1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
|
;#
;# Title: Assembly code routines for the poly system.
;# Author: David Matthews
;# Copyright (c) Cambridge University Technical Services Limited 2000
;# Further development David C. J. Matthews 2000-2015
;#
;# This library is free software; you can redistribute it and/or
;# modify it under the terms of the GNU Lesser General Public
;# License version 2.1 as published by the Free Software Foundation.
;#
;# This library is distributed in the hope that it will be useful,
;# but WITHOUT ANY WARRANTY; without even the implied warranty of
;# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;# Lesser General Public License for more details.
;#
;# You should have received a copy of the GNU Lesser General Public
;# License along with this library; if not, write to the Free Software
;# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
;#
;#
;#
;#
;# *********************************************************************
;# * IMPORTANT *
;# * This file is used directly by MASM but is also converted *
;# * for use by gas on Unix. For reasons best known to the respective *
;# * developers the assembly language accepted by gas is different *
;# * from that used by MASM. This file uses a sort of half-way house *
;# * between the two versions in that the gas instruction ordering is *
;# * used i.e. the first argument is the source and the second the *
;# * destination, but the MASM format of addresses is used. *
;# * After making any changes to this file ensure that it can be *
;# * successfully converted and compiled under both MASM and gas. *
;# * DCJM January 2000 *
;# *********************************************************************
;#
;# Registers used :-
;#
;# %Reax: First argument to function. Result of function call.
;# %Rebx: Second argument to function.
;# %Recx: General register
;# %Redx: Closure pointer in call.
;# %Rebp: Points to memory used for extra registers
;# %Resi: General register.
;# %Redi: General register.
;# %Resp: Stack pointer.
;# X86_64 Additional registers
;# %R8: Third argument to function
;# %R9: Fourth argument to function
;# %R10: Fifth argument to function
;# %R11: General register
;# %R12: General register
;# %R13: General register
;# %R14: General register
;# %R15: Memory allocation pointer
IFDEF WINDOWS
IFNDEF HOSTARCHITECTURE_X86_64
.486
.model flat,c
ENDIF
;# No name munging needed in MASM
EXTNAME TEXTEQU <>
;# CALLMACRO is used to indicate to the converter that we have a macro
;# since macros have to be converted into C preprocessor macros.
CALLMACRO TEXTEQU <>
IFNDEF HOSTARCHITECTURE_X86_64
Reax TEXTEQU <eax>
Rebx TEXTEQU <ebx>
Recx TEXTEQU <ecx>
Redx TEXTEQU <edx>
Resi TEXTEQU <esi>
Redi TEXTEQU <edi>
Resp TEXTEQU <esp>
Rebp TEXTEQU <ebp>
ELSE
Reax TEXTEQU <rax>
Rebx TEXTEQU <rbx>
Recx TEXTEQU <rcx>
Redx TEXTEQU <rdx>
Resi TEXTEQU <rsi>
Redi TEXTEQU <rdi>
Resp TEXTEQU <rsp>
Rebp TEXTEQU <rbp>
ENDIF
R_cl TEXTEQU <cl>
R_bl TEXTEQU <bl>
R_al TEXTEQU <al>
R_ax TEXTEQU <ax>
CONST TEXTEQU <>
;# gas-style instructions
;# These are the reverse order from MASM.
MOVL MACRO f,t
mov t,f
ENDM
MOVB MACRO f,t
mov t,f
ENDM
ADDL MACRO f,t
add t,f
ENDM
SUBL MACRO f,t
sub t,f
ENDM
XORL MACRO f,t
xor t,f
ENDM
ORL MACRO f,t
or t,f
ENDM
ANDL MACRO f,t
and t,f
ENDM
CMPL MACRO f,t
cmp t,f
ENDM
CMPB MACRO f,t
cmp t,f
ENDM
LEAL MACRO f,t
lea t,f
ENDM
SHRL MACRO f,t
shr t,f
ENDM
SARL MACRO f,t
sar t,f
ENDM
SHLL MACRO f,t
shl t,f
ENDM
TESTL MACRO f,t
test t,f
ENDM
IMULL MACRO f,t
imul t,f
ENDM
LOCKXADDL MACRO f,t
lock xadd t,f
ENDM
MULL TEXTEQU <mul>
NEGL TEXTEQU <neg>
PUSHL TEXTEQU <push>
POPL TEXTEQU <pop>
IFDEF HOSTARCHITECTURE_X86_64
POPFL TEXTEQU <popfq>
PUSHFL TEXTEQU <pushfq>
PUSHAL TEXTEQU <pushaq>
POPAL TEXTEQU <popaq>
FULLWORD TEXTEQU <qword>
;# Return instructions - all in registers in x86-64
RET0 TEXTEQU <ret>
RET1 TEXTEQU <ret>
RET2 TEXTEQU <ret>
RET3 TEXTEQU <ret>
RET4 TEXTEQU <ret>
RET5 TEXTEQU <ret>
ELSE
POPFL TEXTEQU <popfd>
PUSHFL TEXTEQU <pushfd>
PUSHAL TEXTEQU <pushad>
POPAL TEXTEQU <popad>
FULLWORD TEXTEQU <dword>
;# Return instructions - First two values in registers, remainder on the stack
RET0 TEXTEQU <ret>
RET1 TEXTEQU <ret>
RET2 TEXTEQU <ret>
RET3 TEXTEQU <ret 4>
RET4 TEXTEQU <ret 8>
RET5 TEXTEQU <ret 12>
ENDIF
INCL TEXTEQU <inc>
ELSE
#include "config.h"
#if defined __MINGW64__
# if defined POLY_LINKAGE_PREFIX
# define EXTNAME(x) POLY_LINKAGE_PREFIX ## x
# else
# define EXTNAME(x) x
# endif
;# External names in older versions of FreeBSD have a leading underscore.
#elif ! defined(__ELF__)
#define EXTNAME(x) _##x
#else
#define EXTNAME(x) x
#endif
IFNDEF HOSTARCHITECTURE_X86_64
#define Reax %eax
#define Rebx %ebx
#define Recx %ecx
#define Redx %edx
#define Resi %esi
#define Redi %edi
#define Resp %esp
#define Rebp %ebp
ELSE
#define Reax %rax
#define Rebx %rbx
#define Recx %rcx
#define Redx %rdx
#define Resi %rsi
#define Redi %rdi
#define Resp %rsp
#define Rebp %rbp
ENDIF
#define R_al %al
#define R_cl %cl
#define R_bl %bl
#define R_ax %ax
IFDEF HOSTARCHITECTURE_X86_64
#define R8 %r8
#define R9 %r9
#define R10 %r10
#define R11 %r11
#define R12 %r12
#define R13 %r13
#define R14 %r14
#define R15 %r15
ENDIF
#define CONST $
#define END
IFDEF HOSTARCHITECTURE_X86_64
#define MOVL movq
#define MOVB movb
#define ADDL addq
#define SUBL subq
#define XORL xorq
#define ORL orq
#define ANDL andq
#define CMPL cmpq
#define CMPB cmpb
#define LEAL leaq
#define SHRL shrq
#define SARL sarq
#define SHLL shlq
#define TESTL testq
#define IMULL imulq
#define MULL mulq
#define DIVL divl
#define NEGL negq
#define PUSHL pushq
#define POPL popq
#define POPFL popfq
#define PUSHFL pushfq
#define PUSHAL pushaq
#define POPAL popaq
#define LOCKXADDL lock xaddq
;# Return instructions for n arguments. All these are in registers
#define RET0 ret
#define RET1 ret
#define RET2 ret
#define RET3 ret
#define RET4 ret
#define RET5 ret
ELSE
#define MOVL movl
#define MOVB movb
#define ADDL addl
#define SUBL subl
#define XORL xorl
#define ORL orl
#define ANDL andl
#define CMPL cmpl
#define CMPB cmpb
#define LEAL leal
#define SHRL shrl
#define SARL sarl
#define SHLL shll
#define TESTL testl
#define IMULL imull
#define MULL mull
#define DIVL divl
#define NEGL negl
#define PUSHL pushl
#define POPL popl
#define POPFL popfl
#define PUSHFL pushfl
#define PUSHAL pushal
#define POPAL popal
;# Older versions of GCC require a semicolon here.
#define LOCKXADDL lock; xaddl
;# Return instructions for n arguments.
#define RET0 ret
#define RET1 ret
#define RET2 ret
#define RET3 ret $4
#define RET4 ret $8
#define RET5 ret $12
ENDIF
ENDIF
;# Register mask entries - must match coding used in I386CODECONS.ML
IFDEF WINDOWS
M_Reax EQU 000001H
M_Recx EQU 000002H
M_Redx EQU 000004H
M_Rebx EQU 000008H
M_Resi EQU 000010H
M_Redi EQU 000020H
IFDEF HOSTARCHITECTURE_X86_64
M_R8 EQU 64
M_R9 EQU 128
M_R10 EQU 256
M_R11 EQU 512
M_R12 EQU 1024
M_R13 EQU 2048
M_R14 EQU 4096
ENDIF
M_FP0 EQU 002000H
M_FP1 EQU 004000H
M_FP2 EQU 008000H
M_FP3 EQU 010000H
M_FP4 EQU 020000H
M_FP5 EQU 040000H
M_FP6 EQU 080000H
M_FP7 EQU 100000H
Mask_all EQU 1FFFFFH
;# Set the register mask entry
RegMask MACRO name,mask
Mname TEXTEQU <Mask_&name&>
%Mname EQU mask
ENDM
ELSE
;# Register mask entries - must match coding used in I386CODECONS.ML
#define M_Reax 0x000001
#define M_Recx 0x000002
#define M_Redx 0x000004
#define M_Rebx 0x000008
#define M_Resi 0x000010
#define M_Redi 0x000020
IFDEF HOSTARCHITECTURE_X86_64
#define M_R8 64
#define M_R9 128
#define M_R10 256
#define M_R11 512
#define M_R12 1024
#define M_R13 2048
#define M_R14 4096
ENDIF
;# Floating point registers.
#define M_FP0 0x002000
#define M_FP1 0x004000
#define M_FP2 0x008000
#define M_FP3 0x010000
#define M_FP4 0x020000
#define M_FP5 0x040000
#define M_FP6 0x080000
#define M_FP7 0x100000
#define Mask_all 0x1FFFFF
#define RegMask(name,mask) \
.set Mask_##name, mask
#define OR |
ENDIF
;#
;# Macro to begin the hand-coded functions
;#
IFDEF WINDOWS
INLINE_ROUTINE MACRO id
PUBLIC id
id:
ENDM
ELSE
IFDEF MACOSX
#define GLOBAL .globl
ELSE
#define GLOBAL .global
ENDIF
#define INLINE_ROUTINE(id) \
GLOBAL EXTNAME(id); \
EXTNAME(id):
ENDIF
IFDEF WINDOWS
;#
;# Tagged values. A few operations, such as shift assume that the tag bit
;# is the bottom bit.
;#
TAG EQU 1
TAGSHIFT EQU 1
TAGMULT EQU 2
TAGGED MACRO i
LOCAL t
t TEXTEQU <i*2+1>
EXITM %t
ENDM
MAKETAGGED MACRO f,t
lea t,1[f*2]
ENDM
IFDEF HOSTARCHITECTURE_X86_64
POLYWORDSIZE EQU 8
ELSE
POLYWORDSIZE EQU 4
ENDIF
ELSE
.set TAG, 1
.set TAGSHIFT, 1
.set TAGMULT, (1 << TAGSHIFT)
#define TAGGED(i) ((i << TAGSHIFT) | TAG)
#define MAKETAGGED(from,to) LEAL TAG(,from,2),to
IFDEF HOSTARCHITECTURE_X86_64
.set POLYWORDSIZE, 8
ELSE
.set POLYWORDSIZE, 4
ENDIF
ENDIF
IFDEF WINDOWS
NIL TEXTEQU TAGGED(0)
UNIT TEXTEQU TAGGED(0)
ZERO TEXTEQU TAGGED(0)
FALSE TEXTEQU TAGGED(0)
TRUE TEXTEQU TAGGED(1)
MINUS1 TEXTEQU TAGGED(0-1)
B_bytes EQU 01h
B_mutablebytes EQU 41h
B_mutable EQU 40h
IFNDEF HOSTARCHITECTURE_X86_64
Max_Length EQU 00ffffffh
ELSE
Max_Length EQU 00ffffffffffffffh
ENDIF
ELSE
.set NIL, TAGGED(0)
.set UNIT, TAGGED(0)
.set ZERO, TAGGED(0)
.set FALSE, TAGGED(0)
.set TRUE, TAGGED(1)
.set MINUS1, TAGGED(0-1)
.set B_bytes, 0x01
.set B_mutable, 0x40
.set B_mutablebytes, 0x41
IFNDEF HOSTARCHITECTURE_X86_64
.set Max_Length, 0x00ffffff
ELSE
.set Max_Length, 0x00ffffffffffffff
ENDIF
ENDIF
;# The "memory registers" are pointed to by Rebp within the ML code
;# The first few offsets are built into the compiled code.
;# All the offsets are built into x86_dep.c .
IFDEF WINDOWS
LocalMpointer EQU 0
IFNDEF HOSTARCHITECTURE_X86_64
HandlerRegister EQU 4
LocalMbottom EQU 8
RequestCode EQU 20 ;# Byte: Io function to call.
InRTS EQU 21 ;# Byte: Set when in the RTS
ReturnReason EQU 22 ;# Byte: Reason for returning from ML.
FullRestore EQU 23 ;# Byte: Full/partial restore
PolyStack EQU 24 ;# Current stack base
SavedSp EQU 28 ;# Saved stack pointer
IOEntryPoint EQU 48 ;# IO call
RaiseDiv EQU 52 ;# Call to raise the Div exception
ArbEmulation EQU 56 ;# Arbitrary precision emulation
ThreadId EQU 60 ;# My thread id
RealTemp EQU 64 ;# Space for int-real conversions
ELSE
HandlerRegister EQU 8
LocalMbottom EQU 16
StackLimit EQU 24 ;# Lower limit of stack
RequestCode EQU 40 ;# Byte: Io function to call.
InRTS EQU 41 ;# Byte: Set when in the RTS
ReturnReason EQU 42 ;# Byte: Reason for returning from ML.
