1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
|
(*
Copyright (c) 2000-7
Cambridge University Technical Services Limited
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*
Title: Code Generator Routines.
Author: Dave Matthews, Cambridge University Computer Laboratory
Copyright Cambridge University 1989
*)
(* This module contains the code vector and operations to insert code into
it. Each procedure is compiled into a separate segment. Initially it is
compiled into a fixed size segment, and then copied into a segment of the
correct size at the end.
This module contains all the definitions of the Sparc opcodes and registers.
It uses "codeseg" to create and operate on the segment itself.
*)
(*
Linkage conventions:
We ignore the register window and use only the %o, %l and %g register sets.
%i0, the original parameter to the C code, points to a memRegisters structure.
%i1 is currently unused
%i2 and %i3 are unsaved scratch registers. The difference is that if %i2 is the
target of a sethi/add combination the value is assumed to be an address and can be
updated by the GC whereas if it is %i3 it is not.
%i4 and %i5 are saved unchecked registers.
%i6 and %i7 are never used (%i7 is the return address from ML to C).
%o0 is used for the first argument to a function, and for the result.
%o1-%o3 are used for the next 3 args, any others being passed on the stack.
%o4 is the address of the code being called
%o5 is the closure pointer or static link pointer.
%o6 is never used (the system assumes it points to an area where regs can be stored).
%o7 is the return address i.e. the address of the jmpl instruction.
Return is done by jmp %o7+6. 2 is always added to %o7 on function entry
so that it is distinguishable from other addresses which point at the
start of objects.
%g3 points to the top exception handler,
%g4 is the stack pointer,
%g5 is the heap limit - previously the stack limit register,
%g6 is the heap pointer,
%g7 is unused. This is used by the pthread library.
%g1 and %g2 are available as work regs, as are the %l registers.
%i4 is used an the arithmetic accumulator, which should contain
only untagged values. By reserving it for this function, we can
hope to minimise the number of untagging operations performed via
a simple caching scheme.
%i5 is used both for untagged arithmetic and as a general scratch
register.
%i4 and %i5 are not always preserved across traps, and
they should never contain pointers, as they are not
examined/adjusted by the garbage-collector.
%i3 is used for stack adjustments, so we don't have to call
doPendingStackAdjustment before we load an immediate.
Other registers MUST contain properly tagged values if there any a possibility
of a garbage collection.
*)
functor SPARCCODECONS (
(*****************************************************************************)
(* DEBUG *)
(*****************************************************************************)
structure DEBUG :
sig
val assemblyCodeTag : bool Universal.tag
val compilerOutputTag: (string->unit) Universal.tag
val getParameter :
'a Universal.tag -> Universal.universal list -> 'a
end;
(*****************************************************************************)
(* MISC *)
(*****************************************************************************)
structure MISC :
sig
exception InternalError of string
end
) :
(*****************************************************************************)
(* CODECONS export signature *)
(*****************************************************************************)
sig
type machineWord;
type short;
type code;
type reg; (* Machine registers *)
type address;
val regNone: reg;
val regResult: reg;
val regClosure: reg;
val regStackPtr: reg;
val regHandler: reg;
val regReturn: reg;
val regs: int; (* No of registers. *)
val argRegs: int; (* No of args in registers. *)
val regN: int -> reg;
val nReg: reg -> int;
val argReg: int -> reg;
val regEq: reg * reg -> bool;
val regNeq: reg * reg -> bool;
val regRepr: reg -> string;
type addrs
val codeCreate: bool * string * Universal.universal list -> code; (* makes the initial segment. *)
(* Operations. *)
type instrs;
val instrMove: instrs;
val instrAddA: instrs;
val instrSubA: instrs;
val instrRevSubA: instrs;
val instrMulA: instrs;
val instrAddW: instrs;
val instrSubW: instrs;
val instrRevSubW: instrs;
val instrMulW: instrs;
val instrDivW: instrs;
val instrModW: instrs;
val instrOrW: instrs;
val instrAndW: instrs;
val instrXorW: instrs;
val instrLoad: instrs;
val instrLoadB: instrs;
val instrVeclen: instrs;
val instrVecflags: instrs;
val instrPush: instrs;
val instrUpshiftW: instrs;
val instrDownshiftW: instrs;
val instrDownshiftArithW: instrs;
val instrGetFirstLong: instrs;
val instrStringLength: instrs;
val instrSetStringLength: instrs;
val instrBad: instrs;
(* Can the we use the same register as the source and destination
of an instructions? (it would be more flexible to make this
a function of type "instrs -> bool", but a simple flag will
suffice for now. SPF 17/1/97
*)
val canShareRegs : bool;
(* Enquire about operations. *)
val instrIsRR: instrs -> bool; (* Is the general form implemented? *)
val instrIsRI: instrs * machineWord -> bool; (* Is the immediate value ok? *)
(* Code generate operations. *)
val genRR: instrs * reg * reg * reg * code -> unit;
val genRI: instrs * reg * machineWord * reg * code -> unit;
type tests;
val testNeqW: tests;
val testEqW: tests;
val testGeqW: tests;
val testGtW: tests;
val testLeqW: tests;
val testLtW: tests;
val testNeqA: tests;
val testEqA: tests;
val testGeqA: tests;
val testGtA: tests;
val testLeqA: tests;
val testLtA: tests;
val Short: tests;
val Long: tests;
type labels; (* The source of a jump. *)
val noJump: labels;
(* Compare and branch for fixed and arbitrary precision. *)
val isCompRR: tests -> bool;
val isCompRI: tests * machineWord -> bool;
val compareAndBranchRR: reg * reg * tests * code -> labels;
val compareAndBranchRI: reg * machineWord * tests * code -> labels;
datatype storeWidth = STORE_WORD | STORE_BYTE
val genLoad: int * reg * reg * code -> unit;
val isIndexedStore: storeWidth -> bool
val genStore: reg * int * reg * storeWidth * reg * code -> unit;
val isStoreI: machineWord * storeWidth * bool -> bool;
val genStoreI: machineWord * int * reg * storeWidth * reg * code -> unit;
val inlineAssignments: bool
val genPush: reg * code -> unit;
val genLoadPush: int * reg * code -> unit;
val preferLoadPush: bool;
val genLoadCoderef: code * reg * code -> unit;
val allocStore: int * Word8.word * reg * code -> unit;
val setFlag: reg * code * Word8.word -> unit;
val completeSegment: code -> unit;
datatype callKinds =
Recursive
| ConstantFun of machineWord * bool
| CodeFun of code
| FullCall
val callFunction: callKinds * code -> unit;
val jumpToFunction: callKinds * reg * code -> unit;
val returnFromFunction: reg * int * code -> unit;
val raiseException: code -> unit;
val genStackOffset: reg * int * code -> unit;
val copyCode: code * int * reg list -> address;
val unconditionalBranch: code -> labels;
type handlerLab;
val loadHandlerAddress: reg * code -> handlerLab;
val fixupHandler: handlerLab * code -> unit;
val fixup: labels * code -> unit; (* Fix up a jump. *)
(* ic - Address for the next instruction in the segment. *)
val ic: code -> addrs;
val jumpback: addrs * bool * code -> unit; (* Backwards jump. *)
val resetStack: int * code -> unit; (* Set a pending reset *)
val procName: code -> string; (* Name of the procedure. *)
type cases
type jumpTableAddrs
val constrCases : int * addrs -> cases;
val useIndexedCase: int * int * int * bool -> bool;
val indexedCase : reg * reg * int * int * bool * code -> jumpTableAddrs;
val makeJumpTable : jumpTableAddrs * cases list * addrs * int * int * code -> unit;
val codeAddress: code -> address option
val traceContext: code -> string;
end (* CODECONS export signature *) =
let
(*****************************************************************************)
(* ADDRESS *)
(*****************************************************************************)
structure ADDRESS :
sig
type machineWord; (* NB *not* eqtype, 'cos it might be a closure *)
type short = Word.word;
type address;
type handler;
val wordSize : int; (* still 4, but will change one day *)
val wordEq : 'a * 'a -> bool;
val isShort: 'a -> bool;
val toShort: 'a -> short;
val toMachineWord: 'a -> machineWord;
val toAddress: 'a -> address
val loadByte: address * short -> Word8.word
val loadWord: address * short -> machineWord
val unsafeCast: 'a -> 'b
val offsetAddr : address * short -> handler;
val alloc: (short * Word8.word * machineWord) -> address;
val length: address -> short;
val flags: address -> Word8.word;
val F_words : Word8.word;
val isWords : address -> bool;
val isBytes : address -> bool;
val isCode : address -> bool;
val lock : address -> unit;
val isIoAddress : address -> bool
end = Address;
(*****************************************************************************)
(* CODESEG *)
(*****************************************************************************)
structure CODESEG :
sig
type machineWord;
type short;
type address;
type cseg;
val csegMake: int -> cseg;
val csegConvertToCode: cseg -> unit;
val csegLock: cseg -> unit;
val csegGet: cseg * int -> Word8.word;
val csegSet: cseg * int * Word8.word -> unit;
val csegPutWord: cseg * int * machineWord -> unit;
val csegCopySeg: cseg * cseg * int * int -> unit;
val csegAddr: cseg -> address;
val csegPutConstant: cseg * int * machineWord * 'a -> unit;
end = CodeSeg;
in
(*****************************************************************************)
(* CODECONS functor body *)
(*****************************************************************************)
struct
open CODESEG;
open DEBUG;
open ADDRESS;
open MISC;
val toInt = Word.toIntX (* This previously just cast the value so continue to treat it as signed. *)
fun applyCountList (f, n, []) = ()
| applyCountList (f, n, h::t) =
let
val U : unit = f (n, h);
in
applyCountList (f, n + 1, t)
end;
(* added SPF - take numbers OUT of code *)
(* These are defined here as explicit constants, so the *)
(* code-generator can in-line them as immediates (I think). *)
val exp2_2 = 4;
val exp2_3 = 8;
val exp2_4 = 16;
val exp2_5 = 32;
val exp2_6 = 64;
val exp2_7 = 128;
val exp2_8 = 256;
val exp2_10 = 1024;
val exp2_12 = 4096;
val exp2_13 = 8192;
val exp2_14 = 16384;
val exp2_16 = 65536;
val exp2_19 = 524288;
val exp2_21 = 2097152;
val exp2_22 = 4194304;
val exp2_24 = 16777216;
val exp2_25 = 33554432;
val exp2_29 = 536870912;
val exp2_30 = 1073741824;
val exp2_31 = 2147483648;
val exp2_32 = 4294967296;
(* Let's check that we got them right! *)
local
fun exp2 0 = 1
| exp2 n = 2 * exp2 (n - 1);
in
val U : bool =
(
exp2_2 = exp2 2 andalso
exp2_3 = exp2 3 andalso
exp2_4 = exp2 4 andalso
exp2_5 = exp2 5 andalso
exp2_6 = exp2 6 andalso
exp2_7 = exp2 7 andalso
exp2_8 = exp2 8 andalso
exp2_10 = exp2 10 andalso
exp2_12 = exp2 12 andalso
exp2_13 = exp2 13 andalso
exp2_14 = exp2 14 andalso
exp2_16 = exp2 16 andalso
exp2_19 = exp2 19 andalso
exp2_21 = exp2 21 andalso
exp2_22 = exp2 22 andalso
exp2_24 = exp2 24 andalso
exp2_25 = exp2 25 andalso
exp2_29 = exp2 29 andalso
exp2_30 = exp2 30 andalso
exp2_31 = exp2 31 andalso
exp2_32 = exp2 32
)
orelse raise InternalError "CodeCons: Powers of 2 incorrectly specified";
end;
val mask2bits = 0w3; (* least significant 2 bits *)
val mask5bits = 0w31; (* least significant 5 bits *)
val mask6bits = 0w63; (* least significant 6 bits *)
val mask8bits = 0w255; (* least significant 8 bits *)
val >> = Word.>> and << = Word.<<
infix >> <<;
(* These are defined here as explicit constants, so the *)
(* code-generator can in-line them as immediates (I think). *)
val TAGSHIFT = 2;
val TAGMASK = 3;
val DATATAG = 1;
val CODETAG = 2;
val FLAGLENGTH = 8; (* There are 8 flag bits in the length word *)
(* tag a short constant *)
fun semiTagged c = exp2_2 * c;
fun tagged c = exp2_2 * c + 1;
(*****************************************************************************)
(* Abstype for registers *)
(*****************************************************************************)
infix 7 regEq regNeq regLeq regGeq regMinus;
abstype reg = Reg of int (* registers. *)
with
val g0 = Reg 0;
val g1 = Reg 1;
val g2 = Reg 2;
val g3 = Reg 3;
val g4 = Reg 4;
val g5 = Reg 5;
val g6 = Reg 6;
val g7 = Reg 7;
val o0 = Reg 8;
val o1 = Reg 9;
val o2 = Reg 10;
val o3 = Reg 11;
val o4 = Reg 12;
val o5 = Reg 13;
val o6 = Reg 14;
val o7 = Reg 15;
val l0 = Reg 16;
val l1 = Reg 17;
val l2 = Reg 18;
val l3 = Reg 19;
val l4 = Reg 20;
val l5 = Reg 21;
val l6 = Reg 22;
val l7 = Reg 23;
val i0 = Reg 24;
val i1 = Reg 25;
val i2 = Reg 26;
val i3 = Reg 27;
val i4 = Reg 28;
val i5 = Reg 29;
val i6 = Reg 30;
val i7 = Reg 31;
val psp = g4;
val phr = g3;
val regResult = o0;
val regClosure = o5;
val regCode = NONE;
val regStackPtr = g4;
val regHandler = g3;
val regReturn = o7;
val regNone = g0;
fun getReg (Reg r) = r; (* reg.down *)
fun mkReg n = Reg n; (* reg.up *)
(* The number of general registers. Includes result, closure, code, return and
arg regs but not stackptr, handler, stack limit or heap ptrs. *)
val regs = 17 (* o0-o5, o7-l7, g1 and g2 *);
(* The nth register (counting from 0). *)
fun regN i =
if i < 0 orelse i >= regs
then let
val msg =
concat
[
"regN: Bad register number ",
Int.toString i
]
in
raise InternalError msg
end
else if i = 6 then g1 (* replace o6 *)
else if i < 16 then mkReg (i + 8) (* o0 - l7 *)
else g2 (* i = 16 *);
fun a regEq b = getReg a = getReg b;
fun a regNeq b = getReg a <> getReg b;
fun a regLeq b = getReg a <= getReg b;
fun a regGeq b = getReg a >= getReg b;
fun (Reg a) regMinus (Reg b) = a - b;
(* The number of the register. *)
fun nReg r =
if r regEq g1 then 6
else if r regGeq o0 andalso r regLeq l7 then getReg r - 8
else if r regEq g2 then 16
else let
val msg =
concat
[
"nReg: Bad register number ",
Int.toString (getReg r)
]
in
raise InternalError msg
end;
fun regRepr r =
( if r regEq psp then "psp" else if r regEq phr then "phr"
else if r regLeq g7 then "g" ^ Int.toString (getReg r) (* use gn *)
else if r regLeq o7 then "o" ^ Int.toString (r regMinus o0) (* use on *)
else if r regLeq l7 then "l" ^ Int.toString (r regMinus l0) (* use ln *)
else "i" ^ Int.toString (r regMinus i0) (* use in *)
);
val argRegs = 4;
(* Args 0, 1, 2, 3 correspond to o0, o1, o2, o3. *)
fun argReg i =
if i < 4 andalso i >= 0 then mkReg (i + 8)
else let
val msg =
concat
[
"argReg: bad register number ",
Int.toString i
]
in
raise InternalError msg
end;
end; (* reg *)
datatype CacheState =
Empty (* i4 contains no useful value *)
| Copy of reg; (* i4 contains an untagged copy of reg *)
(*****************************************************************************)
(* Abstype for instruction addresses *)
(*****************************************************************************)
infix 6 wordAddrPlus wordAddrMinus;
infix 4 addrLt;
(* All indexes into the code vector have type "addrs".
