun codeVec (Code {codeVec,...}) = codeVec;
fun ic (Code {ic,...}) = ic;
fun constVec (Code {constVec,...}) = constVec;
fun numOfConsts (Code {numOfConsts,...}) = numOfConsts;
fun stackReset (Code {stackReset ,...}) = stackReset;
fun carry (Code {carry,...}) = carry;
fun labelList (Code {labelList,...}) = labelList;
fun longestBranch (Code {longestBranch,...}) = longestBranch;
fun procName (Code {procName,...}) = procName;
fun otherCodes (Code {otherCodes,...}) = otherCodes;
fun resultSeg (Code {resultSeg,...}) = resultSeg;
fun noClosure (Code {noClosure,...}) = noClosure;
fun constLoads (Code {constLoads,...}) = constLoads;
fun scSet (Set x) = x | scSet _ = raise Match;
fun isSet (Set _) = true | isSet _ = false
val codesize = 32; (* bytes. Initial size of segment. *)
(* Test for identity of the code segments by testing whether
the numOfConsts ref is the same. N.B. NOT its contents. *)
infix is;
fun a is b = (numOfConsts a = numOfConsts b);
fun sameConst (WVal w1, WVal w2) = wordEq (w1, w2)
| sameConst (CVal c1, CVal c2) = c1 is c2
| sameConst (_, _) = false;
(* create and initialise a code segment *)
fun codeCreate (noClosure : bool, name : string, parameters) : code =
let
val words : int = codesize div wordLength();
in
Code
{
codeVec = csegMake words, (* a byte array *)
ic = ref addrZero,
constVec = ref [],
numOfConsts = ref 0,
stackReset = ref 0, (* stack adjustment in WORDs *)
carry = ref false,
labelList = ref [],
longestBranch = ref addrLast, (* None so far *)
procName = name,
otherCodes = ref [],
resultSeg = ref Unset, (* Not yet done *)
noClosure = noClosure,
constLoads = ref [],
printAssemblyCode = DEBUG.getParameter DEBUG.assemblyCodeTag parameters,
printStream = DEBUG.getParameter DEBUG.compilerOutputTag parameters
}
end;
fun setLong (value : int, Addr a : addrs, seg : cseg) : unit =
let
fun putBytes(value, a, seg, i) =
if i = wordLength() then ()
else
(
csegSet(seg,
if littleEndian() then a+i else a+wordLength()-i-1,
Word8.fromInt(value mod 256));
putBytes(value div 256, a, seg, i+1)
)
in
putBytes(value, a, seg, 0)
end;
fun putByte (ival: int, Addr a, cvec: code) : unit =
csegSet(codeVec cvec, a, Word8.fromInt (if ival < 0 then 256 + ival else ival));
fun genByte (ival: int, cvec: code) : unit =
let
val icVal : addrs = ! (ic cvec);
val U : unit = putByte (ival, icVal, cvec);
in
ic cvec := icVal addrPlus 1
end;
fun genBytes (ival: int, length: int, cvec: code) : unit =
let
val U : unit = genByte (ival mod 256, cvec);
in
if length = 1 then ()
else genBytes (ival div 256, length - 1, cvec)
end;
fun genWord (ival : int, cvec : code) : unit =
genBytes (ival, 2, cvec);
(* puts "length" bytes of "val" into locations "addr", "addr"+1... *)
fun putBytes (ival : int, length : int, addr : addrs, cvec : code) : unit =
let
val U : unit = putByte (ival mod 256, addr, cvec);
in
if length = 1 then ()
else putBytes (ival div 256, length - 1, addr addrPlus 1, cvec)
end;
fun getByte (Addr a, cvec : code) : int =
Word8.toInt (csegGet (codeVec cvec, a));
(* Gets "length" bytes from locations "addr", "addr"+1...
Returns an unsigned number. *)
fun getB (length : int, addr : int, seg: cseg) : int =
let
val byte = Word8.toInt (csegGet (seg, addr));
in
if length = 1 (* Top byte *)
then byte
else let
val rest = getB (length - 1, addr + 1, seg);
in
rest * 256 + byte
end
end;
fun getBytes (length: int, Addr a, cvec : code) : int =
getB (length, a, codeVec cvec);
fun resetSp (cvec: code) : unit =
let
val offset = !(stackReset cvec);
val U : unit =
if offset < 0
then raise InternalError ("resetSp: bad reset value " ^ Int.toString offset)
else if offset = 0
then ()
else if 255 <= offset
then let
val opc = if !(carry cvec) then opcode_resetR_w else opcode_resetW;
val U : unit = genByte (opcode_down opc, cvec);
in
genWord (offset, cvec)
end
else if !(carry cvec)
then if 3 < offset
then let
val U : unit = genByte (opcode_down opcode_resetRB, cvec);
in
genByte (offset, cvec)
end
else let
val opc : int = opcode_down opcode_resetR_1 + offset - 1;
in
genByte(opc, cvec)
end
else if 2 < offset
then let
val U : unit = genByte (opcode_down opcode_resetB, cvec);
in
genByte (offset, cvec)
end
else let
val opc : int = opcode_down opcode_reset_1 + offset - 1;
in
genByte(opc, cvec)
end
in
stackReset cvec := 0
end; (* resetSp *)
(*
The cvec holds a list of short branches so that they can be extended
to long branches before they go out of range. If we fix up a
short branch, we must call "removeLabel" to purge it from this list.