FullRestore EQU 43 ;# Byte: Full/partial restore
PolyStack EQU 48 ;# Current stack base
SavedSp EQU 56 ;# Saved stack pointer
HeapOverflow EQU 64 ;# Heap overflow code
StackOverflow EQU 72 ;# Stack overflow code
StackOverflowEx EQU 80 ;# Stack overflow code (for EDI)
RaiseExEntry EQU 88 ;# Raise exception
IOEntryPoint EQU 96 ;# IO call
RaiseDiv EQU 104 ;# Exception trace
ArbEmulation EQU 112 ;# Arbitrary precision emulation
ThreadId EQU 120 ;# My thread id
RealTemp EQU 128 ;# Space for int-real conversions
ENDIF
ELSE
.set LocalMpointer,0
IFNDEF HOSTARCHITECTURE_X86_64
.set HandlerRegister,4
.set LocalMbottom,8
.set RequestCode,20
.set InRTS,21
.set ReturnReason,22
.set FullRestore,23
.set PolyStack,24
.set SavedSp,28
.set IOEntryPoint,48
.set RaiseDiv,52
.set ArbEmulation,56
.set ThreadId,60
.set RealTemp,64
ELSE
.set HandlerRegister,8
.set LocalMbottom,16
.set StackLimit,24
.set RequestCode,40
.set InRTS,41
.set ReturnReason,42
.set FullRestore,43
.set PolyStack,48
.set SavedSp,56
.set HeapOverflow,64
.set StackOverflow,72
.set StackOverflowEx,80
.set RaiseExEntry,88
.set IOEntryPoint,96
.set RaiseDiv,104
.set ArbEmulation,112
.set ThreadId,120
.set RealTemp,128
ENDIF
ENDIF
;# IO function numbers. These are functions that are called
;# to handle special cases in this code
IFDEF WINDOWS
POLY_SYS_exit EQU 1
POLY_SYS_chdir EQU 9
POLY_SYS_alloc_store EQU 11
POLY_SYS_get_flags EQU 17
POLY_SYS_exception_trace_fn EQU 32
POLY_SYS_give_ex_trace_fn EQU 33
POLY_SYS_network EQU 51
POLY_SYS_os_specific EQU 52
POLY_SYS_io_dispatch EQU 61
POLY_SYS_signal_handler EQU 62
POLY_SYS_thread_dispatch EQU 73
POLY_SYS_plus_longword EQU 74
POLY_SYS_minus_longword EQU 75
POLY_SYS_mul_longword EQU 76
POLY_SYS_div_longword EQU 77
POLY_SYS_mod_longword EQU 78
POLY_SYS_andb_longword EQU 79
POLY_SYS_orb_longword EQU 80
POLY_SYS_xorb_longword EQU 81
POLY_SYS_kill_self EQU 84
POLY_SYS_shift_left_longword EQU 85
POLY_SYS_shift_right_longword EQU 86
POLY_SYS_shift_right_arith_longword EQU 87
POLY_SYS_profiler EQU 88
POLY_SYS_signed_to_longword EQU 90
POLY_SYS_unsigned_to_longword EQU 91
POLY_SYS_full_gc EQU 92
POLY_SYS_stack_trace EQU 93
POLY_SYS_timing_dispatch EQU 94
POLY_SYS_objsize EQU 99
POLY_SYS_showsize EQU 100
POLY_SYS_quotrem EQU 104
POLY_SYS_aplus EQU 106
POLY_SYS_aminus EQU 107
POLY_SYS_amul EQU 108
POLY_SYS_adiv EQU 109
POLY_SYS_amod EQU 110
POLY_SYS_aneg EQU 111
POLY_SYS_xora EQU 112
POLY_SYS_equala EQU 113
POLY_SYS_ora EQU 114
POLY_SYS_anda EQU 115
POLY_SYS_Real_str EQU 117
POLY_SYS_Real_geq EQU 118
POLY_SYS_Real_leq EQU 119
POLY_SYS_Real_gtr EQU 120
POLY_SYS_Real_lss EQU 121
POLY_SYS_Real_eq EQU 122
POLY_SYS_Real_neq EQU 123
POLY_SYS_Real_Dispatch EQU 124
POLY_SYS_Add_real EQU 125
POLY_SYS_Sub_real EQU 126
POLY_SYS_Mul_real EQU 127
POLY_SYS_Div_real EQU 128
POLY_SYS_Abs_real EQU 129
POLY_SYS_Neg_real EQU 130
POLY_SYS_conv_real EQU 133
POLY_SYS_real_to_int EQU 134
POLY_SYS_int_to_real EQU 135
POLY_SYS_sqrt_real EQU 136
POLY_SYS_sin_real EQU 137
POLY_SYS_cos_real EQU 138
POLY_SYS_arctan_real EQU 139
POLY_SYS_exp_real EQU 140
POLY_SYS_ln_real EQU 141
POLY_SYS_process_env EQU 150
POLY_SYS_poly_specific EQU 153
;# Define these for the moment.
POLY_SYS_cmem_load_32 EQU 162
POLY_SYS_cmem_load_64 EQU 163
POLY_SYS_cmem_load_float EQU 164
POLY_SYS_cmem_load_double EQU 165
POLY_SYS_cmem_store_32 EQU 168
POLY_SYS_cmem_store_64 EQU 169
POLY_SYS_cmem_store_float EQU 170
POLY_SYS_cmem_store_double EQU 171
POLY_SYS_io_operation EQU 189
POLY_SYS_ffi EQU 190
POLY_SYS_set_code_constant EQU 194
POLY_SYS_code_flags EQU 200
POLY_SYS_shrink_stack EQU 201
POLY_SYS_callcode_tupled EQU 204
POLY_SYS_foreign_dispatch EQU 205
POLY_SYS_XWindows EQU 209
POLY_SYS_int_geq EQU 231
POLY_SYS_int_leq EQU 232
POLY_SYS_int_gtr EQU 233
POLY_SYS_int_lss EQU 234
RETURN_HEAP_OVERFLOW EQU 1
RETURN_STACK_OVERFLOW EQU 2
RETURN_STACK_OVERFLOWEX EQU 3
RETURN_RAISE_DIV EQU 4
RETURN_ARB_EMULATION EQU 5
RETURN_CALLBACK_RETURN EQU 6
RETURN_CALLBACK_EXCEPTION EQU 7
ELSE
#include "sys.h"
#define RETURN_HEAP_OVERFLOW 1
#define RETURN_STACK_OVERFLOW 2
#define RETURN_STACK_OVERFLOWEX 3
#define RETURN_RAISE_DIV 4
#define RETURN_ARB_EMULATION 5
#define RETURN_CALLBACK_RETURN 6
#define RETURN_CALLBACK_EXCEPTION 7
ENDIF
;#
;# Stack format from objects.h is:
;# typedef struct
;# { byte offset of start
;# word p_space ; 0 -- Now unused - remove
;# byte *p_pc ; 4
;# word *p_sp ; 8 -- Now unused - remove
;# word *p_hr ; 12
;# word p_nreg ; 16 -- Now unused - remove
;# word p_reg[1] ; 20
;# } StackObject ;
;#
;#
;# Starting offsets
IFDEF WINDOWS
IFNDEF HOSTARCHITECTURE_X86_64
PC_OFF EQU 4
SP_OFF EQU 8
EAX_OFF EQU 20
EBX_OFF EQU 24
ECX_OFF EQU 28
EDX_OFF EQU 32
ESI_OFF EQU 36
EDI_OFF EQU 40
FLAGS_OFF EQU 48
FPREGS_OFF EQU 52
ELSE
PC_OFF EQU 8
SP_OFF EQU 16
EAX_OFF EQU 40
EBX_OFF EQU 48
ECX_OFF EQU 56
EDX_OFF EQU 64
ESI_OFF EQU 72
EDI_OFF EQU 80
R8_OFF EQU 88
R9_OFF EQU 96
R10_OFF EQU 104
R11_OFF EQU 112
R12_OFF EQU 120
R13_OFF EQU 128
R14_OFF EQU 136
FLAGS_OFF EQU 152
FPREGS_OFF EQU 160
ENDIF
ELSE
;#.set SPACE_OFF, 0
IFNDEF HOSTARCHITECTURE_X86_64
.set PC_OFF, 4
.set SP_OFF, 8
.set EAX_OFF, 20
.set EBX_OFF, 24
.set ECX_OFF, 28
.set EDX_OFF, 32
.set ESI_OFF, 36
.set EDI_OFF, 40
.set FLAGS_OFF, 48
.set FPREGS_OFF, 52
ELSE
.set PC_OFF, 8
.set SP_OFF, 16
;# 32 is the count of the number of checked registers
.set EAX_OFF, 40
.set EBX_OFF, 48
.set ECX_OFF, 56
.set EDX_OFF, 64
.set ESI_OFF, 72
.set EDI_OFF, 80
.set R8_OFF, 88
.set R9_OFF, 96
.set R10_OFF, 104
.set R11_OFF, 112
.set R12_OFF, 120
.set R13_OFF, 128
.set R14_OFF, 136
;# 144 is the count of the number of unchecked registers
.set FLAGS_OFF, 152
.set FPREGS_OFF, 160
ENDIF
ENDIF
;# Mark the stack as non-executable when supported
IFDEF HAVE_GNU_STACK
.section .note.GNU-stack, "", @progbits
ENDIF
;#
;# CODE STARTS HERE
;#
IFDEF WINDOWS
.CODE
ELSE
.text
ENDIF
;# Define standard call macro. CALL_IO ioCallNo where ioCallNo is the io function to call.
;# We need to include M_Redx in the register sets. MD_set_for_retry may modify it
;# if the function was called directly and not via the closure register.
IFDEF WINDOWS
CALL_IO MACRO index
mov byte ptr [RequestCode+Rebp],index
jmp SaveStateAndReturnLocal
ENDM
CALL_EXTRA MACRO index
mov byte ptr [ReturnReason+Rebp],index
jmp SaveFullState
ENDM
ELSE
#define CALL_IO(index) \
MOVB $index,RequestCode[Rebp]; \
jmp SaveStateAndReturnLocal;
#define CALL_EXTRA(index) \
MOVB $index,ReturnReason[Rebp]; \
jmp SaveFullState;
ENDIF
;# Load the registers from the ML stack and jump to the code.
;# This is used to start ML code.
;# The argument is the address of the MemRegisters struct and goes into %rbp.
CALLMACRO INLINE_ROUTINE X86AsmSwitchToPoly
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Recx ;# Argument - address of MemRegisters - goes into Rebp
PUSHAL ;# Save all the registers just to be safe
MOVL Resp,SavedSp[Recx] ;# savedSp:=%Resp - Save the system stack pointer.
MOVL Recx,Rebp ;# Put address of MemRegisters where it belongs
ELSE
IFDEF WINDOWS
;# The argument to the function is passed in Recx
ELSE
IFDEF _WIN32
;# The argument to the function is passed in Recx
ELSE
;# The argument to the function is passed in Redi
MOVL Redi,Recx
ENDIF
ENDIF
PUSHL Rebp ;# Save callee--save registers
PUSHL Rebx
PUSHL R12
PUSHL R13
PUSHL R14
PUSHL R15
PUSHL Redi ;# Callee save in Windows
PUSHL Resi
MOVL Resp,SavedSp[Recx] ;# savedSp:=%Resp - Save the system stack pointer.
MOVL Recx,Rebp ;# Put address of MemRegisters where it belongs
ENDIF
MOVL PolyStack[Rebp],Reax
IFDEF HOSTARCHITECTURE_X86_64
MOVL LocalMpointer[Rebp],R15 ;# Set the heap pointer register
ENDIF
MOVL SP_OFF[Reax],Resp ;# Set the new stack ptr
PUSHL PC_OFF[Reax] ;# Push the code address
IFDEF WINDOWS
test byte ptr [Rebp+FullRestore],1 ;# Should we restore or clear the regs?
ELSE
testb CONST 1,FullRestore[Rebp] ;# Should we restore or clear the regs?
ENDIF
jnz sw2polyfull
;# We're returning from an RTS call. We need to clear the registers we're
;# not restoring so that they are valid if we GC. We restore EDX and the
;# argument regs because this may have been CallCode
MOVL EBX_OFF[Reax],Rebx
MOVL CONST ZERO,Recx
MOVL EDX_OFF[Reax],Redx
MOVL CONST ZERO,Resi
MOVL CONST ZERO,Redi
IFDEF HOSTARCHITECTURE_X86_64
MOVL R8_OFF[Reax],R8
MOVL R9_OFF[Reax],R9
MOVL R10_OFF[Reax],R10
MOVL CONST ZERO,R11
MOVL CONST ZERO,R12
MOVL CONST ZERO,R13
MOVL CONST ZERO,R14
ENDIF
MOVL EAX_OFF[Reax],Reax
cld ;# Clear this just in case
IFDEF WINDOWS
mov byte ptr [InRTS+Rebp],0
ELSE
MOVB CONST 0,InRTS[Rebp] ;# inRTS:=0 (stack now kosher)
ENDIF
ret ;# Jump to code address
sw2polyfull:
PUSHL FLAGS_OFF[Reax] ;# Push the flags
FRSTOR FPREGS_OFF[Reax]
MOVL EBX_OFF[Reax],Rebx ;# Load the registers
MOVL ECX_OFF[Reax],Recx
MOVL EDX_OFF[Reax],Redx
MOVL ESI_OFF[Reax],Resi
MOVL EDI_OFF[Reax],Redi
IFDEF HOSTARCHITECTURE_X86_64
MOVL R8_OFF[Reax],R8
MOVL R9_OFF[Reax],R9
MOVL R10_OFF[Reax],R10
MOVL R11_OFF[Reax],R11
MOVL R12_OFF[Reax],R12
MOVL R13_OFF[Reax],R13
MOVL R14_OFF[Reax],R14
ENDIF
cld ;# Clear this just in case
MOVL EAX_OFF[Reax],Reax
POPFL ;# reset flags
IFDEF WINDOWS
mov byte ptr [InRTS+Rebp],0
ELSE
MOVB CONST 0,InRTS[Rebp] ;# inRTS:=0 (stack now kosher)
ENDIF
ret ;# Jump to code address
;# Code to save the state and switch to C
;# This saves the full register state.
SaveFullState:
PUSHFL ;# Save flags
PUSHL Reax ;# Save eax
MOVL PolyStack[Rebp],Reax
MOVL Rebx,EBX_OFF[Reax]
MOVL Recx,ECX_OFF[Reax]
MOVL Redx,EDX_OFF[Reax]
MOVL Resi,ESI_OFF[Reax]
MOVL Redi,EDI_OFF[Reax]
FNSAVE FPREGS_OFF[Reax] ;# Save FP state. Also resets the state so...
FLDCW FPREGS_OFF[Reax] ;# ...load because we need the same rounding mode in the RTS
IFDEF HOSTARCHITECTURE_X86_64
MOVL R8,R8_OFF[Reax]
MOVL R9,R9_OFF[Reax]
MOVL R10,R10_OFF[Reax]
MOVL R11,R11_OFF[Reax]
MOVL R12,R12_OFF[Reax]
MOVL R13,R13_OFF[Reax]
MOVL R14,R14_OFF[Reax]
MOVL R15,LocalMpointer[Rebp] ;# Save the heap pointer
ENDIF
POPL Rebx ;# Get old eax value
MOVL Rebx,EAX_OFF[Reax]
POPL Rebx
MOVL Rebx,FLAGS_OFF[Reax]
MOVL Resp,SP_OFF[Reax]
IFDEF WINDOWS
mov byte ptr [InRTS+Rebp],1
ELSE
MOVB CONST 1,InRTS[Rebp] ;# inRTS:=0 (stack now kosher)
ENDIF
MOVL SavedSp[Rebp],Resp
IFNDEF HOSTARCHITECTURE_X86_64
POPAL
ELSE
POPL Resi
POPL Redi
POPL R15 ;# Restore callee-save registers
POPL R14
POPL R13
POPL R12
POPL Rebx
POPL Rebp
ENDIF
ret
;# As X86AsmSaveFullState but only save what is necessary for an RTS call.
CALLMACRO INLINE_ROUTINE X86AsmSaveStateAndReturn
SaveStateAndReturnLocal: ;# This is necessary so that the jmps use a PC-relative address
PUSHL Reax ;# Save eax
MOVL PolyStack[Rebp],Reax
MOVL Rebx,EBX_OFF[Reax]
MOVL Redx,EDX_OFF[Reax]
FSTCW FPREGS_OFF[Reax]
FNINIT ;# Reset the FP state.
FLDCW FPREGS_OFF[Reax] ;# But reload the rounding mode
IFDEF HOSTARCHITECTURE_X86_64
MOVL R8,R8_OFF[Reax]
MOVL R9,R9_OFF[Reax]
MOVL R10,R10_OFF[Reax]
MOVL R15,LocalMpointer[Rebp] ;# Save the heap pointer
ENDIF
POPL Rebx ;# Get old eax value
MOVL Rebx,EAX_OFF[Reax]
MOVL Resp,SP_OFF[Reax]
IFDEF WINDOWS
mov byte ptr [InRTS+Rebp],1
ELSE
MOVB CONST 1,InRTS[Rebp] ;# inRTS:=0 (stack now kosher)
ENDIF
MOVL SavedSp[Rebp],Resp
IFNDEF HOSTARCHITECTURE_X86_64
POPAL
ELSE
POPL Resi
POPL Redi
POPL R15 ;# Restore callee-save registers
POPL R14
POPL R13
POPL R12
POPL Rebx
POPL Rebp
ENDIF
ret
;#
;# A number of functions implemented in Assembly for efficiency reasons
;#
CALLMACRO INLINE_ROUTINE int_to_word
;# Extract the low order bits from a word.
