1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
|
/*
Title: Share common immutable data
Copyright (c) 2000
Cambridge University Technical Services Limited
and David C. J. Matthews 2006, 2010-13
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#elif defined(_WIN32)
#include "winconfig.h"
#else
#error "No configuration file"
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x)
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#include "globals.h"
#include "save_vec.h"
#include "machine_dep.h"
#include "scanaddrs.h"
#include "run_time.h"
#include "sys.h"
#include "gc.h"
#include "rts_module.h"
#include "memmgr.h"
#include "processes.h"
#include "gctaskfarm.h"
#include "diagnostics.h"
/*
This code was largely written by Simon Finn as a database improver for the the
memory-mapped persistent store version. The aim is that where two immutable
objects (cells) contain the same data (i.e. where ML equality would say they
were equal) they should be merged so that only a single object is retained.
The basic algorithm works like this:
1. From the root, recursively process all objects and calculate a "depth"
for each object. Mutable data, stacks and code segments have depth 0 and
cannot be merged. Byte segments (e.g. strings and long-format arbitrary
precision values) have depth 1. Other cells have depths of 1 or greater,
the depth being the maximum recursion depth until a byte segment or an
object with depth 0 is reached. Cycles of immutable data don't arise
normally in ML but could be produced as a result of locking mutable objects.
To avoid infinite recursion cycles are broken by setting the depth of an
object to zero before processing it. The depth of each object is stored
in the length word of the object. This ensures each object is processed
once only.
2. Vectors are created containing objects of the same depth, from 1 to the
maximum depth found.
3. We begin a loop starting at depth 1.
4. The objects are sorted by their contents so bringing together objects
with the same contents. The contents are considered simply as
uninterpreted bits.
5. The sorted vector is processed to find those objects that are actually
bitwise equal. One object is selected to be retained and its length
word is restored to be a normal length (phase 1 had set it to be a depth).
The other objects have their length words turned into tombstones pointing
at the retained object.
6. Objects at the next depth are first processed to find pointers to objects
that moved in the previous step (or that step with a lower depth). The
addresses are updated to point to the retained object. The effect of this
step is to ensure that now two objects that are equal in ML terms have
identical contents.
e.g. If we have
val a = ("abc", "def") and b = ("abc", "def")
then we will have merged the two occurrences of "abc" and "def" in the
previous pass of level 1 objects. This step ensures that the two cells
containing the pairs both hold pointers to the same objects and so are
bitwise equal.
7. Repeat with 4, 5 and 6 until all the levels have been processed.
Each object is processed once and at the end most of the objects have been
updated with the shared addresses. We have to scan all the mutable and
code objects to update the addresses but also have to scan the immutables
because of the possibility of missing an update as a result of breaking a
loop (see SPF's comment below).
DCJM 3/8/06
This has been substantially updated while retaining the basic algorithm.
Sorting is now done in parallel by the GC task farm and the stack is
now in dynamic memory. That avoids a possible segfault if the normal
C stack overflows.
*/
typedef struct
{
POLYUNSIGNED L;
PolyObject *pt;
} Item;
// The DepthVector type contains all the items of a particular depth.
class DepthVector {
public:
POLYUNSIGNED MergeSameItems(void);
POLYUNSIGNED depth;
POLYUNSIGNED nitems;
POLYUNSIGNED vsize;
Item *vector;
void Sort(void);
private:
static void SortRange(Item *first, Item *last);
static int CompareItems(const Item *a, const Item *b);
static int qsCompare(const void *a, const void *b)
{ return CompareItems((const Item*)a, (const Item*)b); }
static void sortTask(GCTaskId*, void *s, void *l)
{ SortRange((Item*)s, (Item*)l); }
};
class ShareDataClass {
public:
ShareDataClass() { depthVectors = 0; depthVectorSize = 0; }
~ShareDataClass();
bool RunShareData(PolyObject *root);
DepthVector *AddDepth(POLYUNSIGNED depth);
void AddToVector(POLYUNSIGNED depth, POLYUNSIGNED L, PolyObject *pt);
private:
DepthVector *depthVectors;
POLYUNSIGNED depthVectorSize;
};
ShareDataClass::~ShareDataClass()
{
// Free the bitmaps associated with the permanent spaces.