In this version of the code generator, we're using
WORD addresses. Earlier versions use BYTE addresses,
so don't get confused!. SPF 18/2/97
*)
abstype addrs = Addr of int
with
(* + is defined to add an integer to an address *)
fun (Addr a) wordAddrPlus b = Addr (a + b);
(* The difference between two addresses is an integer *)
fun (Addr a) wordAddrMinus (Addr b) = a - b;
fun (Addr a) addrLt (Addr b) = a < b;
fun mkWordAddr n = Addr n; (* addr.up *)
fun getWordAddr (Addr a) = a;
fun getByteAddr (Addr a) = a * wordSize;
val addrZero = mkWordAddr 0;
end;
(*****************************************************************************)
(* Types for branch labels *)
(*****************************************************************************)
type labels = addrs list;
val noJump = []:labels;
datatype const =
WVal of machineWord (* an existing constant *)
| HVal of addrs ref (* a handler *)
| CVal of code (* a forward-reference to another function *)
(* Constants which are too large to go inline in the code are put in
a list and put at the end of the code. They are arranged so that
the garbage collector can find them and change them as necessary.
A reference to a constant is treated like a forward reference to a
label. *)
(* A code list is used to hold a list of code-vectors which must have the
address of this code-vector put into it. *)
and setCodeseg =
Unset
| Set of cseg * int (* Code vector, plus size of prelude *)
and code = Code of
{
procName: string, (* Name of the procedure. *)
noClosure: bool, (* should we make a closure from this? *)
codeVec: cseg, (* This segment is used as a buffer. When the
procedure has been code generated it is
copied into a new segment of the correct size *)
ic: addrs ref, (* Pointer to first free location in "codevec" *)
constVec: (const * addrs) list ref, (* Constants used in the code *)
numOfConsts: int ref, (* Number of constants that haven't been fixed up yet *)
stackReset: int ref, (* Distance to reset the stack before the next instr. *)
otherCodes: code list ref, (* Other code vectors with forward references to this vector. *)
resultSeg: setCodeseg ref, (* The segment as the final result. *)
mustCheckStack: bool ref, (* Set to true if stack check must be done. *)
justComeFrom: labels ref, (* The label(s) we have just jumped from. *)
exited: bool ref, (* False if we can fall-through to here *)
selfCalls: labels ref, (* List of recursive calls to patch up. *)
selfJumps: labels ref, (* List of recursive tail-calls to patch up. *)
accCache: CacheState ref, (* i4 contains the untagged value of what register? *)
constLoads: (addrs * reg * reg * int) list ref, (* where do we load constants? *)
printAssemblyCode:bool, (* Whether to print the code when we finish. *)
printStream: string->unit (* The stream to use *)
};
fun codeVec (Code {codeVec,...}) = codeVec;
fun ic (Code {ic,...}) = ic;
fun constVec (Code {constVec,...}) = constVec;
fun numOfConsts (Code {numOfConsts,...}) = numOfConsts;
fun stackReset (Code {stackReset ,...}) = stackReset ;
fun procName (Code {procName,...}) = procName;
fun otherCodes (Code {otherCodes,...}) = otherCodes;
fun resultSeg (Code {resultSeg,...}) = resultSeg;
fun mustCheckStack (Code {mustCheckStack,...}) = mustCheckStack;
fun justComeFrom (Code {justComeFrom,...}) = justComeFrom;
fun exited (Code {exited,...}) = exited;
fun selfCalls (Code {selfCalls,...}) = selfCalls;
fun selfJumps (Code {selfJumps,...}) = selfJumps;
fun accCache (Code {accCache,...}) = accCache;
fun noClosure (Code {noClosure,...}) = noClosure;
fun constLoads (Code {constLoads,...}) = constLoads;
fun unreachable cvec =
case ! (justComeFrom cvec) of
[] => ! (exited cvec)
| _ => false;
val codeSize = 8; (* Words. Initial size of segment. *)
(* %i0 points to a structure that interfaces to the RTS. These are
offsets into that structure. Currently only raiseException and
the stack limit value (used to interrupt code) are used. *)
val MemRegRaiseException = 32
val MemRegStackLimit = 24
(* Test for identity of the code segments by testing whether
the resultSeg ref is the same. N.B. NOT its contents. *)
infix is;
fun a is b = (resultSeg a = resultSeg b);
fun sameConst (WVal w1, WVal w2) = wordEq (w1, w2)
| sameConst (HVal h1, HVal h2) = h1 = h2
| sameConst (CVal c1, CVal c2) = c1 is c2
| sameConst (_, _) = false;
(* create and initialise a code segment *)
fun codeCreate (noClosure, name, parameters) : code =
Code
{
procName = name,
noClosure = noClosure,
codeVec = csegMake codeSize, (* a byte array *)
ic = ref addrZero,
constVec = ref [],
numOfConsts = ref 0,
stackReset = ref 0,
otherCodes = ref [],
resultSeg = ref Unset, (* Not yet done *)
mustCheckStack = ref false,
justComeFrom = ref [],
exited = ref false,
selfCalls = ref [],
selfJumps = ref [],
accCache = ref Empty,
constLoads = ref [],
printAssemblyCode = DEBUG.getParameter DEBUG.assemblyCodeTag parameters,
printStream = DEBUG.getParameter DEBUG.compilerOutputTag parameters
};
datatype quad = (* the 4 bytes of the instruction word *)
Quad of short * short * short * short
(* break an instruction word into 4 bytes; try to do it in a way that *)
(* will minimise the arithmetic - particularly for long values. *)
fun toQuad (w : int) : quad =
let
val topHw = toShort (w div exp2_16);
val bottomHw = toShort (w mod exp2_16);
in
Quad (topHw >> 0w8, Word.andb (mask8bits, topHw),
bottomHw >> 0w8, Word.andb (mask8bits, bottomHw))
end;
(* returns *unsigned* integer *)
fun fromQuad (Quad (b1,b2,b3,b4)) : int =
let
val topHw = toInt (Word.orb (b1 << 0w8, b2));
val bottomHw = toInt (Word.orb (b3 << 0w8, b4));
in
topHw * exp2_16 + bottomHw
end;
(* Put 4 bytes at a given offset in the segment. *)
(* Write out high order bytes followed by low order.
Assume all arguments are +ve or zero. *)
fun setQuad (Quad (b1,b2,b3,b4), addr : addrs, seg : cseg) =
let
val a : int = getByteAddr addr;
in
csegSet (seg, a, Word8.fromLargeWord(Word.toLargeWord b1));
csegSet (seg, a + 1, Word8.fromLargeWord(Word.toLargeWord b2));
csegSet (seg, a + 2, Word8.fromLargeWord(Word.toLargeWord b3));
csegSet (seg, a + 3, Word8.fromLargeWord(Word.toLargeWord b4))
end;
fun getQuad (addr:addrs, seg:cseg) : quad =
let
val a : int = getByteAddr addr;
val b1 = Word.fromLargeWord(Word8.toLargeWord(csegGet (seg, a)))
val b2 = Word.fromLargeWord(Word8.toLargeWord(csegGet (seg, a + 1)))
val b3 = Word.fromLargeWord(Word8.toLargeWord(csegGet (seg, a + 2)))
val b4 = Word.fromLargeWord(Word8.toLargeWord(csegGet (seg, a + 3)))
in
Quad (b1, b2, b3, b4)
end;
(* generate a quad and increment instruction counter *)
fun genCodeQuad (instr : quad, cvec) =
let
val addr = ! (ic cvec)
in
setQuad (instr, addr, codeVec cvec);
ic cvec := addr wordAddrPlus 1
end;
fun getCodeQuad (addr : addrs, code : code) : quad =
let
val seg = codeVec code;
in
getQuad (addr, seg)
end;
fun setCodeQuad (instr : quad, addr : addrs, code : code) : unit =
let
val seg = codeVec code;
in
setQuad (instr, addr, seg)
end;
fun isSet (Set _) = true | isSet _ = false
fun scSet (Set x) = x | scSet _ = raise Match;
(* Test condition codes. *)
abstype testCode = Test of int
with
fun eqTest (Test x) (Test y) = x = y;
val never = Test 0; (* Never true *)
val e = Test 1; (* equal *)
val le = Test 2; (* less or equal *)
val l = Test 3; (* less than *)
val leu = Test 4; (* low or same *)
val cs = Test 5; (* carry set *)
val neg = Test 6; (* minus *)
val vs = Test 7; (* overflow *)
val always = Test 8; (* always true *)
val ne = Test 9; (* not equal *)
val g = Test 10; (* greater than*)
val ge = Test 11; (* greater or equal *)
val gu = Test 12; (* high *)
val cc = Test 13; (* carry clear *)
val pos = Test 14; (* plus *)
val vc = Test 15; (* no overflow *)
fun tstRepr tst =
if tst = never then "n"
else if tst = e then "e"
else if tst = le then "le"
else if tst = l then "l"
else if tst = leu then "leu"
else if tst = cs then "cs"
else if tst = neg then "neg"
else if tst = vs then "vs"
else if tst = always then "a"
else if tst = ne then "ne"
else if tst = g then "g"
else if tst = ge then "ge"
else if tst = gu then "gu"
else if tst = cc then "cc"
else if tst = pos then "pos"
else "vc";
fun getTest (Test t) = t; (* test.down *)
fun mkTest n = Test n; (* test.up *)
end;
(* effective address modes *)
(* On the Sparc this is either a register or a 13-bit immediate. *)
abstype mode13 = Register of reg | Imm13 of int (* 13 bit only *)
with
fun getMode13 (Register r) = getReg r
| getMode13 (Imm13 i) =
let
(* remove sign *)
val v = if i < 0 then exp2_13 + i else i
in
(* add "tag" bit *)
v + exp2_13
end;
fun isRegister (Register r) = true
| isRegister (Imm13 i) = false;
fun isImm13 (Register r) = false
| isImm13 (Imm13 i) = true;
fun getRegister (Register r) = r
| getRegister (Imm13 i) = raise InternalError "getRegister";
fun getImm13 (Register r) = raise InternalError "getImm13"
| getImm13 (Imm13 i) = i;
fun eqMode13 (Register x) (Register y) = (x regEq y)
| eqMode13 (Imm13 x) (Imm13 y) = (x = y)
| eqMode13 _ _ = false;
(* We check for shorts first because that saves us an expensive
compile-time trap if v is actually a long value.
SPF 19/12/95 *)
(* v will fit into 13 bits *)
fun is13Bit v =
isShort v andalso ~ exp2_12 <= v andalso v < exp2_12;
(* v will fit into 13 bits when tagged *)
(* NB isTaggable13Bit b implies is13Bit (4*v) ... is13Bit (4*v+3) *)
fun isTaggable13Bit v = ~ exp2_10 <= v andalso v < exp2_10;
fun mReg r = Register r
fun immed13 i =
if is13Bit i then Imm13 i
else let
val msg =
concat
[
"immed13: can't convert ",
Int.toString i,
" into 13-bit immediate"
]
in
raise InternalError msg
end;
(* These are provided for convenience. *)
val o5M = mReg o5;
val i3M = mReg i3;
val i4M = mReg i4;
val i5M = mReg i5;
val pspM = mReg psp;
val g6M = mReg g6;
val immed13_0 = immed13 0;
val immed13_4 = immed13 4;
val immed13_6 = immed13 6;
val immed13_8 = immed13 8;
val immed13_24 = immed13 24;
val immed13_TAGSHIFT = immed13 TAGSHIFT;
val immed13_TAGMASK = immed13 TAGMASK;
val immed13_DATATAG = immed13 DATATAG;
val immed13_CODETAG = immed13 CODETAG;
fun signed13 (imm : int) : int =
if imm < exp2_12 (* positive? *)
then imm
else (imm - exp2_13);
end (* mode13 *);
(* 30-bit mode for calls *)
abstype mode30 = Imm30 of int (* 30 bit only *)
with
(* Unfortunately, we can't avoid the use of long arithmetic
in the following code, because if i is negative, the
result is (should be) >= exp2_29 i.e. it's not a 30-bit short.
SPF 19/12/95
*)
fun getMode30 (Imm30 i) = (* remove sign *)
if i < 0 then exp2_30 + i else i;
(* But we can work round this by returning a
(signed) short. SPF 19/12/95
*)
fun getMode30Short (Imm30 i) = toShort i;
(* A hack that saves a lot of compile-time traps, assuming
that the machine we're compiling on uses 30-bit shorts.
SPF 19/12/95
*)
fun is30Bit (v : int) = isShort v;
(* ...