To keep things simple, we call "removeLabel" whenever we fix up
a jump - if the label is long, or if it doesn't appear in the list
(which is the case for branches backwards), we just won't find it
in the list. SPF 21/9/95
*)
fun removeLabel (lab : addrs, cvec : code) : unit =
let
fun removeEntry ([]: labList) : labList = []
| removeEntry ((entry as ref (Jump16From _)) :: t) =
removeEntry t (* we discard all long jumps *)
| removeEntry ((entry as ref (Jump8From addr)) :: t) =
if lab = addr
then removeEntry t
else let
val U : unit =
if addr addrLt !(longestBranch cvec)
then longestBranch cvec := addr
else ();
in
entry :: removeEntry t
end;
in
(* We recompute the longest 14-bit branch. *)
longestBranch cvec := addrLast;
labelList cvec := removeEntry (! (labelList cvec))
end;
fun fixupOffset (Jump8From addr, target : addrs, cvec : code) : unit =
let
(* Offsets are calculated from the END of the instruction, which explains the "+ 1" *)
val newOffset : int = target addrMinus (addr addrPlus 1);
val U : unit =
if 0 <= newOffset andalso newOffset < 256 then ()
else raise InternalError "fixupOffset: jump too far (8-bit offset)"
val oldOffset : int = getByte (addr, cvec);
val U : unit =
if oldOffset = 0 then ()
else raise InternalError "fixupOffset: 8-bit branch already fixed up"
(*
We're about to fix up the jump, so remove it from the
list of pending short jumps.
*)
val U : unit = removeLabel (addr, cvec);
in
putByte (newOffset, addr, cvec)
end
| fixupOffset (Jump16From addr, target : addrs, cvec : code) : unit =
let
(* Offsets are calculated from the END of the instruction, which explains the "+ 2" *)
val newOffset : int = target addrMinus (addr addrPlus 2);
val U : unit =
if ~32768 <= newOffset andalso newOffset < 32768 then ()
else raise InternalError "fixupOffset: jump too far (16-bit offset)"
val oldOffset : int = getBytes (2, addr, cvec);
val U : unit =
if oldOffset = 0 then ()
else raise InternalError "fixupOffset: 16-bit branch already fixed up"
in
putBytes (newOffset, 2, addr, cvec)
end;
fun fixup ([] : labels, cvec: code) : unit = ()
| fixup (lab : labels, cvec: code) : unit =
let
(* Deal with any pending resets. *)
val U : unit = resetSp cvec;
val target : addrs = ! (ic cvec);
in
applyList (fn (ref jf) => fixupOffset (jf, target, cvec), lab)
end;
(* Makes a new label and puts it in the list. *)
fun makeLabel (cvec: code, addr: addrs) : labels =
let
(* All labels are created as short jumps *)
val lab : jumpFrom ref = ref (Jump8From addr);
val U : unit =
if addr addrLt !(longestBranch cvec)
then longestBranch cvec := addr
else ();
(* Add to the list of pending fixups *)
val U : unit = labelList cvec := lab :: !(labelList cvec);
in
[lab]
end;
(* If the longest branch is close to going out of range it must
be converted into a long form.
If the size is large (e.g. casel/casew) then all labels should be
converted. If we have just made an unconditional branch then we
make the distance shorter. 220 is just a fairly conservative
number. (Dave used a clever calculation, but I don't like too much
cleverness.)
This code isn't very clever because it uses a separate 16-bit extension
for each original 8-bit jump. I think Dave's original code tried
to use a single 16-bit extension per target (not per jump). Since
this code is only for use in bootstrapping, simplicity is more
important than efficiency (KISS!).
SPF 7/1/97
*)
fun checkBranchList (cvec: code, branched: bool, size: int): unit =
let
val maxDiff = 220 - size;
fun convertLabels ([]:labList) : labList = []
| convertLabels (lab::labs) =
let
(* Process the list starting at the end. The reason for this
is that more recent labels appear before earlier ones.
We must put the earliest labels in first because they may
be about to go out of range. *)
val convertRest = convertLabels labs;
in
(* Now do this entry. *)
case !lab of
Jump16From _ => (* shouldn't happen? *)
convertRest
| Jump8From addr =>
let
val here : addrs = !(ic cvec);
in
if maxDiff < here addrMinus addr
then let (* Getting close - fix up the short branch to indirect via here *)
(* Offsets are calculated from the END of the instruction, which explains the "+ 1" *)
val newOffset : int = here addrMinus (addr addrPlus 1);
val U : unit =
if 0 <= newOffset andalso newOffset < 256 then ()
else raise InternalError "checkBranchList: offset too large to convert"
val oldOffset : int = getByte (addr, cvec);
val U : unit =
if oldOffset = 0 then ()
else raise InternalError "checkBranchList: 8-bit offset already fixed up";
(* Convert the instruction to the "indirect" form *)
val instrAddr : addrs = addr addrPlus ~1;
val oldInstrByte : int = getByte (instrAddr, cvec);
val newInstrByte : int = oldInstrByte + 4;
(* Fix up the instruction and offset *)
val U : unit = putByte (newInstrByte, instrAddr, cvec);
val U : unit = putByte (newOffset, addr, cvec);
(* Generate the indirection itself, and alter the jump state *)
val U : unit = genWord (0, cvec);
val U : unit = lab := Jump16From here;
in
convertRest
end
else let
(* Not ready to remove this. Just find out if
this is an earlier branch and continue. *)
val U : unit =
if addr addrLt !(longestBranch cvec)
then longestBranch cvec := addr
else ();
in
lab :: convertRest
end
end
end; (* convertLabels *)
in
if !(ic cvec) addrMinus !(longestBranch cvec) <= maxDiff then ()
else let
(* Must save the stack-reset, otherwise "fixup" will try
to reset it. *)
val sr = ! (stackReset cvec);
val U : unit = stackReset cvec := 0;
(* Must skip round the branches unless we have just
taken an unconditional branch. *)
val lab : labels =
if branched then noJump
else let
val U : unit = genByte(opcode_down opcode_jump, cvec);
val U : unit = genByte(0, cvec);
in
makeLabel(cvec, !(ic cvec) addrPlus ~1)
end
(* Find the new longest branch while converting the labels *)
val U : unit = longestBranch cvec := addrLast;
val U : unit = labelList cvec := convertLabels (! (labelList cvec));
val U : unit = fixup (lab, cvec); (* Continue with normal processing. *)
in
stackReset cvec := sr (* Restore old value. *)
end
end; (* checkBranchList *)
(* Dave had some complicated scheme here - with the new representation of
labels, everything gets much simpler. *)
fun linkLabels (lab1 : labels, lab2 : labels, cvec : code) : labels =
lab1 @ lab2;
(* Put in the opcode for an instruction. *)
fun genOpc (opc: opcode, size: int, cvec: code) : unit =
let
val opn : int = opcode_down opc;
(* ...