for (unsigned j = 0; j < gMem.npSpaces; j++)
gMem.pSpaces[j]->shareBitmap.Destroy();
}
DepthVector *ShareDataClass::AddDepth(POLYUNSIGNED depth)
{
if (depth >= depthVectorSize) {
POLYUNSIGNED newDepth = depth+1;
DepthVector *newVec = (DepthVector *)realloc(depthVectors, sizeof(DepthVector)*newDepth);
if (newVec == 0) throw MemoryException();
depthVectors = newVec;
for (POLYUNSIGNED d = depthVectorSize; d < newDepth; d++) {
DepthVector *dv = &depthVectors[d];
dv->depth = d;
dv->nitems = dv->vsize = 0;
dv->vector = 0;
}
depthVectorSize = newDepth;
}
return &depthVectors[depth];
}
// Add an object to a depth vector
void ShareDataClass::AddToVector(POLYUNSIGNED depth, POLYUNSIGNED L, PolyObject *pt)
{
DepthVector *v = AddDepth (depth);
ASSERT (v->nitems <= v->vsize);
if (v->nitems == v->vsize)
{
// The vector is full or has not yet been allocated. Grow it by 50%.
POLYUNSIGNED new_vsize = v->vsize + v->vsize / 2 + 1;
if (new_vsize < 15)
new_vsize = 15;
Item *new_vector = (Item *)realloc (v->vector, new_vsize*sizeof(Item));
if (new_vector == 0)
{
// The vectors can get large and we may not be able to grow them
// particularly if the address space is limited in 32-bit mode.
// Try again with just a small increase.
new_vsize = v->vsize + 15;
new_vector = (Item *)realloc (v->vector, new_vsize*sizeof(Item));
// If that failed give up.
if (new_vector == 0)
throw MemoryException();
}
v->vector = new_vector;
v->vsize = new_vsize;
}
ASSERT (v->nitems < v->vsize);
v->vector[v->nitems].L = L;
v->vector[v->nitems].pt = pt;
v->nitems++;
ASSERT (v->nitems <= v->vsize);
}
// Comparison function used for sorting and also to test whether
// two cells can be merged.
int DepthVector::CompareItems(const Item *a, const Item *b)
{
PolyObject *x = a->pt;
PolyObject *y = b->pt;
// POLYUNSIGNED A = x->LengthWord();
// POLYUNSIGNED B = y->LengthWord();
// ASSERT (OBJ_IS_DEPTH(A));
// ASSERT (OBJ_IS_DEPTH(B));
// ASSERT (A == B); // Should be the same depth.
// ASSERT (OBJ_IS_LENGTH(a->L));
// ASSERT (OBJ_IS_LENGTH(b->L));
if (a->L > b->L) return 1; // These tests include the flag bits
if (a->L < b->L) return -1;
// Return simple bitwise equality.
return memcmp(x, y, OBJ_OBJECT_LENGTH(a->L)*sizeof(PolyWord));
}
// Merge cells with the same contents.
POLYUNSIGNED DepthVector::MergeSameItems()
{
DepthVector *v = this;
POLYUNSIGNED N = v->nitems;
Item *itemVec = v->vector;
POLYUNSIGNED n = 0;
POLYUNSIGNED i = 0;
while (i < N)
{
PolyObject *bestShare = 0; // Candidate to share.
MemSpace *bestSpace = 0;
POLYUNSIGNED j;
for (j = i; j < N; j++)
{
ASSERT (OBJ_IS_DEPTH(itemVec[i].pt->LengthWord()));
// Search for identical objects. Don't bother to compare it with itself.
if (i != j && CompareItems (& itemVec[i], & itemVec[j]) != 0) break;
// The order of sharing is significant.
// Choose an object in the permanent memory if that is available.
