1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
(*
Copyright (c) 2012,13,15 David C.J. Matthews
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
functor CODETREE (
structure DEBUG: DEBUGSIG
structure PRETTY : PRETTYSIG
structure BASECODETREE: BaseCodeTreeSig
structure CODETREE_FUNCTIONS: CodetreeFunctionsSig
structure BACKEND:
sig
type codetree
type machineWord = Address.machineWord
val codeGenerate:
codetree * int * Universal.universal list -> (unit -> machineWord) * Universal.universal list
structure Sharing : sig type codetree = codetree end
end
structure OPTIMISER:
sig
type codetree and envSpecial and codeBinding
val codetreeOptimiser: codetree * Universal.universal list * int ->
{ numLocals: int, general: codetree, bindings: codeBinding list, special: envSpecial }
structure Sharing: sig type codetree = codetree and envSpecial = envSpecial and codeBinding = codeBinding end
end
sharing type
PRETTY.pretty
= BASECODETREE.pretty
sharing
BASECODETREE.Sharing
= CODETREE_FUNCTIONS.Sharing
= BACKEND.Sharing
= OPTIMISER.Sharing
) : CODETREESIG =
(*****************************************************************************)
(* CODETREE functor body *)
(*****************************************************************************)
struct
open Address;
open StretchArray;
open RuntimeCalls; (* for POLY_SYS numbers and EXC_nil *)
open BASECODETREE;
open PRETTY;
open CODETREE_FUNCTIONS
exception InternalError = Misc.InternalError
and Interrupt = Thread.Thread.Interrupt
infix 9 sub;
(* gets a value from the run-time system *)
val ioOp : int -> machineWord = RunCall.run_call1 POLY_SYS_io_operation;
(* since code generator relies on these representations,
we may as well export them *)
fun rtsFunction v = Constnt(ioOp v, [])
fun mkDec (laddr, res) = Declar{value = res, addr = laddr, use=[]}
fun deExtract(Extract ext) = ext | deExtract _ = raise InternalError "deExtract"
datatype level =
Level of { lev: int, closure: createClosure, lookup: int * int * bool -> loadForm }
local
(* We can have locals at the outer level. *)
fun bottomLevel(addr, 0, false) =
if addr < 0 then raise InternalError "load: negative"
else LoadLocal addr
| bottomLevel _ = (* Either the level is wrong or it's a parameter. *)
raise InternalError "bottom level"
in
val baseLevel =
Level { lev = 0, closure = makeClosure(), lookup = bottomLevel }
end
fun newLevel (Level{ lev, lookup, ...}) =
let
val closureList = makeClosure()
val makeClosure = addToClosure closureList
fun check n = if n < 0 then raise InternalError "load: negative" else n
fun thisLevel(addr, level, isParam) =
if level < 0 then raise InternalError "mkLoad: level must be non-negative"
else if level > 0
then makeClosure(lookup(addr, level-1, isParam))
else (* This level *) if isParam
then LoadArgument(check addr)
else LoadLocal(check addr)
in
Level { lev = lev+1, closure = closureList, lookup = thisLevel }
end
fun getClosure(Level{ closure, ...}) = List.map Extract (extractClosure closure)
fun mkLoad (addr, Level { lev = newLevel, lookup, ... } , Level { lev = oldLevel, ... }) =
Extract(lookup(addr, newLevel - oldLevel, false))
and mkLoadParam(addr, Level { lev = newLevel, lookup, ... } , Level { lev = oldLevel, ... }) =
Extract(lookup(addr, newLevel - oldLevel, true))
(* Transform a function so that free variables are converted to closure form. Returns the
maximum local address used. *)
fun genCode(pt, debugSwitches, numLocals) =
let
val printCodeTree = DEBUG.getParameter DEBUG.codetreeTag debugSwitches
and compilerOut = PRETTY.getCompilerOutput debugSwitches
(* val printCodeTree = true
and compilerOut = PRETTY.prettyPrint(TextIO.print, 70) *)
(* If required, print it first. This is the code that the front-end
has produced. *)
val () = if printCodeTree then compilerOut(pretty pt) else ()
(* This ensures that everything is printed just before
it is code-generated. *)
fun codeAndPrint(code, localCount) =
let
val () = if printCodeTree then compilerOut (BASECODETREE.pretty code) else ();
in
BACKEND.codeGenerate(code, localCount, debugSwitches)
end
(* Optimise it. *)
val { numLocals = localCount, general = gen, bindings = decs, special = spec } =
OPTIMISER.codetreeOptimiser(pt, debugSwitches, numLocals)
(* At this stage we have a "general" value and also, possibly a "special"
value. We could simply create mkEnv(decs, gen) and run preCode
and genCode on that. However, we would lose the ability to insert
any inline functions from this code into subsequent top-level
expressions. We can't simply retain the "special" entry either
because that may refer to values that have to be created once when
the code is run. Such values will be referenced by "load" entries
which refer to entries in the "decs". We construct a tuple which
will contain the actual values after the code is run. Then if
we want the value at some time in the future when we use something
from the "special" entry we can extract the corresponding value
from this tuple.
