1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
|
(*
Copyright (c) 2013 David C.J. Matthews
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*
This is a cut-down version of the optimiser which simplifies the code but
does not apply any heuristics. It follows chained bindings, in particular
through tuples, folds constants expressions involving built-in functions,
expands inline functions that have previously been marked as inlineable.
It does not detect small functions that can be inlined nor does it
code-generate functions without free variables.
*)
functor CODETREE_SIMPLIFIER(
structure BASECODETREE: BaseCodeTreeSig
structure CODETREE_FUNCTIONS: CodetreeFunctionsSig
structure REMOVE_REDUNDANT:
sig
type codetree
type loadForm
type codeUse
val cleanProc : (codetree * codeUse list * (int -> loadForm) * int) -> codetree
structure Sharing: sig type codetree = codetree and loadForm = loadForm and codeUse = codeUse end
end
sharing
BASECODETREE.Sharing
= CODETREE_FUNCTIONS.Sharing
= REMOVE_REDUNDANT.Sharing
) :
sig
type codetree and codeBinding and envSpecial
val simplifier:
codetree * int -> (codetree * codeBinding list * envSpecial) * int * bool
val specialToGeneral:
codetree * codeBinding list * envSpecial -> codetree
structure Sharing:
sig
type codetree = codetree
and codeBinding = codeBinding
and envSpecial = envSpecial
end
end
=
struct
open BASECODETREE
open Address
open CODETREE_FUNCTIONS
exception InternalError = Misc.InternalError
exception RaisedException
type simpContext =
{
lookupAddr: loadForm -> envGeneral * envSpecial,
enterAddr: int * (envGeneral * envSpecial) -> unit,
nextAddress: unit -> int,
reprocess: bool ref
}
fun envGeneralToCodetree(EnvGenLoad ext) = Extract ext
| envGeneralToCodetree(EnvGenConst w) = Constnt w
fun mkDec (laddr, res) = Declar{value = res, addr = laddr, use=[]}
fun mkEnv([], exp) = exp
| mkEnv(decs, exp as Extract(LoadLocal loadAddr)) =
(
(* A common case is where we have a binding as the last item
and then a load of that binding. Reduce this so other
optimisations are possible.
This is still something of a special case that could/should
be generalised. *)
case List.last decs of
Declar{addr=decAddr, value, ... } =>
if loadAddr = decAddr
then mkEnv(List.take(decs, List.length decs - 1), value)
else Newenv(decs, exp)
| _ => Newenv(decs, exp)
)
| mkEnv(decs, exp) = Newenv(decs, exp)
fun isConstnt(Constnt _) = true
| isConstnt _ = false
(* Wrap up the general, bindings and special value as a codetree node. The
special entry is discarded except for Constnt entries which are converted
to ConstntWithInline. That allows any inlineable code to be carried
forward to later passes. *)
fun specialToGeneral(g, b as _ :: _, s) = mkEnv(b, specialToGeneral(g, [], s))
| specialToGeneral(Constnt(w, p), [], s) = Constnt(w, setInline s p)
| specialToGeneral(g, [], _) = g
(* Call and RTS function to fold constants. The function must be safe to evaluate "early". *)
fun callRTSFunction(rtsCall: machineWord, argList) =
let
exception Interrupt = Thread.Thread.Interrupt
val _ = (isIoAddress(toAddress rtsCall) andalso earlyRtsCall rtsCall)
orelse raise InternalError "not early rts"
(* Turn the arguments into a vector. *)
val argVector =
case makeConstVal(mkTuple argList) of
Constnt(w, _) => w
| _ => raise InternalError "makeConstVal: Not constant"
(* Call the function. If it raises an exception (e.g. divide
by zero) generate code to raise the exception at run-time.