fun is30Bit v = (* v will fit into 30 bits *)
~ exp2_29 <= v andalso v < exp2_29;
... *)
fun immed30 i = Imm30 i;
val immed30_0 = immed30 0;
fun signed30 (imm : int) : int =
if imm < exp2_29 (* positive? *)
then imm
else (imm - exp2_30);
end (* mode30 *);
(* 22-bit mode for jumps *)
abstype mode22 = Imm22 of int (* 22 bit only *)
with
fun getMode22 (Imm22 i) = (* remove sign *)
if i < 0 then exp2_22 + i else i;
fun is22Bit v = (* v will fit into 22 bits *)
~ exp2_21 <= v andalso v < exp2_21;
fun immed22 i = Imm22 i;
val immed22_0 = immed22 0;
fun signed22 (imm : int) : int =
if imm < exp2_21 (* positive? *)
then imm
else (imm - exp2_22);
end (* mode22 *);
(* break a 32 bit word integer into 22 hi bits (+ve or -ve) + 10 lo bits (+ve) *)
fun splitHiLo w = (* we assume ~exp2_31 <= w < exp2_31 *)
let
val lo = immed13 (w mod exp2_10); (* 0 <= lo < exp2_10 *)
val hi = immed22 (w div exp2_10); (* ~exp2_21 <= hi < exp2_21 *)
in
(hi, lo)
end;
(* op2 opcodes *)
datatype op2 =
UNIMP (* 0 *) (* The official unimplemented instruction *)
| UNIMP1 (* 1 *)
| Bicc (* 2 *)
| UNIMP3 (* 3 *)
| SETHI (* 4 *)
| UNIMP5 (* 5 *)
| FBfcc (* 6 *)
| CBccc (* 7 *)
;
fun op2ToInt UNIMP = 0
| op2ToInt UNIMP1 = 1
| op2ToInt Bicc = 2
| op2ToInt UNIMP3 = 3
| op2ToInt SETHI = 4
| op2ToInt UNIMP5 = 5
| op2ToInt FBfcc = 6
| op2ToInt CBccc = 7
;
(* op3 opcodes used when op = 2 *)
datatype op3_2 =
ADD (* 0 *)
| AND (* 1 *)
| OR (* 2 *)
| XOR (* 3 *)
| SUB (* 4 *)
| ANDN (* 5 *)
| ORN (* 6 *)
| XNOR (* 7 *)
| ADDX (* 8 *)
| UNIMP9 (* 9 *)
| UNIMP10 (* 10 *)
| UNIMP11 (* 11 *)
| SUBX (* 12 *)
| UNIMP13 (* 13 *)
| UNIMP14 (* 14 *)
| UNIMP15 (* 15 *)
| ADDcc (* 16 *)
| ANDcc (* 17 *)
| ORcc (* 18 *)
| XORcc (* 19 *)
| SUBcc (* 20 *)
| ANDNcc (* 21 *)
| ORNcc (* 22 *)
| XNORcc (* 23 *)
| ADDXcc (* 24 *)
| UNIMP25 (* 25 *)
| UNIMP26 (* 26 *)
| UNIMP27 (* 27 *)
| SUBXcc (* 28 *)
| UNIMP29 (* 29 *)
| UNIMP30 (* 30 *)
| UNIMP31 (* 31 *)
| TADDcc (* 32 *)
| TSUBcc (* 33 *)
| TADDccTV (* 34 *)
| TSUBccTV (* 35 *)
| MULScc (* 36 *)
| SLL (* 37 *)
| SRL (* 38 *)
| SRA (* 39 *)
| RDY (* 40 *)
| RDPSR (* 41 *)
| RDWIM (* 42 *)
| RDTBR (* 43 *)
| UNIMP44 (* 44 *)
| UNIMP45 (* 45 *)
| UNIMP46 (* 46 *)
| UNIMP47 (* 47 *)
| WRY (* 48 *)
| WRPSR (* 49 *)
| WRWIM (* 50 *)
| WRTBR (* 51 *)
| FPop1 (* 52 *)
| FPop2 (* 53 *)
| CPop1 (* 54 *)
| CPop2 (* 55 *)
| JMPL (* 56 *)
| RETT (* 57 *)
| Ticc (* 58 *)
| IFLUSH (* 69 *)
| SAVE (* 60 *)
| RESTORE (* 61 *)
| UNIMP62 (* 62 *)
| UNIMP63 (* 63 *)
;
fun op3_2ToInt ADD = 0
| op3_2ToInt AND = 1
| op3_2ToInt OR = 2
| op3_2ToInt XOR = 3
| op3_2ToInt SUB = 4
| op3_2ToInt ANDN = 5
| op3_2ToInt ORN = 6
| op3_2ToInt XNOR = 7
| op3_2ToInt ADDX = 8
| op3_2ToInt UNIMP9 = 9
| op3_2ToInt UNIMP10 = 10
| op3_2ToInt UNIMP11 = 11
| op3_2ToInt SUBX = 12
| op3_2ToInt UNIMP13 = 13
| op3_2ToInt UNIMP14 = 14
| op3_2ToInt UNIMP15 = 15
| op3_2ToInt ADDcc = 16
| op3_2ToInt ANDcc = 17
| op3_2ToInt ORcc = 18
| op3_2ToInt XORcc = 19
| op3_2ToInt SUBcc = 20
| op3_2ToInt ANDNcc = 21
| op3_2ToInt ORNcc = 22
| op3_2ToInt XNORcc = 23
| op3_2ToInt ADDXcc = 24
| op3_2ToInt UNIMP25 = 25
| op3_2ToInt UNIMP26 = 26
| op3_2ToInt UNIMP27 = 27
| op3_2ToInt SUBXcc = 28
| op3_2ToInt UNIMP29 = 29
| op3_2ToInt UNIMP30 = 30
| op3_2ToInt UNIMP31 = 31
| op3_2ToInt TADDcc = 32
| op3_2ToInt TSUBcc = 33
| op3_2ToInt TADDccTV = 34
| op3_2ToInt TSUBccTV = 35
| op3_2ToInt MULScc = 36
| op3_2ToInt SLL = 37
| op3_2ToInt SRL = 38
| op3_2ToInt SRA = 39
| op3_2ToInt RDY = 40
| op3_2ToInt RDPSR = 41
| op3_2ToInt RDWIM = 42
| op3_2ToInt RDTBR = 43
| op3_2ToInt UNIMP44 = 44
| op3_2ToInt UNIMP45 = 45
| op3_2ToInt UNIMP46 = 46
| op3_2ToInt UNIMP47 = 47
| op3_2ToInt WRY = 48
| op3_2ToInt WRPSR = 49
| op3_2ToInt WRWIM = 50
| op3_2ToInt WRTBR = 51
| op3_2ToInt FPop1 = 52
| op3_2ToInt FPop2 = 53
| op3_2ToInt CPop1 = 54
| op3_2ToInt CPop2 = 55
| op3_2ToInt JMPL = 56
| op3_2ToInt RETT = 57
| op3_2ToInt Ticc = 58
| op3_2ToInt IFLUSH = 59
| op3_2ToInt SAVE = 60
| op3_2ToInt RESTORE = 61
| op3_2ToInt UNIMP62 = 62
| op3_2ToInt UNIMP63 = 63
;
datatype op3_3 =
LD (* 0 *)
| LDUB (* 1 *)
| LDUH (* 2 *)
| LDD (* 3 *)
| ST (* 4 *)
| STB (* 5 *)
| STH (* 6 *)
| STD (* 7 *)
| UNIMP8 (* 8 *)
| LDSB (* 9 *)
| LDSH (* 10 *)
| UNIMP11 (* 11 *)
| UNIMP12 (* 12 *)
| LDSTUB (* 13 *)
| UNIMP14 (* 14 *)
| SWAP (* 15 *)
| LDA (* 16 *)
| LDUBA (* 17 *)
| LDUHA (* 18 *)
| LDDA (* 19 *)
| STA (* 20 *)
| STBA (* 21 *)
| STHA (* 22 *)
| STDA (* 23 *)
| UNIMP24 (* 24 *)
| LDSBA (* 25 *)
| LDSHA (* 26 *)
| UNIMP27 (* 27 *)
| UNIMP28 (* 28 *)
| LDSTUBA (* 29 *)
| UNIMP30 (* 30 *)
| SWAPA (* 31 *)
| LDF (* 32 *)
| LDFSR (* 33 *)
| UNIMP34 (* 34 *)
| LDDF (* 35 *)
| STF (* 36 *)
| STFSR (* 37 *)
| STDFQ (* 38 *)
| STDF (* 39 *)
| RDY (* 40 *)
| UNIMP41 (* 41 *)
| UNIMP42 (* 42 *)
| UNIMP43 (* 43 *)
| UNIMP44 (* 44 *)
| UNIMP45 (* 45 *)
| UNIMP46 (* 46 *)
| UNIMP47 (* 47 *)
| LDC (* 48 *)
| LDCSR (* 49 *)
| UNIMP50 (* 50 *)
| LDDC (* 51 *)
| STC (* 52 *)
| STCSR (* 53 *)
| STDCQ (* 54 *)
| STDC (* 55 *)
| UNIMP56 (* 56 *)
| UNIMP57 (* 57 *)
| UNIMP58 (* 58 *)
| UNIMP59 (* 69 *)
| UNIMP60 (* 60 *)
| UNIMP61 (* 61 *)
| UNIMP62 (* 62 *)
| UNIMP63 (* 63 *)
;
fun op3_3ToInt LD = 0
| op3_3ToInt LDUB = 1
| op3_3ToInt LDUH = 2
| op3_3ToInt LDD = 3
| op3_3ToInt ST = 4
| op3_3ToInt STB = 5
| op3_3ToInt STH = 6
| op3_3ToInt STD = 7
| op3_3ToInt UNIMP8 = 8
| op3_3ToInt LDSB = 9
| op3_3ToInt LDSH = 10
| op3_3ToInt UNIMP11 = 11
| op3_3ToInt UNIMP12 = 12
| op3_3ToInt LDSTUB = 13
| op3_3ToInt UNIMP14 = 14
| op3_3ToInt SWAP = 15
| op3_3ToInt LDA = 16
| op3_3ToInt LDUBA = 17
| op3_3ToInt LDUHA = 18
| op3_3ToInt LDDA = 19
| op3_3ToInt STA = 20
| op3_3ToInt STBA = 21
| op3_3ToInt STHA = 22
| op3_3ToInt STDA = 23
| op3_3ToInt UNIMP24 = 24
| op3_3ToInt LDSBA = 25
| op3_3ToInt LDSHA = 26
| op3_3ToInt UNIMP27 = 27
| op3_3ToInt UNIMP28 = 28
| op3_3ToInt LDSTUBA = 29
| op3_3ToInt UNIMP30 = 30
| op3_3ToInt SWAPA = 31
| op3_3ToInt LDF = 32
| op3_3ToInt LDFSR = 33
| op3_3ToInt UNIMP34 = 34
| op3_3ToInt LDDF = 35
| op3_3ToInt STF = 36
| op3_3ToInt STFSR = 37
| op3_3ToInt STDFQ = 38
| op3_3ToInt STDF = 39
| op3_3ToInt RDY = 40
| op3_3ToInt UNIMP41 = 41
| op3_3ToInt UNIMP42 = 42
| op3_3ToInt UNIMP43 = 43
| op3_3ToInt UNIMP44 = 44
| op3_3ToInt UNIMP45 = 45
| op3_3ToInt UNIMP46 = 46
| op3_3ToInt UNIMP47 = 47
| op3_3ToInt LDC = 48
| op3_3ToInt LDCSR = 49
| op3_3ToInt UNIMP50 = 50
| op3_3ToInt LDDC = 51
| op3_3ToInt STC = 52
| op3_3ToInt STCSR = 53
| op3_3ToInt STDCQ = 54
| op3_3ToInt STDC = 55
| op3_3ToInt UNIMP56 = 56
| op3_3ToInt UNIMP57 = 57
| op3_3ToInt UNIMP58 = 58
| op3_3ToInt UNIMP59 = 69
| op3_3ToInt UNIMP60 = 60
| op3_3ToInt UNIMP61 = 61
| op3_3ToInt UNIMP62 = 62
| op3_3ToInt UNIMP63 = 63
;
(* Specially written to reduce the number of emulation traps required *)
fun callQuad (disp:mode30) : quad =
let
val addrBits : short = getMode30Short disp;
val b4 : short = Word.andb (addrBits, mask8bits);
val b3 : short = Word.andb (addrBits >> 0w8, mask8bits);
val b2 : short = Word.andb (addrBits >> 0w16, mask8bits);
val b1 : short = Word.andb (addrBits >> 0w24, mask6bits);
val opc : short = toShort exp2_6;
in
Quad (Word.orb (opc, b1), b2, b3, b4)
end;
val call0 : quad = callQuad immed30_0;
fun format3Quad (iOp:int, op3:int, rsn:int, mval:int, rdn:int) : quad =
let
val iop_short = toShort iOp; (* 2 bits *)
val op3_short = toShort op3; (* 6 bits *)
val rdn_short = toShort rdn; (* 5 bits *)
val rsn_short = toShort rsn; (* 5 bits *)
val mval_short = toShort mval; (* 14 bits *)
val bits30_31 = iop_short << 0w6; (* 2 bits *)
val bits25_29 = rdn_short << 0w1; (* 5 bits *)
val bits24_24 = op3_short >> 0w5; (* 1 bit *)
val b1 = Word.orb (Word.orb (bits25_29, bits24_24), bits30_31);
val bits19_23 = Word.andb (op3_short, mask5bits) << 0w3; (* 5 bits *)
val bits16_18 = rsn_short >> 0w2; (* 3 bits *)
val b2 = Word.orb (bits16_18, bits19_23);
val bits14_15 = Word.andb (rsn_short, mask2bits) << 0w6; (* 2 bits *)
val bits8_13 = mval_short >> 0w8; (* 6 bits *)
val b3 = Word.orb (bits8_13, bits14_15);
val b4 = Word.andb (mval_short, mask8bits); (* 8 bits *)
in
Quad (b1, b2, b3, b4)
end;
fun fixupBranch (instr : quad, disp : mode22) : quad =
let
val (Quad (b1, b2, b3, b4)) = instr
in
if wordEq (0w0, b4) andalso
wordEq (0w0, b3) andalso
wordEq (0w0, Word.andb (b2, mask6bits))
then let
val d = toShort (getMode22 disp); (* 22 bits will be a short *)
val d4 = Word.andb (mask8bits, d); (* 8 bits *)
val d3 = Word.andb (mask8bits, d >> 0w8); (* 8 bits *)
val d2 = d >> 0w16; (* 6 bits *)
in
Quad (b1, Word.orb (b2, d2), d3, d4)
end
else raise InternalError "fixupBranch: already fixed-up"
end;
(* trap is a variation on format3 *)
fun trap (cond:testCode, rs:reg, md:mode13) : quad =
format3Quad (2, op3_2ToInt Ticc, getReg rs, getMode13 md, getTest cond)
val tlu24 = trap (cs, g0, immed13_24); (* tlu 24 is a synonym for tcs 24 *)
fun format2Quad (op2:int, imm:int (* unsigned *), rdn:int) : quad =
let
val rdn_short = toShort rdn; (* 5 bits *)
val op2_short = toShort op2; (* 3 bits *)
val imm_short = toShort imm; (* 22 bits *)
(* val bits30_31 = 0w0; *) (* 2 bits *)
val bits25_29 = rdn_short << 0w1; (* 5 bits *)
val bits24_24 = op2_short >> 0w2; (* 1 bit *)
val b1 = Word.orb (bits24_24, bits25_29);
val bits22_23 = Word.andb (op2_short, mask2bits) << 0w6; (* 2 bits *)
val bits16_21 = imm_short >> 0w16; (* 6 bits *)
val b2 = Word.orb (bits16_21, bits22_23);
val b3 = Word.andb (imm_short >> 0w8, mask8bits);
val b4 = Word.andb (imm_short, mask8bits);
in
Quad (b1,b2,b3,b4)
end;
(* sethi and conditional branches are variations on format 2 *)
fun sethi (v:mode22, rd:reg) : quad =
format2Quad (op2ToInt SETHI, getMode22 v, getReg rd);
(* opcode for a no-op - sethi 0,%0 *)
val nopQuad : quad = sethi (immed22_0, g0);
fun branch (annul:bool, cond:testCode, disp:mode22) : quad =
let
val tn = getTest cond;
val rn = if annul then tn + exp2_4 else tn;
in
format2Quad (op2ToInt Bicc,getMode22 disp, rn)
end;
val branchAlwaysQuad : quad =
branch (false (* no annul *), always, immed22_0);
fun format3_2 (op3:op3_2, rs:reg, md:mode13, rd:reg) : quad =
format3Quad (2, op3_2ToInt op3, getReg rs, getMode13 md, getReg rd);
fun format3_3 (op3:op3_3, rs:reg, md:mode13, rd:reg) : quad =
format3Quad (3, op3_3ToInt op3, getReg rs, getMode13 md, getReg rd);
(* At the moment there are two kinds of operations that can be left pending
and are not actually generated immediately. Changing the real stack
pointer is not generated immediately because often these accumulate and
sometimes even cancel out. Fixing up a branch is not done immediately in
case we are going to jump somewhere else, and also because we can often
use the delay slot of the jump. If both the branch and stack movement are
deferred the branch is assumed to have happened first. *)
(* Fix up the list of labels. *)
fun reallyFixupBranches (cvec, target, []) = ()
| reallyFixupBranches (cvec, target, addrH :: addrT) =
let
val wordDiff : int = target wordAddrMinus addrH;
val jumpInstr = getCodeQuad (addrH, cvec);
val U : unit =
if not (is22Bit wordDiff) (* 22 bit signed number *)
then raise InternalError "reallyFixupBranches: jump too large"
else (* Set this addr to point to the destination. *)
setCodeQuad (fixupBranch (jumpInstr, immed22 wordDiff), addrH, cvec);
in
reallyFixupBranches (cvec, target, addrT)
end;
fun fixupRecursiveBranches (cvec, targetInstr, target, []) = ()
| fixupRecursiveBranches (cvec, targetInstr, target, addrH :: addrT) =
let
val nextAddr : addrs = addrH wordAddrPlus 1;
val jumpInstr : quad = getCodeQuad (addrH, cvec);
val nextInstr : quad = getCodeQuad (nextAddr, cvec);
in
if nextInstr <> nopQuad
then let
val wordDiff : int = target wordAddrMinus addrH;
in
if not (is22Bit wordDiff)
then raise InternalError "fixupRecursiveBranches: jump too large"
else setCodeQuad (fixupBranch (jumpInstr, immed22 wordDiff), addrH, cvec)
end
else let (* put targetInstr into the delay slot *)
val newTarget : addrs = target wordAddrPlus 1;
val wordDiff : int = newTarget wordAddrMinus addrH;
in
if not (is22Bit wordDiff)
then raise InternalError "fixupRecursiveBranches: jump too large"
else let
val U : unit =
setCodeQuad (fixupBranch (jumpInstr, immed22 wordDiff), addrH, cvec);
in
setCodeQuad (targetInstr, nextAddr, cvec)
end
end;
fixupRecursiveBranches (cvec, targetInstr, target, addrT)
end;
fun fixupRecursiveCalls (cvec, targetInstr, target, []) = ()
| fixupRecursiveCalls (cvec, targetInstr, target, addrH :: addrT) =
let
val nextAddr : addrs = addrH wordAddrPlus 1;
val callInstr : quad = getCodeQuad (addrH, cvec);
val nextInstr : quad = getCodeQuad (nextAddr, cvec);
in
if callInstr <> call0
then raise InternalError "fixupRecursiveCalls: not a call instruction"
else if nextInstr <> nopQuad
then let
val wordDiff : int = target wordAddrMinus addrH;
in
if not (is30Bit wordDiff)
then raise InternalError "fixupRecursiveCalls: jump too large"
else setCodeQuad (callQuad (immed30 wordDiff), addrH, cvec)
end
else let (* put targetInstr into the delay slot *)
val newTarget : addrs = target wordAddrPlus 1;
val wordDiff : int = newTarget wordAddrMinus addrH;
in
if not (is30Bit wordDiff)
then raise InternalError "fixupRecursiveCalls: jump too large"
else let
val U : unit =
setCodeQuad (callQuad (immed30 wordDiff), addrH, cvec);
in
setCodeQuad (targetInstr, nextAddr, cvec)
end
end;
fixupRecursiveCalls (cvec, targetInstr, target, addrT)
end;
(* Deal with a pending fix-up. *)
fun reallyFixup cvec =
let
val jcf = justComeFrom cvec;
val here = ! (ic cvec);
in
case ! jcf of
[] => ()
| labs => (exited cvec := false; reallyFixupBranches (cvec, here, labs); jcf := [])
end;
(* Generate an instruction. This may involve filling in a delay slot. *)
(* What if we fill one delay slot, then find a second is already full? *)
(* OK, since the two jumps will be sent to different destinations. *)
fun genInstruction (instr : quad, cvec : code) : unit =
if unreachable cvec then ()
else let
val jcf = justComeFrom cvec
fun fillDelays [] = []
| fillDelays (addr::addrs) =
if getCodeQuad (addr wordAddrPlus 1, cvec) = nopQuad
then let
(* Put the instruction in the delay slot *)
val U : unit = setCodeQuad (instr, addr wordAddrPlus 1, cvec);
in
(* Keep this label in the list for the next instruction. *)
addr :: fillDelays addrs
end
else let (* Fix this up here. *) (* genLoadConstant? SPF *)
val wordDiff : int = ! (ic cvec) wordAddrMinus addr;
val jumpInstr = getCodeQuad (addr, cvec);
val U : unit =
if not (is22Bit wordDiff) (* 22 bit signed number *)
then raise InternalError "genInstruction: jump too large"
else (* Set this addr to point to the destination. *)
setCodeQuad (fixupBranch (jumpInstr, immed22 wordDiff), addr, cvec);
(* Must generate the instruction. *)
val U : unit = exited cvec := false;
in
fillDelays addrs
end;
in
case ! jcf of
[] => ()
| labs => jcf := fillDelays labs;
(* If we have managed to use delay slots we can keep defer those jumps for
one instruction. If we have been unable to use any delay slot, or if we
could have fallen through to here, we must generate the instruction. *)
if not (! (exited cvec)) then genCodeQuad (instr, cvec) else ()
end (* genInstruction *);
fun genInstructionList (cvec, []) = ()
| genInstructionList (cvec, w::ws) =
(genInstruction (w, cvec); genInstructionList (cvec, ws));
(***************************************************************************
Functions for maintaining the write-through cache for untagged values.