// This is necessary to retain the invariant that no object in
// the permanent memory points to an object in the temporary heap.
// (There may well be pointers to this object elsewhere in the permanent
// heap).
// Choose the lowest hierarchy value for preference since that
// may reduce the size of saved state when resaving already saved
// data.
// If we can't find a permanent space choose a space that isn't
// an allocation space. Otherwise we could break the invariant
// that immutable areas never point into the allocation area.
MemSpace *space = gMem.SpaceForAddress(itemVec[j].pt);
if (bestSpace == 0)
{
bestShare = itemVec[j].pt;
bestSpace = space;
}
else if (bestSpace->spaceType == ST_PERMANENT)
{
// Only update if the current space is also permanent and a lower hierarchy
if (space->spaceType == ST_PERMANENT &&
((PermanentMemSpace *)space)->hierarchy < ((PermanentMemSpace *)bestSpace)->hierarchy)
{
bestShare = itemVec[j].pt;
bestSpace = space;
}
}
else if (bestSpace->spaceType == ST_LOCAL)
{
// Update if the current space is not an allocation space
if (space->spaceType != ST_LOCAL || ! ((LocalMemSpace*)space)->allocationSpace)
{
bestShare = itemVec[j].pt;
bestSpace = space;
}
}
}
POLYUNSIGNED k = j; // Remember the first object that didn't match.
//.For each identical object set all but the one we want to point to
// the shared object.
for (j = i; j < k; j++)
{
ASSERT (OBJ_IS_DEPTH(itemVec[j].pt->LengthWord()));
if (itemVec[j].pt == bestShare)
{
// This is the common object.
bestShare->SetLengthWord(itemVec[j].L); // restore genuine length word
ASSERT (OBJ_IS_LENGTH(bestShare->LengthWord()));
}
else
{
itemVec[j].pt->SetForwardingPtr(bestShare); /* an indirection */
ASSERT (itemVec[j].pt->ContainsForwardingPtr());
n++;
}
}
ASSERT(! OBJ_IS_DEPTH(itemVec[i].pt->LengthWord()));
i = k;
}
return n;
}
// Sort this vector
void DepthVector::Sort()
{
SortRange(vector, vector+(nitems-1));
gpTaskFarm->WaitForCompletion();
// Check
// for (POLYUNSIGNED i = 0; i < nitems-1; i++)
// ASSERT(CompareItems(vector+i, vector+i+1) <= 0);
}
inline void swapItems(Item *i, Item *j)
{
Item t = *i;
*i = *j;
*j = t;
}
// Simple parallel quick-sort. "first" and "last" are the first
// and last items (inclusive) in the vector.
void DepthVector::SortRange(Item *first, Item *last)
{
while (first < last)
{
if (last-first <= 100)
{
// Use the standard library function for small ranges.
qsort(first, last-first+1, sizeof(Item), qsCompare);
return;
}
// Select the best pivot from the first, last and middle item
// by sorting these three items. We use the middle item as
// the pivot and since the first and last items are sorted
// by this we can skip them when we start the partitioning.
Item *middle = first + (last-first)/2;
if (CompareItems(first, middle) > 0)
swapItems(first, middle);
if (CompareItems(middle, last) > 0)
{
swapItems(middle, last);
if (CompareItems(first, middle) > 0)
swapItems(first, middle);
}
// Partition the data about the pivot. This divides the
// vector into two partitions with all items <= pivot to
// the left and all items >= pivot to the right.
// Note: items equal to the pivot could be in either partition.