val U : unit =
if 0 <= opn andalso opn < 256 andalso opn <> opcode_down opcode_booleanOr
then ()
else raise InternalError ("genOpc: bad opcode: " ^ Int.toString opn);
... *)
val U : unit = checkBranchList (cvec, false, size);
val U : unit = resetSp cvec;
in
genByte (opn, cvec)
end;
fun genRaiseEx (cvec: code) : unit =
genOpc (opcode_raiseEx, 1, cvec);
fun genLock(cvec: code) : unit =
genOpc (opcode_lock, 1, cvec);
fun genLdexc (cvec: code) : unit =
genOpc (opcode_ldexc, 1, cvec);
fun genPushHandler (cvec: code) : unit =
genOpc (opcode_pushHandler, 1, cvec);
(* Generate word, byte or single opcodes. The values from ``f'' to ``l''
are packed into the opcode by generating opF, opF+1, ... opF+(l-f).
Other arguments which will fit into a byte generate opB followed by
the argument. The rest require opW and a word argument. *)
fun gen1 (opW: opcode, opB: opcode, opF: opcode,
first : int, last : int, arg1: int, cvec: code) : unit =
if (first <= arg1 andalso arg1 <= last)
then genOpc (opcode_up (opcode_down opF + arg1 - first), 1, cvec)
else if 0 <= arg1 andalso arg1 <= 254 (* why not 255? *)
then let
val U : unit = genOpc(opB, 2, cvec);
in
genByte(arg1, cvec)
end
else let
val U : unit = genOpc(opW, 3, cvec);
in
genWord(arg1, cvec)
end;
fun genReturn (arg1 : int, cvec : code) : unit =
gen1 (opcode_returnW,
opcode_returnB,
opcode_return_0,
0, 3, arg1, cvec);
fun genGetStore (arg1 : int, cvec : code) : unit =
gen1 (opcode_getStoreW,
opcode_getStoreB,
opcode_getStore_2,
2, 4, arg1, cvec);
fun genLocal (arg1 : int, cvec : code) : unit =
gen1 (opcode_localW,
opcode_localB,
opcode_local_0,
0, 11, arg1, cvec);
fun genIndirect (arg1 : int, cvec : code) : unit =
gen1 (opcode_indirectW,
opcode_indirectB,
opcode_indirect_0,
0, 5, arg1, cvec);
fun genMoveToVec (arg1 : int, cvec : code) : unit =
gen1 (opcode_moveToVecW,
opcode_moveToVecB,
opcode_moveToVec_0,
0, 7, arg1, cvec);
fun genSetStackVal (arg1 : int, cvec : code) : unit =
gen1 (opcode_setStackValW,
opcode_setStackValB,
opcode_setStackValB, (* Don't care - no "implied" form exists *)
1, 0, arg1, cvec);
fun genCase (arg1 : int, cvec : code) : unit =
let
(* The destination addresses immediately follow the case instruction
so we must make sure there is enough room. *)
val U : unit = genOpc (opcode_caseSwitch, 3 + arg1 * 2, cvec);
in
genWord (arg1, cvec)
end;
fun genTuple (arg1: int, cvec: code) : unit =
gen1 (opcode_tupleW,
opcode_tupleB,
opcode_tuple_2,
2, 4, arg1, cvec);
(* Single byte argument. *)
fun genIoVecEntry (arg: int, cvec : code) : unit =
case arg of (* Some of these entries are very common. *)
5 => genOpc(opcode_ioVec_5, 1, cvec)
| 6 => genOpc(opcode_ioVec_6, 1, cvec)
| 225 => genOpc(opcode_ioVec_225, 1, cvec)
| 226 => genOpc(opcode_ioVec_226, 1, cvec)
| 229 => genOpc(opcode_ioVec_229, 1, cvec)
| 233 => genOpc(opcode_ioVec_233, 1, cvec)
| 236 => genOpc(opcode_ioVec_236, 1, cvec)
| 251 => genOpc(opcode_ioVec_251, 1, cvec)
| 253 => genOpc(opcode_ioVec_253, 1, cvec)
| 255 => genOpc(opcode_ioVec_255, 1, cvec)
| _ =>
let
val U : unit = genOpc(opcode_ioVecEntry, 2, cvec);
in
genByte(arg, cvec)
end;
fun genNonLocal (arg1 : int, arg2 : int, arg3 : int, cvec: code) : unit =
if arg1 <= 0 orelse arg2 <= 0
then raise InternalError "genNonLocal: invalid parameters"
else if arg1 <= 16 andalso arg2 <= 3 andalso ~6 <= arg3 andalso arg3 <= 9
then let (* use a coded representation *)
val opc = opcode_up(opcode_down opcode_nonLocalL_1 + arg2 - 1);
val U : unit = genOpc (opc, 1, cvec);
in
genByte((arg1 - 1) * 16 + arg3 + 6, cvec)
end
else let
val U : unit = genOpc (opcode_nonLocal, 5, cvec);
val U : unit = genWord (arg1, cvec);
val U : unit = genWord (arg2, cvec);
in
genWord (arg3, cvec)
end;
fun genEnterInt (cvec: code, args: int) : unit =
let
val U : unit = genByte(opcode_down opcode_enterInt, cvec);
val U : unit = genByte(args + 1, cvec);
in
()
end;
fun genEnterIntCall (cvec: code, args: int) : unit =
let
val U : unit =
if args < MAXINTARGS then ()
else raise InternalError "genEnterIntCall: too many arguments";
in
genEnterInt(cvec, args)
end;
local
val enterHandlerCode = (*2 * MAXINTARGS *) 254;
in
fun genEnterIntCatch (cvec: code) : unit =
genEnterInt(cvec, enterHandlerCode);
end;
fun genEnterIntProc (cvec: code, args: int) : unit =
let
val U : unit =
if args < MAXINTARGS then ()
else raise InternalError "genEnterIntProc: too many arguments";
val argCode : int = MAXINTARGS + args;
(* Primary entry point (address 0) *)
val U : unit = genEnterInt(cvec, argCode);
in
()
end;
(* Used for jump, jumpFalse, setHandler and delHandler. *)
fun putBranchInstruction (opc: opcode, cvec: code) : labels =
if opc = opcode_setHandler orelse
