File: scanaddrs.cpp

package info (click to toggle)
polyml 5.6-8
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 31,892 kB
  • ctags: 34,453
  • sloc: cpp: 44,983; ansic: 24,520; asm: 14,850; sh: 11,730; makefile: 551; exp: 484; python: 253; awk: 91; sed: 9
file content (563 lines) | stat: -rw-r--r-- 19,971 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
/*
    Title:      Address scanner

    Copyright (c) 2006-8, 2012 David C.J. Matthews

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.
    
    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.
    
    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#elif defined(_WIN32)
#include "winconfig.h"
#else
#error "No configuration file"
#endif

#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x) 0
#endif

#include <new>

#include "globals.h"
#include "scanaddrs.h"
#include "machine_dep.h"
#include "check_objects.h"
#include "diagnostics.h"
#include "memmgr.h"

// Process the value at a given location and update it as necessary.
POLYUNSIGNED ScanAddress::ScanAddressAt(PolyWord *pt)
{
    PolyWord val = *pt;
    PolyWord newVal = val;
    if (IS_INT(val) || val == PolyWord::FromUnsigned(0))
    {
        // We can get zeros in the constant area if we garbage collect
        //  while compiling some code. */
    }
    else if (val.IsCodePtr())
    {
        // We can get code pointers either in the stack as return addresses or
        // handler pointers or in constants in code segments as the addresses of
        // exception handlers.

        // Find the start of the code segment
        PolyObject *oldObject = ObjCodePtrToPtr(val.AsCodePtr());
        // Calculate the byte offset of this value within the code object.
        POLYUNSIGNED offset = val.AsCodePtr() - (byte*)oldObject;
        // Mustn't use ScanAddressAt here.  That's only valid if the value points
        // into the area being updated.
        PolyObject *newObject = ScanObjectAddress(oldObject);
        newVal = PolyWord::FromCodePtr((byte*)newObject + offset);
    }
    else
    {
        ASSERT(OBJ_IS_DATAPTR(val));
        // Database pointer, local pointer or IO pointer.
        // We need to include IO area pointers when we produce an object module.
        newVal = ScanObjectAddress(val.AsObjPtr());
    }
    if (newVal != val) // Only update if we need to.
        *pt = newVal;
    return 0;
}

// Process a value within the stack.
PolyWord ScanAddress::ScanStackAddress(PolyWord val, StackSpace *stack, bool isCode)
{
    PolyWord *base = stack->bottom;
    PolyWord *end = stack->top;

    // If isCode is set we definitely have a code address.  It may have the
    // bottom bit set or it may be word aligned.
    if (isCode || val.IsCodePtr())
    {
        /* Find the start of the code segment */
        PolyObject *oldObject = ObjCodePtrToPtr(val.AsCodePtr());
        // Calculate the byte offset of this value within the code object.
        POLYUNSIGNED offset = val.AsCodePtr() - (byte*)oldObject;
        PolyObject *newObject = ScanObjectAddress(oldObject);
        return PolyWord::FromCodePtr((byte*)newObject + offset);
    }

    else if (val.IsTagged() || val == PolyWord::FromUnsigned(0) || 
                 (val.AsAddress() > base && val.AsAddress() <= end))
            /* We don't need to process tagged integers (now we've checked it isn't
               a code address) and we don't need to process addresses within the
               current stack. */
            /* N.B. We have "<= end" rather than "< end" because it is possible for
               the stack to be completely empty on a terminated thread. */
           return val;

    else
    {
        ASSERT(val.IsDataPtr());
        return ScanObjectAddress(val.AsObjPtr());
    }
}

// General purpose object processor,  Processes all the addresses in an object.
// Handles the various kinds of object that may contain addresses.
void ScanAddress::ScanAddressesInObject(PolyObject *obj, POLYUNSIGNED lengthWord)
{
    do
    {
        ASSERT (OBJ_IS_LENGTH(lengthWord));
    
        if (OBJ_IS_BYTE_OBJECT(lengthWord))
            return; /* Nothing more to do */
    
        POLYUNSIGNED length = OBJ_OBJECT_LENGTH(lengthWord);
        PolyWord *baseAddr = (PolyWord*)obj;
    
        if (OBJ_IS_CODE_OBJECT(lengthWord))
        {
            // Scan constants within the code.
            machineDependent->ScanConstantsWithinCode(obj, obj, length, this);
        
            // Skip to the constants and get ready to scan them.
            obj->GetConstSegmentForCode(length, baseAddr, length);

        } // else it's a normal object,

        PolyWord *endWord = baseAddr + length;

        // We want to minimise the actual recursion we perform so we try to
        // use tail recursion if we can.  We first scan from the end and
        // remove any words that don't need recursion.
        POLYUNSIGNED lastLengthWord = 0;
        while (endWord != baseAddr)
        {
            PolyWord wordAt = endWord[-1];
            if (IS_INT(wordAt) || wordAt == PolyWord::FromUnsigned(0))
                endWord--; // Don't need to look at this.
            else if ((lastLengthWord = ScanAddressAt(endWord-1)) != 0)
                // We need to process this one
                break;
            else endWord--; // We're not interested in this.
        }

        if (endWord == baseAddr)
            return; // We've done everything.