Previously, this code always generated a tuple containing every
declaration. That led to some very long compilation times because
the back-end has some code which is quadratic in the number of entries
on the stack. We now try to prune bindings by only generating the tuple
if we have an inline function somewhere and only generating bindings
we actually need. *)
fun simplifySpec (EnvSpecTuple(size, env)) =
let
(* Get all the field entries. *)
fun simpPair (gen, spec) = (gen, simplifySpec spec)
val fields = List.tabulate(size, simpPair o env)
in
if List.all(fn (_, EnvSpecNone) => true | _ => false) fields
then EnvSpecNone
else EnvSpecTuple(size, fn n => List.nth(fields, n))
end
| simplifySpec s = s (* None or inline function. *)
in
case simplifySpec spec of
EnvSpecNone =>
let
val (code, props) = codeAndPrint (mkEnv(decs, gen), localCount)
in
fn () => Constnt(code(), props)
end
| simpleSpec =>
let
(* The bindings are marked using a three-valued mark. A binding is needed
if it is referenced in any way. During the scan to find the references
we need to avoid processing an entry that has already been processed but
it is possible that a binding may be referenced as a general value only
(e.g. from a function closure) and separately as a special value. See
Test148.ML *)
datatype visit = UnVisited | VisitedGeneral | VisitedSpecial
local
val refArray = Array.array(localCount, UnVisited)
fun findDecs EnvSpecNone = ()
| findDecs (EnvSpecTuple(size, env)) =
let
val fields = List.tabulate(size, env)
in
List.app processGenAndSpec fields
end
| findDecs (EnvSpecInlineFunction({closure, ...}, env)) =
let
val closureItems = List.tabulate(List.length closure, env)
in
List.app processGenAndSpec closureItems
end
and processGenAndSpec (gen, spec) =
(* The spec part needs only to be processed if this entry has
not yet been visited, *)
case gen of
EnvGenLoad(LoadLocal addr) =>
let
val previous = Array.sub(refArray, addr)
in
case (previous, spec) of
(VisitedSpecial, _) => () (* Fully done *)
| (VisitedGeneral, EnvSpecNone) => () (* Nothing useful *)
| (_, EnvSpecNone) =>
(* We need this entry but we don't have any special
entry to process. We could find another reference with a
special entry. *)
Array.update(refArray, addr, VisitedGeneral)
| (_, _) =>
(
(* This has a special entry. Mark it and process. *)
Array.update(refArray, addr, VisitedSpecial);
findDecs spec
)
end
| EnvGenConst _ => ()
| _ => raise InternalError "doGeneral: not LoadLocal or Constant"
val () = findDecs simpleSpec
in
(* Convert to an immutable data structure. This will continue
to be referenced in any inline function after the code has run. *)
val refVector = Array.vector refArray
end
val decArray = Array.array(localCount, CodeZero)
fun addDec(addr, dec) =
if Vector.sub(refVector, addr) <> UnVisited then Array.update(decArray, addr, dec) else ()
fun addDecs(Declar{addr, ...}) = addDec(addr, mkLoadLocal addr)
| addDecs(RecDecs decs) = List.app(fn {addr, ...} => addDec(addr, mkLoadLocal addr)) decs
| addDecs(NullBinding _) = ()
| addDecs(Container{addr, size, ...}) = addDec(addr, mkTupleFromContainer(addr, size))
val () = List.app addDecs decs
(* Construct the tuple and add the "general" value at the start. *)
val resultTuple = mkTuple(gen :: Array.foldr(op ::) nil decArray)
(* Now generate the machine code and return it as a function that can be called. *)
val (code, codeProps) = codeAndPrint (mkEnv (decs, resultTuple), localCount)
in
(* Return a function that executes the compiled code and then creates the
final "global" value as the result. *)
fn () =>
let
local
(* Execute the code. This will perform any side-effects the user
has programmed and may raise an exception if that is required. *)
val resVector = code ()
(* The result is a vector containing the "general" value as the
first word and the evaluated bindings for any "special"
entries in subsequent words. *)
val decVals : address =
if isShort resVector