TESTL CONST TAG,Reax
jz get_first_long_word_a1
ret ;# Return the argument
CALLMACRO RegMask int_to_word,(M_Reax)
;# This is now used in conjunction with isShort in Word.fromInt.
CALLMACRO INLINE_ROUTINE get_first_long_word_a
get_first_long_word_a1:
IFDEF WINDOWS
test byte ptr [Reax-1],CONST 16 ;# 16 is the "negative" bit
ELSE
testb CONST 16,(-1)[Reax] ;# 16 is the "negative" bit
ENDIF
MOVL [Reax],Reax ;# Extract the word which is already little-endian
jz gfw1
NEGL Reax ;# We can ignore overflow
gfw1:
CALLMACRO MAKETAGGED Reax,Reax
ret
CALLMACRO RegMask get_first_long_word,(M_Reax)
CALLMACRO INLINE_ROUTINE move_bytes
;# Move a segment of memory from one location to another.
;# Must deal with the case of overlapping segments correctly.
;# (source, sourc_offset, destination, dest_offset, length)
;# Assume that the offsets and length are all short integers.
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 12[Resp],Redi ;# Destination address
MOVL 8[Resp],Recx ;# Destination offset, untagged
ELSE
MOVL R8,Redi ;# Destination address
MOVL R9,Recx ;# Destination offset, untagged
ENDIF
SHRL CONST TAGSHIFT,Recx
ADDL Recx,Redi
MOVL Reax,Resi ;# Source address
SHRL CONST TAGSHIFT,Rebx
ADDL Rebx,Resi
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Recx ;# Get the length to move
ELSE
MOVL R10,Recx ;# Get the length to move
ENDIF
SHRL CONST TAGSHIFT,Recx
cld ;# Default to increment Redi,Resi
CMPL Redi,Resi ;# Check for potential overlap
;# If dest > src then use decrementing moves else
;# use incrementing moves.
ja mvb1
std ;# Decrement Redi,Resi
LEAL (-1)[Resi+Recx],Resi
LEAL (-1)[Redi+Recx],Redi
mvb1:
IFDEF WINDOWS
rep movsb ;# Copy the bytes
ELSE
rep
movsb ;# Copy the bytes
ENDIF
MOVL CONST UNIT,Reax ;# The function returns unit
MOVL Reax,Rebx ;# Clobber bad value in %rbx
MOVL Reax,Recx ;# and %Recx
MOVL Reax,Redi
MOVL Reax,Resi
;# Visual Studio 5 C++ seems to assume that the direction flag
;# is cleared. I think that`s a bug but we have to go along with it.
cld
IFNDEF HOSTARCHITECTURE_X86_64
ret CONST 12
ELSE
ret
ENDIF
CALLMACRO RegMask move_bytes,Mask_all
CALLMACRO INLINE_ROUTINE move_words
;# Move a segment of memory from one location to another.
;# Must deal with the case of overlapping segments correctly.
;# (source, source_offset, destination, dest_offset, length)
;# Assume that the offsets and length are all short integers.
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 12[Resp],Redi ;# Destination address
MOVL 8[Resp],Recx ;# Destination offset
LEAL (-2)[Redi+Recx*2],Redi ;# Destination address plus offset
LEAL (-2)[Reax+Rebx*2],Resi ;# Source address plus offset
MOVL 4[Resp],Recx ;# Get the length to move (words)
ELSE
MOVL R8,Redi ;# Destination address
MOVL R9,Recx ;# Destination offset
LEAL (-4)[Redi+Recx*4],Redi ;# Destination address plus offset
LEAL (-4)[Reax+Rebx*4],Resi ;# Source address plus offset
MOVL R10,Recx ;# Get the length to move (words)
ENDIF
SHRL CONST TAGSHIFT,Recx
cld ;# Default to increment Redi,Resi
CMPL Redi,Resi ;# Check for potential overlap
;# If dest > src then use decrementing moves else
;# use incrementing moves.
ja mvw1
std ;# Decrement Redi,Resi
LEAL (-POLYWORDSIZE)[Resi+Recx*POLYWORDSIZE],Resi
LEAL (-POLYWORDSIZE)[Redi+Recx*POLYWORDSIZE],Redi
mvw1:
IFDEF WINDOWS
IFNDEF HOSTARCHITECTURE_X86_64
rep movsd ;# Copy the words
ELSE
rep movsq ;# Copy the words
ENDIF
ELSE
rep
IFNDEF HOSTARCHITECTURE_X86_64
movsl ;# Copy the words
ELSE
movsq ;# Copy the words
ENDIF
ENDIF
MOVL CONST UNIT,Reax ;# The function returns unit
MOVL Reax,Recx ;# Clobber bad values
MOVL Reax,Redi
MOVL Reax,Resi
;# Visual Studio 5 C++ seems to assume that the direction flag
;# is cleared. I think that`s a bug but we have to go along with it.
cld
IFNDEF HOSTARCHITECTURE_X86_64
ret CONST 12
ELSE
ret
ENDIF
CALLMACRO RegMask move_words,Mask_all
;#
RetFalse:
MOVL CONST FALSE,Reax
ret
RetTrue:
MOVL CONST TRUE,Reax
ret
CALLMACRO INLINE_ROUTINE not_bool
XORL CONST (TRUE-TAG),Reax ;# Change the value but leave the tag
ret
CALLMACRO RegMask not_bool,(M_Reax)
;# or, and, xor shift etc. assume the values are tagged integers
CALLMACRO INLINE_ROUTINE or_word
ORL Rebx,Reax
ret
CALLMACRO RegMask or_word,(M_Reax)
CALLMACRO INLINE_ROUTINE and_word
ANDL Rebx,Reax
ret
CALLMACRO RegMask and_word,(M_Reax)
CALLMACRO INLINE_ROUTINE xor_word
XORL Rebx,Reax
ORL CONST TAG,Reax ;# restore the tag
ret
CALLMACRO RegMask xor_word,(M_Reax)
CALLMACRO INLINE_ROUTINE shift_left_word
;# Assume that both args are tagged integers
;# Word.<<(a,b) is defined to return 0 if b > Word.wordSize
IFNDEF HOSTARCHITECTURE_X86_64
CMPL CONST TAGGED(31),Rebx
ELSE
CMPL CONST TAGGED(63),Rebx
ENDIF
jb slw1
MOVL CONST ZERO,Reax
ret
slw1:
MOVL Rebx,Recx
SHRL CONST TAGSHIFT,Recx ;# remove tag
SUBL CONST TAG,Reax
SHLL R_cl,Reax
ORL CONST TAG,Reax ;# restore the tag
MOVL Reax,Recx ;# clobber %Recx
ret
CALLMACRO RegMask shift_left_word,(M_Reax OR M_Recx)
CALLMACRO INLINE_ROUTINE shift_right_word
;# Word.>>(a,b) is defined to return 0 if b > Word.wordSize
IFNDEF HOSTARCHITECTURE_X86_64
CMPL CONST TAGGED(31),Rebx
ELSE
CMPL CONST TAGGED(63),Rebx
ENDIF
jb srw1
MOVL CONST ZERO,Reax
ret
srw1:
MOVL Rebx,Recx
SHRL CONST TAGSHIFT,Recx ;# remove tag
SHRL R_cl,Reax
ORL CONST TAG,Reax ;# restore the tag
MOVL Reax,Recx ;# clobber %Recx
ret
CALLMACRO RegMask shift_right_word,(M_Reax OR M_Recx)
CALLMACRO INLINE_ROUTINE shift_right_arith_word
;# Word.~>>(a,b) is defined to return 0 or ~1 if b > Word.wordSize
;# The easiest way to do that is to set the shift to 31.
IFNDEF HOSTARCHITECTURE_X86_64
CMPL CONST TAGGED(31),Rebx
ELSE
CMPL CONST TAGGED(63),Rebx
ENDIF
jb sra1
IFNDEF HOSTARCHITECTURE_X86_64
MOVL CONST TAGGED(31),Rebx
ELSE
MOVL CONST TAGGED(63),Rebx
ENDIF
sra1:
MOVL Rebx,Recx
SHRL CONST TAGSHIFT,Recx ;# remove tag
SARL R_cl,Reax
ORL CONST TAG,Reax ;# restore the tag
MOVL Reax,Recx ;# clobber %Recx
ret
CALLMACRO RegMask shift_right_arith_word,(M_Reax OR M_Recx)
;# Clears the "mutable" bit on a segment
CALLMACRO INLINE_ROUTINE locksega
IFDEF WINDOWS
and byte ptr [Reax-1],CONST(0ffh-B_mutable)
ELSE
andb CONST(0xff-B_mutable),-1[Reax]
ENDIF
MOVL CONST TAGGED(0),Reax ;# Return Unit,
ret
CALLMACRO RegMask lockseg,M_Reax
CALLMACRO INLINE_ROUTINE get_length_a
MOVL (-POLYWORDSIZE)[Reax],Reax
SHLL CONST 8,Reax ;# Clear top byte
SHRL CONST(8-TAGSHIFT),Reax ;# Make it a tagged integer
ORL CONST TAG,Reax
ret
CALLMACRO RegMask get_length,(M_Reax)
CALLMACRO INLINE_ROUTINE is_shorta
;# Returns true if the argument is tagged
ANDL CONST TAG,Reax
jz RetFalse
jmp RetTrue
CALLMACRO RegMask is_short,(M_Reax)
CALLMACRO INLINE_ROUTINE string_length
TESTL CONST TAG,Reax ;# Single char strings are represented by the
jnz RetOne ;# character.
MOVL [Reax],Reax ;# Get length field
CALLMACRO MAKETAGGED Reax,Reax
ret
RetOne: MOVL CONST TAGGED(1),Reax
ret
CALLMACRO RegMask string_length,(M_Reax)
;# Store the length of a string in the first word.
CALLMACRO INLINE_ROUTINE set_string_length_a
SHRL CONST TAGSHIFT,Rebx ;# Untag the length
MOVL Rebx,[Reax]
MOVL CONST UNIT,Reax ;# Return unit
MOVL Reax,Rebx ;# Clobber untagged value
ret
CALLMACRO RegMask set_string_length,(M_Reax OR M_Rebx)
;# raisex (formerly raisexn) is used by compiled code.
CALLMACRO INLINE_ROUTINE raisex
MOVL HandlerRegister[Rebp],Recx ;# Get next handler into %rcx
IFDEF WINDOWS
jmp FULLWORD ptr [Recx]
ELSE
jmp *[Recx]
ENDIF
CALLMACRO INLINE_ROUTINE load_byte
MOVL Rebx,Redi
SHRL CONST TAGSHIFT,Redi
IFDEF WINDOWS
movzx Redi, byte ptr [Reax][Redi]
ELSE
IFNDEF HOSTARCHITECTURE_X86_64
movzbl (Reax,Redi,1),Redi
ELSE
movzbq (Reax,Redi,1),Redi
ENDIF
ENDIF
CALLMACRO MAKETAGGED Redi,Reax
MOVL Reax,Redi ;# Clobber bad value in %Redi
ret
CALLMACRO RegMask load_byte,(M_Reax OR M_Redi)
CALLMACRO INLINE_ROUTINE load_word
IFNDEF HOSTARCHITECTURE_X86_64
MOVL (-2)[Reax+Rebx*2],Reax
ELSE
MOVL (-4)[Reax+Rebx*4],Reax
ENDIF
MOVL Reax,Rebx
ret
CALLMACRO RegMask load_word,(M_Reax)
CALLMACRO INLINE_ROUTINE assign_byte
;# We can assume that the data value will not overflow 30 bits (it is only 1 byte!)
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Recx
ELSE
MOVL R8,Recx
ENDIF
SHRL CONST TAGSHIFT,Recx ;# Remove tags from data value
;# We can assume that the index will not overflow 30 bits i.e. it is a tagged short
SHRL CONST TAGSHIFT,Rebx ;# Remove tags from offset
MOVB R_cl,[Reax+Rebx]
MOVL CONST UNIT,Reax ;# The function returns unit
MOVL Reax,Rebx ;# Clobber bad value in %Rebx
MOVL Reax,Recx ;# and %Recx
IFNDEF HOSTARCHITECTURE_X86_64
ret CONST 4
ELSE
ret
ENDIF
CALLMACRO RegMask assign_byte,(M_Reax OR M_Rebx OR M_Recx)
CALLMACRO INLINE_ROUTINE assign_word
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Recx
MOVL Recx,(-2)[Reax+Rebx*2]
ELSE
MOVL R8,(-4)[Reax+Rebx*4] ;# The offset is tagged already
ENDIF
MOVL CONST UNIT,Reax ;# The function returns unit
IFNDEF HOSTARCHITECTURE_X86_64
ret CONST 4
CALLMACRO RegMask assign_word,(M_Reax OR M_Recx)
ELSE
ret
CALLMACRO RegMask assign_word,(M_Reax)
ENDIF
;# Allocate a piece of memory that does not need to be initialised.
;# We can't actually risk leaving word objects uninitialised so for the
;# moment we always initialise.
CALLMACRO INLINE_ROUTINE alloc_uninit
IFDEF HOSTARCHITECTURE_X86_64
MOVL CONST ZERO,R8
ELSE
POP Recx ;# Get the return address
PUSHL CONST ZERO ;# Push the initial value - zero
PUSHL Recx ;# Restore the return address
ENDIF
;# Drop through into alloc_store
IFNDEF HOSTARCHITECTURE_X86_64
CALLMACRO RegMask alloc_uninit,Mask_all ;# All, because we may call RTS
ELSE
CALLMACRO RegMask alloc_uninit,Mask_all ;# All, because we may call RTS
ENDIF
;# alloc(size, flags, initial). Allocates a segment of a given size and
;# initialises it.
;#
;# This is primarily used for arrays and for strings. Refs are
;# allocated using inline code.
CALLMACRO INLINE_ROUTINE alloc_store
allsts:
;# alloc(size, flags, initial). Allocates a segment of a given size and
;# initialises it.
;# First check that the length is acceptable
TESTL CONST TAG,Reax
jz alloc_in_rts ;# Get the RTS to raise an exception
MOVL Reax,Redi
SHRL CONST TAGSHIFT,Redi ;# Remove tag
jnz allst0 ;# (test for 0) Make zero sized objects 1
MOVL CONST 1,Redi ;# because they mess up the g.c.
jmp alloc_in_rts
allst0:
IFNDEF HOSTARCHITECTURE_X86_64
CMPL CONST Max_Length,Redi ;# Length field must fit in 24 bits
ELSE
MOVL CONST Max_Length,Redx ;# Length field must fit in 56 bits
CMPL Redx,Redi
ENDIF
ja alloc_in_rts ;# Get the RTS to raise an exception
IFNDEF HOSTARCHITECTURE_X86_64
INCL Redi ;# Add 1 word
SHLL CONST 2,Redi ;# Get length in bytes
MOVL LocalMpointer[Rebp],Redx
ELSE
ADDL CONST 1,Redi ;# Add 1 word
SHLL CONST 3,Redi ;# Get length in bytes
MOVL R15,Redx
ENDIF
SUBL Redi,Redx ;# Allocate the space
MOVL Reax,Redi ;# Clobber bad value in Redi
CMPL LocalMbottom[Rebp],Redx ;# Check for free space
jb alloc_in_rts
;# Normally the above test is sufficient but if LocalMpointer is near the bottom of
;# memory and the store requested is very large the value in Redx can be negative
;# which is greater, unsigned, than LocalMbottom. We have to check it is less
;# than, unsigned, the allocation pointer.