opc = opcode_jumpFalse
then let (* The next instruction may or will be executed. *)
val U : unit = genOpc (opc, 3, cvec); (* why not 2? *)
val U : unit = genByte (0, cvec);
in
makeLabel (cvec, !(ic cvec) addrPlus ~1)
end
else let (* Unconditional branches. *)
val U : unit = resetSp cvec;
val U : unit = genByte (opcode_down opc, cvec);
val U : unit = genByte (0, cvec);
val lab : labels = makeLabel (cvec, !(ic cvec) addrPlus ~1);
(* Having just generated an unconditional branch we can extend
branches without the overhead of an extra branch. That's
why we did a genByte, rather than a genOpc, just now. *)
val U : unit = checkBranchList (cvec, true, 0);
in
lab
end;
(* Generate either a short or long jump. *)
fun jumpback (lab: addrs, cvec: code) : unit =
let
val U : unit = resetSp cvec;
(* Don't use genOpc(opcode_jump) because we want to check the branch
list afterwards, and also because it might generate some code if
we try to use a short branch and take it over the limit. *)
val newOffset : int = !(ic cvec) addrMinus lab;
val U : unit =
if newOffset < 256
then let (* short *)
(* For opcode_jumpBack, exceptionally, the offset is relative
to the START of the instruction. Also, the offset is
backwards, as opposed to the usual forwards convention. *)
val U : unit = genByte (opcode_down opcode_jumpBack, cvec);
in
genByte (newOffset, cvec)
end
else let (* must use indirect jump *)
(* For all other jumps, the offset is relative to the END of
the instruction, which explains the "0" and the "+ 4". *)
val U : unit = genByte (opcode_down opcode_jumpI, cvec);
val U : unit = genByte (0, cvec); (* Indirect through next word. *)
in
genWord (~ (newOffset + 4), cvec)
end;
in
(* Having just generated an unconditional branch we can extend
branches without the overhead of an extra branch. *)
checkBranchList(cvec, true, 0)
end; (* jumpback *)
local
fun fixupConstantLoad (constStartAddrs : addrs, cvec : code) =
fn (fixupAddr : addrs, constNum : int) =>
let
val oldOffset : int = getBytes (2, fixupAddr, cvec);
val U : unit =
if oldOffset = 0 then ()
else raise InternalError "fixupConstantLoad: already fixed-up";
val constAddr : addrs =
if usePortableConstantOffset
then constStartAddrs
else constStartAddrs addrPlus (wordLength() * (constNum+4));
(* Offsets are calculated from the END of the instruction, which explains the "+ 2" *)
val newOffset : int = constAddr addrMinus (fixupAddr addrPlus 2);
val U : unit =
if 0 <= newOffset andalso newOffset < 65536 then ()
else raise InternalError "fixupConstantLoad: constant too distant (16-bit offset)"
in
putBytes (newOffset, 2, fixupAddr, cvec)
end
in
fun fixupConstantLoads (cvec, constStartAddrs, loadInfo) : unit =
applyList (fixupConstantLoad (constStartAddrs, cvec), loadInfo);
end;
(* Find the offset in the constant area of a constant. *)
(* The first has offset 0. *)
fun addConstToVec (valu : const, cvec : code) : int =
let
(* Search the list to see if the constant is already there. *)
fun findConst valu [] num =
(* Add to the list *)
(
numOfConsts cvec := ! (numOfConsts cvec) + 1;
constVec cvec := ! (constVec cvec) @ [valu];
num
)
| findConst valu (h :: t) num =
if sameConst (valu, h)
then num
else findConst valu t (num + 1) (* Not equal *);
in
findConst valu (! (constVec cvec)) 0
end;
fun genConstRef (constNum : int, cvec : code) : unit =
let
(* Remember address of the indirection so we can fix it up later *)
val fixupAddrs : addrs = !(ic cvec);
val U : unit = genWord (0, cvec);
in
constLoads cvec := (fixupAddrs, constNum) :: !(constLoads cvec)
end;
fun pushConst (value : machineWord, cvec : code) : unit =
if isShort value andalso toShort value < 0w32768
then let
val iVal: int = Word.toInt (toShort value);
in
if iVal = 10
then genOpc (opcode_const_10, 1, cvec)
else if iVal <= 4
then genOpc (opcode_up (opcode_down opcode_const_0 + iVal), 1, cvec)
else if iVal < 256
then let
val U : unit = genOpc (opcode_constIntB, 2, cvec);
in
genByte (iVal, cvec)
end
else let
val U : unit = genOpc (opcode_constIntW, 3, cvec);
in
genWord (iVal, cvec)
end
end
else let (* address or large short *)
val constNum : int = addConstToVec (WVal value, cvec);
val U : unit =
if not usePortableConstantOffset
then genOpc (opcode_constAddr, 3, cvec)
else if constNum < 256
then (genOpc (opcode_constAddrX_b, 4, cvec); genByte (constNum, cvec))
else (genOpc (opcode_constAddrX_w, 5, cvec); genWord (constNum, cvec));
in
genConstRef (constNum, cvec)
end;
(* Now aligns *on* a word boundary, because machine instructions
themselves adjust the return address etc. SPF 23/6/95 *)
(* That may be OK for some architectures but it's no good for
the portable interpreted code. Changed back to align OFF word.