***************************************************************************)
fun cached (reg, cvec) =
case ! (accCache cvec) of
Empty => false
| Copy r => r regEq reg
fun cacheEmpty cvec =
case !(accCache cvec) of
Empty => true
| _ => false;
fun genUntagInstr (reg, cvec) =
genInstruction (format3_2 (SUB, reg, immed13_DATATAG, i4), cvec);
fun genTagInstr (reg, cvec) =
genInstruction (format3_2 (ADD, i4, immed13_DATATAG, reg), cvec);
(* process any pending writes, but remember state *)
fun clearCache cvec =
let
val cache : CacheState ref = accCache cvec;
in
cache := Empty
end;
(* write the cache into reg *)
fun writeCache (reg, cvec) =
let
val cache : CacheState ref = accCache cvec;
in
genTagInstr (reg, cvec);
cache := Copy reg
end;
(* load the cache from reg *)
fun readCache (reg, cvec) =
let
val cache : CacheState ref = accCache cvec;
in
case !cache of
Empty =>
(
genUntagInstr (reg, cvec);
cache := Copy reg
)
| Copy r =>
if r regEq reg then () (* already there *)
else
(
genUntagInstr (reg, cvec);
cache := Copy reg
)
end;
(***************************************************************************)
(* load constant into i3, unless it's an immediate *)
(* used for heap/stack addressing only *)
fun immedCodeOffset (v:int) : quad list * mode13 =
if is13Bit v then ([],immed13 v)
else let
val (hi,lo) = splitHiLo v
val code =
if eqMode13 lo immed13_0 (* minor optimisation *)
then [sethi (hi, i3)]
else [sethi (hi, i3), format3_2 (ADD, i3, lo, i3)]
in
(code, i3M)
end;
(* load constant into i5, unless it's an immediate *)
(* We MUST use i5 for this, because the RTS won't
understand the tsubcctv instruction in allocate-code
if we use a different register. SPF 17/5/95 *)
fun immedCodeData (v:int) : quad list * mode13 =
if is13Bit v then ([],immed13 v)
else let
val (hi,lo) = splitHiLo v
val code =
if eqMode13 lo immed13_0 (* minor optimisation *)
then [sethi (hi, i5)]
else [sethi (hi, i5), format3_2 (ADD, i5, lo, i5)]
in
(code, i5M)
end;
(* Do outstanding operations in the right order. This deals with any
stack resets which may involve fixing up some branches. *)
fun doPendingStackAdjustment (cvec : code) : unit =
case ! (stackReset cvec) of
0 => ()
| adj =>
let
val (cl,imm) = immedCodeOffset (adj * wordSize);
in
stackReset cvec := 0;
(* add %psp,imm,%psp *)
genInstructionList (cvec, cl);
genInstruction (format3_2 (ADD, psp, imm, psp), cvec)
end;
(* Called when about to generate a jump instruction. If we have a pending
instruction we may be able to put it in the delay slot. This is called
instead of doPendingStackAdjustment in those cases. *)
fun putPendingInDelay (cvec : code) : quad = (* returns instruction to put in delay slot *)
let
(* Must take a jump here if it is pending. Can't put a jump in a delay slot. *)
val U = reallyFixup cvec;
(* justComeFrom cvec = [] *)
val reset = ! (stackReset cvec) * wordSize;
in
if reset = 0 then nopQuad (* nothing useful to do *)
else let
val (cl,imm) = immedCodeOffset reset;
val U : unit = genInstructionList (cvec, cl);
val U : unit = stackReset cvec := 0;
in
format3_2 (ADD, psp, imm, psp)
end
end;
(* Apparently fix up jumps - actually just record where we have come from *)
fun fixup (lab : labels, cvec : code) : unit =
let
(* If the jump we are fixing up is an immediately preceding unconditional
jump, we can remove it. This is particularly useful if we have used
the delay slot for the whole of an else-part so we have nothing to
jump over. It is also used for reducing the code for "andalso"
and "orelse" to the minimal forms. N.B. this is only safe because
the instruction in the delay slot is never itself the target of
a jump, and because each label is only fixed up once. SPF 5/6/95.
This is also only safe if we've exited, as otherwise the current
instruction might be the target of a jump backwards, or it
might be the start of a handler. N.B. this *can* happen
if the body of the handler is trivial, so that it just falls
through to the post-handler code. I discovered this the hard way,
of course. SPF 27/6/95.
*)
fun checkLabs [] = []
| checkLabs (addr::addrs) =
if ! (ic cvec) wordAddrMinus addr = 2
then let
val instrQuad = getCodeQuad (addr, cvec);
in
if instrQuad = branchAlwaysQuad
then let
val delayQuad = getCodeQuad (addr wordAddrPlus 1, cvec);
(* skip back two instructions *)
val U : unit = ic cvec := addr;
(* put the delay slot back into the instruction flow,
using genCodeQuad not genInstruction to avoid
prematurely fixing up any jumps. *)
val U : unit =
if delayQuad <> nopQuad
then genCodeQuad (delayQuad, cvec)
else ();
(* We're now falling-through (rather than jumping) *)
val U : unit = exited cvec := false;
in
addrs
end
else addr :: addrs (* we can't do anything clever *)
end
else addr :: checkLabs addrs; (* try the next jump *)
(* We can't optimise if we haven't exited. *)
fun checkLabsCarefully l =
if ! (exited cvec) then checkLabs l else l;
in
case lab of
[] => () (* we're not actually jumping from anywhere *)
| _ =>
(
(* Since this is the start of a basic block,
we must clear any caches that we maintaining.
If we have a write-back (rather than write-through)
cache, this may involve generating some code. *)
clearCache cvec;
(* Any pending stack reset must be done now.
That may involve fixing up pending jumps. *)
doPendingStackAdjustment cvec;
(* Add together the jumps to here. *)
justComeFrom cvec := checkLabsCarefully lab @ !(justComeFrom cvec)
)
end;
(* Adds in the reset. *)
fun resetStack (offset : int, cvec : code) : unit =
stackReset cvec := ! (stackReset cvec) + offset;
(* Generates an unconditional branch. *)
fun unconditionalBranch (cvec : code) : labels =
if unreachable cvec then []
else if ! (stackReset cvec) = 0
then let
(* If we are branching and we have just arrived from somewhere
else we can combine this jump with the one we had just made.
If we had an unconditional branch just before, we don't need
to actually put a branch. *)
val lab =
if !(exited cvec) then !(justComeFrom cvec) (* no branch needed *)
else
(
(* Use genCodeQuad not genInstruction to avoid fixing up
the outstanding branches. *)
genCodeQuad (branchAlwaysQuad, cvec); (* ba *)
genCodeQuad (nopQuad, cvec);
exited cvec := true;
(!(ic cvec) wordAddrPlus ~2) :: !(justComeFrom cvec)
);
in
justComeFrom cvec := [];
lab
end
else let (* Stack needs adjustment - must generate the branch. *)
val delayQuad = putPendingInDelay cvec; (* may generate code *)
in
genInstruction (branchAlwaysQuad, cvec); (* ba - no annul *)
genInstruction (delayQuad, cvec);
exited cvec := true;
[!(ic cvec) wordAddrPlus ~2]
end;
(* Generates an unconditional call. *)
fun genCall (cvec : code) =
let
val U : unit = clearCache cvec; (* end of basic block *)
val delayQuad = putPendingInDelay cvec; (* may generate code *)
in
genInstruction (call0, cvec);
genInstruction (delayQuad, cvec);
!(ic cvec) wordAddrPlus ~2
end;
fun putConditional (test : testCode, cvec : code) : labels =
if unreachable cvec then [] (* SPF 5/6/95 *)
else let
val U : unit = clearCache cvec; (* end of basic block *)
val delayQuad = putPendingInDelay cvec; (* may generate code *)
(* If we have a pending instruction we put it in the delay slot
and execute it whether or not we have take the branch, otherwise
we put in a no-op and set the annul bit so that the delay slot
can be filled in by the code to be executed at the destination
of the branch. *)
val annul = (delayQuad = nopQuad);
in
genInstruction (branch (annul, test, immed22_0), cvec);
genInstruction (delayQuad, cvec);
(* Make a label for this instruction. *)
[! (ic cvec) wordAddrPlus ~2]
end;
(* Most of the arithmetic operations are of this form. *)
(* Since they won't trap, we don't need to fix-up the stack;
however, can we be sure that the stack-pointer isn't one
of the operands? Let's check! SPF 16/5/95 *)
fun type2 (c2 : op3_2) (r : reg, m : mode13, rd : reg, cvec : code) : unit =
let
val U : unit =
if cached (rd, cvec)
then clearCache cvec
else ();
val U : unit =
if r regEq psp orelse
rd regEq psp orelse
eqMode13 m pspM
then doPendingStackAdjustment cvec
else ();
in
genInstruction (format3_2 (c2, r, m, rd), cvec)
end;
val genAnd = type2 AND;
val genOr = type2 OR;
val genXor = type2 XOR;
val genAndn = type2 ANDN;
val genSub = type2 SUB;
val genAddcc = type2 ADDcc;
val genAndcc = type2 ANDcc;
val genSubcc = type2 SUBcc;
val genSll = type2 SLL;
val genSrl = type2 SRL;
val genSra = type2 SRA;
(* Special case for loading register from stack pointer. SPF 16/5/95 *)
fun genAdd (r : reg, m : mode13, rd : reg, cvec : code) : unit =
if r regEq psp andalso rd regNeq psp andalso isImm13 m
then let
val m' = getImm13 m + 4 * !(stackReset cvec);
in
if is13Bit m'
then
(
if cached (rd, cvec) then clearCache cvec else ();
genInstruction (format3_2 (ADD, psp, immed13 m', rd), cvec)
)
else type2 ADD (r, m, rd, cvec)
end
else type2 ADD (r, m, rd, cvec);
(* subtract, but "save" result in g0 *)
fun genCmp (r : reg, m : mode13, cvec : code) : unit =
genSubcc (r, m, g0, cvec);
(* or the source with 0 and put it in the destination. *)
fun genMove (source : mode13, dest : reg, cvec : code) : unit =
if eqMode13 source pspM andalso dest regNeq psp
then let
val adj = 4 * !(stackReset cvec);
in
if is13Bit adj
then let
val U : unit =
if cached (dest, cvec) then clearCache cvec else ();
in
genInstruction (format3_2 (ADD, psp, immed13 adj, dest), cvec)
end
else genOr (g0, source, dest, cvec)
end
else genOr (g0, source, dest, cvec);
(* These instruction may trap, so we must fix-up the stack. *)
fun type2T (c2 : op3_2) (r : reg, m : mode13, rd : reg, cvec : code) : unit =
(
(* The emulation of these instructions sometimes trashes i4,
so clear the cache. *)
clearCache cvec;
doPendingStackAdjustment cvec;
genInstruction (format3_2 (c2, r, m, rd), cvec)
);
val genTaddcctv = type2T TADDccTV;
val genTsubcctv = type2T TSUBccTV;
(***************************************************************************
Functions that use cached values.