We don't do that for Interrupt which we assume only arises
by user interaction and not as a result of executing the
code so we reraise that exception immediately. *)
in
Constnt (call(toAddress rtsCall, argVector), [])
handle exn as Interrupt => raise exn (* Must not handle this *)
| exn => Raise (Constnt(toMachineWord exn, []))
end
fun simplify(c, s) = mapCodetree (simpGeneral s) c
(* Process the codetree to return a codetree node. This is used
when we don't want the special case. *)
and simpGeneral { lookupAddr, ...} (Extract ext) =
let
val (gen, spec) = lookupAddr ext
in
SOME(specialToGeneral(envGeneralToCodetree gen, [], spec))
end
| simpGeneral context (Newenv envArgs) =
SOME(specialToGeneral(simpNewenv(envArgs, context)))
| simpGeneral context (Lambda lambda) =
SOME(Lambda(#1(simpLambda(lambda, context, NONE, NONE))))
| simpGeneral context (Eval {function, argList, resultType}) =
SOME(specialToGeneral(simpFunctionCall(function, argList, resultType, context)))
| simpGeneral context (Cond(condTest, condThen, condElse)) =
SOME(specialToGeneral(simpIfThenElse(condTest, condThen, condElse, context)))
| simpGeneral context (Tuple { fields, isVariant }) =
SOME(specialToGeneral(simpTuple(fields, isVariant, context)))
| simpGeneral context (Indirect{ base, offset, isVariant }) =
SOME(specialToGeneral(simpFieldSelect(base, offset, isVariant, context)))
| simpGeneral context (SetContainer{container, tuple, filter}) =
let
val optCont = simplify(container, context)
val (cGen, cDecs, cSpec) = simpSpecial(tuple, context)
in
case cSpec of
(* If the tuple is a local binding it is simpler to pick it up from the
"special" entry. *)
EnvSpecTuple(size, recEnv) =>
let
val fields = List.tabulate(size, envGeneralToCodetree o #1 o recEnv)
in
SOME(simpPostSetContainer(optCont, Tuple{isVariant=false, fields=fields}, cDecs, filter))
end
| _ => SOME(simpPostSetContainer(optCont, cGen, cDecs, filter))
end
| simpGeneral (context as { enterAddr, nextAddress, reprocess, ...}) (BeginLoop{loop, arguments, ...}) =
let
val didReprocess = ! reprocess
(* To see if we really need the loop first try simply binding the
arguments and process it. It's often the case that if one
or more arguments is a constant that the looping case will
be eliminated.
It would be possible to look more carefully and eliminate
arguments that do not change round the loop. *)
val withoutBeginLoop =
simplify(mkEnv(List.map (Declar o #1) arguments, loop), context)
(* Check if the Loop instruction is there. This assumes that these
are the only tail-recursive cases. *)
fun hasLoop (Loop _) = true
| hasLoop (Newenv(_, exp)) = hasLoop exp
| hasLoop (Cond(_, t, e)) = hasLoop t orelse hasLoop e
| hasLoop (Handle {handler, ...}) = hasLoop handler
| hasLoop (SetContainer{tuple, ...}) = hasLoop tuple
| hasLoop _ = false
in
if not (hasLoop withoutBeginLoop)
then SOME withoutBeginLoop
else
let
(* Reset "reprocess". It may have been set in the withoutBeginLoop
that's not the code we're going to return. *)
val () = reprocess := didReprocess
(* We need the BeginLoop. Create new addresses for the arguments. *)
fun declArg({addr, value, use, ...}, typ) =
let
val newAddr = nextAddress()
in
enterAddr(addr, (EnvGenLoad(LoadLocal newAddr), EnvSpecNone));
({addr = newAddr, value = simplify(value, context), use = use }, typ)
end
val declArgs = map declArg arguments
val beginBody = simplify(loop, context)
in
SOME(BeginLoop {loop=beginBody, arguments=declArgs})
end
end
| simpGeneral context (TagTest{test, tag, maxTag}) =
(
case simplify(test, context) of
Constnt(testResult, _) =>
if isShort testResult andalso toShort testResult = tag
then SOME CodeTrue
else SOME CodeFalse
| sTest => SOME(TagTest{test=sTest, tag=tag, maxTag=maxTag})
)
| simpGeneral _ _ = NONE
(* Where we have an Indirect or Eval we want the argument as either a tuple or
an inline function respectively if that's possible. Getting that also involves
various other cases as well. Because a binding may later be used in such a
context we treat any binding in that way as well. *)
and simpSpecial (Extract ext, { lookupAddr, ...}) =
let
val (gen, spec) = lookupAddr ext
in
(envGeneralToCodetree gen, [], spec)
end
| simpSpecial (Newenv envArgs, context) = simpNewenv(envArgs, context)
| simpSpecial (Lambda lambda, context) =
let
val (gen, spec) = simpLambda(lambda, context, NONE, NONE)
in
(Lambda gen, [], spec)
end