Note: I've left it as addr mod 4 <> 2 rather than addr mod wordLength <> 2
since I think that it would be safe to treat word+2 or word+6 as being
code addresses. DCJM 21/9/2000. *)
fun alignOffWord (cvec: code, length: int) : unit =
let
val mustReset = !(stackReset cvec) <> 0;
(* Must allow enough space for the possible pad and the next
instruction. It would be a nuisance if we had aligned it off
a word boundary and then we found that genOpc lengthed some
branches and put it back on a word boundary. *)
(* Size is now increased to 20, to allow for extra "pad"
instructions following enterInt. (8 + 10 < 20). This
will (hopefully) fix the "jump too large" which appeared
when I added the extra return-point. SPF 3/8/95 *)
val size : int = if mustReset then 23 else 20;
val U : unit = checkBranchList (cvec, false, size);
val U : unit = resetSp cvec;
in
while (getAddr (! (ic cvec)) + length) mod 4 <> (* 0 *) 2 do
genByte (opcode_down opcode_pad, cvec)
end;
fun genCallClosure (cvec: code) : unit =
let
val U : unit = alignOffWord(cvec, 1);
in
genOpc (opcode_callClosure, 1, cvec)
end;
fun genTailCall (toslide : int, slideby: int, cvec: code) : unit =
if toslide < 256 andalso slideby < 256
then
case (toslide, slideby) of
(3, 2) =>
let
val U : unit = alignOffWord (cvec, 1);
in
genOpc (opcode_tail3_2, 1, cvec)
end
| (3, 3) =>
let
val U : unit = alignOffWord (cvec, 1);
in
genOpc (opcode_tail3_3, 1, cvec)
end
| (3, _) =>
let
val U : unit = alignOffWord (cvec, 2);
val U : unit = genOpc (opcode_tail3b, 2, cvec);
in
genByte (slideby, cvec)
end
| (4, _) =>
let
val U : unit = alignOffWord (cvec, 2);
val U : unit = genOpc (opcode_tail4b, 2, cvec);
in
genByte (slideby, cvec)
end
| (_, _) =>
let (* General byte case *)
val U : unit = alignOffWord (cvec, 3);
val U : unit = genOpc (opcode_tailbb, 3, cvec);
val U : unit = genByte (toslide, cvec);
in
genByte (slideby, cvec)
end
else let (* General case. *)
val U : unit = alignOffWord (cvec, 5);
val U : unit = genOpc (opcode_tail, 5, cvec);
val U : unit = genWord (toslide, cvec);
in
genWord(slideby, cvec)
end; (* genTailCall *)
(* Make a reference to another procedure. Usually this will be a forward *)
(* reference but it may have been compiled already, in which case we can *)
(* put the code address in now. *)
fun codeConst (r : code, into : code) : int =
let
val cseg = ! (resultSeg r);
in
if isSet cseg (* Already done - insert the actual address *)
then let
val addr : address = csegAddr (scSet cseg);
in
addConstToVec (WVal (toMachineWord addr), into)
end
else (* forward *)
(* Add the referring procedure onto the list of the procedure
referred to if it is not already there. This makes sure that when
the referring procedure is finished and its address is known the
address will be plugged in to every procedure which needs it. *)
let
fun onList x [] = false
| onList x (c::cs) = (x is c) orelse onList x cs;
val codeList = ! (otherCodes r);
val U : unit =
if onList into codeList
then ()
else otherCodes r := into :: codeList;
in
addConstToVec (CVal r, into)
end
end;
(* Recursive reference, either direct or indirect. *)
fun genRecRef (target : code, into: code) : unit =
let
val constNum : int = codeConst (target, into);
val U : unit =
if not usePortableConstantOffset
then genOpc (opcode_constAddr, 3, into)
else if constNum < 256
then (genOpc (opcode_constAddrX_b, 4, into); genByte (constNum, into))
else (genOpc (opcode_constAddrX_w, 5, into); genWord (constNum, into));
in
genConstRef (constNum, into)
end;
(* Call to a procedure with a static link. *)
fun genCallSl (offset : int, level : int, target : code, into: code) : unit =
let
val constNum : int = codeConst (target, into);
(* The offset and level are coded into a single byte if they are
within the range. *)
in
if level <= 15 andalso 2 <= offset andalso offset <= 17
andalso (not usePortableConstantOffset orelse constNum < 256)
then (
if usePortableConstantOffset
then (
alignOffWord (into, 5);
genOpc (opcode_callSlCX, 5, into);
genByte(constNum, into)
)
else (alignOffWord (into, 4); genOpc (opcode_callSlC, 4, into));
genConstRef (constNum, into);
genByte ((offset - 2) * 16 + level, into)
)
else
(
if usePortableConstantOffset
then (
alignOffWord (into, 9);
genOpc (opcode_callSlX, 9, into);
genWord (constNum, into)
)
else (alignOffWord (into, 7); genOpc (opcode_callSl, 7, into));
genConstRef (constNum, into);
genWord (offset, into);
genWord (level, into)
)
end;
fun genContainer (size : int, cvec: code) : unit =
(genOpc(opcode_containerW, 3, cvec); genWord(size, cvec));
fun genSetContainer (size : int, cvec: code) : unit =
(genOpc(opcode_set_containerW, 3, cvec); genWord(size, cvec));