        // There is at least one word that needs to be processed, the
        // one at endWord-1.
        // Now process from the beginning forward to see if there are
        // any words before this that need to be handled.  This way we are more
        // likely to handle the head of a list by recursion and the
        // tail by looping (tail recursion).
        while (baseAddr < endWord-1)
        {
            PolyWord wordAt = *baseAddr;
            if (IS_INT(wordAt) || wordAt == PolyWord::FromUnsigned(0))
                baseAddr++; // Don't need to look at this.
            else
            {
                POLYUNSIGNED lengthWord = ScanAddressAt(baseAddr);
                if (lengthWord != 0)
                {
                    wordAt = *baseAddr; // Reload because it may have been side-effected
                     // We really have to process this recursively.
                    if (wordAt.IsCodePtr())
                        ScanAddressesInObject(ObjCodePtrToPtr(wordAt.AsCodePtr()), lengthWord);
                    else
                        ScanAddressesInObject(wordAt.AsObjPtr(), lengthWord);
                    baseAddr++;
                }
                else baseAddr++;
            }
        }

        // Finally process the last word we found that has to be processed.
        // Do this by looping rather than recursion.
        PolyWord wordAt = *baseAddr; // Last word to do.
        // This must be an address 
        if (wordAt.IsCodePtr())
            obj = ObjCodePtrToPtr(wordAt.AsCodePtr());
        else
            obj = wordAt.AsObjPtr();

        lengthWord = lastLengthWord;

    } while(1);
}

void ScanAddress::ScanAddressesInRegion(PolyWord *region, PolyWord *end)
{
    PolyWord *pt = region;
    while (pt < end)
    {
        pt++; // Skip length word.
        // pt actually points AT the object here.
        PolyObject *obj = (PolyObject*)pt;
        if (obj->ContainsForwardingPtr())    /* skip over moved object */
        {
            // We can now get multiple forwarding pointers as a result
            // of applying ShareData repeatedly.  Perhaps we should
            // turn the forwarding pointers back into normal words in
            // an extra pass.
            while (obj->ContainsForwardingPtr())
                obj = obj->GetForwardingPtr();
            ASSERT(obj->ContainsNormalLengthWord());
            CheckObject(obj);
            pt += obj->Length();
        }
        else
        {
            ASSERT(obj->ContainsNormalLengthWord());
            POLYUNSIGNED length = obj->Length();
            if (pt+length > end)
                Crash("Malformed object at %p - length %lu\n", pt, length);
            if (length != 0)
                ScanAddressesInObject(obj);
            pt += length;
        }
    }
}

// Extract a constant from the code.
PolyWord ScanAddress::GetConstantValue(byte *addressOfConstant, ScanRelocationKind code)
{
    switch (code)
    {
    case PROCESS_RELOC_DIRECT: // 32 or 64 bit address of target
        {
            POLYUNSIGNED valu;
            unsigned i;
            byte *pt = addressOfConstant;
            if (pt[3] & 0x80) valu = 0-1; else valu = 0;
            for (i = sizeof(PolyWord); i > 0; i--)
                valu = (valu << 8) | pt[i-1];

            /* The old code generator generated reverse subtraction
               of words using a move immediate which loaded a register
               with a the tagged value plus one.  In practice the only
               reverse subtraction of a constant is 0-x so for backwards
               compatibility we need to treat 2 specially. */
            ASSERT(valu != 2);

            return PolyWord::FromUnsigned(valu);
        }
    case PROCESS_RELOC_I386RELATIVE:         // 32 bit relative address
        {
            POLYSIGNED disp;
            byte *pt = addressOfConstant;
            // Get the displacement. This is signed.
            if (pt[3] & 0x80) disp = -1; else disp = 0; // Set the sign just in case.
            for(unsigned i = 4; i > 0; i--) disp = (disp << 8) | pt[i-1];

            byte *absAddr = pt + disp + 4; // The address is relative to AFTER the constant

            return PolyWord::FromCodePtr(absAddr);
        }
    default:
        ASSERT(false);
        return TAGGED(0);
    }
}