***************************************************************************)
val genUntagToI4 : reg * code -> unit = readCache;
val genTagFromI4 : reg * code -> unit = writeCache;
fun genUntagToI5 (fromReg, cvec) =
(* with a write-back cache, the value may *only* be in i4 *)
if cached (fromReg, cvec)
then genMove (i4M, i5, cvec)
else genSub (fromReg, immed13_DATATAG, i5, cvec)
(***************************************************************************)
(* N.B. uses i5, which is never cached, so no "clearCache cvec" needed. *)
fun genImmedData (cvec : code, v : int) : mode13 =
let
val (cl,loc) = immedCodeData v
in
(case cl of
[] => ()
| _ => (* no need to adjust stack *) genInstructionList (cvec, cl));
loc
end;
fun genImmedOffset (cvec : code, v : int) : mode13 =
let
val (cl,loc) = immedCodeOffset v
in
(case cl of
[] => ()
| _ => (* no need to adjust stack *) genInstructionList (cvec, cl));
loc
end;
fun genLoadImmed (v : int, rd : reg, cvec : code) : unit =
let
val U : unit =
if cached (rd, cvec)
then clearCache cvec
else ();
(* We shouldn't load immediates into psp, but if we try to,
we have to ensure that it won't be corrupted by a
subsequent stack adjustment. SPF 16/5/95 *)
val U : unit =
if rd regEq psp
then doPendingStackAdjustment cvec
else ();
in
if is13Bit v
then genMove (immed13 v, rd, cvec)
else let
val (hi,lo) = splitHiLo v;
in
(* sethi %hi(v),%rd; add %rd,%lo(v),%rd; *)
genInstruction (sethi (hi, rd), cvec);
if eqMode13 lo immed13_0
then () (* minor optimisation *)
else genAdd (rd, lo, rd, cvec)
end
end;
(* This should be equivalent to the following definition:
fun genLoadLengthWordImmed (flags, wordCount, rd, cvec) =
genLoadImmed (flags * exp2_24 + wordCount, rd, cvec);
except that the following version has been specially coded
to avoid the use of compile-time long arithmetic. This little
hack reduces compile-time for typical programs by several percent!
SPF 19/12/95
*)
(* We should have 0 <= flags < exp2_8; 0 < wordCount < exp2_24 *)
fun genLoadLengthWordImmed (flags:int, wordCount:int, rd : reg, cvec) : unit =
let
val U : unit =
if cached (rd, cvec)
then clearCache cvec
else ();
(* We shouldn't load immediates into psp, but if we try to,
we have to ensure that it won't be corrupted by a
subsequent stack adjustment. SPF 16/5/95 *)
val U : unit =
if rd regEq psp
then doPendingStackAdjustment cvec
else ();
in
if flags = 0 andalso is13Bit wordCount
then genMove (immed13 wordCount, rd, cvec)
else let
(* 8 bits + 14 bits + 10 bits = 32 bits *)
val hi = immed22 (flags * exp2_14 + wordCount div exp2_10);
val lo = immed13 (wordCount mod exp2_10);
in
(* sethi %hi(v),%rd; add %rd,%lo(v),%rd; *)
genInstruction (sethi (hi, rd), cvec);
if eqMode13 lo immed13_0
then () (* minor optimisation *)
else genAdd (rd, lo, rd, cvec)
end
end;
fun genLoadInstr (iop : op3_3) (rb : reg, m : mode13, rd : reg, cvec : code) : unit =
let
val U : unit =
if cached (rd, cvec)
then clearCache cvec
else ();
(* Do we need to fix-up the stack pointer? *)
val U : unit =
if rd regEq psp orelse
rb regEq psp orelse
eqMode13 m pspM
then doPendingStackAdjustment cvec
else ()
in
genInstruction (format3_3 (iop, rb, m, rd), cvec)
end;
fun genLoad (offset : int, rb : reg, rd : reg, cvec : code) : unit =
let
val U : unit =
if cached (rd, cvec)
then clearCache cvec
else ();
(* Do we need to fix-up the stack pointer? *)
val U : unit =
if rd regEq psp
then doPendingStackAdjustment cvec
else ();
val adjustedOffset =
if rb regEq psp
then offset + 4 * !(stackReset cvec)
else offset;
val imm = genImmedOffset (cvec, adjustedOffset);
in
genInstruction (format3_3 (LD, rb, imm, rd), cvec)
end;
datatype storeWidth = STORE_WORD | STORE_BYTE
(* NB Load and Store have registers the other way round *)
fun genStoreOp iop (rd : reg, offset : int, rb : reg, cvec : code) : unit =
let
(* Do we need to fix-up the stack pointer? Yes, if that's the register we're storing. *)
val U : unit =
if rd regEq psp
then doPendingStackAdjustment cvec
else ();
val adjustedOffset =
if rb regEq psp
then offset + 4 * !(stackReset cvec)
else offset;
(* We can guarantee that rd <> %i3, so this is always safe. This wouldn't
necessarily be the case if we used genImmedData instead of genImmedOffset.
We might be called with rd = %i5 together with a large (non 13-bit) offset,
and then everything would go horribly wrong. (Yes, it DID happen.)
SPF 2/4/97
*)
val imm = genImmedOffset (cvec, adjustedOffset);
in
genInstruction (format3_3 (iop, rb, imm, rd), cvec)
end;
(* General purpose store function. Since we don't allow indexed stores
index should always be regNone. *)
fun genStore (rd : reg, offset : int, rb : reg, STORE_WORD, index: reg, cvec : code) =
if index regEq regNone
then genStoreOp ST (rd, offset, rb, cvec)
else
(
(* At present the offset will always be zero if there is an index register. *)
if offset = 0 then ()
else raise InternalError "genStore: index register and non-zero offset";
(* Untag the index. *)
genUntagToI4 (index, cvec);
genInstruction (format3_3 (ST, rb, i4M, rd), cvec)
)
| genStore(rd : reg, offset : int, rb : reg, STORE_BYTE, index: reg, cvec : code) =
(
(* Untag the value to store. *)
genSrl (rd, immed13_TAGSHIFT, i5, cvec);
if index regEq regNone
then genStoreOp STB (i5, offset, rb, cvec)
else
(
(* At present the offset will always be zero if there is an index register. *)
if offset = 0 then ()
else raise InternalError "genStore: index register and non-zero offset";
(* Shift index to remove tag and get byte-index *)
clearCache cvec;
genSra (index, immed13_TAGSHIFT, i4, cvec);
genInstruction (format3_3 (STB, rb, i4M, i5), cvec)
)
);
val genStoreWord = genStoreOp ST;
val genStoreByte = genStoreOp STB;
(* Start inlining assignments. *)
val inlineAssignments: bool = true
fun isIndexedStore _ = true
(* Exported - Can we store the value without going through a register?
Not really. But if we're going to do a store-byte we have to untag the
value and it will definitely be better to do this by loading the untagged
value directly into the register. This is very infrequent though, so for
the moment we don't do it. *)
fun isStoreI (cnstnt: machineWord, _, _) : bool = false;
fun genStoreI (cnstnt: machineWord, offset: int, rb: reg, width, index: reg, cvec: code) : unit =
raise InternalError "Not implemented: genStoreI";
(* Store a value on the stack. This is used when the registers need to be
saved, for more than 4 arguments or to push an exception handler. *)
fun genPush (r : reg, cvec : code) : unit =
let
(* If the adjusted byte-offset won't fit into 13 bits, flush the stack reset. *)
val U : unit =
if is13Bit (4 * (!(stackReset cvec) - 1)) then ()
else doPendingStackAdjustment cvec;
(* generate the store *)
val U : unit = genStoreWord (r, ~4, psp, cvec)
in
(* Finally adjust the stack reset (rather than adjusting the stack pointer itself). *)
stackReset cvec := !(stackReset cvec) - 1
end;
(* Load a value and push it on the stack. Used when all
the allocatable registers have run out. *)
(* Use i5 as a spare register. *)
fun genLoadPush (offset : int, base : reg, cvec : code) : unit =
let
val U : unit = genLoad (offset, base, i5, cvec);
in
genPush (i5, cvec)
end;
(* This is false because there's no quicker way than loading
into a register and then pushing that. *)
val preferLoadPush = false;
fun genJmpl (m : mode13, breg : reg, lreg : reg, cvec : code) : unit =
let
val U : unit = clearCache cvec; (* end of basic block *)
val delayQuad = putPendingInDelay cvec; (* may generate code *)
in
(* jmpl breg+m,lreg *)
genInstruction (format3_2 (JMPL, breg, m, lreg), cvec);
genInstruction (delayQuad, cvec);
(* we don't come back from a tailcall, so we've exited *)
if lreg regEq g0 then exited cvec := true else ()
end;
(* Make a reference to another procedure. Usually this will be a forward *)
(* reference but it may have been compiled already, in which case we can *)
(* put the code address in now. *)
fun codeConst (Code {resultSeg = ref(Set(seg, _)), ... }, into) =
(* Already done. *) WVal (toMachineWord(csegAddr seg))
| codeConst (r, into) = (* forward *)
(* Add the referring procedure onto the list of the procedure
referred to if it is not already there. This makes sure that when
the referring procedure is finished and its address is known the
address will be plugged in to every procedure which needs it. *)
let
fun onList x [] = false
| onList x (c::cs) = (x is c) orelse onList x cs;
val codeList = ! (otherCodes r);
in
if onList into codeList then () else otherCodes r := into :: codeList;
CVal r
end
(* N.B. genLoadConstant must be very careful to do nothing
for unreachable code, because otherwise genStoreOp won't generate
any code, but fixupConstantLoad will later try to fixup a non-existant load.
SPF 28/11/95
*)
fun genLoadConstant (cnstnt, destR : reg,
cvec as Code{numOfConsts, constVec, ic, ...}) : unit =
if unreachable cvec then ()
else
(
(* We can't afford to put this instruction in a delay slot,
because we're trying to record its address, so force fix-up now. *)
reallyFixup cvec;
numOfConsts := ! numOfConsts + 1;
constVec := (cnstnt, !ic) :: ! constVec;
(* Generate a pair of instruction containing tagged 0. We
mustn't put in the real value at the moment because this
is a byte segment and so the value won't be updated as a
result of any garbage collection. *)
let
val (hi,lo) = splitHiLo(tagged 0)
in
genInstruction (sethi (hi, destR), cvec);
genAdd (destR, lo, destR, cvec)
end
);
fun genLoadCoderef (rf : code, destR : reg, cvec : code) : unit =
if unreachable cvec then ()
else genLoadConstant (codeConst (rf, cvec), destR, cvec)
type handlerLab = addrs ref;
fun loadHandlerAddress (destR : reg, cvec : code) : handlerLab =
let
val lab : handlerLab = ref addrZero;
in
genLoadConstant (HVal lab, destR, cvec);
lab
end;
fun fixupHandler (lab : handlerLab, cvec : code) : unit =
(
clearCache cvec; (* start of basic block *)
doPendingStackAdjustment cvec;
reallyFixup cvec;
exited cvec := false;
lab := ! (ic cvec)
);
datatype callKinds =
Recursive (* The function calls itself. *)
| ConstantFun of machineWord * bool (* A pre-compiled or io function. *)
| CodeFun of code (* A static link call. *)
| FullCall (* Full closure call *)
(* NB this version of the compiler now assumes that the first instruction
of the called function is ALWAYS "or %o7,2,%o7". (I had to rewrite
the run-time system to achieve this.) We skip this instruction whenever
possible. It would be nice to put it in the delay slot instead, but
that would give us serious backwards comaptibility problems (our
code couldn't be called by the Poly version of the compiler).
The answer is to bootstrap a version of the source that does the
check in BOTH places, then use it to bootstrap the version that
only checks in the delay slot. Probably not worth the trouble though.
SPF 14/10/94
I don't think this applies any longer. DCJM 25/7/06.
*)
(*****************************************************************************
Calling conventions:
FullCall:
the caller loads the function's closure into regClosure and then
(the code here) does an indirect jump through it.
Recursive:
the caller loads its own function's closure/static-link into regClosure
and the code here does a jump to the start of the code.
ConstantFun:
a direct or indirect call through the given address. If possible the
caller will have done the indirection for us and passed false as the
indirection value. The exception is calls to IO functions where the
address of the code itself is invalid. If the closure/static-link
value is needed that will already have been loaded.
CodeFun:
the same as ConstantFun except that this is used only for static-link
calls so is never indirect.
*****************************************************************************)
(* Call a function. We have to set the stack-check flag
to ensure that the called procedure receives its full
minStackCheck words allocation of "free" stack. *)
fun callFunction (callKind : callKinds, cvec as Code{constVec, numOfConsts, ...} ) : unit =
(* Mustn't add to selfCalls list unless we're actually generating code! *)
if unreachable cvec then ()
else
(
mustCheckStack cvec := true;
case callKind of
Recursive =>
let
val lab = genCall cvec;
in
selfCalls cvec := lab :: !(selfCalls cvec)
end
| FullCall =>
(
genLoad (0, regClosure, i2, cvec);
genJmpl (immed13_0, i2, regReturn, cvec)
)
| ConstantFun(w, false) =>
let
val lab = genCall cvec
in
numOfConsts := ! numOfConsts + 1;
constVec := (WVal w, lab) :: ! constVec
end
| ConstantFun(w, true) =>
(
(* We can't use a CALL instruction here because we're calling
into the RTS. *)
(* We have to use i2 here because we want the GC to recognise this
as an address. *)
genLoadConstant (WVal w, regClosure, cvec);
genLoad (0, regClosure, i2, cvec);
genJmpl (immed13_0, i2, regReturn, cvec)
)
| CodeFun c =>
let
val lab = genCall cvec
in
numOfConsts := ! numOfConsts + 1;
constVec := (codeConst(c, cvec), lab) :: ! constVec
end
)
(* Tail recursive jump to a function. We have to set the stack-check
flag to enable the user to break out of loops. *)
fun jumpToFunction (callKind : callKinds, returnReg : reg, cvec : code) : unit =
(* Mustn't add to selfJumps list unless we're actually generating code! *)
if unreachable cvec then ()
else let
val U : unit =
(* Put return address in the correct register. *)
if returnReg regEq regReturn then ()
else genMove (mReg returnReg, regReturn, cvec);
in
case callKind of
Recursive =>
let
val U : unit = mustCheckStack cvec := true;
val lab = unconditionalBranch cvec;
in
selfJumps cvec := lab @ !(selfJumps cvec)
end
| FullCall =>
(
mustCheckStack cvec := true;
genLoad (0, regClosure, i2, cvec);
(* Jump past the or %o7,2,%o7 at the start of every function. *)
genJmpl (immed13_4, i2, g0, cvec)
)
| ConstantFun(w, false) =>
(
mustCheckStack cvec := true;
(* We MUST use i2 here because we want the GC to recognise this
as an address. *)
genLoadConstant (WVal w, i2, cvec);
(* Jump past the or %o7,2,%o7 at the start of every function. *)
genJmpl (immed13_4, i2, g0, cvec)
)
| ConstantFun(w, true) =>
(
(* Indirect jumps are used to call into the RTS. No need
to check the stack. *)
genLoadConstant (WVal w, regClosure, cvec);
genLoad (0, regClosure, i2, cvec);
(* Jump past the or %o7,2,%o7 at the start of every function. *)
genJmpl (immed13_4, i2, g0, cvec)
)
| CodeFun c =>
(
mustCheckStack cvec := true;
(* We MUST use i2 here because we want the GC to recognise this
as an address. *)
genLoadCoderef (c, i2, cvec);
(* Jump past the or %o7,2,%o7 at the start of every function. *)
genJmpl (immed13_4, i2, g0, cvec)
)
end;
(* Return and remove args. *)
fun returnFromFunction (resReg : reg, args : int, cvec : code) : unit =
(
resetStack (args, cvec); (* Add in the reset. *)
genJmpl (immed13_6, resReg, g0, cvec)
);
(* The exception argument has already been loaded into o0.