then raise InternalError "Result vector is not an address"
else toAddress resVector
in
fun resultWordN n = loadWord (decVals, n)
(* Get the general value, the zero'th entry in the vector. *)
val generalVal = resultWordN 0w0
(* Get the properties for a field in the tuple. Because the result is
a tuple all the properties should be contained in a tupleTag entry. *)
val fieldProps =
case Option.map (Universal.tagProject CodeTags.tupleTag)
(List.find(Universal.tagIs CodeTags.tupleTag) codeProps) of
NONE => (fn _ => [])
| SOME p => (fn n => List.nth(p, n))
val generalProps = fieldProps 0
end
(* Construct a new environment so that when an entry is looked
up the corresponding constant is returned. *)
fun newEnviron (oldEnv) args =
let
val (oldGeneral, oldSpecial) = oldEnv args
val genPair =
case oldGeneral of
EnvGenLoad(LoadLocal addr) =>
(
(* For the moment retain this check. It's better to have an assertion
failure than a segfault. *)
Vector.sub(refVector, addr) <> UnVisited orelse raise InternalError "Reference to non-existent binding";
(resultWordN(Word.fromInt addr+0w1), fieldProps(addr+1))
)
| EnvGenConst c => c
| _ => raise InternalError "codetree newEnviron: Not Extract or Constnt"
val specVal = mapSpec oldSpecial
in
(EnvGenConst genPair, specVal)
end
and mapSpec EnvSpecNone = EnvSpecNone
| mapSpec (EnvSpecTuple(size, env)) = EnvSpecTuple(size, newEnviron env)
| mapSpec (EnvSpecInlineFunction(spec, env)) = EnvSpecInlineFunction(spec, (newEnviron env))
in
(* and return the whole lot as a global value. *)
Constnt(generalVal, setInline(mapSpec simpleSpec) generalProps)
end
end
end (* genCode *)
(* Constructor functions for the front-end of the compiler. *)
local
fun mkSimpleFunction inlineType (lval, args, name, closure, numLocals) =
{
body = lval,
isInline = inlineType,
name = if name = "" then "<anon>" else name,
closure = map deExtract closure,
argTypes = List.tabulate(args, fn _ => (GeneralType, [])),
resultType = GeneralType,
localCount = numLocals,
recUse = []
}
in
val mkProc = Lambda o mkSimpleFunction NonInline (* Normal function *)
and mkInlproc = Lambda o mkSimpleFunction Inline (* Explicitly inlined by the front-end *)
(* Unless Compiler.inlineFunctor is false functors are treated as macros and expanded
when they are applied. Unlike core-language functions they are not first-class
values so if they are inline the "value" returned in the initial binding can just
be zero except if there is something in the closure. Almost always
the closure will be empty since free variables will come from previous topdecs and will
be constants, The exception is if a structure and a functor using the structure appear
in the same topdec (no semicolon between them). In that case we can't leave it. We
would have to update the closure even if we leave the body untouched but we could
have closure entries that are constants.
e.g. structure S = struct val x = 1 end functor F() = struct open S end *)
fun mkMacroProc (args as (_, _, _, [], _)) =
Constnt(toMachineWord 0,
setInline (
EnvSpecInlineFunction(mkSimpleFunction Inline args,
fn _ => raise InternalError "mkMacroProc: closure")) [])
| mkMacroProc args = Lambda(mkSimpleFunction Inline args)
end
local
fun mkFunWithTypes inlineType { body, argTypes=argsAndTypes, resultType, name, closure, numLocals } =
Lambda
{
body = body,
isInline = inlineType,
name = if name = "" then "<anon>" else name,
closure = map deExtract closure,
argTypes = map (fn t => (t, [])) argsAndTypes,
resultType = resultType,
localCount = numLocals,
recUse = []
}
in
val mkFunction = mkFunWithTypes NonInline
and mkInlineFunction = mkFunWithTypes Inline
end
fun mkEval (ct, clist) =
Eval {
function = ct,
argList = List.map(fn c => (c, GeneralType)) clist,
resultType=GeneralType
}
fun mkCall(func, argsAndTypes, resultType) =
Eval {
function = func,
argList = argsAndTypes,
resultType=resultType
}
local
open RuntimeCalls
in
fun mkNot arg = mkEval (rtsFunction POLY_SYS_not_bool, [arg])