IFNDEF HOSTARCHITECTURE_X86_64
CMPL LocalMpointer[Rebp],Redx
jnb alloc_in_rts
MOVL Redx,LocalMpointer[Rebp] ;# Put back in the heap ptr
ELSE
CMPL R15,Redx
jnb alloc_in_rts
MOVL Redx,R15 ;# Put back in the heap ptr
ENDIF
SHRL CONST TAGSHIFT,Reax
IFNDEF HOSTARCHITECTURE_X86_64
MOVL Reax,(-4)[Redx] ;# Put in length
ELSE
MOVL Reax,(-8)[Redx] ;# Put in length
ENDIF
SHRL CONST TAGSHIFT,Rebx ;# remove tag from flag
ORL CONST B_mutable,Rebx ;# set mutable bit
MOVB R_bl,(-1)[Redx] ;# and put it in.
;# Initialise the store.
MOVL Reax,Recx ;# Get back the no. of words.
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Reax ;# Get initial value.
ELSE
MOVL R8,Reax ;# Get initial value.
ENDIF
CMPL CONST B_mutablebytes,Rebx
jne allst2
;# If this is a byte seg
SHRL CONST TAGSHIFT,Reax ;# untag the initialiser
IFNDEF HOSTARCHITECTURE_X86_64
SHLL CONST 2,Recx ;# Convert to bytes
ELSE
SHLL CONST 3,Recx ;# Convert to bytes
ENDIF
MOVL Redx,Redi
IFDEF WINDOWS
rep stosb
ELSE
rep
stosb
ENDIF
jmp allst3
;# If this is a word segment
allst2:
MOVL Redx,Redi
IFDEF WINDOWS
IFNDEF HOSTARCHITECTURE_X86_64
rep stosd
ELSE
rep stosq
ENDIF
ELSE
rep
IFNDEF HOSTARCHITECTURE_X86_64
stosl
ELSE
stosq
ENDIF
ENDIF
allst3:
MOVL Redx,Reax
MOVL Reax,Recx ;# Clobber these
MOVL Reax,Redx
MOVL Reax,Rebx
MOVL Reax,Redi
IFNDEF HOSTARCHITECTURE_X86_64
ret CONST 4
ELSE
ret
ENDIF
CALLMACRO RegMask alloc_store,Mask_all ;# All, because we may use RTS call
;# This is used if we have reached the store limit and need to garbage-collect.
alloc_in_rts:
MOVL Reax,Redx ;# Clobber these first
MOVL Reax,Redi
CALLMACRO CALL_IO POLY_SYS_alloc_store
CALLMACRO INLINE_ROUTINE touch_final
;# This is really a pseudo-op
MOVL CONST UNIT,Reax
CALLMACRO RegMask touch_final,(M_Reax)
CALLMACRO INLINE_ROUTINE add_long
MOVL Reax,Redi
ANDL Rebx,Redi
ANDL CONST TAG,Redi
jz add_really_long
LEAL (-TAG)[Reax],Redi
ADDL Rebx,Redi
jo add_really_long
MOVL Redi,Reax
ret
add_really_long:
MOVL Reax,Redi
CALLMACRO CALL_IO POLY_SYS_aplus
CALLMACRO RegMask aplus,(M_Reax OR M_Redi OR Mask_all)
CALLMACRO INLINE_ROUTINE sub_long
MOVL Reax,Redi
ANDL Rebx,Redi
ANDL CONST TAG,Redi
jz sub_really_long
MOVL Reax,Redi
SUBL Rebx,Redi
jo sub_really_long
LEAL TAG[Redi],Reax ;# Put back the tag
MOVL Reax,Redi
ret
sub_really_long:
MOVL Reax,Redi
CALLMACRO CALL_IO POLY_SYS_aminus
CALLMACRO RegMask aminus,(M_Reax OR M_Redi OR Mask_all)
CALLMACRO INLINE_ROUTINE mult_long
MOVL Reax,Redi
ANDL Rebx,Redi
ANDL CONST TAG,Redi
jz mul_really_long
MOVL Rebx,Redi
SARL CONST TAGSHIFT,Redi ;# Shift multiplicand
MOVL Reax,Resi
SUBL CONST TAG,Resi ;# Just subtract off the tag off multiplier
IMULL Redi,Resi
jo mul_really_long
ADDL CONST TAG,Resi
MOVL Resi,Reax
MOVL Reax,Redi
ret
mul_really_long:
MOVL Reax,Resi ;# Clobber this
MOVL Reax,Redi
CALLMACRO CALL_IO POLY_SYS_amul
CALLMACRO RegMask amul,(M_Reax OR M_Redi OR M_Resi OR Mask_all)
CALLMACRO INLINE_ROUTINE div_long
MOVL Reax,Redi
ANDL Rebx,Redi
ANDL CONST TAG,Redi ;# %Redi now contains $0 or $1 (both legal!)
jz div_really_long
CMPL CONST TAGGED(0),Rebx ;# Check that it's non-zero
jz div_really_long ;# We don't want a trap.
;# The only case of overflow is dividing the smallest negative number by -1
CMPL CONST TAGGED((-1)),Rebx
jz div_really_long
SARL CONST TAGSHIFT,Reax
MOVL Rebx,Redi
SARL CONST TAGSHIFT,Redi
IFNDEF HOSTARCHITECTURE_X86_64
cdq
ELSE
cqo
ENDIF
idiv Redi
CALLMACRO MAKETAGGED Reax,Reax
MOVL Reax,Redx
MOVL Reax,Redi
ret
div_really_long:
MOVL Reax,Redi
CALLMACRO CALL_IO POLY_SYS_adiv
CALLMACRO RegMask adiv,(M_Reax OR M_Redi OR M_Redx OR Mask_all)
CALLMACRO INLINE_ROUTINE rem_long
MOVL Reax,Redi
ANDL Rebx,Redi
ANDL CONST TAG,Redi ;# %Redi now contains $0 or $1 (both legal!
jz rem_really_long
CMPL CONST TAGGED(0),Rebx ;# Check that it's non-zero
jz rem_really_long ;# We don't want a trap.
;# The only case of overflow is dividing the smallest negative number by -1
CMPL CONST TAGGED((-1)),Rebx
jz rem_really_long
SARL CONST TAGSHIFT,Reax
MOVL Rebx,Redi
SARL CONST TAGSHIFT,Redi
IFNDEF HOSTARCHITECTURE_X86_64
cdq
ELSE
cqo
ENDIF
idiv Redi
CALLMACRO MAKETAGGED Redx,Reax
MOVL Reax,Redx
MOVL Reax,Redi
ret
rem_really_long:
MOVL Reax,Redi
CALLMACRO CALL_IO POLY_SYS_amod
CALLMACRO RegMask amod,(M_Reax OR M_Redi OR M_Redx OR Mask_all)
;# Combined quotient and remainder. We have to use the long form
;# if the arguments are long or there's an overflow. The first two
;# arguments are the values to be divided. The third argument is the
;# address where the results should be placed.
CALLMACRO INLINE_ROUTINE quotrem_long
MOVL Reax,Redi
ANDL Rebx,Redi
ANDL CONST TAG,Redi
jz quotrem_really_long
CMPL CONST TAGGED(0),Rebx
jz quotrem_really_long
;# The only case of overflow is dividing the smallest negative number by -1
CMPL CONST TAGGED((-1)),Rebx
jz quotrem_really_long
;# Get the address for the result.
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Recx
ELSE
MOVL R8,Recx
ENDIF
;# Do the division
SARL CONST TAGSHIFT,Reax
MOVL Rebx,Redi
SARL CONST TAGSHIFT,Redi
IFNDEF HOSTARCHITECTURE_X86_64
cdq
ELSE
cqo
ENDIF
idiv Redi
CALLMACRO MAKETAGGED Reax,Reax
CALLMACRO MAKETAGGED Redx,Redx
MOVL Reax,Redi
MOVL Reax,[Recx]
MOVL Redx,POLYWORDSIZE[Recx]
MOVL Recx,Reax
IFNDEF HOSTARCHITECTURE_X86_64
ret CONST 4
ELSE
ret
ENDIF
mem_for_remquot1: ;# Not enough store: clobber bad value in ecx.
MOVL CONST 1,Recx
quotrem_really_long:
MOVL Reax,Redi
CALLMACRO CALL_IO POLY_SYS_quotrem
CALLMACRO RegMask quotrem,(M_Reax OR M_Redi OR M_Redx OR Mask_all)
CALLMACRO INLINE_ROUTINE equal_long
CMPL Reax,Rebx
je RetTrue
MOVL Reax,Recx ;# If either is short
ORL Rebx,Reax ;# the result is false
ANDL CONST TAG,Reax
jnz RetFalse
MOVL Recx,Reax
CALLMACRO CALL_IO POLY_SYS_equala
CALLMACRO RegMask equala,(M_Reax OR M_Recx OR Mask_all)
CALLMACRO INLINE_ROUTINE or_long
IFDEF NOTATTHEMOMENT
MOVL Reax,Redi
ANDL Rebx,Redi
ANDL CONST TAG,Redi
jz or_really_long
ORL Rebx,Reax
MOVL Reax,Redi
ret
or_really_long:
ENDIF
CALLMACRO CALL_IO POLY_SYS_ora
CALLMACRO RegMask ora,(M_Reax OR M_Redi OR Mask_all)
CALLMACRO INLINE_ROUTINE xor_long
IFDEF NOTATTHEMOMENT
MOVL Reax,Redi
ANDL Rebx,Redi
ANDL CONST TAG,Redi
jz xor_really_long
XORL Rebx,Reax
ORL CONST TAG,Reax ;# restore the tag
MOVL Reax,Redi
ret
xor_really_long:
ENDIF
CALLMACRO CALL_IO POLY_SYS_xora
CALLMACRO RegMask xora,(M_Reax OR M_Redi OR Mask_all)
CALLMACRO INLINE_ROUTINE and_long
IFDEF NOTATTHEMOMENT
MOVL Reax,Redi
ANDL Rebx,Redi
ANDL CONST TAG,Redi
jz and_really_long
ANDL Rebx,Reax
MOVL Reax,Redi
ret
and_really_long:
ENDIF
CALLMACRO CALL_IO POLY_SYS_anda
CALLMACRO RegMask anda,(M_Reax OR M_Redi OR Mask_all)
CALLMACRO INLINE_ROUTINE neg_long
TESTL CONST TAG,Reax
jz neg_really_long
MOVL CONST (TAGGED(0)+TAG),Redi
SUBL Reax,Redi
jo neg_really_long
MOVL Redi,Reax
ret
neg_really_long:
MOVL Reax,Redi
CALLMACRO CALL_IO POLY_SYS_aneg
CALLMACRO RegMask aneg,(M_Reax OR M_Redi OR Mask_all)
CALLMACRO INLINE_ROUTINE int_geq
TESTL CONST TAG,Reax ;# Is first arg short?
jz igeq2
TESTL CONST TAG,Rebx ;# Is second arg short?
jz igeq1
CMPL Rebx,Reax
jge RetTrue
jmp RetFalse
igeq1:
;# First arg is short, second isn't
IFDEF WINDOWS
test byte ptr [Rebx-1],CONST 16 ;# 16 is the "negative" bit
ELSE
testb CONST 16,(-1)[Rebx] ;# 16 is the "negative" bit
ENDIF
jnz RetTrue ;# Negative - always less
jmp RetFalse
igeq2:
;# First arg is long
TESTL CONST TAG,Rebx ;# Is second arg short?
jz igeq3
;# First arg is long, second is short
IFDEF WINDOWS
test byte ptr [Reax-1],CONST 16 ;# 16 is the "negative" bit
ELSE
testb CONST 16,(-1)[Reax] ;# 16 is the "negative" bit
ENDIF
jz RetTrue ;# Positive - always greater
jmp RetFalse
igeq3:
;# Both long
CALLMACRO CALL_IO POLY_SYS_int_geq
CALLMACRO RegMask int_geq,(M_Reax OR Mask_all)
CALLMACRO INLINE_ROUTINE int_leq
TESTL CONST TAG,Reax ;# Is first arg short?
jz ileq2
TESTL CONST TAG,Rebx ;# Is second arg short?
jz ileq1
CMPL Rebx,Reax
jle RetTrue
jmp RetFalse
ileq1:
;# First arg is short, second isn't
IFDEF WINDOWS
test byte ptr [Rebx-1],CONST 16 ;# 16 is the "negative" bit
ELSE
testb CONST 16,(-1)[Rebx] ;# 16 is the "negative" bit
ENDIF
jz RetTrue ;# Negative - always less
jmp RetFalse
ileq2:
;# First arg is long
TESTL CONST TAG,Rebx ;# Is second arg short?
jz ileq3
;# First arg is long, second is short
IFDEF WINDOWS
test byte ptr [Reax-1],CONST 16 ;# 16 is the "negative" bit
ELSE
testb CONST 16,(-1)[Reax] ;# 16 is the "negative" bit
ENDIF
jnz RetTrue ;# Positive - always greater
jmp RetFalse
ileq3:
CALLMACRO CALL_IO POLY_SYS_int_leq
CALLMACRO RegMask int_leq,(M_Reax OR M_Recx OR Mask_all)
CALLMACRO INLINE_ROUTINE int_gtr
TESTL CONST TAG,Reax ;# Is first arg short?
jz igtr2
TESTL CONST TAG,Rebx ;# Is second arg short?
jz igtr1
CMPL Rebx,Reax
jg RetTrue
jmp RetFalse
igtr1:
;# First arg is short, second isn't
IFDEF WINDOWS
test byte ptr [Rebx-1],CONST 16 ;# 16 is the "negative" bit
ELSE
testb CONST 16,(-1)[Rebx] ;# 16 is the "negative" bit
ENDIF
jnz RetTrue ;# Negative - always less
jmp RetFalse
igtr2:
;# First arg is long
TESTL CONST TAG,Rebx ;# Is second arg short?
jz igtr3
;# First arg is long, second is short
IFDEF WINDOWS
test byte ptr [Reax-1],CONST 16 ;# 16 is the "negative" bit
ELSE
testb CONST 16,(-1)[Reax] ;# 16 is the "negative" bit
ENDIF
jz RetTrue ;# Positive - always greater
jmp RetFalse
igtr3:
CALLMACRO CALL_IO POLY_SYS_int_gtr
CALLMACRO RegMask int_gtr,(M_Reax OR M_Recx OR Mask_all)
CALLMACRO INLINE_ROUTINE int_lss
TESTL CONST TAG,Reax ;# Is first arg short?
jz ilss2
TESTL CONST TAG,Rebx ;# Is second arg short?
jz ilss1
CMPL Rebx,Reax
jl RetTrue
jmp RetFalse
ilss1:
;# First arg is short, second isn't
IFDEF WINDOWS
test byte ptr [Rebx-1],CONST 16 ;# 16 is the "negative" bit
ELSE
testb CONST 16,(-1)[Rebx] ;# 16 is the "negative" bit
ENDIF
jz RetTrue ;# Negative - always less
jmp RetFalse
ilss2:
;# First arg is long
TESTL CONST TAG,Rebx ;# Is second arg short?
jz ilss3
;# First arg is long, second is short
IFDEF WINDOWS
test byte ptr [Reax-1],CONST 16 ;# 16 is the "negative" bit
ELSE
testb CONST 16,(-1)[Reax] ;# 16 is the "negative" bit
ENDIF
jnz RetTrue ;# Positive - always greater
jmp RetFalse
ilss3:
CALLMACRO CALL_IO POLY_SYS_int_lss
CALLMACRO RegMask int_lss,(M_Reax OR M_Recx OR Mask_all)
CALLMACRO INLINE_ROUTINE offset_address
;# This is needed in the code generator, but is a very risky thing to do.