fun genTupleFromContainer (size : int, cvec: code) : unit =
(genOpc(opcode_tuple_containerW, 3, cvec); genWord(size, cvec));
(* Adds in the reset. *)
fun resetStack (offset : int, carryValue : bool, cvec : code) : unit =
let
val U : unit =
if 0 < offset then ()
else raise InternalError ("resetStack: bad offset " ^ Int.toString offset);
val U : unit = stackReset cvec := !(stackReset cvec) + offset;
in
carry cvec := carryValue
end;
fun printCode (seg: cseg, procName: string, endcode : int, printStream) : unit =
let
val U : unit = printStream "\n";
val U : unit =
if procName = "" (* No name *) then printStream "?" else printStream procName;
val U : unit = printStream ":\n";
(* prints a string representation of a number *)
fun printHex (v : int) : unit = printStream(Int.fmt StringCvt.HEX v);
val ptr = ref 0;
(* To make sure we do not print branch extensions as though they
were instructions we keep a list of all indirect forward references
and print values at those addresses as addresses.
This list is sorted with the lowest address first. *)
val indirections : int list ref = ref [];
local
fun addL (n, [] : int list) : int list = [n]
| addL (n, l as (x :: xs)) =
if n < x then n :: l else
if n = x then l else
x :: addL (n, xs)
in
fun addInd (ind : int) : unit =
indirections := addL (ind, !indirections)
end;
(* Prints a relative address. *)
fun printDisp (len: int, spacer: string, addToList: bool) : unit =
let
val ad : int = getB(len, !ptr, seg) + !ptr + len;
val U : unit = if addToList then addInd ad else ();
val U : unit = printStream spacer;
val U : unit = printHex ad;
in
ptr := !ptr + len
end;
(* Prints an operand of an instruction *)
fun printOp (len: int, spacer : string) : unit =
let
val U : unit = printStream spacer;
val U : unit = printHex (getB (len, !ptr, seg));
in
ptr := !ptr + len
end;
val U : unit =
while !ptr < endcode
do let
val addr : int = !ptr;
val U : unit = printHex addr; (* The address. *)
val U : unit =
if (case !indirections of v :: _ => v = addr | [] => false)
then let (* It's an address. *)
val U : unit = printDisp (2, "\t", false);
in
case !indirections of
_ :: vs => indirections := vs
| _ => raise InternalError "printCode: indirection list confused"
end
else let (* It's an instruction. *)
val U : unit = printStream "\t";
val opc : opcode = opcode_up (Word8.toInt (csegGet (seg, !ptr))); (* opcode *)
val U : unit = ptr := !ptr + 1;
val U : unit = printStream (repr opc);
val sz : int = size opc;
in
if sz = 1 then ()
else if opc = opcode_jump orelse
opc = opcode_jumpFalse orelse
opc = opcode_setHandler orelse
opc = opcode_delHandler orelse
opc = opcode_constAddr
then printDisp (sz - 1, "\t", false)
else if opc = opcode_jumpI orelse
opc = opcode_jumpIFalse orelse
opc = opcode_setHandlerI orelse
opc = opcode_delHandlerI
then printDisp (1, "\t", true)
else if opc = opcode_jumpBack (* Should be negative *)
then let
val U : unit = printStream "\t";
val U : unit = printHex((!ptr - 1) - getB(1,!ptr,seg));
in
ptr := !ptr + 1
end
else if opc = opcode_nonLocal
then let
val U : unit = printOp (2, "\t");
val U : unit = printOp (2, ",");
in
printOp(2, ",")
end
else if opc = opcode_callSl
then let
val U : unit = printDisp (2, "\t", false);
val U : unit = printOp (2, ",");
in
printOp (2, ",")
end
else if opc = opcode_callSlX
then
(
printOp (2, "\t");
printDisp (2, ",", false);
printOp (2, ",");
printOp (2, ",")
)
else if opc = opcode_callSlC
then
(
printDisp (2, "\t", false);
printOp (1, ",")
)
else if opc = opcode_callSlCX
then
(
printOp (1, "\t");
printDisp (2, ",", false);
printOp (1, ",")
)
else if opc = opcode_caseSwitch
then let
(* Have to find out how many items there are. *)
val limit : int = getB (2, !ptr, seg);
val U : unit = printOp (2, "\t");
val base : int = !ptr;
fun printEntry (i : int) =
let
val U : unit = printStream "\n\t";
val U : unit = printHex(base + getB(2, !ptr, seg));
in
ptr := !ptr + 2
end;
in
forLoop printEntry 0 limit
end
else if opc = opcode_tail
then let
val U : unit = printOp (2, "\t");
in
printOp (2, ",")
end
else if opc = opcode_tailbb
then let
val U : unit = printOp (1, "\t");
in
printOp (1, ",")
end
else if opc = opcode_constAddrX_b
then ( printOp (1, "\t"); printDisp (sz - 1, ",", false) )
else if opc = opcode_constAddrX_w
then ( printOp (2, "\t"); printDisp (sz - 1, ",", false) )
else printOp (sz - 1, "\t")
end; (* an instruction. *)
in
printStream "\n"
end (* main loop *)
in (* body of printCode *)
()
end; (* printCode *)
(* The count of the number of constants is an untagged value so we
can't use loadWord. *)
fun loadConstCount (a : address, offset : int) : int =
let
val byteOffset : int = wordLength() * offset;
fun loadBytes (i: int) (acc: int) : int =