| simpSpecial (Eval {function, argList, resultType}, context) =
simpFunctionCall(function, argList, resultType, context)
| simpSpecial (Cond(condTest, condThen, condElse), context) =
simpIfThenElse(condTest, condThen, condElse, context)
| simpSpecial (Tuple { fields, isVariant }, context) = simpTuple(fields, isVariant, context)
| simpSpecial (Indirect{ base, offset, isVariant }, context) = simpFieldSelect(base, offset, isVariant, context)
| simpSpecial (c: codetree, s: simpContext): codetree * codeBinding list * envSpecial =
let
(* Anything else - copy it and then split it into the fields. *)
fun split(Newenv(l, e)) =
let
(* Pull off bindings. *)
val (c, b, s) = split e
in
(c, l @ b, s)
end
| split(Constnt(m, p)) = (Constnt(m, p), [], findInline p)
| split c = (c, [], EnvSpecNone)
in
split(simplify(c, s))
end
(* Process a Newenv. We need to add the bindings to the context. *)
and simpNewenv((envDecs, envExp), context as { enterAddr, nextAddress, reprocess, ...}) =
let
fun copyDecs [] =
(* End of the list - process the result expression. *)
simpSpecial(envExp, context)
| copyDecs (Declar{addr, value, ...} :: vs) =
(
case simpSpecial(value, context) of
(* If this raises an exception stop here. *)
vBinding as (Raise _, _, _) => vBinding
| vBinding =>
let
(* Add the declaration to the table. *)
val (optV, dec) = makeNewDecl(vBinding, context)
val () = enterAddr(addr, optV)
(* Deal with the rest of the block. *)
val (rGen, rDecs, rSpec) = copyDecs vs
in
(rGen, dec @ rDecs, rSpec)
end
)
| copyDecs(NullBinding v :: vs) = (* Not a binding - process this and the rest.*)
(
case simpSpecial(v, context) of
(* If this raises an exception stop here. *)
vBinding as (Raise _, _, _) => vBinding
| (cGen, cDecs, _) =>
let
val (rGen, rDecs, rSpec) = copyDecs vs
in
(rGen, cDecs @ (NullBinding cGen :: rDecs), rSpec)
end
)
| copyDecs(RecDecs mutuals :: vs) =
(* Mutually recursive declarations. Any of the declarations may
refer to any of the others. They should all be lambdas.
The front end generates functions with more than one argument
(either curried or tupled) as pairs of mutually recursive
functions. The main function body takes its arguments on
the stack (or in registers) and the auxiliary inline function,
possibly nested, takes the tupled or curried arguments and
calls it. If the main function is recursive it will first
call the inline function which is why the pair are mutually
recursive.
As far as possible we want to use the main function since that
uses the least memory. Specifically, if the function recurses
we want the recursive call to pass all the arguments if it
can. *)
let
(* Reorder the function so the explicitly-inlined ones come first.
Their code can then be inserted into the main functions. *)
local
val (inlines, nonInlines) =
List.partition (
fn {lambda = { isInline=Inline, ...}, ... } => true | _ => false) mutuals
in
val orderedDecs = inlines @ nonInlines
end
(* Go down the functions creating new addresses for them and entering them in the table. *)
val addresses =
map (fn {addr, ... } =>
let
val decAddr = nextAddress()
in
enterAddr (addr, (EnvGenLoad(LoadLocal decAddr), EnvSpecNone));
decAddr
end)
orderedDecs
fun processFunction({ lambda, addr, ... }, newAddr) =
let
val (gen, spec) = simpLambda(lambda, context, SOME addr, SOME newAddr)
(* Update the entry in the table to include any inlineable function. *)
val () = enterAddr (addr, (EnvGenLoad (LoadLocal newAddr), spec))
in
{addr=newAddr, lambda=gen, use=[]}
end
val rlist = ListPair.map processFunction (orderedDecs, addresses)
(* Deal with the rest of the block *)
val (rGen, rDecs, rSpec) = copyDecs vs
in
(* and put these declarations onto the list. *)
(rGen, partitionMutableBindings(RecDecs rlist) @ rDecs, rSpec)
end
| copyDecs (Container{addr, size, setter, ...} :: vs) =
let
(* Enter the new address immediately - it's needed in the setter. *)
val decAddr = nextAddress()
val () = enterAddr (addr, (EnvGenLoad(LoadLocal decAddr), EnvSpecNone))
val (setGen, setDecs, _) = simpSpecial(setter, context)
in
(* If we have inline expanded a function that sets the container
we're better off eliminating the container completely. *)
case setGen of
SetContainer { tuple, filter, container } =>
let
(* Check the container we're setting is the address we've made for it. *)
val _ =
(case container of Extract(LoadLocal a) => a = decAddr | _ => false)
orelse raise InternalError "copyDecs: Container/SetContainer"