SHRL CONST TAGSHIFT,Rebx ;# Untag
ADDL Rebx,Reax ;# and add in
MOVL Reax,Rebx
ret
CALLMACRO RegMask offset_address,(M_Reax OR M_Rebx)
;# General test routine. Returns with the condition codes set
;# appropriately.
teststr:
TESTL CONST TAG,Reax ;# Is arg1 short
jz tststr1
TESTL CONST TAG,Rebx ;# Yes: is arg2 also short?
jz tststr0a
;# Both are short - just compare the characters
CMPL Rebx,Reax
ret
tststr0a:
MOVL CONST 1,Redi ;# Is arg2 the null string ?
CMPL [Rebx],Redi
jg tststr4 ;# Return with "gtr" set if it is
SHRL CONST TAGSHIFT,Reax
CMPB POLYWORDSIZE[Rebx],R_al
jne tststr4 ;# If they're not equal that's the result
CMPL CONST 256,Reax ;# But if they're equal set "less" because A is less than B
jmp tststr4
tststr1: ;# arg2 is not short. Is arg1 ?
TESTL CONST TAG,Rebx
jz tststr2
MOVL [Reax],Redi ;# Is arg1 the null string
CMPL CONST 1,Redi
jl tststr4 ;# Return with "less" set if it is
SHRL CONST TAGSHIFT,Rebx
MOVB POLYWORDSIZE[Reax],R_cl
CMPB R_bl,R_cl
jne tststr4 ;# If they're not equal that's the result
CMPL CONST 0,Redi ;# But if they're equal set "greater" because A is greater than B
jmp tststr4
tststr2:
MOVL [Reax],Redi ;# Get length.
MOVL [Rebx],Recx ;#
CMPL Recx,Redi ;# Find shorter length
jge tststr3
MOVL Redi,Recx
tststr3:
LEAL POLYWORDSIZE[Reax],Resi ;# Load ptrs for cmpsb
LEAL POLYWORDSIZE[Rebx],Redi
cld ;# Make sure we increment
CMPL Reax,Reax ;# Set the Zero bit
IFDEF WINDOWS
repe cmpsb ;# Compare while equal and Recx > 0
ELSE
repe
IFNDEF HOSTARCHITECTURE_X86_64
cmpsb ;# Compare while equal and %ecx > 0
ELSE
cmpsb ;# Compare while equal and %rcx > 0
ENDIF
ENDIF
jnz tststr4
;# Strings are equal as far as the shorter of the two. Have to compare
;# the lengths.
MOVL [Reax],Redi
CMPL [Rebx],Redi
tststr4:
MOVL CONST 1,Reax ;# Clobber these
MOVL Reax,Rebx
MOVL Reax,Recx
MOVL Reax,Resi
MOVL Reax,Redi
ret
;# These functions compare strings for lexical ordering. This version, at
;# any rate, assumes that they are UNSIGNED bytes.
CALLMACRO INLINE_ROUTINE str_compare
call teststr
ja RetTrue ;# Return TAGGED(1) if it's greater
je RetFalse ;# Return TAGGED(0) if it's equal
MOVL CONST MINUS1,Reax ;# Return TAGGED(-1) if it's less.
ret
CALLMACRO RegMask str_compare,(M_Reax OR M_Recx OR M_Redi OR M_Resi)
CALLMACRO INLINE_ROUTINE teststrgeq
call teststr
jnb RetTrue
jmp RetFalse
CALLMACRO RegMask teststrgeq,(M_Reax OR M_Recx OR M_Redi OR M_Resi)
CALLMACRO INLINE_ROUTINE teststrleq
call teststr
jna RetTrue
jmp RetFalse
CALLMACRO RegMask teststrleq,(M_Reax OR M_Recx OR M_Redi OR M_Resi)
CALLMACRO INLINE_ROUTINE teststrlss
call teststr
jb RetTrue
jmp RetFalse
CALLMACRO RegMask teststrlss,(M_Reax OR M_Recx OR M_Redi OR M_Resi)
CALLMACRO INLINE_ROUTINE teststrgtr
call teststr
ja RetTrue
jmp RetFalse
CALLMACRO RegMask teststrgtr,(M_Reax OR M_Recx OR M_Redi OR M_Resi)
CALLMACRO INLINE_ROUTINE bytevec_eq
;# Compare arrays of bytes. The arguments are the same as move_bytes.
;# (source, sourc_offset, destination, dest_offset, length)
;# Assume that the offsets and length are all short integers.
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 12[Resp],Redi ;# Destination address
MOVL 8[Resp],Recx ;# Destination offset, untagged
ELSE
MOVL R8,Redi ;# Destination address
MOVL R9,Recx ;# Destination offset, untagged
ENDIF
SHRL CONST TAGSHIFT,Recx
ADDL Recx,Redi
MOVL Reax,Resi ;# Source address
SHRL CONST TAGSHIFT,Rebx
ADDL Rebx,Resi
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Recx ;# Get the length to move
ELSE
MOVL R10,Recx ;# Get the length to move
ENDIF
SHRL CONST TAGSHIFT,Recx
cld ;# Make sure we increment
CMPL Reax,Reax ;# Set the Zero bit
IFDEF WINDOWS
repe cmpsb
ELSE
repe
cmpsb
ENDIF
MOVL Reax,Resi ;# Make these valid
MOVL Reax,Recx
MOVL Reax,Redi
jz bvTrue
MOVL CONST FALSE,Reax
jmp bvRet
bvTrue:
MOVL CONST TRUE,Reax
bvRet:
IFNDEF HOSTARCHITECTURE_X86_64
ret CONST 12
ELSE
ret
ENDIF
CALLMACRO RegMask bytevec_eq,(M_Reax OR M_Recx OR M_Redi OR M_Resi)
CALLMACRO INLINE_ROUTINE is_big_endian
jmp RetFalse ;# I386/486 is little-endian
CALLMACRO RegMask is_big_endian,(M_Reax)
CALLMACRO INLINE_ROUTINE bytes_per_word
MOVL CONST TAGGED(POLYWORDSIZE),Reax ;# 4/8 bytes per word
ret
CALLMACRO RegMask bytes_per_word,(M_Reax)
;# Word functions. These are all unsigned and do not raise Overflow
CALLMACRO INLINE_ROUTINE mul_word
SHRL CONST TAGSHIFT,Rebx ;# Untag the multiplier
SUBL CONST TAG,Reax ;# Remove the tag from the multiplicand
MULL Rebx ;# unsigned multiplication
ADDL CONST TAG,Reax ;# Add back the tag, but don`t shift
MOVL Reax,Redx ;# clobber this which has the high-end result
MOVL Reax,Rebx ;# and the other bad result.
ret
CALLMACRO RegMask mul_word,(M_Reax OR M_Rebx OR M_Redx)
CALLMACRO INLINE_ROUTINE plus_word
LEAL (-TAG)[Reax+Rebx],Reax ;# Add the values and subtract a tag
ret
CALLMACRO RegMask plus_word,(M_Reax)
CALLMACRO INLINE_ROUTINE minus_word
SUBL Rebx,Reax
ADDL CONST TAG,Reax ;# Put back the tag
ret
CALLMACRO RegMask minus_word,(M_Reax)
CALLMACRO INLINE_ROUTINE div_word
SHRL CONST TAGSHIFT,Rebx
jz raise_div_ex
SHRL CONST TAGSHIFT,Reax
MOVL CONST 0,Redx
div Rebx
CALLMACRO MAKETAGGED Reax,Reax
MOVL Reax,Redx
MOVL Reax,Rebx
ret
CALLMACRO RegMask div_word,(M_Reax OR M_Rebx OR M_Redx)
CALLMACRO INLINE_ROUTINE mod_word
SHRL CONST TAGSHIFT,Rebx
jz raise_div_ex
SHRL CONST TAGSHIFT,Reax
MOVL CONST 0,Redx
div Rebx
CALLMACRO MAKETAGGED Redx,Reax
MOVL Reax,Redx
MOVL Reax,Rebx
ret
CALLMACRO RegMask mod_word,(M_Reax OR M_Rebx OR M_Redx)
raise_div_ex:
IFDEF WINDOWS
jmp FULLWORD ptr [RaiseDiv+Rebp]
ELSE
jmp *RaiseDiv[Rebp]
ENDIF
CALLMACRO INLINE_ROUTINE word_eq
CMPL Rebx,Reax
jz RetTrue ;# True if they are equal.
jmp RetFalse
CALLMACRO RegMask word_eq,(M_Reax)
CALLMACRO INLINE_ROUTINE word_neq
CMPL Rebx,Reax
jz RetFalse
jmp RetTrue
CALLMACRO RegMask word_neq,(M_Reax)
CALLMACRO INLINE_ROUTINE word_geq
CMPL Rebx,Reax
jnb RetTrue
jmp RetFalse
CALLMACRO RegMask word_geq,(M_Reax)
CALLMACRO INLINE_ROUTINE word_leq
CMPL Rebx,Reax
jna RetTrue
jmp RetFalse
CALLMACRO RegMask word_leq,(M_Reax)
CALLMACRO INLINE_ROUTINE word_gtr
CMPL Rebx,Reax
ja RetTrue
jmp RetFalse
CALLMACRO RegMask word_gtr,(M_Reax)
CALLMACRO INLINE_ROUTINE word_lss
CMPL Rebx,Reax
jb RetTrue
jmp RetFalse
CALLMACRO RegMask word_lss,(M_Reax)
;# Atomically increment the value at the address of the arg and return the
;# updated value. Since the xadd instruction returns the original value
;# we have to increment it.
CALLMACRO INLINE_ROUTINE atomic_increment
atomic_incr: ;# Internal name in case "atomic_increment" is munged.
MOVL CONST 2,Rebx
LOCKXADDL Rebx,[Reax]
ADDL CONST 2,Rebx
MOVL Rebx,Reax
ret
CALLMACRO RegMask atomic_incr,(M_Reax OR M_Rebx)
;# Atomically decrement the value at the address of the arg and return the
;# updated value. Since the xadd instruction returns the original value
;# we have to decrement it.
CALLMACRO INLINE_ROUTINE atomic_decrement
atomic_decr:
MOVL CONST -2,Rebx
LOCKXADDL Rebx,[Reax]
MOVL Rebx,Reax
SUBL CONST 2,Reax
ret
CALLMACRO RegMask atomic_decr,(M_Reax OR M_Rebx)
;# Reset a mutex to (tagged) one. Because the increment and decrements
;# are atomic this doesn't have to do anything special.
CALLMACRO INLINE_ROUTINE atomic_reset
IFDEF WINDOWS
mov FULLWORD ptr [Reax],3
ELSE
MOVL CONST 3,[Reax]
ENDIF
MOVL CONST UNIT,Reax ;# The function returns unit
ret
CALLMACRO RegMask atomic_reset,M_Reax
;# Return the thread id object for the current thread
CALLMACRO INLINE_ROUTINE thread_self
MOVL ThreadId[Rebp],Reax
ret
CALLMACRO RegMask thread_self,(M_Reax)
;# Memory for LargeWord.word values. This is the same as mem_for_real on
;# 64-bits but only a single word on 32-bits.
mem_for_largeword:
IFNDEF HOSTARCHITECTURE_X86_64
MOVL LocalMpointer[Rebp],Recx
SUBL CONST 8,Recx ;# Length word (4 bytes) + 4 bytes
IFDEF TEST_ALLOC
;# Test case - this will always force a call into RTS.
CMPL LocalMpointer[Rebp],Recx
ELSE
CMPL LocalMbottom[Rebp],Recx
ENDIF
jb mem_for_real1
MOVL Recx,LocalMpointer[Rebp] ;# Updated allocation pointer
IFDEF WINDOWS
mov FULLWORD ptr (-4)[Recx],01000001h ;# Length word:
ELSE
MOVL CONST 0x01000001,(-4)[Recx] ;# Length word
ENDIF
ret
ENDIF
;# Else if it is 64-bits just drop through
;# FLOATING POINT
;# If we have insufficient space for the result we call in to
;# main RTS to do the work. The reason for this is that it is
;# not safe to make a call into memory allocator and then
;# continue with the rest of the floating point operation
;# because that would produce a return address pointing into the
;# assembly code itself. It's possible that this is no longer
;# a problem.
mem_for_real:
;# Allocate memory for the result.
IFNDEF HOSTARCHITECTURE_X86_64
MOVL LocalMpointer[Rebp],Recx
SUBL CONST 12,Recx ;# Length word (4 bytes) + 8 bytes
ELSE
MOVL R15,Recx
SUBL CONST 16,Recx ;# Length word (8 bytes) + 8 bytes
ENDIF
IFDEF TEST_ALLOC
;# Test case - this will always force a call into RTS.
CMPL LocalMpointer[Rebp],Recx
ELSE
CMPL LocalMbottom[Rebp],Recx
ENDIF
jb mem_for_real1
IFNDEF HOSTARCHITECTURE_X86_64
MOVL Recx,LocalMpointer[Rebp] ;# Updated allocation pointer
IFDEF WINDOWS
mov FULLWORD ptr (-4)[Recx],01000002h ;# Length word:
ELSE
MOVL CONST 0x01000002,(-4)[Recx] ;# Two words plus tag
ENDIF
ELSE
MOVL Recx,R15 ;# Updated allocation pointer
IFDEF WINDOWS
mov qword ptr (-8)[Recx],1 ;# One word
mov byte ptr (-1)[Recx],B_bytes ;# Set the byte flag.
ELSE
MOVL CONST 1,(-8)[Recx] ;# One word
MOVB CONST B_bytes,(-1)[Recx] ;# Set the byte flag.
ENDIF
ENDIF
ret
mem_for_real1: ;# Not enough store: clobber bad value in ecx.
MOVL CONST 1,Recx
ret
CALLMACRO INLINE_ROUTINE real_add
call mem_for_real
jb real_add_1 ;# Not enough space - call RTS.
;# Do the operation and put the result in the allocated
;# space.
IFDEF WINDOWS
FLD qword ptr [Reax]
FADD qword ptr [Rebx]
FSTP qword ptr [Recx]
ELSE
FLDL [Reax]
FADDL [Rebx]
FSTPL [Recx]
ENDIF
MOVL Recx,Reax
ret
real_add_1:
CALLMACRO CALL_IO POLY_SYS_Add_real
;# The mask includes FP7 rather than FP0 because this pushes a value which
;# overwrites the bottom of the stack.
CALLMACRO RegMask real_add,(M_Reax OR M_Recx OR M_Redx OR M_FP7 OR Mask_all)
CALLMACRO INLINE_ROUTINE real_sub
call mem_for_real
jb real_sub_1 ;# Not enough space - call RTS.
;# Do the operation and put the result in the allocated
;# space.
IFDEF WINDOWS
FLD qword ptr [Reax]
FSUB qword ptr [Rebx]
FSTP qword ptr [Recx]
ELSE
FLDL [Reax]
FSUBL [Rebx]
FSTPL [Recx]
ENDIF
MOVL Recx,Reax
ret
real_sub_1:
CALLMACRO CALL_IO POLY_SYS_Sub_real
CALLMACRO RegMask real_sub,(M_Reax OR M_Recx OR M_Redx OR M_FP7 OR Mask_all)
CALLMACRO INLINE_ROUTINE real_mul
call mem_for_real
jb real_mul_1 ;# Not enough space - call RTS.
;# Do the operation and put the result in the allocated
;# space.
IFDEF WINDOWS
FLD qword ptr [Reax]
FMUL qword ptr [Rebx]
FSTP qword ptr [Recx]
ELSE
FLDL [Reax]
FMULL [Rebx]
FSTPL [Recx]
ENDIF
MOVL Recx,Reax
ret
real_mul_1:
CALLMACRO CALL_IO POLY_SYS_Mul_real
CALLMACRO RegMask real_mul,(M_Reax OR M_Recx OR M_Redx OR M_FP7 OR Mask_all)
CALLMACRO INLINE_ROUTINE real_div
call mem_for_real
jb real_div_1 ;# Not enough space - call RTS.