if i = wordLength() then acc
else
let
val addr: int =
if littleEndian() then byteOffset + wordLength() - i - 1
else byteOffset + i;
val b = loadByte (a, toShort addr);
val acc' = acc*256 + Word8.toInt b
in
loadBytes (i+1) acc'
end
in
loadBytes 0 0
end;
(* Bootstrapping problems currently prevent us from using Address.nameOfCode *)
fun nameOfCode (a : address) =
let
val objLength : int = Word.toInt (ADDRESS.length a);
val lastWord : int = objLength - 1;
val constCount : int = loadConstCount (a, lastWord);
val codeName : machineWord = loadWord (a, toShort (lastWord - constCount));
in
unsafeCast codeName
end;
(* prints a string representation of a number *)
fun printHex (v : int, printStream) : unit = printStream(Int.fmt StringCvt.HEX v);
fun printConstCode (a : address, printStream) : unit =
printStream ("code:\t" ^ nameOfCode a);
fun printConstClosure (a : address, printStream) : unit =
printStream ("clos:\t" ^ nameOfCode a);
fun printWords (a : address, printStream) : unit =
let
val objLength : int = Word.toInt (ADDRESS.length a)
in
if objLength = 1
then printStream ("long:\t1 word")
else printStream ("long:\t" ^ Int.toString objLength ^ " words")
end;
fun printBytes (a : address, printStream) : unit =
let
val objLength : int = Word.toInt (ADDRESS.length a)
in
if objLength = 1
then printStream ("bytes:\t1 word")
else printStream ("bytes:\t" ^ Int.toString objLength ^ " words")
end;
fun printConst (c : const, printStream) : unit =
case c of
CVal c =>
let
val U : unit = printStream(if noClosure c then "code:\t" else "clos:\t");
in
printStream(procName c)
end
| WVal w =>
if isShort w
then let
val value : int = Word.toInt (toShort w);
val U : unit = printStream "short:\t";
val U : unit = printHex(value, printStream);
val U : unit = printStream " (";
val U : unit = printStream (Int.toString value);
in
printStream ")"
end
else let
val a : address = toAddress w;
in
if isIoAddress a
then printStream "RTS entry"
else if isCode a
then printConstCode(a, printStream)
else if isBytes a
then printBytes(a, printStream)
else if isWords a andalso 0w1 <= ADDRESS.length a
then let
val w' : machineWord = loadWord (a, 0w0)
in
if not (isShort w')
then let
val a' : address = toAddress w';
in
if not (isIoAddress a') andalso isCode a'
then printConstClosure(a', printStream)
else printWords(a, printStream) (* First element of tuple is not a code segment *)
end
else printWords(a, printStream) (* First element of tuple is a short *)
end
else printWords(a, printStream) (* Not a proper tuple (shouldn't occur) *)
end;
fun printConstants (addr : int, [] : const list, printStream) : unit = ()
| printConstants (addr : int, h :: t, printStream) : unit =
let
val U : unit = printHex(addr, printStream);
val U : unit = printStream "\t";
val U : unit = printConst(h, printStream);
val U : unit = printStream "\n";
in
printConstants (addr + wordLength(), t, printStream)
end;
(* set the num'th constant in cvec to be value *)
fun constLabels (cvec : code, num : int, value : machineWord) : unit =
let
val seg = scSet (!(resultSeg cvec));
(* The +2 in the next instruction is because ic is always the byte count of
the word after the marker word. We need to skip over the function name
and the profile count. *)
val constAddr = (getAddr (!(ic cvec))) div wordLength() + num + 2;
in
csegPutWord (seg, constAddr, value)
end;
(* Fix up references from other vectors to this one. *)
fun fixOtherRefs (refTo : code, value : machineWord) : unit =
let
fun fixRef (refFrom : code) : unit =
let
val noc = numOfConsts refFrom;
fun putNonLocalConst (num : int, const : const) =
case const of
CVal c =>
if c is refTo
then let (* A reference to this one. *)
(* Fix up the forward reference. *)
val U : unit = constLabels (refFrom, num, value);
in
(* decrement the "pending references" count *)
noc := !noc - 1
end
else ()
| _ => ();
(* look down its list of forward references until we find ourselves. *)
val U : unit =
applyCountList (putNonLocalConst, 1, !(constVec refFrom));
in
(* If there are no more references, we can lock it. *)
if !noc = 0
then csegLock (scSet (! (resultSeg refFrom)))
else ()
end (* fixRef *);
in
(* For each `code' which needs a forward reference
to `refTo' fixing up. *)
applyList (fixRef, !(otherCodes refTo))
end; (* fixOtherRefs *)
(* Adds the constants onto the code, and copies the code into a new segment *)
fun copyCode (cvec: code as Code{ printAssemblyCode, printStream, ...}) : address =
let
(* Pad out to long word boundary. Don't just leave as zero because, if
the last instruction (return) had a zero argument, this could give
a whole word of zero, which would mess up the garbage-collector.