We initialise o7 (the return address) because this is used by
the RTS exception handler, when it does a stack trace. *)
fun raiseException cvec =
(
genLoad (MemRegRaiseException, i0, i2, cvec);
genJmpl (immed13_0, i2, regReturn, cvec)
)
(* Exported. Set a register to a particular offset in the stack. *)
fun genStackOffset (reg, byteOffset, cvec) : unit =
genAdd (regStackPtr, genImmedOffset(cvec, byteOffset), reg, cvec);
(* Trap instruction. Causes trap if garbage-collection is needed or
when the stack is about to overflow. *)
fun genTrapls (cvec : code) : unit =
(
doPendingStackAdjustment cvec;
genInstruction (tlu24, cvec)
);
(* Only used for while-loops. Could make use of the delay slot
but probably not worth it. *)
fun jumpback (lab : addrs, stackCheck : bool, cvec : code) : unit =
(
clearCache cvec; (* end of basic block (not needed if we exit?) *)
doPendingStackAdjustment cvec;
(* Put in a stack check. This is used to allow the
code to be interrupted. *)
if stackCheck
then
(
(* If we trap the trap handling code examines the previous
instruction to see how big to make the stack. That's
really only relevant at the start of a function but we
must ensure that the instruction immediately before the
trap is a comparison. To do that we must make sure we don't
move the comparison into a delay slot. *)
(* That may no longer be a problem now we have to load a reg first. *)
genLoad (MemRegStackLimit, i0, i3, cvec);
reallyFixup cvec;
genCmp (psp, i3M, cvec);
genTrapls cvec
)
else ();
reallyFixup cvec;
let
val wordOffset : int = lab wordAddrMinus (! (ic cvec)); (* Negative *)
in
genInstruction (branch (true, always, immed22 wordOffset), cvec)
end;
exited cvec := true
);
(* Allocate store and put the resulting pointer in the result register. *)
fun allocStore (length : int, flag : Word8.word, resultReg : reg, cvec : code) : unit =
if length < 1 orelse exp2_24 <= length
then raise InternalError "allocStore: bad length"
else let
val bytes : int = (length + 1) * wordSize;
in
let
val imm = genImmedData (cvec, bytes); (* may generate code *)
in
(* Decrement the store available (-maxint) and trap if it overflows. *)
(* sub %g6,bytes,%g6; tsubcctv %g5,bytes,%g5 *)
genSub (g6, imm, g6, cvec);
genTsubcctv (g5, imm, g5, cvec) (* special case of tsubcctv *)
end;
(* Set the size field of a newly allocated piece of store
and include the `mutable' bit. *)
genLoadLengthWordImmed (Word8.toInt flag, length, i5, cvec);
genMove (g6M, resultReg, cvec);
genStoreWord (i5, ~4, g6, cvec)
end;
(* Remove the mutable bit; only save for word objects. *)
fun setFlag (baseReg : reg, cvec : code, flag : Word8.word) : unit =
let
val flagRep = Word8.toInt flag;
in
if flagRep = 0
then genStoreByte (g0, ~4, baseReg, cvec)
else
(
genLoadImmed (flagRep, i5, cvec);
genStoreByte (i5, ~4, baseReg, cvec)
)
end
(* Don't need to do anything on the Sparc. *)
val completeSegment = (fn (cvec : code) => ());
datatype instrs =
instrMove
| instrAddA
| instrSubA
| instrRevSubA
| instrMulA
| instrAddW (* Various word functions added DCJM 17/4/00 *)
| instrSubW
| instrRevSubW
| instrMulW
| instrDivW
| instrModW
| instrOrW
| instrAndW
| instrXorW
| instrLoad
| instrLoadB
| instrVeclen
| instrVecflags
| instrPush (* added 12/9/94 SPF for v2.08 compiler *)
| instrUpshiftW (* logical shift left *)
| instrDownshiftW (* arithmetic shift right *)
| instrDownshiftArithW (* arithmetic shift right - added 17/4/00 DCJM *)
| instrGetFirstLong
| instrStringLength
| instrSetStringLength
| instrBad;
(* Can the we use the same register as the source and destination
of an instructions? On this machine - yes. *)
val canShareRegs : bool = true;
(* Is there a general register/register operation? Some operations may not
be implemented because this machine does not have a suitable instruction
or simply because they have not yet been added to the code generator. It
is possible for an instruction to be implemented as a register/immediate
operation but not as a register/register operation (e.g. multiply) *)
fun instrIsRR i =
case i of
instrMulA => false
| instrMulW => false
| instrDivW => false
| instrModW => false
| instrVeclen => false (* immediate form only *)
| instrVecflags => false (* immediate form only *)
| instrUpshiftW => false
| instrDownshiftW => false
| instrDownshiftArithW => false
| instrGetFirstLong => false (* immediate form only *)
| instrStringLength => false (* immediate form only *)
| instrSetStringLength => true
| _ => true;
datatype tests =
Short
| Long
| Arb of testCode
| Wrd of testCode;
val testNeqW = Wrd ne;
val testEqW = Wrd e;
val testGeqW = Wrd cc; (* Word tests are UNsigned. DCJM 17/4/00. *)
val testGtW = Wrd gu;
val testLeqW = Wrd leu;
val testLtW = Wrd cs;
val testLtSignedW = Wrd l; (* These are needed for case checks. *)
val testGtSignedW = Wrd g;
val testNeqA = Arb ne;
val testEqA = Arb e;
val testGeqA = Arb ge;
val testGtA = Arb g;
val testLeqA = Arb le;
val testLtA = Arb l;
fun isLongTest Long = true | isLongTest _ = false;
fun isShortTest Short = true | isShortTest _ = false;
fun isArb (Arb _) = true | isArb _ = false;
fun isWrd (Wrd _) = true | isWrd _ = false;
fun tstArb (Arb x) = x | tstArb _ = raise Match;
fun tstWrd (Wrd x) = x | tstWrd _ = raise Match;
(* Is this argument acceptable as an immediate or should it be loaded into a register? *)
fun instrIsRI (i : instrs, cnstnt:machineWord) : bool =
(* For most instructions this is simply a question of whether the
tagged value will fit in 13 (signed) bits. For the multiply
instruction this is a question of whether it is small enough
to be implemented by repeated addition, but 1024 seems like
a reasonable limit. *)
let
fun isShiftable c = 0 <= c andalso c < (32 - TAGSHIFT)
in
case i of
instrBad => false
| instrMove => true (* Must always be implemented. *)
| instrPush => false
| instrUpshiftW =>
isShort cnstnt andalso isShiftable(toInt (toShort cnstnt))
| instrDownshiftW =>
isShort cnstnt andalso isShiftable(toInt (toShort cnstnt))
| instrDownshiftArithW =>
isShort cnstnt andalso isShiftable(toInt (toShort cnstnt))
| instrDivW => false
| instrModW => false
| instrMulW => false (* At least for the moment *)
| instrVeclen => true
| instrVecflags => true
| instrLoadB => isShort cnstnt andalso is13Bit(toInt (toShort cnstnt))
| instrLoad => isShort cnstnt andalso isTaggable13Bit(toInt (toShort cnstnt))
| instrGetFirstLong => false (* Probably too difficult. *)
| instrStringLength => true
| instrSetStringLength => false (* Not at the moment. *)
| _ => isShort cnstnt andalso isTaggable13Bit(toInt (toShort cnstnt))
end
(* untag the arguments into the working registers, returning their locations in order *)
fun untagBothArgs (r1 : reg, r2 : reg, cvec : code) : reg * mode13 =
(* The following would be unsafe because the RTS assumes that (i4+1) and (i5+1)
are valid tagged integers whenever we do a taddcctv or tsubcctv with a non-constant
argument, which wouldn't necessarily be the case if we don't explicitly initialise
both of them. *)
(* ...
if r1 regEq r2
then
(
genUntagToI4 (r1, cvec);
(i4, i4M)
)
else
... *)
if cached (r1, cvec)
then (* r1 is cached *)
(
genUntagToI4 (r1, cvec); (* "just in case" *)
genUntagToI5 (r2, cvec);
(i4, i5M)
)
else (* perhaps r2 is cached *)
(
genUntagToI4 (r2, cvec);
genUntagToI5 (r1, cvec);
(i5, i4M)
);
(* useful for symmetric functions only *)
fun untagOneArg (r1 : reg, r2 : reg, cvec : code) : reg * mode13 =
if cached (r1, cvec)
then (* r1 is cached *)
(
genUntagToI4 (r1, cvec); (* "just in case" *)
(r2, i4M)
)
else (* perhaps r2 is cached *)
(
genUntagToI4 (r2, cvec);
(r1, i4M)
);
(* All comparisons are implemented. *)
fun isCompRR (tc : tests) : bool =
case tc of
Short => false
| Long => false
| Wrd t => true
| Arb t => true;
(* Is this argument acceptable as an immediate or should it be *)
(* loaded into a register? *)
fun isCompRI (tc : tests, cnstnt : machineWord) : bool =
isLongTest tc orelse
isShortTest tc orelse
(isShort cnstnt andalso (* Must fit in immediate field. *)
isTaggable13Bit (toInt (toShort cnstnt)));
(* Fixed and arbitrary precision comparisons. *)
fun compareAndBranchRR (r1 : reg, r2 : reg, tc : tests, cvec : code) : labels =
if isArb tc
then let (* Must remove the tags before doing the operation. *)
val (arg1, arg2M) = untagBothArgs (r1, r2, cvec)
in
genTsubcctv (arg1, arg2M, g0, cvec); (* both i4 and i5 are "legal" *)
putConditional (tstArb tc, cvec)
end
else if isWrd tc
then (* Fixed *)
(
genCmp (r1, mReg r2, cvec);
putConditional (tstWrd tc, cvec)
)
else
raise InternalError "compareAndBranchRR: Unimplemented test";
fun compareAndBranchRI (r:reg, cnstnt:machineWord, tc : tests, cvec) : labels =
if isShortTest tc
then
(
genAndcc (r, immed13_DATATAG, g0, cvec);
putConditional (ne, cvec)
)
else if isLongTest tc
then
(
genAndcc (r, immed13_DATATAG, g0, cvec);
putConditional (e, cvec)
)
else let
val c = toInt (toShort cnstnt);
in
if isWrd tc (* Fixed *)
then
(
genCmp (r, immed13 (tagged c), cvec);
putConditional (tstWrd tc, cvec)
)
else let (* isArb tc *)
(* If we are testing for equality with a
constant then we can simply test directly. *)
val tk = tstArb tc;
in
if eqTest tk e orelse eqTest tk ne
then genCmp (r, immed13 (tagged c), cvec)
else (* Must remove the tags before doing the operation. *)
(
genUntagToI4 (r, cvec);
genTsubcctv (i4, immed13 (semiTagged c), g0, cvec)
);
putConditional (tk, cvec)
end
end;
(* General register/register operation. *)
fun genRR (inst : instrs, r1 : reg, r2 : reg, rd : reg, cvec : code) : unit =
case inst of
instrMove => (* Move from one register to another. r2 is ignored *)
genMove (mReg r1, rd, cvec)
| instrPush => (* Both rd and r2 are ignored. *)
genPush (r1, cvec)
| instrAddA => (* Arbitrary precision addition. *)
let
val (arg1, arg2M) = untagBothArgs (r1, r2, cvec)
in
genTaddcctv (arg1, arg2M, i4, cvec); (* both i4 and i5 are "legal" *)
genTagFromI4 (rd, cvec)
end
| instrSubA => (* Arbitrary precision subtraction. *)
let
val (arg1, arg2M) = untagBothArgs (r1, r2, cvec)
in
genTsubcctv (arg1, arg2M, i4, cvec); (* both i4 and i5 are "legal" *)
genTagFromI4 (rd, cvec)
end
| instrRevSubA => (* Arbitrary precision subtraction. *)
let
val (arg2, arg1M) = untagBothArgs (r2, r1, cvec)
in
genTsubcctv (arg2, arg1M, i4, cvec); (* both i4 and i5 are "legal" *)
genTagFromI4 (rd, cvec)
end
| instrMulA => (* Arbitrary precision multiplication. *)
raise InternalError "genRR: unsupported operation - instrMulA"
| instrAddW => (* Word addition. *)
(* Untag one of the arguments into i4, then
add the other one to it. We don't care
which argument gets untagged (addition is a
symmetric operation), so we can try to be
clever with the caching. *)
let (* Word addition. *)
val (arg1, arg2M) = untagOneArg (r1, r2, cvec)
in
genAdd (arg1, arg2M, rd, cvec) (* Ignore overflow. *)
end
| instrSubW => (* Word subtraction. *)
(* Remove the tag from the second argument, then do the operation. *)
(
genUntagToI4 (r2, cvec);
genSub(r1, i4M, rd, cvec) (* Ignore overflow. *)
)
| instrRevSubW => (* Fixed precision reverse subtraction. *)
(
genUntagToI4 (r1, cvec);
genSub (r2, i4M, rd, cvec) (* Ignore overflow. *)
)
| instrMulW => (* Word multiplication. *)
raise InternalError "genRR: unsupported operation - instrMulW"
| instrDivW => (* Word multiplication. *)
raise InternalError "genRR: unsupported operation - instrDivW"
| instrModW => (* Word multiplication. *)
raise InternalError "genRR: unsupported operation - instrModW"
| instrOrW => (* tag preserved by operation *)
genOr (r1, mReg r2, rd, cvec) (* Logical or. *)
| instrAndW => (* tag preserved by operation *)
genAnd (r1, mReg r2, rd, cvec) (* Logical and. *)
| instrXorW =>
let (* Have to remove the tag from one argument. *)
val (arg1, arg2M) = untagOneArg (r1, r2, cvec)
in
genXor (arg1, arg2M, rd, cvec)
end
| instrUpshiftW =>
raise InternalError "genRR: unsupported operation - instrUpshiftW"
| instrDownshiftW =>
raise InternalError "genRR: unsupported operation - instrDownshiftW"
| instrDownshiftArithW =>
raise InternalError "genRR: unsupported operation - instrDownshiftArithW"
| instrLoad => (* Load a word. *)
( (* Remove the tag from the index. *)
genUntagToI4 (r2, cvec);
genLoadInstr LD (r1, i4M, rd, cvec)
)
| instrLoadB => (* Load a byte. Leaves untagged value in i4 - worthwhile? *)
( (* Shift index to remove tag and get byte-index *)
genSra (r2, immed13_TAGSHIFT, i5, cvec);
genLoadInstr LDUB (r1, i5M, i5, cvec);
(* Tag the result. *)
genSll (i5, immed13_TAGSHIFT, i4, cvec);
genTagFromI4 (rd, cvec)
)
| instrSetStringLength => (* Set the length word of a string. *)
(
(* Untag the value to store. *)
genSra (r2, immed13_TAGSHIFT, i5, cvec);
(* Store it in the first word of the new string. *)
genStoreWord (i5, 0, r1, cvec)
(* We really should set rd to "unit". *)
)
| _ =>
raise InternalError "genRR: unsupported operation"
(* end genRR *);
(* Register/immediate operations. In many of these operations
we have to tag the immediate value. *)
fun genRI (inst : instrs, rs : reg, constnt : machineWord, rd : reg, cvec : code) : unit =
case inst of
instrMove => (* Load a constant into a register. rs is ignored. *)
if isShort constnt andalso isTaggable13Bit(toInt (toShort constnt))
then genLoadImmed (tagged(toInt (toShort constnt)), rd, cvec)
else genLoadConstant(WVal constnt, rd, cvec)
| instrAddA => (* Arbitrary precision addition. *)
let
val c = toInt (toShort constnt)
in (* Must remove the tags before doing the operation. *)
genUntagToI4 (rs, cvec);
genTaddcctv (i4, immed13 (semiTagged c), i4, cvec); (* add constant to i4 - OK *)
genTagFromI4 (rd, cvec) (* Put back the tag in the result. *)
end
| instrSubA => (* Arbitrary precision subtraction. *)
let
val c = toInt (toShort constnt)
in
genUntagToI4 (rs, cvec);
genTsubcctv (i4, immed13 (semiTagged c), i4, cvec); (* subtract constant from i4 - OK *)
genTagFromI4 (rd, cvec)
end
| instrRevSubA => (* Arbitrary precision reverse subtraction. *)
let
val c = toInt (toShort constnt)
in
genUntagToI4 (rs, cvec);
(* The following would be unsafe because the RTS assumes that (i4+1) and (i5+1)
are valid tagged integers whenever we do a taddcctv or tsubcctv with a non-constant
argument, which wouldn't necessarily be the case if we don't explicitly initialise
both of them. *)
(* ...