;# Do the operation and put the result in the allocated
;# space.
IFDEF WINDOWS
FLD qword ptr [Reax]
FDIV qword ptr [Rebx]
FSTP qword ptr [Recx]
ELSE
FLDL [Reax]
FDIVL [Rebx]
FSTPL [Recx]
ENDIF
MOVL Recx,Reax
ret
real_div_1:
CALLMACRO CALL_IO POLY_SYS_Div_real
CALLMACRO RegMask real_div,(M_Reax OR M_Recx OR M_Redx OR M_FP7 OR Mask_all)
;# For all values except NaN it's possible to do this by a test such as
;# "if x < 0.0 then ~ x else x" but the test always fails for NaNs
CALLMACRO INLINE_ROUTINE real_abs
call mem_for_real
jb real_abs_1 ;# Not enough space - call RTS.
;# Do the operation and put the result in the allocated
;# space.
;# N.B. Real.~ X is not the same as 0.0 - X. Real.~ 0.0 is ~0.0;
IFDEF WINDOWS
FLD qword ptr [Reax]
FABS
FSTP qword ptr [Recx]
ELSE
FLDL [Reax]
FABS
FSTPL [Recx]
ENDIF
MOVL Recx,Reax
ret
real_abs_1:
CALLMACRO CALL_IO POLY_SYS_Abs_real
CALLMACRO RegMask real_abs,(M_Reax OR M_Recx OR M_Redx OR M_FP7 OR Mask_all)
CALLMACRO INLINE_ROUTINE real_neg
call mem_for_real
jb real_neg_1 ;# Not enough space - call RTS.
;# Do the operation and put the result in the allocated
;# space.
;# N.B. Real.~ X is not the same as 0.0 - X. Real.~ 0.0 is ~0.0;
IFDEF WINDOWS
FLD qword ptr [Reax]
FCHS
FSTP qword ptr [Recx]
ELSE
FLDL [Reax]
FCHS
FSTPL [Recx]
ENDIF
MOVL Recx,Reax
ret
real_neg_1:
CALLMACRO CALL_IO POLY_SYS_Neg_real
CALLMACRO RegMask real_neg,(M_Reax OR M_Recx OR M_Redx OR M_FP7 OR Mask_all)
CALLMACRO INLINE_ROUTINE real_eq
IFDEF WINDOWS
FLD qword ptr [Reax]
FCOMP qword ptr [Rebx]
ELSE
FLDL [Reax]
FCOMPL [Rebx]
ENDIF
FNSTSW R_ax
;# Not all 64-bit processors support SAHF.
;# The result is true if the zero flag is set and parity flag clear.
ANDL CONST 17408,Reax ;# 0x4400
CMPL CONST 16384,Reax ;# 0x4000
je RetTrue
jmp RetFalse
CALLMACRO RegMask real_eq,(M_Reax OR M_FP7)
CALLMACRO INLINE_ROUTINE real_neq
IFDEF WINDOWS
FLD qword ptr [Reax]
FCOMP qword ptr [Rebx]
ELSE
FLDL [Reax]
FCOMPL [Rebx]
ENDIF
FNSTSW R_ax
ANDL CONST 17408,Reax ;# 0x4400
CMPL CONST 16384,Reax ;# 0x4000
jne RetTrue
jmp RetFalse
CALLMACRO RegMask real_neq,(M_Reax OR M_FP7)
CALLMACRO INLINE_ROUTINE real_lss
;# Compare Rebx > Reax
IFDEF WINDOWS
FLD qword ptr [Rebx]
FCOMP qword ptr [Reax]
ELSE
FLDL [Rebx]
FCOMPL [Reax]
ENDIF
FNSTSW R_ax
;# True if the carry flag (C0), zero flag (C3) and parity (C2) are all clear
ANDL CONST 17664,Reax ;# 0x4500
je RetTrue
jmp RetFalse
CALLMACRO RegMask real_lss,(M_Reax OR M_FP7)
CALLMACRO INLINE_ROUTINE real_gtr
IFDEF WINDOWS
FLD qword ptr [Reax]
FCOMP qword ptr [Rebx]
ELSE
FLDL [Reax]
FCOMPL [Rebx]
ENDIF
FNSTSW R_ax
;# True if the carry flag (C0), zero flag (C3) and parity (C2) are all clear
ANDL CONST 17664,Reax ;# 0x4500
je RetTrue
jmp RetFalse
CALLMACRO RegMask real_gtr,(M_Reax OR M_FP7)
CALLMACRO INLINE_ROUTINE real_leq
;# Compare Rebx > Reax
IFDEF WINDOWS
FLD qword ptr [Rebx]
FCOMP qword ptr [Reax]
ELSE
FLDL [Rebx]
FCOMPL [Reax]
ENDIF
FNSTSW R_ax
;# True if the carry flag (C0) and parity (C2) are both clear
ANDL CONST 1280,Reax ;# 0x500
je RetTrue
jmp RetFalse
CALLMACRO RegMask real_leq,(M_Reax OR M_FP7)
CALLMACRO INLINE_ROUTINE real_geq
IFDEF WINDOWS
FLD qword ptr [Reax]
FCOMP qword ptr [Rebx]
ELSE
FLDL [Reax]
FCOMPL [Rebx]
ENDIF
FNSTSW R_ax
;# True if the carry flag (C0) and parity (C2) are both clear
ANDL CONST 1280,Reax ;# 0x500
je RetTrue
jmp RetFalse
CALLMACRO RegMask real_geq,(M_Reax OR M_FP7)
CALLMACRO INLINE_ROUTINE real_from_int
TESTL CONST TAG,Reax ;# Is it long ?
jz real_float_1
call mem_for_real
jb real_float_1 ;# Not enough space - call RTS.
SARL CONST TAGSHIFT,Reax ;# Untag the value
MOVL Reax,RealTemp[Rebp] ;# Save it in a temporary (N.B. It's now untagged)
IFDEF WINDOWS
FILD FULLWORD ptr RealTemp[Rebp]
FSTP qword ptr [Recx]
ELSE
IFDEF HOSTARCHITECTURE_X86_64
FILDQ RealTemp[Rebp]
ELSE
FILDL RealTemp[Rebp]
ENDIF
FSTPL [Recx]
ENDIF
MOVL Recx,Reax
ret
real_float_1:
CALLMACRO CALL_IO POLY_SYS_int_to_real
CALLMACRO RegMask real_from_int,(M_Reax OR M_Recx OR M_Redx OR M_FP7 OR Mask_all)
;# Additional assembly code routines
;# This template code is copied into a newly allocated piece of memory which
;# is set up to look like an ML function.
;# The code itself is called if a function set up with exception_trace
;# returns normally. It removes the handler.
CALLMACRO INLINE_ROUTINE X86AsmRestoreHandlerAfterExceptionTraceTemplate
ADDL CONST POLYWORDSIZE,Resp ;# Remove handler
POPL HandlerRegister[Rebp]
RET
NOP ;# Add an extra byte so we have 8 bytes on both X86 and X86_64
;# This is template code and must be position independent.
;# The length of this code (9 bytes) is built into X86Dependent::BuildExceptionTrace.
CALLMACRO INLINE_ROUTINE X86AsmGiveExceptionTraceFnTemplate
NOP ;# Two NOPs - for alignment
NOP
;# The exception packet is the first argument.
IFDEF WINDOWS
mov byte ptr [RequestCode+Rebp],POLY_SYS_give_ex_trace_fn
jmp FULLWORD ptr [IOEntryPoint+Rebp]
ELSE
MOVB CONST POLY_SYS_give_ex_trace_fn,RequestCode[Rebp]
jmp *IOEntryPoint[Rebp]
ENDIF
;# This is template code for an RTS call to kill the current thread.
CALLMACRO INLINE_ROUTINE X86AsmKillSelfTemplate
IFDEF WINDOWS
mov byte ptr [RequestCode+Rebp],POLY_SYS_kill_self
jmp FULLWORD ptr [IOEntryPoint+Rebp]
ELSE
MOVB CONST POLY_SYS_kill_self,RequestCode[Rebp]
jmp *IOEntryPoint[Rebp]
ENDIF
CALLMACRO INLINE_ROUTINE X86AsmCallbackReturnTemplate
IFDEF WINDOWS
mov byte ptr [ReturnReason+Rebp],RETURN_CALLBACK_RETURN
jmp FULLWORD ptr [IOEntryPoint+Rebp]
ELSE
MOVB CONST RETURN_CALLBACK_RETURN,ReturnReason[Rebp]
jmp *IOEntryPoint[Rebp]
ENDIF
CALLMACRO INLINE_ROUTINE X86AsmCallbackExceptionTemplate
IFDEF WINDOWS
mov byte ptr [ReturnReason+Rebp],RETURN_CALLBACK_EXCEPTION
jmp FULLWORD ptr [IOEntryPoint+Rebp]
ELSE
MOVB CONST RETURN_CALLBACK_EXCEPTION,ReturnReason[Rebp]
jmp *IOEntryPoint[Rebp]
ENDIF
;# This implements atomic addition in the same way as atomic_increment
CALLMACRO INLINE_ROUTINE X86AsmAtomicIncrement
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Reax
ELSE
IFDEF WINDOWS
MOVL Recx,Reax ;# The argument to the function is passed in Recx
ELSE
IFDEF _WIN32
MOVL Recx,Reax ;# The argument to the function is passed in Recx
ELSE
MOVL Redi,Reax ;# On X86_64 the argument is passed in Redi
ENDIF
ENDIF
ENDIF
;# Use Recx and Reax because they are volatile (unlike Rebx on X86/64/Unix)
MOVL CONST 2,Recx
LOCKXADDL Recx,[Reax]
ADDL CONST 2,Recx
MOVL Recx,Reax
ret
;# This implements atomic subtraction in the same way as atomic_decrement
CALLMACRO INLINE_ROUTINE X86AsmAtomicDecrement
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Reax
ELSE
MOVL Redi,Reax ;# On X86_64 the argument is passed in Redi
ENDIF
MOVL CONST -2,Recx
LOCKXADDL Recx,[Reax]
MOVL Recx,Reax
SUBL CONST 2,Reax
ret
;# LargeWord.word operations. These are 32 or 64-bit values in a single-word byte
;# memory cell.
CALLMACRO INLINE_ROUTINE eq_longword
MOVL [Reax],Reax
CMPL [Rebx],Reax
jz RetTrue ;# True if they are equal.
jmp RetFalse
CALLMACRO RegMask eq_longword,(M_Reax)
CALLMACRO INLINE_ROUTINE neq_longword
MOVL [Reax],Reax
CMPL [Rebx],Reax
jz RetFalse
jmp RetTrue
CALLMACRO RegMask neq_longword,(M_Reax)
CALLMACRO INLINE_ROUTINE geq_longword
MOVL [Reax],Reax
CMPL [Rebx],Reax
jnb RetTrue
jmp RetFalse
CALLMACRO RegMask geq_longword,(M_Reax)
CALLMACRO INLINE_ROUTINE leq_longword
MOVL [Reax],Reax
CMPL [Rebx],Reax
jna RetTrue
jmp RetFalse
CALLMACRO RegMask leq_longword,(M_Reax)
CALLMACRO INLINE_ROUTINE gt_longword
MOVL [Reax],Reax
CMPL [Rebx],Reax
ja RetTrue
jmp RetFalse
CALLMACRO RegMask gt_longword,(M_Reax)
CALLMACRO INLINE_ROUTINE lt_longword
MOVL [Reax],Reax
CMPL [Rebx],Reax
jb RetTrue
jmp RetFalse
CALLMACRO RegMask lt_longword,(M_Reax)
CALLMACRO INLINE_ROUTINE longword_to_tagged
;# Load the value and tag it, discarding the top bit
MOVL [Reax],Reax
CALLMACRO MAKETAGGED Reax,Reax
ret
CALLMACRO RegMask longword_to_tagged,(M_Reax)
CALLMACRO INLINE_ROUTINE signed_to_longword
;# Shift the value to remove the tag and store it.
call mem_for_largeword
jb signed_to_longword1
SARL CONST TAGSHIFT,Reax ;# Arithmetic shift, preserve sign
MOVL Reax,[Recx]
MOVL Recx,Reax
ret
signed_to_longword1:
CALLMACRO CALL_IO POLY_SYS_signed_to_longword
CALLMACRO RegMask signed_to_longword,(M_Reax OR M_Recx OR Mask_all)
CALLMACRO INLINE_ROUTINE unsigned_to_longword
;# Shift the value to remove the tag and store it.