*)
(* Now round up to 8 byte boundary. This makes porting to a 64 bit
machine much simpler. DCJM 22/9/00. *)
val alignTo = if wordLength() < 8 then 8 else wordLength();
val U : unit =
while (getAddr (! (ic cvec)) mod alignTo) <> 0 do
genByte (opcode_down opcode_pad, cvec);
(* This also aligns ic onto a fullword boundary. *)
val endIC = !(ic cvec); (* Remember end *)
val U : unit = genBytes (0, wordLength(), cvec); (* Marker *)
(* +4 for code size, profile count, function name and constants count *)
val numOfConst = !(numOfConsts cvec);
val endOfCode : int = getAddr (! (ic cvec)) div wordLength();
val segSize : int = endOfCode + numOfConst + 4;
(* fix-up all the constant loads (or indirections) *)
val U : unit = fixupConstantLoads (cvec, endIC, !(constLoads cvec));
(* Now make the byte segment that we'll turn into the code segment *)
val seg : cseg = csegMake segSize;
val U : unit = resultSeg cvec := Set seg;
(* Copy the code into the new segment. *)
val U : unit = csegCopySeg (codeVec cvec, seg, getAddr (!(ic cvec)), 0);
(* Byte offset of start of code. *)
local
val byteEndOfCode = endOfCode * wordLength();
val addr = mkAddr byteEndOfCode;
in
val U : unit = setLong (byteEndOfCode, addr, seg);
end;
(* Put in the number of constants. This must go in before
we actually put in any constants. *)
local
val addr = mkAddr ((segSize - 1) * wordLength());
in
val U : unit = setLong (numOfConst + 1, addr, seg)
end;
(* Next the profile count. *)
local
val addr = mkAddr ((endOfCode + 1) * wordLength());
in
val U : unit = setLong (0, addr, seg)
end;
(* Now we've filled in all the C integers; now we need to convert the segment
into a proper code segment before it's safe to put in any ML values.
SPF 13/2/97
*)
val U : unit = csegConvertToCode seg;
local
(* why do we treat the empty string as a special case? SPF 15/7/94 *)
(* This is so that profiling can print "<anon>". Note that a
tagged zero *is* a legal string (it's "\000"). SPF 14/10/94 *)
val name : string = procName cvec;
val nameWord : machineWord = if name = "" then toMachineWord 0 else toMachineWord name;
in
val U : unit = csegPutWord (seg, endOfCode + 2, nameWord)
end;
(* and then copy the objects from the constant list. *)
fun putLocalConsts [] num = ()
| putLocalConsts (c::cs) num =
let
val U : unit =
case c of
WVal w => (* an ordinary (non-short) constant *)
let
val U : unit = constLabels (cvec, num, w);
in
numOfConsts cvec := ! (numOfConsts cvec) - 1
end
(* forward-reference - fix up later when we compile
the referenced code *)
| CVal _ => ();
in
putLocalConsts cs (num + 1)
end;
val U : unit = putLocalConsts (! (constVec cvec)) 1;
(* Switch off "mutable" bit now if we have no
forward or recursive references to fix-up *)
val U : unit =
if !(numOfConsts cvec) = 0
then csegLock seg
else ();
(* Do we need to make a closure, or just return the code? *)
val addr : address =
if noClosure cvec
then csegAddr seg
else let
val addr : address = alloc (0w1, F_words, toMachineWord (csegAddr seg));
(* Logically unnecessary; however the RTS currently allocates everything
as mutable because Dave's code assumed that things were done this
way and I'm not completely sure that everything that needs a mutable
allocation actually asks for it yet. SPF 19/2/97
*)
val U : unit = lock addr;
in
addr
end
(* Now we know the address of this object we can fix up
any forward references outstanding. This is put in here
because there may be directly recursive references. *)
val U : unit = fixOtherRefs (cvec, toMachineWord addr);
val U : unit =
if printAssemblyCode
then let (* print out the code *)
val U : unit = printCode (seg, procName cvec, getAddr endIC, printStream);
(* Skip: byte offset of start of code segment,
number of constants,
profiling word,
name of code segment
*)
val constants : const list = ! (constVec cvec);
val U : unit = printConstants (getAddr endIC + 4*wordLength(), constants, printStream);
in
printStream"\n"
end
else ();
in
addr
end (* copyCode *)
(* ic function exported to GCODE *)
val ic : code -> addrs =
fn (cvec : code) =>
let
(* Make sure any pending stack resets are done. *)
val U : unit = resetSp cvec
in
! (ic cvec)
end;
(* For export from the functor *)
val jump : opcode = opcode_jump;
val jumpFalse : opcode = opcode_jumpFalse;
val setHandler : opcode = opcode_setHandler;
val delHandler : opcode = opcode_delHandler;
end (* CODECONS functor body *)
end; (* structure-level let *)
|