Item *f = first+1;
Item *l = last-1;
do {
// Find an item we have to move. These loops will always
// terminate because testing the middle with itself
// will return == 0.
while (CompareItems(f, middle/* pivot*/) < 0)
f++;
while (CompareItems(middle/* pivot*/, l) < 0)
l--;
// If we haven't finished we need to swap the items.
if (f < l)
{
swapItems(f, l);
// If one of these was the pivot item it will have moved to
// the other position.
if (middle == f)
middle = l;
else if (middle == l)
middle = f;
f++;
l--;
}
else if (f == l)
{
f++;
l--;
break;
}
} while (f <= l);
// Process the larger partition as a separate task or
// by recursion and do the smaller partition by tail
// recursion.
if (l-first > last-f)
{
// Lower part is larger
gpTaskFarm->AddWorkOrRunNow(sortTask, first, l);
first = f;
}
else
{
// Upper part is larger
gpTaskFarm->AddWorkOrRunNow(sortTask, f, last);
last = l;
}
}
}
class ProcessFixupAddress: public ScanAddress
{
public:
void FixupItems (DepthVector *v);
protected:
virtual POLYUNSIGNED ScanAddressAt(PolyWord *pt);
virtual PolyObject *ScanObjectAddress(PolyObject *base)
{ return GetNewAddress(base).AsObjPtr(); }
PolyWord GetNewAddress(PolyWord old);
};
POLYUNSIGNED ProcessFixupAddress::ScanAddressAt(PolyWord *pt)
{
*pt = GetNewAddress(*pt);
return 0;
}
// Returns the new address if the argument is the address of an object that
// has moved, otherwise returns the original.
PolyWord ProcessFixupAddress::GetNewAddress(PolyWord old)
{
if (old.IsTagged() || old == PolyWord::FromUnsigned(0) || gMem.IsIOPointer(old.AsAddress()))
return old; // Nothing to do.
// When we are updating addresses in the stack or in code segments we may have
// code pointers.
if (old.IsCodePtr())
{
// Find the start of the code segment
PolyObject *oldObject = ObjCodePtrToPtr(old.AsCodePtr());
// Calculate the byte offset of this value within the code object.
POLYUNSIGNED offset = old.AsCodePtr() - (byte*)oldObject;
PolyWord newObject = GetNewAddress(oldObject);
return PolyWord::FromCodePtr(newObject.AsCodePtr() + offset);
}
ASSERT(old.IsDataPtr());
PolyObject *obj = old.AsObjPtr();
POLYUNSIGNED L = obj->LengthWord();
// Generally each address will point to an object processed at a lower depth.
// The exception is if we have a cycle and have assigned the rest of the
// structure to a higher depth.
// N.B. We return the original address here but this could actually share
// with something else and not be retained.
if (OBJ_IS_DEPTH(L))
return old;
if (obj->ContainsForwardingPtr()) // tombstone is a pointer to a shared object
{
PolyObject *newp = obj->GetForwardingPtr();
// ASSERT (newp->ContainsNormalLengthWord());
return newp;
}
ASSERT (obj->ContainsNormalLengthWord()); // object is not shared
return old;
}
void ProcessFixupAddress::FixupItems (DepthVector *v)
{
POLYUNSIGNED N = v->nitems;
Item *V = v->vector;
for (POLYUNSIGNED i = 0; i < N; i++)
{
ScanAddressesInObject(V[i].pt, V[i].L);
}
}
class ProcessAddToVector: public ScanAddress
{
public:
ProcessAddToVector(ShareDataClass *p): m_parent(p), addStack(0), stackSize(0), asp(0) {}
~ProcessAddToVector();
virtual POLYUNSIGNED ScanAddressAt(PolyWord *pt)
{ (void)AddObjectsToDepthVectors(*pt); return 0; }
virtual PolyObject *ScanObjectAddress(PolyObject *base)
{ (void)AddObjectsToDepthVectors(base); return base; }
void ProcessRoot(PolyObject *root);
protected:
POLYUNSIGNED AddObjectsToDepthVectors(PolyWord old);
void PushToStack(PolyObject *obj);
ShareDataClass *m_parent;
PolyObject **addStack;
unsigned stackSize;
unsigned asp;
};
ProcessAddToVector::~ProcessAddToVector()
{
// Normally the stack will be empty. However if we have run out of
// memory and thrown an exception we may well have items left.