call mem_for_largeword
jb unsigned_to_longword1
SHRL CONST TAGSHIFT,Reax ;# Logical shift, zero top bit
MOVL Reax,[Recx]
MOVL Recx,Reax
ret
unsigned_to_longword1:
CALLMACRO CALL_IO POLY_SYS_unsigned_to_longword
CALLMACRO RegMask unsigned_to_longword,(M_Reax OR M_Recx OR Mask_all)
CALLMACRO INLINE_ROUTINE plus_longword
call mem_for_largeword
jb plus_longword1
MOVL [Reax],Reax
ADDL [Rebx],Reax
MOVL Reax,[Recx]
MOVL Recx,Reax
ret
plus_longword1:
CALLMACRO CALL_IO POLY_SYS_plus_longword
CALLMACRO RegMask plus_longword,(M_Reax OR M_Recx OR Mask_all)
CALLMACRO INLINE_ROUTINE minus_longword
call mem_for_largeword
jb minus_longword1
MOVL [Reax],Reax
SUBL [Rebx],Reax
MOVL Reax,[Recx]
MOVL Recx,Reax
ret
minus_longword1:
CALLMACRO CALL_IO POLY_SYS_minus_longword
CALLMACRO RegMask minus_longword,(M_Reax OR M_Recx OR Mask_all)
CALLMACRO INLINE_ROUTINE mul_longword
call mem_for_largeword
jb mul_longword1
MOVL [Reax],Reax
IFDEF WINDOWS
mul FULLWORD ptr [Rebx]
ELSE
MULL [Rebx]
ENDIF
MOVL Reax,[Recx]
MOVL Recx,Reax
MOVL Reax,Redx ;# clobber this which has the high-end result
ret
mul_longword1:
CALLMACRO CALL_IO POLY_SYS_mul_longword
CALLMACRO RegMask mul_longword,(M_Reax OR M_Recx OR M_Redx OR Mask_all)
CALLMACRO INLINE_ROUTINE div_longword
IFDEF WINDOWS
cmp FULLWORD ptr [Rebx],0
ELSE
CMPL CONST 0,[Rebx]
ENDIF
jz raise_div_ex
call mem_for_largeword
jb div_longword1
MOVL [Reax],Reax
MOVL CONST 0,Redx
IFDEF WINDOWS
div FULLWORD ptr [Rebx]
ELSE
DIVL [Rebx]
ENDIF
MOVL Reax,[Recx] ;# Store the quotient
MOVL Recx,Reax
MOVL Reax,Redx ;# clobber this which has the remainder
ret
div_longword1:
CALLMACRO CALL_IO POLY_SYS_div_longword
CALLMACRO RegMask div_longword,(M_Reax OR M_Recx OR M_Redx OR Mask_all)
CALLMACRO INLINE_ROUTINE mod_longword
IFDEF WINDOWS
cmp FULLWORD ptr [Rebx],0
ELSE
CMPL CONST 0,[Rebx]
ENDIF
jz raise_div_ex
call mem_for_largeword
jb mod_longword1
MOVL [Reax],Reax
MOVL CONST 0,Redx
IFDEF WINDOWS
div FULLWORD ptr [Rebx]
ELSE
DIVL [Rebx]
ENDIF
MOVL Redx,[Recx] ;# Store the remainder
MOVL Recx,Reax
MOVL Reax,Redx ;# clobber this which has the remainder
ret
mod_longword1:
CALLMACRO CALL_IO POLY_SYS_mod_longword
CALLMACRO RegMask mod_longword,(M_Reax OR M_Recx OR M_Redx OR Mask_all)
CALLMACRO INLINE_ROUTINE andb_longword
call mem_for_largeword
jb andb_longword1
MOVL [Reax],Reax
ANDL [Rebx],Reax
MOVL Reax,[Recx]
MOVL Recx,Reax
ret
andb_longword1:
CALLMACRO CALL_IO POLY_SYS_andb_longword
CALLMACRO RegMask andb_longword,(M_Reax OR M_Recx OR Mask_all)
CALLMACRO INLINE_ROUTINE orb_longword
call mem_for_largeword
jb orb_longword1
MOVL [Reax],Reax
ORL [Rebx],Reax
MOVL Reax,[Recx]
MOVL Recx,Reax
ret
orb_longword1:
CALLMACRO CALL_IO POLY_SYS_orb_longword
CALLMACRO RegMask orb_longword,(M_Reax OR M_Recx OR Mask_all)
CALLMACRO INLINE_ROUTINE xorb_longword
call mem_for_largeword
jb xorb_longword1
MOVL [Reax],Reax
XORL [Rebx],Reax
MOVL Reax,[Recx]
MOVL Recx,Reax
ret
xorb_longword1:
CALLMACRO CALL_IO POLY_SYS_xorb_longword
CALLMACRO RegMask xorb_longword,(M_Reax OR M_Recx OR Mask_all)
CALLMACRO INLINE_ROUTINE shift_left_longword
call mem_for_largeword
jb shift_left_longword1
MOVL Recx,Redx ;# We need Recx for the shift
;# The shift value is always a Word.word value i.e. tagged
;# LargeWord.<<(a,b) is defined to return 0 if b > LargeWord.wordSize
IFNDEF HOSTARCHITECTURE_X86_64
CMPL CONST TAGGED(32),Rebx
ELSE
CMPL CONST TAGGED(64),Rebx
ENDIF
jb sllw1
MOVL CONST 0,Reax
jmp sllw2
sllw1:
MOVL Rebx,Recx
SHRL CONST TAGSHIFT,Recx ;# remove tag
MOVL [Reax],Reax
SHLL R_cl,Reax
sllw2:
MOVL Reax,[Redx]
MOVL Redx,Reax
MOVL Reax,Recx ;# Clobber Recx
ret
shift_left_longword1:
CALLMACRO CALL_IO POLY_SYS_shift_left_longword
CALLMACRO RegMask shift_left_longword,(M_Reax OR M_Recx OR M_Redx OR Mask_all)
CALLMACRO INLINE_ROUTINE shift_right_longword
call mem_for_largeword
jb shift_right_longword1
MOVL Recx,Redx ;# We need Recx for the shift
;# The shift value is always a Word.word value i.e. tagged
;# LargeWord.>>(a,b) is defined to return 0 if b > LargeWord.wordSize
IFNDEF HOSTARCHITECTURE_X86_64
CMPL CONST TAGGED(32),Rebx
ELSE
CMPL CONST TAGGED(64),Rebx
ENDIF
jb srlw1
MOVL CONST 0,Reax
jmp srlw2
srlw1:
MOVL Rebx,Recx
SHRL CONST TAGSHIFT,Recx ;# remove tag
MOVL [Reax],Reax
SHRL R_cl,Reax
srlw2:
MOVL Reax,[Redx]
MOVL Redx,Reax
MOVL Reax,Recx ;# Clobber Recx
ret
shift_right_longword1:
CALLMACRO CALL_IO POLY_SYS_shift_right_longword
CALLMACRO RegMask shift_right_longword,(M_Reax OR M_Recx OR M_Redx OR Mask_all)
CALLMACRO INLINE_ROUTINE shift_right_arith_longword
call mem_for_largeword
jb shift_right_arith_longword1
MOVL Recx,Redx ;# We need Recx for the shift
;# The shift value is always a Word.word value i.e. tagged
;# LargeWord.~>>(a,b) is defined to return 0 or ~1 if b > LargeWord.wordSize
IFNDEF HOSTARCHITECTURE_X86_64
CMPL CONST TAGGED(32),Rebx
ELSE
CMPL CONST TAGGED(64),Rebx
ENDIF
jb sralw1
;# Setting the shift to 31/63 propagates the sign bit
IFNDEF HOSTARCHITECTURE_X86_64
MOVL CONST TAGGED(31),Rebx
ELSE
MOVL CONST TAGGED(63),Rebx
ENDIF
sralw1:
MOVL Rebx,Recx
SHRL CONST TAGSHIFT,Recx ;# remove tag
MOVL [Reax],Reax
SARL R_cl,Reax
MOVL Reax,[Redx]
MOVL Redx,Reax
MOVL Reax,Recx ;# Clobber Recx
ret
shift_right_arith_longword1:
CALLMACRO CALL_IO POLY_SYS_shift_right_arith_longword
CALLMACRO RegMask shift_right_arith_longword,(M_Reax OR M_Rebx OR M_Recx OR M_Redx OR Mask_all)
;# C-memory operations.
CALLMACRO INLINE_ROUTINE cmem_load_asm_8
MOVL [Reax],Reax ;# The address is boxed.
SARL CONST TAGSHIFT,Rebx ;# The offset is a signed tagged value
ADDL Rebx,Reax ;# Add it in
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Rebx ;# Get the index.
ELSE
MOVL R8,Rebx ;# Get the index.
ENDIF
SARL CONST TAGSHIFT,Rebx ;# That's also tagged
IFDEF WINDOWS
movzx Reax, byte ptr [Reax][Rebx]
ELSE
IFNDEF HOSTARCHITECTURE_X86_64
movzbl (Reax,Rebx,1),Reax
ELSE
movzbq (Reax,Rebx,1),Reax
ENDIF
ENDIF
CALLMACRO MAKETAGGED Reax,Reax
MOVL Reax,Rebx ;# Clobber bad value in %Rebx
RET3
CALLMACRO RegMask cmem_load_8,(M_Reax OR M_Rebx)
CALLMACRO INLINE_ROUTINE cmem_load_asm_16
MOVL [Reax],Reax ;# The address is boxed.
SARL CONST TAGSHIFT,Rebx ;# The offset is a signed tagged value
ADDL Rebx,Reax ;# Add it in
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Rebx ;# Get the index.
ELSE
MOVL R8,Rebx ;# Get the index.
ENDIF
;# The index is tagged but since we want to multiply by two we don't need anything here.
IFDEF WINDOWS
movzx Reax, word ptr [Reax-1][Rebx]
ELSE
IFNDEF HOSTARCHITECTURE_X86_64
movzwl -1(Reax,Rebx,1),Reax
ELSE
movzwq -1(Reax,Rebx,1),Reax
ENDIF
ENDIF
CALLMACRO MAKETAGGED Reax,Reax
RET3
CALLMACRO RegMask cmem_load_16,(M_Reax OR M_Rebx)
CALLMACRO INLINE_ROUTINE cmem_load_asm_32
IFDEF HOSTARCHITECTURE_X86_64
;# 64-bit mode - the result is tagged
MOVL [Reax],Reax ;# The address is boxed.
SARL CONST TAGSHIFT,Rebx ;# The offset is a signed tagged value
ADDL Rebx,Reax ;# Add it in
IFDEF WINDOWS
mov eax, dword ptr [Reax-2][R8*2]
ELSE
movl -2(Reax,R8,2),%eax
ENDIF
CALLMACRO MAKETAGGED Reax,Reax
MOVL Reax,Rebx ;# Clobber bad value in %Rebx
RET3
CALLMACRO RegMask cmem_load_32,(M_Reax OR M_Rebx)
ELSE
;# 32-bit mode - the result is boxed
call mem_for_largeword
jb cmem_load_32_1
MOVL [Reax],Reax ;# The address is boxed.
SARL CONST TAGSHIFT,Rebx ;# The offset is a signed tagged value
ADDL Rebx,Reax ;# Add it in
MOVL 4[Resp],Rebx ;# Get the index.
MOVL (-2)[Reax+Rebx*2],Reax
MOVL Reax,[Recx] ;# Save in the new memory
MOVL Recx,Reax ;# Copy the result address
RET3
cmem_load_32_1:
CALLMACRO CALL_IO POLY_SYS_cmem_load_32
CALLMACRO RegMask cmem_load_32,(M_Reax OR M_Rebx OR M_Recx OR Mask_all)
ENDIF
CALLMACRO INLINE_ROUTINE cmem_load_asm_64 ;# The result is boxed in 64-bit mode. Not implemented in 32-bit mode
IFDEF HOSTARCHITECTURE_X86_64
call mem_for_largeword
jb cmem_load_64_1
MOVL [Reax],Reax ;# The address is boxed.
SARL CONST TAGSHIFT,Rebx ;# The offset is a signed tagged value
ADDL Rebx,Reax ;# Add it in
MOVL (-4)[Reax+R8*4],Reax
MOVL Reax,[Recx] ;# Save in the new memory
MOVL Recx,Reax ;# Copy the result address
MOVL Reax,Rebx ;# Clobber bad value
RET3
cmem_load_64_1:
CALLMACRO CALL_IO POLY_SYS_cmem_load_64
CALLMACRO RegMask cmem_load_64,(M_Reax OR M_Rebx OR M_Recx OR Mask_all)
ENDIF
CALLMACRO INLINE_ROUTINE cmem_load_asm_float
call mem_for_real
jb cmem_load_float1
MOVL [Reax],Reax ;# The address is boxed.
SARL CONST TAGSHIFT,Rebx ;# The offset is a signed tagged value
ADDL Rebx,Reax ;# Add it in
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Rebx ;# Get the index.
ELSE
MOVL R8,Rebx ;# Get the index.
ENDIF
IFDEF WINDOWS
FLD dword ptr [Reax-2][Rebx*2]
FSTP qword ptr [Recx]
ELSE
FLDS -2(Reax,Rebx,2)
FSTPL [Recx]
ENDIF
MOVL Recx,Reax
RET3
cmem_load_float1:
CALLMACRO CALL_IO POLY_SYS_cmem_load_float
CALLMACRO RegMask cmem_load_float,(M_Reax OR M_Rebx OR M_Recx OR M_FP7 OR Mask_all)
CALLMACRO INLINE_ROUTINE cmem_load_asm_double
call mem_for_real
jb cmem_load_double1
MOVL [Reax],Reax ;# The address is boxed.
SARL CONST TAGSHIFT,Rebx ;# The offset is a signed tagged value
ADDL Rebx,Reax ;# Add it in
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 4[Resp],Rebx ;# Get the index.
ELSE
MOVL R8,Rebx ;# Get the index.
ENDIF
IFDEF WINDOWS
FLD qword ptr [Reax-4][Rebx*4]
FSTP qword ptr [Recx]
ELSE
FLDL -4(Reax,Rebx,4)
FSTPL [Recx]
ENDIF
MOVL Recx,Reax
RET3
cmem_load_double1:
CALLMACRO CALL_IO POLY_SYS_cmem_load_double
CALLMACRO RegMask cmem_load_double,(M_Reax OR M_Rebx OR M_Recx OR M_FP7 OR Mask_all)
CALLMACRO INLINE_ROUTINE cmem_store_asm_8
MOVL [Reax],Reax ;# The address is boxed.
SARL CONST TAGSHIFT,Rebx ;# The offset is a signed tagged value
ADDL Rebx,Reax ;# Add it in
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 8[Resp],Rebx ;# Get the index.
MOVL 4[Resp],Recx ;# Get the value to store
ELSE
MOVL R8,Rebx ;# Get the index.
MOVL R9,Recx
ENDIF
SARL CONST TAGSHIFT,Rebx ;# That's also tagged
SARL CONST TAGSHIFT,Recx
MOVB R_cl,[Reax+Rebx]
MOVL CONST UNIT,Reax ;# The function returns unit
MOVL Reax,Rebx ;# Clobber bad value in %Rebx
MOVL Reax,Recx ;# and %Recx
RET4
CALLMACRO RegMask cmem_store_8,(M_Reax OR M_Rebx OR M_Recx)
CALLMACRO INLINE_ROUTINE cmem_store_asm_16
MOVL [Reax],Reax ;# The address is boxed.
SARL CONST TAGSHIFT,Rebx ;# The offset is a signed tagged value
ADDL Rebx,Reax ;# Add it in
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 8[Resp],Rebx ;# Get the index.
MOVL 4[Resp],Recx ;# Get the value to store
ELSE
MOVL R8,Rebx ;# Get the index.
MOVL R9,Recx
ENDIF
SARL CONST TAGSHIFT,Recx ;# Untag the value to store
IFDEF WINDOWS
mov word ptr [Reax-1][Rebx],cx
ELSE
movw %cx,-1(Reax,Rebx,1)
ENDIF
MOVL CONST UNIT,Reax ;# The function returns unit
MOVL Reax,Recx ;# Bad value in %Recx
RET4
CALLMACRO RegMask cmem_store_16,(M_Reax OR M_Rebx OR M_Recx)
CALLMACRO INLINE_ROUTINE cmem_store_asm_32
MOVL [Reax],Reax ;# The address is boxed.
SARL CONST TAGSHIFT,Rebx ;# The offset is a signed tagged value
ADDL Rebx,Reax ;# Add it in
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 8[Resp],Rebx ;# Get the index.
MOVL 4[Resp],Recx ;# Get the value to store
MOVL [Recx],Recx
ELSE
MOVL R8,Rebx ;# Get the index.
MOVL R9,Recx
SARL CONST TAGSHIFT,Recx ;# Untag the value to store
ENDIF
IFDEF WINDOWS
mov dword ptr [Reax-2][Rebx*2],ecx
ELSE
movl %ecx,-2(Reax,Rebx,2)
ENDIF
MOVL CONST UNIT,Reax ;# The function returns unit
MOVL Reax,Recx ;# Bad value in %Recx
RET4
CALLMACRO RegMask cmem_store_32,(M_Reax OR M_Rebx OR M_Recx)
CALLMACRO INLINE_ROUTINE cmem_store_asm_64 ;# The value is boxed in 64-bit mode. Not implemented in 32-bit mode
IFDEF HOSTARCHITECTURE_X86_64
MOVL [Reax],Reax ;# The address is boxed.
SARL CONST TAGSHIFT,Rebx ;# The offset is a signed tagged value
ADDL Rebx,Reax ;# Add it in
MOVL [R9],Rebx ;# Value to store
MOVL Rebx,(-4)[Reax+R8*4] ;# Store it
MOVL CONST UNIT,Reax ;# The function returns unit
MOVL Reax,Rebx ;# Bad value in %Rebx
RET4
CALLMACRO RegMask cmem_store_64,(M_Reax OR M_Rebx OR M_Recx)
ENDIF
CALLMACRO INLINE_ROUTINE cmem_store_asm_float
MOVL [Reax],Reax ;# The address is boxed.
SARL CONST TAGSHIFT,Rebx ;# The offset is a signed tagged value
ADDL Rebx,Reax ;# Add it in
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 8[Resp],Rebx ;# Get the index.
MOVL 4[Resp],Recx ;# Get the address of the real
ELSE
MOVL R8,Rebx ;# Get the index.
MOVL R9,Recx
ENDIF
IFDEF WINDOWS
FLD qword ptr [Recx]
FSTP dword ptr [Reax-2][Rebx*2]
ELSE
FLDL [Recx]
FSTPS -2(Reax,Rebx,2)
ENDIF
MOVL CONST UNIT,Reax ;# The function returns unit
MOVL Reax,Rebx ;# Bad value in %Rebx
RET4
CALLMACRO RegMask cmem_store_float,(M_Reax OR M_Rebx OR M_Recx OR M_FP7)
CALLMACRO INLINE_ROUTINE cmem_store_asm_double
MOVL [Reax],Reax ;# The address is boxed.