if c = 0 then genTsubcctv (g0, i4M, i4, cvec)
else
... *)
(
genMove (immed13 (semiTagged c), i5, cvec);
genTsubcctv (i5, i4M, i4, cvec) (* both i4 and i5 are "legal" *)
);
genTagFromI4 (rd, cvec)
end
| instrMulA => let
val c = toInt (toShort constnt)
(* The following is tricky because the RTS assumes that (i4+1) and (i5+1)
are valid tagged integers whenever we do a taddcctv or tsubcctv with a non-constant
arguments. DCJM's version of the code-generator didn't ensure that this was
always the case. *)
(* The sparc does not have a multiply instruction but it may well be
worth doing multiplications by constants by repeated addition. Do
this if the constant is small (1024 seems small). *)
fun mulConst (cn : int) : unit =
let
(* i4 must be "legal" on entry; i5 is trashed; res := c * i4; *)
fun genMult (c, res) =
if c = 0
then genLoadImmed (0, res, cvec)
else if c = 1
then if res regEq i4 then () else genMove (i4M, res, cvec)
else if c mod 8 = 7 (* DCJM's fancy optimisation *)
then
(
genMult ((c + 1) div 2, i5); (* initialise i5 *)
genTaddcctv (i5, i5M, i5, cvec); (* both i4 and i5 are "legal" *)
genTsubcctv (i5, i4M, res, cvec) (* both i4 and i5 are "legal" *)
)
else if c mod 2 = 1
then
(
genMult (c div 2, i5); (* initialise i5 *)
genTaddcctv (i5, i5M, i5, cvec); (* both i4 and i5 are legal *)
genTaddcctv (i5, i4M, res, cvec) (* both i4 and i5 are legal *)
)
else (* c mod 2 = 0 *)
(
genMult (c div 2, i5); (* initialise i5 *)
genTaddcctv (i5, i5M, res, cvec) (* both i4 and i5 are legal *)
);
in
if cn = 0 (* It's possible someone might write this. *)
then genMove (immed13 (tagged 0), rd, cvec)
else if cn = 1
then genMove (mReg rs, rd, cvec)
else if cn < 0
then (* Must negate the multiplicand. *)
(
genUntagToI4 (rs, cvec);
genMult (~ cn, i4); (* Initialises i4 *)
genLoadImmed (0, i5, cvec); (* Puts a legal value into i5 *)
genTsubcctv (i5, i4M, i4, cvec); (* O.K. since both i4 and i5 are legal *)
genTagFromI4 (rd, cvec) (* Put the tag in the result. *)
)
else (* Positive. *)
(
genUntagToI4 (rs, cvec);
genMult (cn, i4);
genTagFromI4 (rd, cvec) (* Put the tag in the result. *)
)
end (* mulConst *);
in
mulConst c
end (* isInstrMulA *)
| instrAddW => (* Word addition. *)
(* The argument is shifted but not tagged. *)
genAddcc (rs, immed13 (semiTagged(toInt (toShort constnt))), rd, cvec)
| instrSubW => (* Fixed precision subtraction. *)
genSubcc (rs, immed13 (semiTagged(toInt (toShort constnt))), rd, cvec)
| instrRevSubW => (* Fixed precision reverse subtraction. *)
(
(* Add one to the second tagged argument then do the subtraction. *)
genMove (immed13(tagged(toInt (toShort constnt)) + tagged 0), i5, cvec);
genSubcc (i5, mReg rs, rd, cvec)
)
| instrOrW =>
genOr (rs, immed13 (tagged(toInt (toShort constnt))), rd, cvec) (* Logical or. *)
| instrAndW => genAnd (rs, immed13 (tagged(toInt (toShort constnt))), rd, cvec)
(* Use untagged value to ensure that tag is not changed. *)
| instrXorW => genXor (rs, immed13 (semiTagged(toInt (toShort constnt))), rd, cvec)
| instrUpshiftW => (* logical shift left *)
(
genUntagToI4 (rs, cvec);
genSll (i4, immed13(toInt (toShort constnt)), i4, cvec);
genTagFromI4 (rd, cvec)
)
| instrDownshiftW => (* logical shift right *)
(
genSrl (rs, immed13(toInt (toShort constnt)), i5, cvec);
genAndn (i5, immed13_TAGMASK, i4, cvec); (* remove stray bits from tag positions *)
genTagFromI4 (rd, cvec)
)
| instrDownshiftArithW => (* logical shift right *)
(
genSra (rs, immed13(toInt (toShort constnt)), i5, cvec);
genAndn (i5, immed13_TAGMASK, i4, cvec); (* remove stray bits from tag positions *)
genTagFromI4 (rd, cvec)
)
(* Load a word. Offset is words so multiply by 4 to get byte offset. *)
| instrLoad =>
genLoadInstr LD (rs, immed13 ((toInt (toShort constnt)) * wordSize), rd, cvec)
| instrLoadB => (* Load a byte. Offset is bytes. *)
(
genLoadInstr LDUB (rs, immed13(toInt (toShort constnt)), i5, cvec);
(* Tag the result. *)
genSll (i5, immed13_TAGSHIFT, i4, cvec);
genTagFromI4 (rd, cvec)
)
| instrVeclen => (* The second arg. is ignored. *)
(
genLoad (~4, rs, i5, cvec);
genSll (i5, immed13_8, i5, cvec); (* Shift up to clear top byte. *)
genSrl (i5, immed13_6, i4, cvec);
genTagFromI4 (rd, cvec)
)
| instrVecflags => (* The second arg. is ignored. *)
(
(* Load the flag byte: Offset -4 on a big-endian machine. *)
genLoadInstr LDUB (rs, immed13 ~4, i5, cvec);
(* Tag the result. *)
genSll (i5, immed13_TAGSHIFT, i4, cvec);
genTagFromI4 (rd, cvec)
)
| instrStringLength => (* The second arg. is ignored. *)
let
(* If it's tagged the result is 1 otherwise we need to load
the length word and tag it. *)
val l1 = compareAndBranchRI (rs, toMachineWord 0 (* Unused *), Short, cvec)
val _ = genLoad (0, rs, i4, cvec); (* Load the length word. *)
val _ = genSll (i4, immed13_TAGSHIFT, i4, cvec);
val l2 = unconditionalBranch cvec
in
(* In practice the load-immediate gets put into the delay slot of
the conditional branch and the unconditional branch is optimised
away. *)
fixup(l1, cvec);
genLoadImmed (semiTagged 1, i4, cvec);
fixup(l2, cvec);
(* It's probably better to tag the result here because we may be
able to optimise arithmetic after it. If we can't will have
incurred the cost of an extra instruction in the case when we
had a single character but this is probably worth paying. *)
genTagFromI4 (rd, cvec) (* And tag the result. *)
end
| _ => raise InternalError "genRI: Unimplemented instruction"
(* genRI *);
(* this could be made more efficient (and readable??) using shorts *)
fun printCode (seg : cseg, procName : string, lastAddr : addrs, printStream) : unit =
let
(* prints a string representation of a number *)
fun printHex v = printStream(Int.fmt StringCvt.HEX v)
fun regPrint r = printStream(regRepr r)
fun printRimm iOp =
if (iOp div exp2_13) mod 2 = 1 (* Set if immediate. *)
then printHex (signed13 (iOp mod exp2_13))
else regPrint (mkReg (iOp mod exp2_5));
in
if procName = "" (* No name *) then printStream "?" else printStream procName;
printStream ":\n";
let
val ptr = ref addrZero;
in
while !ptr addrLt lastAddr do
let
val thisAddr : addrs = !ptr;
val U : unit = ptr := thisAddr wordAddrPlus 1;
val instr : int = fromQuad (getQuad (thisAddr, seg));
val byteAddr : int = getByteAddr thisAddr;
val topByte : int = Word8.toInt (csegGet (seg, byteAddr));
val format : int = topByte div exp2_6;
val U : unit = printHex byteAddr; (* The real address. *)
val U : unit = printStream "\t";
val U : unit =
if format = 0
then let
val op2 = (instr div exp2_22) mod 8; (* op2 field *)
in
case op2 of
4 => (* setHi *)
if instr = fromQuad nopQuad (* nop is sethi 0,%g0 *)
then printStream "nop"
else
( printStream "sethi\t";
printHex (instr mod exp2_22);
printStream ",";
regPrint (mkReg (instr div exp2_25 mod exp2_5))
)
| 2 => (* branch *)
let
val disp22 = signed22 (instr mod exp2_22);
val byteDisp = disp22 * wordSize;
in
printStream ("b" ^ tstRepr (mkTest ((instr div exp2_25) mod exp2_4)));
if instr div exp2_29 = 1 (* annul bit *) then printStream ",a" else ();
printStream "\t";
printHex disp22; (* signed *)
printStream "\t\t;to ";
printHex (byteAddr + byteDisp)
end
| 0 => (* unimp *)
(printStream "unimp";
printStream "\t";
printHex instr)
| _ => printHex instr
end
else if format = 1
then let
val disp30 = signed30 (instr - exp2_30);
val byteDisp = disp30 * wordSize;
in
printStream "call\t";
printHex disp30;
printStream "\t\t;to ";
printHex (byteAddr + byteDisp)
end
else if format = 2
then let
val op3 = instr div exp2_19 mod exp2_6;
val rs = mkReg (instr div exp2_14 mod exp2_5);
val rd = mkReg (instr div exp2_25 mod exp2_5);
local
val table =
[
(ADD,"add"),
(AND,"and"),
(OR,"or"),
(XOR,"xor"),
(ANDN,"andn"),
(SUB,"sub"),
(ADDcc,"addcc"),
(ANDcc,"andcc"),
(SUBcc,"subcc"),
(TADDccTV,"taddcctv"),
(TSUBccTV,"tsubcctv"),
(SLL,"sll"),
(SRL,"srl"),
(SRA,"sra"),
(JMPL,"jmpl")
]
fun printFromTable x [] = printHex op3
| printFromTable x ((y,s)::t) =
if x = op3_2ToInt y then printStream s else printFromTable op3 t
in
fun printOp3String x = printFromTable x table
end
val isMov = (op3 = op3_2ToInt OR) andalso (rs regEq g0);
val isTrap = (op3 = op3_2ToInt Ticc);
in
if isMov
then printStream "mov"
else if isTrap
then printStream ("t" ^ tstRepr (mkTest ((getReg rd) mod exp2_4)))
else printOp3String op3;
printStream "\t";
if isMov then () else (regPrint rs; printStream ",");
printRimm instr;
if isTrap then () else (printStream ","; regPrint rd)
end
else let (* 3 *)
val op3 = instr div exp2_19 mod exp2_6;
val rs = mkReg (instr div exp2_14 mod exp2_5);
val rd = mkReg (instr div exp2_25 mod exp2_5);
in
if op3 = 0 orelse op3 = 1
then
( (if op3 = 0 then printStream "ld" else printStream "ldub");
printStream "\t[";
regPrint rs;
printStream "+";
printRimm instr;
printStream "],";
regPrint rd
)
else if op3 = 4 orelse op3 = 5
then
( printStream (if op3 = 4 then "st" else "stb");
printStream "\t";
regPrint rd;
printStream ",[";
regPrint rs;
printStream "+";
printRimm instr;
printStream "]"
)
else
( printHex op3;
printStream "\t";
regPrint rs;
printStream ",";
printRimm instr;
printStream ",";
regPrint rd
)
end;
in
printStream "\n"
end (* while *)
end (* scope of ptr *)
end (* printCode *);
fun loadUnsigned (a : address, offset : int) : int =
let (* SPARC is a big-endian machine *)
val byteOffset : int = 4 * offset;
val b0 : short = Word.fromLargeWord(Word8.toLargeWord(loadByte (a, toShort byteOffset)));
val b1 : short = Word.fromLargeWord(Word8.toLargeWord(loadByte (a, toShort (byteOffset + 1))));
val b2 : short = Word.fromLargeWord(Word8.toLargeWord(loadByte (a, toShort (byteOffset + 2))));
val b3 : short = Word.fromLargeWord(Word8.toLargeWord(loadByte (a, toShort (byteOffset + 3))));
in
fromQuad (Quad (b0, b1, b2, b3))
end;
(* Bootstrapping problems currently prevent us from using Address.nameOfCode *)
fun nameOfCode (a : address) : string =
let
val objLength : int = toInt (ADDRESS.length a);
val lastWord : int = objLength - 1;
val constCount : int = loadUnsigned (a, lastWord);
val codeName : machineWord = loadWord (a, toShort (lastWord - constCount));
in
unsafeCast codeName
end;
(* set the num'th constant in cvec to be value *)
fun constLabels (cvec : code, addr: addrs, value : machineWord) : unit =
let
val (seg : cseg, preludeSize : int) = scSet (!(resultSeg cvec));
val constAddr : addrs = addr wordAddrPlus preludeSize;
in
csegPutConstant (seg, getByteAddr constAddr, value, 0)
end;
(* Fix up references from other vectors to this one. *)
fun fixOtherRefs (refTo as Code{otherCodes=ref otherCodes, ...}, value) =
let
fun fixRef (refFrom : code) : unit =
let
val noc = numOfConsts refFrom;
fun putNonLocalConst (CVal cCode, addr) : unit =
if cCode is refTo
then
(
(* A reference to this one. *)
(* Fix up the forward reference. *)
constLabels (refFrom, addr, value);
(* decrement the "pending references" count *)
noc := !noc - 1
)
else ()
| putNonLocalConst _ = ()
in
(* look down its list of forward references until we find ourselves. *)
List.app putNonLocalConst (!(constVec refFrom));
(* If there are no more references, we can lock it. *)
if !noc = 0
then csegLock (#1 (scSet (! (resultSeg refFrom))))
else ()
end (* fixRef *);
in
(* For each `code' which needs a forward reference
to `refTo' fixing up. *)
List.app fixRef otherCodes
end; (* fixOtherRefs *)
(* The stack limit register is set at least twice this far from the end
of the stack so we can simply compare the stack pointer with the stack
limit register if we need less than this much. Setting it at twice
this value means that procedures which use up to this much stack and
do not call any other procedures do not need to check the stack at all. *)
val minStackCheck = 20;
(* Adds the constants onto the code, and copies the code into a new segment *)
fun copyCode (cvec as Code{printAssemblyCode, printStream, ...}, stackRequired, registerSet) : address =
let
val endIC = !(ic cvec); (* Remember end *)
val callsAProc = !(mustCheckStack cvec);
(*****************************************************************************
Functions now have up to 4 entry points:
(1) Standard entry point
(2) Tail-call entry point - doesn't change %o7
(3) Self-call entry point - doesn't change %o4
(4) Self-tail-call entry point - doesn't change %o7 or %o4
Entry points 1 and 2 are always the first and second words of the actual code.