// We have to remove the mark bits otherwise it will mess up any
// subsequent GC.
for (unsigned i = 0; i < asp; i++)
{
PolyObject *obj = addStack[i];
if (obj->LengthWord() & _OBJ_GC_MARK)
obj->SetLengthWord(obj->LengthWord() & (~_OBJ_GC_MARK));
}
free(addStack); // Now free the stack
}
// We use _OBJ_GC_MARK to detect when we have visited a cell but not yet
// computed the depth. We have to be careful that this bit is removed
// before we finish in the case that we run out of memory and throw an
// exception. PushToStack may throw the exception if the stack needs to
// grow.
POLYUNSIGNED ProcessAddToVector::AddObjectsToDepthVectors(PolyWord old)
{
// If this is a tagged integer or an IO pointer that's simply a constant.
if (old.IsTagged() || old == PolyWord::FromUnsigned(0))
return 0;
MemSpace *space = gMem.SpaceForAddress(old.AsAddress());
if (space == 0 || space->spaceType == ST_IO)
return 0;
PolyObject *obj = old.AsObjPtr();
POLYUNSIGNED L = obj->LengthWord();
if (OBJ_IS_DEPTH(L)) // tombstone contains genuine depth or 0.
return OBJ_GET_DEPTH(L);
if (obj->LengthWord() & _OBJ_GC_MARK)
return 0; // Marked but not yet scanned. Circular structure.
ASSERT (OBJ_IS_LENGTH(L));
if (obj->IsMutable())
{
// Mutable data in the local or permanent areas
if (! obj->IsByteObject())
{
// Add it to the vector so we will update any addresses it contains.
m_parent->AddToVector(0, L, old.AsObjPtr());
// and follow any addresses to try to merge those.
PushToStack(obj);
obj->SetLengthWord(L | _OBJ_GC_MARK); // To prevent rescan
}
return 0; // Level is zero
}
if (space->spaceType == ST_PERMANENT &&
((PermanentMemSpace*)space)->hierarchy == 0)
{
// Immutable data in the permanent area can't be merged
// because it's read only. We need to follow the addresses
// because they may point to mutable areas containing data
// that can be. A typical case is the root function pointing
// at the global name table containing new declarations.
Bitmap *bm = &((PermanentMemSpace*)space)->shareBitmap;
if (! bm->TestBit((PolyWord*)obj - space->bottom))
{
bm->SetBit((PolyWord*)obj - space->bottom);
if (! obj->IsByteObject())
PushToStack(obj);
}
return 0;
}
/* There's a problem sharing code objects if they have relative calls/jumps
in them to other code. The code of two functions may be identical (e.g.
they both call functions 100 bytes ahead) and so they will appear the
same but if the functions they jump to are different they are actually
different. For that reason we don't share code segments. DCJM 4/1/01 */
if (obj->IsCodeObject())
{
// We want to update addresses in the code segment.
m_parent->AddToVector(0, L, old.AsObjPtr());
PushToStack(obj);
obj->SetLengthWord(L | _OBJ_GC_MARK); // To prevent rescan
return 0;
}
// Byte objects always have depth 1 and can't contain addresses.
if (obj->IsByteObject())
{
m_parent->AddToVector (1, L, old.AsObjPtr());// add to vector at correct depth
obj->SetLengthWord(OBJ_SET_DEPTH(1));
return 1;
}
ASSERT(OBJ_IS_WORD_OBJECT(L)); // That leaves immutable data objects.
PushToStack(obj);
obj->SetLengthWord(L | _OBJ_GC_MARK); // To prevent rescan
return 0;
}
void ProcessAddToVector::PushToStack(PolyObject *obj)
{
if (asp == stackSize)
{
if (addStack == 0)
{
addStack = (PolyObject**)malloc(sizeof(PolyObject*) * 100);
if (addStack == 0) throw MemoryException();
stackSize = 100;
}
else
{
unsigned newSize = stackSize+100;
PolyObject** newStack = (PolyObject**)realloc(addStack, sizeof(PolyObject*) * newSize);
if (newStack == 0) throw MemoryException();
stackSize = newSize;
addStack = newStack;
}
}
ASSERT(asp < stackSize);
addStack[asp++] = obj;
}
void ProcessAddToVector::ProcessRoot(PolyObject *root)
{
// Mark the initial object
AddObjectsToDepthVectors(root);
// Process the stack until it's empty.
while (asp != 0)
{
// Pop it from the stack.