val newDecAddr = nextAddress()
val () = enterAddr (addr, (EnvGenLoad(LoadLocal newDecAddr), EnvSpecNone))
val (rGen, rDecs, rSpec) = copyDecs vs
val tupleAddr = nextAddress()
val tupleDec = Declar{addr=tupleAddr, use=[], value=tuple}
val tupleLoad = mkLoadLocal tupleAddr
val resultTuple =
BoolVector.foldri(fn (i, true, l) => mkInd(i, tupleLoad) :: l | (_, false, l) => l) [] filter
val _ = List.length resultTuple = size
orelse raise InternalError "copyDecs: Container/SetContainer size"
val containerDec = Declar{addr=newDecAddr, use=[], value=mkTuple resultTuple}
val _ = reprocess := true
in
(rGen, setDecs @ tupleDec :: containerDec :: rDecs, rSpec)
end
| _ =>
let
val (rGen, rDecs, rSpec) = copyDecs vs
val dec = Container{addr=decAddr, use=[], size=size, setter=mkEnv(setDecs, setGen)}
in
(rGen, dec :: rDecs, rSpec)
end
end
in
copyDecs envDecs
end
(* Prepares a binding for entry into a look-up table. Returns the entry
to put into the table together with any bindings that must be made.
If the general part of the optVal is a constant we can just put the
constant in the table. If it is a load (Extract) it is just renaming
an existing entry so we can return it. Otherwise we have to make
a new binding and return a load (Extract) entry for it. *)
and makeNewDecl((Constnt w, decs, spec), _) = ((EnvGenConst w, spec), decs)
(* No need to create a binding for a constant. *)
| makeNewDecl((Extract ext, decs, spec), _) = ((EnvGenLoad ext, spec), decs)
(* Binding is simply giving a new name to a variable
- can ignore this declaration. *)
| makeNewDecl((gen, decs, spec), { nextAddress, ...}) =
let (* Create a binding for this value. *)
val newAddr = nextAddress()
in
((EnvGenLoad(LoadLocal newAddr), spec), decs @ [mkDec(newAddr, gen)])
end
and simpLambda({body, isInline, name, argTypes, resultType, closure, localCount, ...},
{ lookupAddr, reprocess, ... }, myOldAddrOpt, myNewAddrOpt) =
let
(* A new table for the new function. *)
val oldAddrTab = Array.array (localCount, NONE)
val optClosureList = makeClosure()
val isNowRecursive = ref false
local
fun localOldAddr (LoadLocal addr) = valOf(Array.sub(oldAddrTab, addr))
| localOldAddr (ext as LoadArgument _) = (EnvGenLoad ext, EnvSpecNone)
| localOldAddr (ext as LoadRecursive) = (EnvGenLoad ext, EnvSpecNone)
| localOldAddr (LoadClosure addr) =
let
val oldEntry = List.nth(closure, addr)
(* If the entry in the closure is our own address this is recursive. *)
fun isRecursive(EnvGenLoad(LoadLocal a), SOME b) =
if a = b then (isNowRecursive := true; true) else false
| isRecursive _ = false
in
if isRecursive(EnvGenLoad oldEntry, myOldAddrOpt) then (EnvGenLoad LoadRecursive, EnvSpecNone)
else
let
val newEntry = lookupAddr oldEntry
val makeClosure = addToClosure optClosureList
fun convertResult(genEntry, specEntry) =
(* If after looking up the entry we get our new address it's recursive. *)
if isRecursive(genEntry, myNewAddrOpt)
then (EnvGenLoad LoadRecursive, EnvSpecNone)
else
let
val newGeneral =
case genEntry of
EnvGenLoad ext => EnvGenLoad(makeClosure ext)
| EnvGenConst w => EnvGenConst w
(* Have to modify the environment here so that if we look up free variables
we add them to the closure. *)
fun convertEnv env args = convertResult(env args)
val newSpecial =
case specEntry of
EnvSpecTuple(size, env) => EnvSpecTuple(size, convertEnv env)
| EnvSpecInlineFunction(spec, env) => EnvSpecInlineFunction(spec, convertEnv env)
| EnvSpecNone => EnvSpecNone
in
(newGeneral, newSpecial)
end
in
convertResult newEntry
end
end
and setTab (index, v) = Array.update (oldAddrTab, index, SOME v)
in
val newAddressAllocator = ref 0
fun mkAddr () =
! newAddressAllocator before newAddressAllocator := ! newAddressAllocator + 1
val newCode =
simplify (body,
{
enterAddr = setTab, lookupAddr = localOldAddr,
nextAddress=mkAddr,
reprocess = reprocess
})
end
val closureAfterOpt = extractClosure optClosureList
val localCount = ! newAddressAllocator
(* If we have mutually recursive "small" functions we may turn them into
recursive functions. We have to remove the "small" status from
them to prevent them from being expanded inline anywhere else. The
optimiser may turn them back into "small" functions if the recursion
is actually tail-recursion. *)
val isNowInline =
case isInline of
Inline =>
if ! isNowRecursive then NonInline else Inline
| NonInline => NonInline
(* Clean up the function body at this point if it could be inlined.