Entry points 3 and 4 can be at various offsets (if they are needed at all),
but that's OK because they are only used for calls within the procedure
itself. The worst-case code for the prelude would be:
L1: or %o7,2,%o7
L2: Previously this code loaded the address of the constant area.
L3: or %o7,2,%o7 (It's OK to fall through and do this again)
L4: sethi yhi,%i5
add %i5,ylo,%i5
ld [24+%i0],%i3
sub %psp,%i5,%psp
cmp %i5,%i3
tlu 16
This assumes that both immediates (the offset of the constants section and
the stack required) are larger than 13 bits, which would be unusual.
If we have no self-calls (as opposed to self-jumps), we can produce:
L1: or %o7,2,%o7
L2:
L4: sethi yhi,%i5
add %i5,ylo,%i5
ld [24+%i0],%i3
sub %psp,%i5,%psp
cmp %i5,%i3
tlu 16
*****************************************************************************)
(* Generate the prelude (iterative!) *)
local
(* Or 2 into o7 (the return address) so that it is off-word aligned. Must
do this before the stack-checking code. Also "jumpToFunction" assumes
that this is the first instruction and can be skipped if we have already
added 2 to o7. *)
val o7Code = [format3_2 (OR, o7, immed13_CODETAG, o7)];
val lengthO7Code = 1; (* length o7Code *)
val stackCheckCode =
if stackRequired >= minStackCheck
then let (* We need to check the stack. *)
val loadSL = format3_3 (LD, i0, immed13 MemRegStackLimit, i3)
val (cl,loc) = immedCodeData (stackRequired * wordSize)
in
(* get the "minimum" sp into i5 and trap if it is less
than the stack limit register. *)
loadSL :: cl @
[format3_2 (SUB, psp, loc, i5), (* N.B. not "ADD" SPF 13/10/94 *)
format3_2 (SUBcc, i5, i3M, g0),
tlu24]
end
(* If we call another function, we have to perform the following
stack check to ensure that there are at least two minimal
(minStackCheck words each) stack frames available - one for us,
one for the (possibly leaf) function that we're calling.
We don't need to do this if we only make tail calls (our
caller has reserved a stack frame for us, which we share
with our callee(, but we'll normally perform the stack
check anyway, to check for user interrupt. SPF 19/2/97
*)
else if callsAProc
then
[
(* trap if current sp is less than stack limit register.
This check is necessary because user interupts (^C)
adjust the limit register precisely so this check will
cause a trap is a "safe" state. *)
format3_3 (LD, i0, immed13 MemRegStackLimit, i3),
format3_2 (SUBcc, psp, i3M, g0),
tlu24
]
(* Leaf or tail-call-only function - no stack check required. *)
else
[];
in
(* code segment size minimised (iteratively!) SPF 12/8/94 *)
(* I think this is no longer required now that we don't load
the constant pointer. DCJM 12/1/01. *)
fun getPreludeCode spaceForPrelude (* an initial guess! *) =
let
(* +6 for zero word, code size, profile count, constants count
function name and register mask. *)
val segSize = getWordAddr endIC + spaceForPrelude + 6;
(* Prelude consists of
1) adding 2 to o7 (the return address reg)
2) stack checking code
Note: we always have a stack-check, even for self tail-calls
where we actually know that the stack is big enough. This is
needed to allow the ^C break-in and profiling mechanisms to work
smoothly, as otherwise we could get unbreakable loops. *)
infixr 5 @;
val preludeCode =
(* L1 here *) o7Code @
(* L2 here *) [] @
(* L3 here *) [] @
(* L4 here *) stackCheckCode;
in
(* does it fit? *)
if List.length preludeCode = spaceForPrelude
then (spaceForPrelude,segSize,preludeCode)
else getPreludeCode (spaceForPrelude + 1)
end
val (spaceForPrelude,segSize,preludeCode) =
(* iterate to find size of loadConstSegCode *)
getPreludeCode (lengthO7Code + List.length stackCheckCode);
(* byte offsets of L3 and L4 labels relative
to start of post-prelude code. *)
val L4Addr = mkWordAddr (~ (List.length stackCheckCode));
val L4Target =
case stackCheckCode of
(c::cs) => c (* never a jump *)
| [] => nopQuad (* should never get used *)
val L3Addr = mkWordAddr (~ (lengthO7Code + List.length stackCheckCode));
val L3Target =
case o7Code of
(c::cs) => c (* never a jump *)
| [] => L4Target; (* shouldn't occur *)
end; (* local *)
(* This is the address of the zero word *)
val lastAddr : addrs = endIC wordAddrPlus spaceForPrelude;
(* This is the address of the zero'th constant (the name string)
+3 for zero word, code size, profile count *)
val constStartAddr : addrs = lastAddr wordAddrPlus 3;
(* fix-up all the self-calls *)
val U : unit =
fixupRecursiveCalls (cvec, L3Target, L3Addr, !(selfCalls cvec));
val U : unit =
fixupRecursiveBranches (cvec, L4Target, L4Addr, !(selfJumps cvec));
(* Now make the byte segment that we'll turn into the code segment *)
val seg : cseg = csegMake segSize;
(* Copy the code into the new segment. *)
val U : unit = csegCopySeg (codeVec cvec, seg, getByteAddr endIC, spaceForPrelude);
(* insert prelude code into segment *)
local
fun putPreludeQuad (wordAddr : int, w : quad) =
setQuad (w, mkWordAddr wordAddr, seg);
in
val U : unit = applyCountList (putPreludeQuad, 0, preludeCode);
end;
(* Zero end-of-code marker *)
local
val addr : addrs = lastAddr;
val quad : quad = toQuad 0;
in
val U : unit = setQuad (quad, addr, seg)
end;
(* Byte offset of start of code. *)
local
val addr : addrs = lastAddr wordAddrPlus 1;
val quad : quad = toQuad (getByteAddr addr);
in
val U : unit = setQuad (quad, addr, seg)
end;
(* Next the profile count. *)
local
val addr : addrs = lastAddr wordAddrPlus 2;
val quad : quad = toQuad 0;
in
val U : unit = setQuad (quad, addr, seg)
end;
(* Put in the number of constants (including the name string). This
is now always 2 - the name and the register mask. *)
local
val addr : addrs = constStartAddr wordAddrPlus 2;
val quad : quad = toQuad 2;
in
val U : unit = setQuad (quad, addr, seg)
end;
(* Now we've filled in all the C integers; now we need to convert the segment
into a proper code segment before it's safe to put in any ML values.
SPF 13/2/97
*)
val U : unit = csegConvertToCode seg;
val U : unit = resultSeg cvec := Set (seg, spaceForPrelude);
local
val procName = procName cvec
val nameWord : machineWord = if procName = "" then toMachineWord 0 else toMachineWord procName;
in
val _ = csegPutWord (seg, getWordAddr constStartAddr, nameWord);
end;
(* Insert the register set. *)
local
val addr : addrs = constStartAddr wordAddrPlus 1;
fun encodeReg(r, n: short): short =
let
open Word
infix << orb
val reg = 0w1 << Word.fromInt (nReg r)
in
reg orb n
end
val regSet = List.foldl encodeReg 0w0 registerSet
in
val () = csegPutWord(seg, getWordAddr addr, toMachineWord regSet)
end;
(* Copy the objects (including the name string) from the constant list. *)
fun putLocalConst (WVal c, addr) = (* an ordinary (non-short) constant *)
(
constLabels (cvec, addr, c);
numOfConsts cvec := ! (numOfConsts cvec) - 1
)
| putLocalConst (HVal href, addr) = (* a handler *)
let
(* The following comment applies to offsetAddr *)
(* Special function to add to an address.
This only works if the resulting value is
in a code segment and is on a word + 2 byte boundary. *)
val handlerByteOffset : int = getByteAddr ((!href) wordAddrPlus spaceForPrelude);
val handlerAddr : handler =
offsetAddr (csegAddr seg, toShort (handlerByteOffset + CODETAG));
in
constLabels (cvec, addr, toMachineWord handlerAddr);
numOfConsts cvec := ! (numOfConsts cvec) - 1
end
(* forward-reference - fix up later when we compile
the referenced code *)
| putLocalConst (CVal _, addr) = ();
val U : unit = List.app putLocalConst (! (constVec cvec));
(* Switch off "mutable" bit now if we have no
forward or recursive references to fix-up *)
val U : unit =
if !(numOfConsts cvec) = 0
then csegLock seg
else ();
(* Do we need to make a closure, or just return the code? *)
val addr : address =
if noClosure cvec
then csegAddr seg
else let
val addr : address = alloc (0w1, F_words, toMachineWord (csegAddr seg));
(* Logically unnecessary; however the RTS currently allocates everything
as mutable because Dave's code assumed that things were done this
way and I'm not completely sure that everything that needs a mutable
allocation actually asks for it yet. SPF 19/2/97
*)
val U : unit = lock addr;
in
addr
end
(* Now we know the address of this object we can fix up
any forward references outstanding. This is put in here
because there may be directly recursive references. *)
val U : unit = fixOtherRefs (cvec, toMachineWord addr);
val U : unit =
if printAssemblyCode
then let (* print out the code *)
val U : unit = printCode (seg, procName cvec, lastAddr, printStream);
in
printStream "\n"
end
else ();
in
addr
end (* copyCode *);
(* We need these types although we don't generate indexed cases. *)
type cases = int * addrs; (* should tag be a short??? *)
fun constrCases (p as (i,a)) = p;
(* Dummy implementation ...
type jumpTableAddrs = unit;
fun useIndexedCase (min, max, numberOfCases, exhaustive) : bool =
false; (* Never use indexed case. *)
fun indexedCase (reg, reg2, min, max, exhaustive, cvec) : jumpTableAddrs =
raise InternalError "Not implemented: indexedCase";
fun makeJumpTable (startTab, cl, default, min, max, cvec) : unit =
raise InternalError "Not implemented: makeJumpTable";
... *)
(* On this architecture, the jumptable is physically inserted into
the code as a vector of address offsets. The function "indexedCase"
generates the space for the table and "makeJumpTable" inserts
the actual entries, once the addresses are known.
SPF 23/11/1997
Note - this will confuse our disassembler. Must fix this some time!
SPF 12/01/1998
*)
type jumpTableAddrs = addrs;
fun constrCases (p as (i,a)) = p;
type caseList = cases list;
fun useIndexedCase (min:int, max:int, numberOfCases:int, exhaustive:bool) =
isShort min andalso
isShort max andalso
numberOfCases > 7 andalso
numberOfCases >= (max - min) div 3;
fun indexedCase (valReg : reg, workReg : reg, min:int, max:int,
exhaustive:bool, cvec : code) : jumpTableAddrs =
let
val rangeCheck : labels =
if exhaustive then []
else let
(* Is it long? If so, jump to the default. We need this because we might be
doing case-analysis on integers. For other types this is a waste of
time - we know the tag must be a short - and we should change GCODE
so we can eliminate this test.
SPF 23/11/1997
We have to be *very* careful here, though. For optimised data-types,
we might be comparing a pointer with a (short) integer. This means
that we're not really testing long/short, we're testing pointer/short
so we need to keep the test even if we know we're dealing with datatype
tags (for some kinds of datatypes). This requires more work in the
high-level code generator to distinguish these cases properly.
SPF 11/12/1997
*)
val l1 : labels = compareAndBranchRI (valReg, toMachineWord 0, Long, cvec);
val l2 : labels = compareAndBranchRI (valReg, toMachineWord min, testLtSignedW, cvec);
val l3 : labels = compareAndBranchRI (valReg, toMachineWord max, testGtSignedW, cvec);
in
l1 @ (l2 @ l3)
end;
(* Get the jumptable address into a register - not easy on this
machine. Create a handler label and load that.
*)
val tableBase : handlerLab = loadHandlerAddress (workReg, cvec);
(* constR now addresses the jumptable (but with a +2 offset) *)
(* Adjust the index to be relative to the start of the table
- don't forget to make it "out by 2" to account for the
CODETAG. No scaling is required - lucky!
*)
val adjust : mode13 = genImmedData (cvec, ~ (tagged min + CODETAG));
val U : unit = genAdd (valReg, adjust, i5, cvec);
(* i5 now contains the index into the jumptable *)
val U : unit = genLoadInstr LD (workReg, i5M, i5, cvec);
(* i5 now contains the distance between the jumptable and our destination,
(adjusted for the +2 offset).
*)
val U : unit = genJmpl (i5M, workReg, g0, cvec);
val U : unit = fixupHandler (tableBase, cvec);
(* We generate the table itself here *)
val tableBase : addrs = ! (ic cvec);
val tableWords : int = max - min + 1;
val tableBytes : int = tableWords * wordSize;
val U : unit = ic cvec := tableBase wordAddrPlus tableWords;
(* ...
(* We haven't really fallen through to here. *)
val U : unit = exited cvec := true;
... *)
(* The default case comes in here. *)
val U : unit = fixup (rangeCheck, cvec);
in
(* Return the address of the jumptable *)
tableBase : jumpTableAddrs
end;
fun makeJumpTable (startTab:jumpTableAddrs, cl:caseList, default:addrs,
min : int, max : int, cvec : code) : unit =
let
fun putCase (entryNo : int) (jumpAddr : addrs) =
let
val wordOffset : int = jumpAddr wordAddrMinus startTab;
val byteOffset : int = wordOffset * wordSize;
val entryAddr : addrs = startTab wordAddrPlus (entryNo - min);
val entryQuad : quad = toQuad (byteOffset - CODETAG);
in
setCodeQuad (entryQuad, entryAddr, cvec)
end;
(* Initialise to the default. *)
fun putInDefaults i =
if i <= max
then (putCase i default; putInDefaults(i+1))
else ()
(* Overwrite the defaults by the cases. N.B. We've generated
the list in reverse order so if we have any duplicates we
will correctly overwrite the later cases with earlier ones. *)
fun putInCases [] = ()
| putInCases ((i, a) :: t) = (putCase i a; putInCases t)
in
putInDefaults min;
putInCases cl
end;
(* ic function exported to gencode. Currently only used for backward jumps. *)
val ic = fn cvec =>
( (* Make sure any pending operations are done. *)
clearCache cvec;
doPendingStackAdjustment cvec;
reallyFixup cvec;
exited cvec := false; (* We may be jumping here. *)
! (ic cvec)
);
fun codeAddress (cvec: code) : address option =
(* This is used to find the register set for a function which was
originally a forward reference. If it has now been compiled we
can get the code. *)
case cvec of
Code {resultSeg = ref (Set (cseg, _)), ...} => SOME(csegAddr cseg)
| Code {resultSeg = ref Unset, ...} =>
(* We haven't compiled this yet: assume worst case. *) NONE
fun traceContext (Code {procName, ic = ref ic, ...}) =
(* Function name and code offset to help tracing. *)
procName ^ ":" ^ Int.fmt StringCvt.HEX (getByteAddr ic)
end (* CODECONS functor body *)
end (* structure-level let *)
|