PolyObject *obj = addStack[asp-1];
if (obj->IsCodeObject())
{
/* There's a problem sharing code objects if they have relative calls/jumps
in them to other code. The code of two functions may be identical (e.g.
they both call functions 100 bytes ahead) and so they will appear the
same but if the functions they jump to are different they are actually
different. For that reason we don't share code segments. DCJM 4/1/01 */
asp--; // Pop it because we'll process it completely
ScanAddressesInObject(obj);
// If it's local set the depth with the value zero.
if (obj->LengthWord() & _OBJ_GC_MARK)
{
obj->SetLengthWord(obj->LengthWord() & (~_OBJ_GC_MARK));
m_parent->AddToVector(0, obj->LengthWord() & (~_OBJ_GC_MARK), obj);
obj->SetLengthWord(OBJ_SET_DEPTH(0)); // Now scanned
}
}
else if ((obj->LengthWord() & _OBJ_GC_MARK) && ! obj->IsMutable())
{
POLYUNSIGNED depth = 0;
POLYUNSIGNED length = obj->Length();
PolyWord *pt = (PolyWord*)obj;
unsigned osp = asp;
while (length != 0 && osp == asp)
{
POLYUNSIGNED d = AddObjectsToDepthVectors(*pt);
if (d > depth) depth = d;
pt++;
length--;
}
if (osp == asp)
{
// We've finished it
asp--; // Pop this item.
depth++; // One more for this object
obj->SetLengthWord(obj->LengthWord() & (~_OBJ_GC_MARK));
m_parent->AddToVector(depth, obj->LengthWord() & (~_OBJ_GC_MARK), obj);
obj->SetLengthWord(OBJ_SET_DEPTH(depth));
}
}
else
{
POLYUNSIGNED length = obj->Length();
PolyWord *pt = (PolyWord*)obj;
unsigned osp = asp;
while (length != 0)
{
if (! (*pt).IsTagged())
{
// If we've already pushed an address break now
if (osp != asp) break;
// Process the address and possibly push it
AddObjectsToDepthVectors(*pt);
}
pt++;
length--;
}
if (length == 0)
{
// We've finished it
if (osp != asp)
{
ASSERT(osp == asp-1);
addStack[osp-1] = addStack[osp];
}
asp--; // Pop this item.
if (obj->LengthWord() & _OBJ_GC_MARK)
obj->SetLengthWord(OBJ_SET_DEPTH(0));
}
}
}
}
static void RestoreLengthWords(DepthVector *vec)
{
// Restore the length words.
Item *itemVec = vec->vector;
for (POLYUNSIGNED i = 0; i < vec->nitems; i++)
{
itemVec[i].pt->SetLengthWord(itemVec[i].L); // restore genuine length word
ASSERT (OBJ_IS_LENGTH(itemVec[i].pt->LengthWord()));
}
}
// This is called by the root thread to do the work.
bool ShareDataClass::RunShareData(PolyObject *root)
{
// We use a bitmap to indicate when we've visited an object to avoid
// infinite recursion in cycles in the data.
for (unsigned j = 0; j < gMem.npSpaces; j++)
{
PermanentMemSpace *space = gMem.pSpaces[j];
if (!space->isMutable && space->hierarchy == 0)
{
if (! space->shareBitmap.Create(space->spaceSize()))
return false;
}
}
POLYUNSIGNED totalObjects = 0;
POLYUNSIGNED totalShared = 0;
depthVectors = 0;
depthVectorSize = 0;
// Build the vectors from the immutable objects.
bool success = true;
try {
ProcessAddToVector addToVector(this);
addToVector.ProcessRoot(root);
}
catch (MemoryException &)
{
// If we ran out of memory we may still be able to process what we have.