// Store a constant value.  Also used with a patch table when importing a saved heap which has
// been exported using the C exporter.
void ScanAddress::SetConstantValue(byte *addressOfConstant, PolyWord p, ScanRelocationKind code)
{

    switch (code)
    {
    case PROCESS_RELOC_DIRECT: // 32 or 64 bit address of target
        {
            POLYUNSIGNED valu = p.AsUnsigned();
            for (unsigned i = 0; i < sizeof(PolyWord); i++)
            {
                addressOfConstant[i] = (byte)(valu & 255); 
                valu >>= 8;
            }
        }
        break;
    case PROCESS_RELOC_I386RELATIVE:         // 32 bit relative address
        {
            POLYSIGNED newDisp = p.AsCodePtr() - addressOfConstant - 4;
#if (SIZEOF_VOIDP != 4)
            ASSERT(newDisp < 0x80000000 && newDisp >= -(POLYSIGNED)0x80000000);
#endif
            for (unsigned i = 0; i < 4; i++) {
                addressOfConstant[i] = (byte)(newDisp & 0xff);
                newDisp >>= 8;
            }
        }
        break;
    }
}

// The default action is to call the DEFAULT ScanAddressAt NOT the virtual which means that it calls
// ScanObjectAddress for the base address of the object referred to.
void ScanAddress::ScanConstant(byte *addressOfConstant, ScanRelocationKind code)
{
    PolyWord p = GetConstantValue(addressOfConstant, code);

    if (! IS_INT(p))
    {
        PolyWord oldValue = p;
        ScanAddress::ScanAddressAt(&p);
        if (p != oldValue) // Update it if it has changed.
            SetConstantValue(addressOfConstant, p, code);
    }
}

void ScanAddress::ScanRuntimeWord(PolyWord *w)
{
    if (w->IsTagged()) {} // Don't need to do anything
    else if (w->IsCodePtr())
    {
        // We can have code pointers in set_code_address.
        // Find the start of the code segment
        PolyObject *obj = ObjCodePtrToPtr(w->AsCodePtr());
        // Calculate the byte offset of this value within the code object.
        POLYUNSIGNED offset = w->AsCodePtr() - (byte*)obj;
        obj = ScanObjectAddress(obj); 
        *w = PolyWord::FromCodePtr((byte*)obj + offset);

    }
    else {
        ASSERT(w->IsDataPtr());
        *w = ScanObjectAddress(w->AsObjPtr()); 
    }
}

// This gets called in two circumstances.  It may be called for the roots
// in which case the stack will be empty and we want to process it completely
// or it is called for a constant address in which case it will have been
// called from RecursiveScan::ScanAddressesInObject and that can process
// any addresses.
PolyObject *RecursiveScan::ScanObjectAddress(PolyObject *obj)
{
    PolyWord pWord = obj;
    // Test to see if this needs to be scanned.
    // It may update the word.
    bool test = TestForScan(&pWord);
    obj = pWord.AsObjPtr();

    if (test)
    {
        MarkAsScanning(obj);
        if (obj->IsByteObject())
            Completed(obj); // Don't need to put it on the stack
        // If we already have something on the stack we must being called
        // recursively to process a constant in a code segment.  Just push
        // it on the stack and let the caller deal with it.
        else if (StackIsEmpty())
            RecursiveScan::ScanAddressesInObject(obj, obj->LengthWord());
        else
            PushToStack(obj);
    }

    return obj;
}

// This is called via ScanAddressesInRegion to process the permanent mutables.  It is
// also called from ScanObjectAddress to process root addresses.
// It processes all the addresses reachable from the object.
void RecursiveScan::ScanAddressesInObject(PolyObject *obj, POLYUNSIGNED lengthWord)
{
    if (OBJ_IS_BYTE_OBJECT(lengthWord))
    {
        Completed(obj);
        return;
    }

    while (true)
    {
        ASSERT (OBJ_IS_LENGTH(lengthWord));

        // Get the length and base address.  N.B.  If this is a code segment
        // these will be side-effected by GetConstSegmentForCode.
        POLYUNSIGNED length = OBJ_OBJECT_LENGTH(lengthWord);
        PolyWord *baseAddr = (PolyWord*)obj;

        if (OBJ_IS_CODE_OBJECT(lengthWord))
        {
            // It's better to process the whole code object in one go.
            ScanAddress::ScanAddressesInObject(obj, lengthWord);
            length = 0; // Finished
        }
        ASSERT(! OBJ_IS_BYTE_OBJECT(lengthWord)); // Check - remove this later