There are examples where failing to do this can blow up. This
can be the result of creating both a general and special function
inside an inline function. *)
val cleanBody =
case isNowInline of
NonInline => newCode
| _ => REMOVE_REDUNDANT.cleanProc(newCode, [UseExport], LoadClosure, localCount)
val copiedLambda: lambdaForm =
{
body = cleanBody,
isInline = isNowInline,
name = name,
closure = closureAfterOpt,
argTypes = argTypes,
resultType = resultType,
localCount = localCount,
recUse = []
}
val inlineCode =
case isNowInline of
NonInline => EnvSpecNone
| _ => EnvSpecInlineFunction(copiedLambda, fn addr => (EnvGenLoad(List.nth(closureAfterOpt, addr)), EnvSpecNone))
in
(
copiedLambda,
inlineCode
)
end
and simpFunctionCall(function, argList, resultType, context as { reprocess, ...}) =
let
(* Function call - This may involve inlining the function. We may
also be able to call the function immediately if it is a simple
built-in function and the arguments are constants. *)
(* Get the function to be called and see if it is inline or
a lambda expression. *)
val funct as (genFunct, decsFunct, specFunct) = simpSpecial(function, context)
(* We have to make a special check here that we are not passing in the function
we are trying to expand. This could result in an infinitely recursive expansion. It is only
going to happen in very special circumstances such as a definition of the Y combinator.
If we see that we don't attempt to expand inline. It could be embedded in a tuple
or the closure of a function as well as passed directly. *)
val isRecursiveArg =
case function of
Extract extOrig =>
let
fun containsFunction(Extract thisArg, v) = (v orelse thisArg = extOrig, FOLD_DESCEND)
| containsFunction(Lambda{closure, ...}, v) =
(* Only the closure, not the body *)
(foldl (fn (c, w) => foldtree containsFunction w (Extract c)) v closure, FOLD_DONT_DESCEND)
| containsFunction(Eval _, v) = (v, FOLD_DONT_DESCEND) (* OK if it's called *)
| containsFunction(_, v) = (v, FOLD_DESCEND)
in
List.exists(fn (c, _) => foldtree containsFunction false c) argList
end
| _ => false
in
case (specFunct, genFunct, isRecursiveArg) of
(EnvSpecInlineFunction({body=lambdaBody, localCount, argTypes, ...}, functEnv), _, false) =>
let
val _ = List.length argTypes = List.length argList
orelse raise InternalError "simpFunctionCall: argument mismatch"
val () = reprocess := true (* If we expand inline we have to reprocess *)
val (_, functDecs, _) = funct
and { nextAddress, reprocess, ...} = context
(* Expand a function inline, either one marked explicitly to be inlined or one detected as "small". *)
(* Calling inline proc or a lambda expression which is just called.
The function is replaced with a block containing declarations
of the parameters. We need a new table here because the addresses
we use to index it are the addresses which are local to the function.