val testptreqFunction = rtsFunction POLY_SYS_word_eq
(* N.B. int equality is SHORT integer equality *)
fun mkTestinteq (xp1, xp2) =
mkEval (rtsFunction POLY_SYS_word_eq, [xp1,xp2]);
fun mkTestptreq (xp1, xp2) = mkEval (testptreqFunction, [xp1,xp2]);
end
fun identityFunction (name : string) : codetree =
mkInlproc (mkLoadArgument 0, 1, name, [], 0) (* Returns its argument. *);
(* Test a tag value. *)
fun mkTagTest(test: codetree, tagValue: word, maxTag: word) =
TagTest {test=test, tag=tagValue, maxTag=maxTag }
(*mkEval (rtsFunction POLY_SYS_word_eq, [test, Constnt(toMachineWord tagValue)], true);*)
fun mkHandle (exp, handler) = Handle {exp = exp, handler = handler};
fun mkStr (strbuff:string) = Constnt (toMachineWord strbuff, [])
(* If we have multiple references to a piece of code we may have to save
it in a temporary and then use it from there. If the code has side-effects
we certainly must do that to ensure that the side-effects are done
exactly once and in the correct order, however if the code is just a
constant or a load we can reduce the amount of code we generate by
simply returning the original code. *)
fun multipleUses (code as Constnt _, _, _) =
{load = (fn _ => code), dec = []}
(*
| multipleUses (code as Extract(LoadLegacy{addr, level=loadLevel, ...}), _, level) =
let (* May have to adjust the level. *)
fun loadFn lev =
if lev = level
then code
else mkLoad (addr, loadLevel + lev, level))
in
{load = loadFn, dec = []}
end
| multipleUses (code as Extract(LoadLocal addr), _, level) =
let (* May have to adjust the level. *)
fun loadFn lev =
if lev = level
then code
else mkLoad (addr, lev - level)
in
{load = loadFn, dec = []}
end
| multipleUses (code as Extract(LoadArgument _), _, level) =
let (* May have to adjust the level. *)
fun loadFn lev =
if lev = level
then code
else raise InternalError "multipleUses: different level"
(*else mkLoad (addr, lev - level)*)
in
{load = loadFn, dec = []}
end
| multipleUses (Extract _, _, _) = raise InternalError "multipleUses: TODO"
*)
| multipleUses (code, nextAddress, level) =
let
val addr = nextAddress();
fun loadFn lev = mkLoad (addr, lev, level);
in
{load = loadFn, dec = [mkDec (addr, code)]}
end (* multipleUses *);
fun mkMutualDecs [] = raise InternalError "mkMutualDecs: empty declaration list"
| mkMutualDecs l =
let
fun convertDec(a, Lambda lam) = {lambda = lam, addr = a, use=[]}
| convertDec _ = raise InternalError "mkMutualDecs: Recursive declaration is not a function"
in
RecDecs(List.map convertDec l)
end
val mkNullDec = NullBinding
fun mkContainer(addr, size, setter) =
Container{addr=addr, size=size, use=[], setter=setter}
val mkIf = Cond
and mkRaise = Raise
fun mkConst v = Constnt(v, [])
(* For the moment limit these to general arguments. *)
fun mkLoop args = Loop (List.map(fn c => (c, GeneralType)) args)
and mkBeginLoop(exp, args) =
BeginLoop{loop=exp, arguments=List.map(fn(i, v) => ({value=v, addr=i, use=[]}, GeneralType)) args}
fun mkWhile(b, e) = (* Generated as if b then (e; <loop>) else (). *)
mkBeginLoop(mkIf(b, mkEnv([NullBinding e], mkLoop[]), CodeZero), [])
(* We previously had conditional-or and conditional-and as separate
instructions. I've taken them out since they can be implemented
just as efficiently as a normal conditional. In addition they
were interfering with the optimisation where the second expression
contained the last reference to something. We needed to add a
"kill entry" to the other branch but there wasn't another branch
to add it to. DCJM 7/12/00. *)
fun mkCor(xp1, xp2) = mkIf(xp1, CodeTrue, xp2);
fun mkCand(xp1, xp2) = mkIf(xp1, xp2, CodeZero);
val mkSetContainer =
fn (container, tuple, size) => mkSetContainer(container, tuple, BoolVector.tabulate(size, fn _ => true))
structure Sharing =
struct
type machineWord = machineWord
type codetree = codetree
type pretty = pretty
type argumentType=argumentType
type codeBinding = codeBinding
type level = level
end
end (* CODETREE functor body *);
|