        // else it's a normal object,

        // If there are only two addresses in this cell that need to be
        // followed we follow them immediately and treat this cell as done.
        // If there are more than two we push the address of this cell on
        // the stack, follow the first address and then rescan it.  That way
        // list cells are processed once only but we don't overflow the
        // stack by pushing all the addresses in a very large vector.
        PolyWord *endWord = baseAddr + length;
        PolyObject *firstWord = 0;
        PolyObject *secondWord = 0;

        while (baseAddr != endWord)
        {
            PolyWord wordAt = *baseAddr;

            if (wordAt.IsDataPtr() && wordAt != PolyWord::FromUnsigned(0))
            {
                // Normal address.  We can have words of all zeros at least in the
                // situation where we have a partially constructed code segment where
                // the constants at the end of the code have not yet been filled in.
                if (TestForScan(baseAddr)) // Test value at baseAddr (may side-effect it)
                {
                    PolyObject *wObj = (*baseAddr).AsObjPtr();
                    if (wObj->IsByteObject())
                    {
                        // Can do this now - don't need to push it
                        MarkAsScanning(wObj);
                        Completed(wObj);
                    }
                    else if (firstWord == 0)
                    {
                        firstWord = wObj;
                        // We mark the word immediately.  We can have
                        // two words in an object that are the same
                        // and we don't want to process it again.
                        MarkAsScanning(firstWord);
                    }
                    else if (secondWord == 0)
                        secondWord = wObj;
                    else break;  // More than two words.
                }
            }
            else if (wordAt.IsCodePtr())
            {
                // If we're processing the constant area of a code segment this could
                // be a code address.
                PolyObject *oldObject = ObjCodePtrToPtr(wordAt.AsCodePtr());
                // Calculate the byte offset of this value within the code object.
                POLYUNSIGNED offset = wordAt.AsCodePtr() - (byte*)oldObject;
                wordAt = oldObject;
                bool test = TestForScan(&wordAt);
                // TestForScan may side-effect the word.
                PolyObject *newObject = wordAt.AsObjPtr();
                wordAt = PolyWord::FromCodePtr((byte*)newObject + offset);
                if (wordAt != *baseAddr)
                    *baseAddr = wordAt;
                if (test)
                {
                    if (firstWord == 0)
                    {
                        firstWord = newObject;
                        MarkAsScanning(firstWord);
                    }
                    else if (secondWord == 0)
                        secondWord = newObject;
                    else break;
                }
            }
            baseAddr++;
        }

        if (baseAddr == endWord)
        {
            // We have done everything except possibly firstWord and secondWord.
            Completed(obj);
            if (secondWord != 0)
            {
                MarkAsScanning(secondWord);
                // Put this on the stack.  If this is a list node we will be
                // pushing the tail.
                PushToStack(secondWord);
            }
        }
        else // Put this back on the stack while we process the first word
            PushToStack(obj);

        if (firstWord != 0)
            // Process it immediately.
            obj = firstWord;
        else if (StackIsEmpty())
            return;
        else
            obj = PopFromStack();

        lengthWord = obj->LengthWord();
    }
}

// The stack is allocated as a series of blocks chained together.
#define RSTACK_SEGMENT_SIZE 1000

class RScanStack {
public:
    RScanStack(): nextStack(0), lastStack(0), sp(0) {}
    ~RScanStack() { delete(nextStack); }

    RScanStack *nextStack;
    RScanStack *lastStack;
    unsigned sp;
    PolyObject * stack[RSTACK_SEGMENT_SIZE];
};

RecursiveScanWithStack::~RecursiveScanWithStack()
{
    delete(stack);
}

bool RecursiveScanWithStack::StackIsEmpty(void)
{
    return stack == 0 || (stack->sp == 0 && stack->lastStack == 0);
}

void RecursiveScanWithStack::PushToStack(PolyObject *obj)
{
    if (stack == 0 || stack->sp == RSTACK_SEGMENT_SIZE)
    {
        if (stack != 0 && stack->nextStack != 0)
            stack = stack->nextStack;
        else
        {
            // Need a new segment
            try {
                RScanStack *s = new RScanStack;
                s->lastStack = stack;
                if (stack != 0)
                    stack->nextStack = s;
                stack = s;
            }
            catch (std::bad_alloc &) {
                StackOverflow();
                return;
            }
        }
    }
    stack->stack[stack->sp++] = obj;
}

PolyObject *RecursiveScanWithStack::PopFromStack(void)
{
    if (stack->sp == 0)
    {
        // Chain to the previous stack if any
        if (stack->lastStack == 0)
            return 0;
        // Before we do, delete any further one to free some memory
        delete(stack->nextStack);
        stack->nextStack = 0;
        stack = stack->lastStack;
        ASSERT(stack->sp == RSTACK_SEGMENT_SIZE);
    }
    return stack->stack[--stack->sp];
}