// That will also do any clean-up.
success = false;
}
ProcessFixupAddress fixup;
for (POLYUNSIGNED depth = 1; depth < depthVectorSize; depth++)
{
DepthVector *vec = &depthVectors[depth];
fixup.FixupItems(vec);
vec->Sort();
POLYUNSIGNED n = vec->MergeSameItems();
if ((debugOptions & DEBUG_SHARING) && n > 0)
Log("Sharing: Level %4" POLYUFMT ", Objects %6" POLYUFMT ", Shared %6" POLYUFMT " (%1.0f%%)\n",
vec->depth, vec->nitems, n, (float)n / (float)vec->nitems * 100.0);
totalObjects += vec->nitems;
totalShared += n;
}
/*
At this stage, we have fixed up most but not all of the forwarding
pointers. The ones that we haven't fixed up arise from situations
such as the following:
X -> Y <-> Z
i.e. Y and Z form a loop, and X is isomorphic to Z. When we assigned
the depths, we have to arbitrarily break the loop between Y and Z.
Suppose Y is assigned to level 1, and Z is assigned to level 2.
When we process level 1 and fixup Y, there's nothing to do, since
Z is still an ordinary object. However when we process level 2,
we find that X and Z are isomorphic so we arbitrarily choose one
of them and turn it into a "tombstone" pointing at the other. If
we change Z into the tombstone, then Y now contains a pointer
that needs fixing up. That's why we need the second fixup pass.
Note also that if we had broken the loop the other way, we would have
assigned Z to level 1, Y to level 2 and X to level 3, so we would
have missed the chance to share Z and X. Perhaps that's why running
the program repeatedly sometimes finds extra things to share?
SPF 26/1/95
*/
/* We have updated the addresses in objects with non-zero level so they point to
the single occurrence but we need to do the same with level 0 objects
(mutables, stacks and code). */
if (depthVectorSize > 0)
{
DepthVector *v = &depthVectors[0];
RestoreLengthWords(v);
fixup.FixupItems(v);
free(v->vector);
}
/* Previously we made a complete scan over the memory updating any addresses so
that if we have shared two substructures within our root we would also
share any external pointers. This has been removed but we have to
reinstate the length words we've overwritten with forwarding pointers because
there may be references to unshared objects from outside. */
for (POLYUNSIGNED d = 1; d < depthVectorSize; d++)
{
DepthVector *v = &depthVectors[d];
RestoreLengthWords(v);
free(v->vector);
}
free(depthVectors);
depthVectors = 0;
if (debugOptions & DEBUG_SHARING)
Log ("Sharing: Total Objects %6" POLYUFMT ", Total Shared %6" POLYUFMT " (%1.0f%%)\n",
totalObjects, totalShared, (float)totalShared / (float)totalObjects * 100.0);
return success; // Succeeded.
}
class ShareRequest: public MainThreadRequest
{
public:
ShareRequest(Handle root): MainThreadRequest(MTP_SHARING), shareRoot(root), result(false) {}
virtual void Perform()
{
ShareDataClass s;
// Do a full GC. If we have a large heap the allocation of the vectors
// can cause paging. Doing this now reduces the heap and discards the
// allocation spaces. It may be overkill if we are applying the sharing
// to a small root but generally it seems to be applied to the whole heap.
FullGCForShareCommonData();
// Now do the sharing.
result = s.RunShareData(shareRoot->WordP());
}
Handle shareRoot;
bool result;
};
// ShareData. This is the main entry point.
// Because this can recurse deeply it needs to be run by the main thread.
// Also it manipulates the heap in ways that could mess up other threads
// so we need to stop them before executing this.
void ShareData(TaskData *taskData, Handle root)
{
if (! root->Word().IsDataPtr())
return; // Nothing to do. We could do handle a code pointer but it shouldn't occur.
// Request the main thread to do the sharing.
ShareRequest request(root);
processes->MakeRootRequest(taskData, &request);
// Raise an exception if it failed.
if (! request.result)
raise_exception_string(taskData, EXC_Fail, "Insufficient memory");
}
|