SARL CONST TAGSHIFT,Rebx ;# The offset is a signed tagged value
ADDL Rebx,Reax ;# Add it in
IFNDEF HOSTARCHITECTURE_X86_64
MOVL 8[Resp],Rebx ;# Get the index.
MOVL 4[Resp],Recx ;# Get the address of the real
ELSE
MOVL R8,Rebx ;# Get the index.
MOVL R9,Recx
ENDIF
IFDEF WINDOWS
FLD qword ptr [Recx]
FSTP qword ptr [Reax-4][Rebx*4]
ELSE
FLDL [Recx]
FSTPL -4(Reax,Rebx,4)
ENDIF
MOVL CONST UNIT,Reax ;# The function returns unit
MOVL Reax,Rebx ;# Bad value in %Rebx
RET4
CALLMACRO RegMask cmem_store_double,(M_Reax OR M_Rebx OR M_Recx OR M_FP7)
IFDEF WINDOWS
CREATE_IO_CALL MACRO index
INLINE_ROUTINE Call&index&
CALL_IO index
ENDM
CREATE_EXTRA_CALL MACRO index
INLINE_ROUTINE X86AsmCallExtra&index&
CALL_EXTRA index
ENDM
ELSE
#define CREATE_IO_CALL(index) \
INLINE_ROUTINE(Call##index##) \
CALL_IO(index)
#define CREATE_EXTRA_CALL(index) \
INLINE_ROUTINE(X86AsmCallExtra##index##) \
CALL_EXTRA(index)
ENDIF
CALLMACRO CREATE_IO_CALL POLY_SYS_exit
CALLMACRO CREATE_IO_CALL POLY_SYS_chdir
CALLMACRO CREATE_IO_CALL POLY_SYS_get_flags
CALLMACRO CREATE_IO_CALL POLY_SYS_exception_trace_fn
CALLMACRO CREATE_IO_CALL POLY_SYS_profiler
CALLMACRO CREATE_IO_CALL POLY_SYS_Real_str
CALLMACRO CREATE_IO_CALL POLY_SYS_Real_Dispatch
CALLMACRO CREATE_IO_CALL POLY_SYS_conv_real
CALLMACRO CREATE_IO_CALL POLY_SYS_real_to_int
CALLMACRO CREATE_IO_CALL POLY_SYS_sqrt_real
CALLMACRO CREATE_IO_CALL POLY_SYS_sin_real
CALLMACRO CREATE_IO_CALL POLY_SYS_signal_handler
CALLMACRO CREATE_IO_CALL POLY_SYS_os_specific
CALLMACRO CREATE_IO_CALL POLY_SYS_network
CALLMACRO CREATE_IO_CALL POLY_SYS_io_dispatch
CALLMACRO CREATE_IO_CALL POLY_SYS_poly_specific
CALLMACRO CREATE_IO_CALL POLY_SYS_set_code_constant
CALLMACRO CREATE_IO_CALL POLY_SYS_code_flags
CALLMACRO CREATE_IO_CALL POLY_SYS_shrink_stack
CALLMACRO CREATE_IO_CALL POLY_SYS_process_env
CALLMACRO CREATE_IO_CALL POLY_SYS_callcode_tupled
CALLMACRO CREATE_IO_CALL POLY_SYS_foreign_dispatch
CALLMACRO CREATE_IO_CALL POLY_SYS_ffi
CALLMACRO CREATE_IO_CALL POLY_SYS_stack_trace
CALLMACRO CREATE_IO_CALL POLY_SYS_full_gc
CALLMACRO CREATE_IO_CALL POLY_SYS_XWindows
CALLMACRO CREATE_IO_CALL POLY_SYS_timing_dispatch
CALLMACRO CREATE_IO_CALL POLY_SYS_showsize
CALLMACRO CREATE_IO_CALL POLY_SYS_objsize
CALLMACRO CREATE_IO_CALL POLY_SYS_kill_self
CALLMACRO CREATE_IO_CALL POLY_SYS_thread_dispatch
CALLMACRO CREATE_IO_CALL POLY_SYS_io_operation
CALLMACRO CREATE_IO_CALL POLY_SYS_ln_real
CALLMACRO CREATE_IO_CALL POLY_SYS_exp_real
CALLMACRO CREATE_IO_CALL POLY_SYS_arctan_real
CALLMACRO CREATE_IO_CALL POLY_SYS_cos_real
CALLMACRO CREATE_EXTRA_CALL RETURN_HEAP_OVERFLOW
CALLMACRO CREATE_EXTRA_CALL RETURN_STACK_OVERFLOW
CALLMACRO CREATE_EXTRA_CALL RETURN_STACK_OVERFLOWEX
CALLMACRO CREATE_EXTRA_CALL RETURN_RAISE_DIV
CALLMACRO CREATE_EXTRA_CALL RETURN_ARB_EMULATION
;# Register mask vector. - extern int registerMaskVector[];
;# Each entry in this vector is a set of the registers modified
;# by the function. It is an untagged bitmap with the registers
;# encoded in the same way as the
IFDEF WINDOWS
align 4
PUBLIC registerMaskVector
registerMaskVector dd Mask_all ;# 0 is unused
ELSE
GLOBAL EXTNAME(registerMaskVector)
EXTNAME(registerMaskVector):
#define dd .long
dd Mask_all ;# 0 is unused
ENDIF
dd Mask_all ;# 1
dd Mask_all ;# 2
dd Mask_all ;# 3 is unused
dd Mask_all ;# 4 is unused
dd Mask_all ;# 5 is unused
dd Mask_all ;# 6
dd Mask_all ;# 7 is unused
dd Mask_all ;# 8 is unused
dd Mask_all ;# 9
dd Mask_all ;# 10 is unused
dd Mask_alloc_store ;# 11
dd Mask_alloc_uninit ;# 12
dd Mask_all ;# return = 13
dd Mask_all ;# raisex = 14
dd Mask_get_length ;# 15
dd Mask_all ;# 16 is unused
dd Mask_all ;# 17
dd Mask_all ;# 18 is no longer used
dd Mask_all ;# 19 is no longer used
dd Mask_all ;# 20 is no longer used
dd Mask_all ;# 21 is unused
dd Mask_all ;# 22 is unused
dd Mask_str_compare ;# 23
dd Mask_all ;# 24 is unused
dd Mask_all ;# 25 is unused
dd Mask_teststrgtr ;# 26
dd Mask_teststrlss ;# 27
dd Mask_teststrgeq ;# 28
dd Mask_teststrleq ;# 29
dd Mask_all ;# 30
dd Mask_all ;# 31 is no longer used
dd Mask_all ;# exception_trace_fn 32
dd Mask_all ;# 33 is no longer used
dd Mask_all ;# 34 is no longer used
dd Mask_all ;# 35 is no longer used
dd Mask_all ;# 36 is no longer used
dd Mask_all ;# 37 is unused
dd Mask_all ;# 38 is unused
dd Mask_all ;# 39 is unused
dd Mask_all ;# 40
dd Mask_all ;# 41 is unused
dd Mask_all ;# 42
dd Mask_all ;# 43
dd Mask_all ;# 44 is no longer used
dd Mask_all ;# 45 is no longer used
dd Mask_all ;# 46
dd Mask_lockseg ;# 47
dd Mask_all ;# nullorzero = 48
dd Mask_all ;# 49 is no longer used
dd Mask_all ;# 50 is no longer used
dd Mask_all ;# 51
dd Mask_all ;# 52
dd Mask_eq_longword ;# 53
dd Mask_neq_longword ;# 54
dd Mask_geq_longword ;# 55
dd Mask_leq_longword ;# 56
dd Mask_gt_longword ;# 57
dd Mask_lt_longword ;# 58
dd Mask_all ;# 59 is unused
dd Mask_all ;# 60 is unused
dd Mask_all ;# 61
dd Mask_all ;# 62
dd Mask_all ;# 63 is unused
dd Mask_all ;# 64 is unused
dd Mask_all ;# 65 is unused
dd Mask_all ;# 66 is unused
dd Mask_all ;# 67 is unused
dd Mask_all ;# 68 is unused
dd Mask_atomic_reset ;# 69
dd Mask_atomic_incr ;# 70
dd Mask_atomic_decr ;# 71
dd Mask_thread_self ;# 72
dd Mask_all ;# 73
dd Mask_plus_longword ;# 74
dd Mask_minus_longword ;# 75
dd Mask_mul_longword ;# 76
dd Mask_div_longword ;# 77
dd Mask_mod_longword ;# 78
dd Mask_andb_longword ;# 79
dd Mask_orb_longword ;# 80
dd Mask_xorb_longword ;# 81
dd Mask_all ;# 82 is unused
dd Mask_all ;# 83 is now unused
dd Mask_all ;# 84
dd Mask_shift_left_longword ;# 85
dd Mask_shift_right_longword ;# 86
dd Mask_shift_right_arith_longword ;# 87
dd Mask_all ;# 88
dd Mask_longword_to_tagged ;# 89
dd Mask_signed_to_longword ;# 90
dd Mask_unsigned_to_longword ;# 91
dd Mask_all ;# 92
dd Mask_all ;# 93
dd Mask_all ;# 94
dd Mask_all ;# 95 is unused
dd Mask_all ;# 96 is unused
dd Mask_all ;# 97 is unused
dd Mask_all ;# 98
dd Mask_all ;# 99
dd Mask_all ;# 100
dd Mask_all ;# 101 is unused
dd Mask_all ;# 102 is unused
dd Mask_all ;# 103
dd Mask_quotrem ;# 104
dd Mask_is_short ;# 105
dd Mask_aplus ;# 106
dd Mask_aminus ;# 107
dd Mask_amul ;# 108
dd Mask_adiv ;# 109
dd Mask_amod ;# 110
dd Mask_aneg ;# 111
dd Mask_xora ;# 112
dd Mask_equala ;# 113
dd Mask_ora ;# 114
dd Mask_anda ;# 115
dd Mask_all ;# 116 is unused
dd Mask_all ;# 117
dd Mask_real_geq ;# 118
dd Mask_real_leq ;# 119
dd Mask_real_gtr ;# 120
dd Mask_real_lss ;# 121
dd Mask_real_eq ;# 122
dd Mask_real_neq ;# 123
dd Mask_all ;# 124
dd Mask_real_add ;# 125
dd Mask_real_sub ;# 126
dd Mask_real_mul ;# 127
dd Mask_real_div ;# 128
dd Mask_real_abs ;# 129
dd Mask_real_neg ;# 130
dd Mask_all ;# 131 is unused
dd Mask_all ;# 132
dd Mask_all ;# 133
dd Mask_all ;# 134
dd Mask_real_from_int ;# 135
dd Mask_all ;# 136
dd Mask_all ;# 137
dd Mask_all ;# 138
dd Mask_all ;# 139
dd Mask_all ;# 140
dd Mask_all ;# 141
dd Mask_all ;# 142 is no longer used
dd Mask_all ;# 143 is unused
dd Mask_all ;# 144 is unused
dd Mask_all ;# 145 is unused
dd Mask_all ;# 146 is unused
dd Mask_all ;# 147 is unused
dd Mask_all ;# stdin = 148
dd Mask_all ;# stdout= 149
dd Mask_all ;# 150
dd Mask_set_string_length ;# 151
dd Mask_get_first_long_word ;# 152
dd Mask_all ;# poly_specific = 153
dd Mask_bytevec_eq ;# 154
dd Mask_all ;# 155 is unused
dd Mask_all ;# 156 is unused
dd Mask_all ;# 157 is unused
dd Mask_all ;# 158 is unused
dd Mask_all ;# 159 is unused
dd Mask_cmem_load_8 ;# 160
dd Mask_cmem_load_16 ;# 161
dd Mask_cmem_load_32 ;# 162
IFDEF HOSTARCHITECTURE_X86_64
dd Mask_cmem_load_64 ;# 163
ELSE
dd Mask_all ;# 169
ENDIF
dd Mask_cmem_load_float ;# 164
dd Mask_cmem_load_double ;# 165
dd Mask_cmem_store_8 ;# 166
dd Mask_cmem_store_16 ;# 167
dd Mask_cmem_store_32 ;# 168
IFDEF HOSTARCHITECTURE_X86_64
dd Mask_cmem_store_64 ;# 169
ELSE
dd Mask_all ;# 169
ENDIF
dd Mask_cmem_store_float ;# 170
dd Mask_cmem_store_double ;# 171
dd Mask_all ;# 172 is unused
dd Mask_all ;# 173 is unused
dd Mask_all ;# 174 is unused
dd Mask_all ;# 175 is unused
dd Mask_all ;# 176 is unused
dd Mask_all ;# 177 is unused
dd Mask_all ;# 178 is unused
dd Mask_all ;# 179 is unused
dd Mask_all ;# 180 is unused
dd Mask_all ;# 181 is unused
dd Mask_all ;# 182 is unused
dd Mask_all ;# 183 is unused
dd Mask_all ;# 184 is unused
dd Mask_all ;# 185 is unused
dd Mask_all ;# 186 is unused
dd Mask_all ;# 187 is unused
dd Mask_all ;# 188 is unused
dd Mask_all ;# 189
dd Mask_all ;# 190
dd Mask_all ;# 191 is no longer used
dd Mask_all ;# 192 is unused
dd Mask_move_words ;# 193
dd Mask_all ;# 194
dd Mask_move_words ;# 195
dd Mask_shift_right_arith_word ;# 196
dd Mask_int_to_word ;# 197
dd Mask_move_bytes ;# 198
dd Mask_move_bytes ;# 199
dd Mask_all ;# 200
dd Mask_all ;# 201
dd Mask_all ;# stderr = 202
dd Mask_all ;# 203 now unused
dd Mask_all ;# 204
dd Mask_all ;# 205
dd Mask_all ;# 206
dd Mask_all ;# 207 is unused
dd Mask_all ;# 208 now unused
dd Mask_all ;# 209
dd Mask_all ;# 210 is unused
dd Mask_all ;# 211 is unused
dd Mask_all ;# 212 is unused
dd Mask_is_big_endian ;# 213
dd Mask_bytes_per_word ;# 214
dd Mask_offset_address ;# 215
dd Mask_shift_right_word ;# 216
dd Mask_word_neq ;# 217
dd Mask_not_bool ;# 218
dd Mask_all ;# 219 is unused
dd Mask_all ;# 220 is unused
dd Mask_all ;# 221 is unused
dd Mask_all ;# 222 is unused
dd Mask_string_length ;# 223
dd Mask_all ;# 224 is unused
dd Mask_all ;# 225 is unused
dd Mask_all ;# 226 is unused
dd Mask_all ;# 227 is unused
dd Mask_touch_final ;# 228
dd Mask_all ;# 229 - no longer used
dd Mask_all ;# 230 - no longer used
dd Mask_int_geq ;# 231
dd Mask_int_leq ;# 232
dd Mask_int_gtr ;# 233
dd Mask_int_lss ;# 234
dd Mask_load_byte ;# load_byte_immut = 235
dd Mask_load_word ;# load_word_immut = 236
dd Mask_all ;# 237 is unused
dd Mask_mul_word ;# 238
dd Mask_plus_word ;# 239
dd Mask_minus_word ;# 240
dd Mask_div_word ;# 241
dd Mask_or_word ;# 242
dd Mask_and_word ;# 243
dd Mask_xor_word ;# 244
dd Mask_shift_left_word ;# 245
dd Mask_mod_word ;# 246
dd Mask_word_geq ;# 247
dd Mask_word_leq ;# 248
dd Mask_word_gtr ;# 249
dd Mask_word_lss ;# 250
dd Mask_word_eq ;# 251
dd Mask_load_byte ;# 252
dd Mask_load_word ;# 253
dd Mask_assign_byte ;# 254
dd Mask_assign_word ;# 255
END
|