New addresses are created in the range of the surrounding function. *)
val localVec = Array.array(localCount, NONE)
local
val (params, bindings) =
ListPair.unzip(
List.map (fn (h, _) => makeNewDecl(simpSpecial(h, context), context)) argList)
val paramVec = Vector.fromList params
in
fun getParameter n = Vector.sub(paramVec, n)
(* Bindings necessary for the arguments *)
val copiedArgs = List.foldr (op @) [] bindings
end
local
fun localOldAddr(LoadLocal addr) = valOf(Array.sub(localVec, addr))
| localOldAddr(LoadArgument addr) = getParameter addr
| localOldAddr(LoadClosure closureEntry) = functEnv closureEntry
| localOldAddr LoadRecursive = raise InternalError "localOldAddr: LoadRecursive"
fun setTabForInline (index, v) = Array.update (localVec, index, SOME v)
val lambdaContext =
{
lookupAddr=localOldAddr, enterAddr=setTabForInline,
nextAddress=nextAddress, reprocess = reprocess
}
in
val (cGen, cDecs, cSpec) = simpSpecial(lambdaBody,lambdaContext)
end
in
(cGen, functDecs @ (copiedArgs @ cDecs), cSpec)
end
| (_, gen as Constnt(w, _), _) => (* Not inlinable - constant function. *)
let
val copiedArgs = map (fn (arg, argType) => (simplify(arg, context), argType)) argList
(* If the function is an RTS call that is safe to evaluate immediately and all the
arguments are constants evaluate it now. *)
val evCopiedCode =
if isIoAddress(toAddress w) andalso earlyRtsCall w andalso List.all (isConstnt o #1) copiedArgs
then callRTSFunction(w, List.map #1 copiedArgs)
else Eval {function = gen, argList = copiedArgs, resultType=resultType}
in
(evCopiedCode, decsFunct, EnvSpecNone)
end
| (_, gen, _) => (* Anything else. *)
let
val copiedArgs = map (fn (arg, argType) => (simplify(arg, context), argType)) argList
val evCopiedCode =
Eval {function = gen, argList = copiedArgs, resultType=resultType}
in
(evCopiedCode, decsFunct, EnvSpecNone)
end
end
and simpIfThenElse(condTest, condThen, condElse, context) =
(* If-then-else. The main simplification is if we have constants in the
test or in both the arms. *)
let
val word0 = toMachineWord 0
val word1 = toMachineWord 1
val False = word0
val True = word1
in
case simpSpecial(condTest, context) of
(* If the test is a constant we can return the appropriate arm and
ignore the other. *)
(Constnt(testResult, _), bindings, _) =>
let
val arm =
if wordEq (testResult, False) (* false - return else-part *)
then condElse (* if false then x else y == y *)
(* if true then x else y == x *)
else condThen
val (c, b, s) = simpSpecial(arm, context)
in
(c, bindings @ b, s)
end
| test =>
let
val simpTest = specialToGeneral test
local
open RuntimeCalls
val ioOp : int -> machineWord = RunCall.run_call1 POLY_SYS_io_operation
fun rtsFunction v = Constnt(ioOp v, [])
fun mkEval (ct, clist) =
Eval {
function = ct,
argList = List.map(fn c => (c, GeneralType)) clist,
resultType=GeneralType
}
in
fun mkNot arg = mkEval (rtsFunction POLY_SYS_not_bool, [arg])
end
in
case (simpSpecial(condThen, context), simpSpecial(condElse, context)) of
((thenConst as Constnt(thenVal, _), [], _), (elseConst as Constnt(elseVal, _), [], _)) =>
(* Both arms return constants. This situation can arise in
situations where we have andalso/orelse where the second
"argument" has been reduced to a constant. *)
if wordEq (thenVal, elseVal)
then (* Include the test in the decs in case it has side-effects. *)
(thenConst (* or elseConst *), [NullBinding simpTest], EnvSpecNone)
(* if x then true else false == x *)
else if wordEq (thenVal, True) andalso wordEq (elseVal, False)
then (simpTest, [], EnvSpecNone)
(* if x then false else true == not x *)
else if wordEq (thenVal, False) andalso wordEq (elseVal, True)
then (mkNot simpTest, [], EnvSpecNone)
else (* can't optimise *) (Cond (simpTest, thenConst, elseConst), [], EnvSpecNone)
(* Rewrite "if x then raise y else z" into "(if x then raise y else (); z)"
The advantage is that any tuples in z are lifted outside the "if". *)
| (thenPart as (Raise _, _, _), (elsePart, elseBindings, elseSpec)) =>
(* then-part raises an exception *)
(elsePart, NullBinding(Cond (simpTest, specialToGeneral thenPart, CodeZero)) :: elseBindings, elseSpec)
| ((thenPart, thenBindings, thenSpec), elsePart as (Raise _, _, _)) =>
(* else part raises an exception *)
(thenPart, NullBinding(Cond (simpTest, CodeZero, specialToGeneral elsePart)) :: thenBindings, thenSpec)
| (thenPart, elsePart) => (Cond (simpTest, specialToGeneral thenPart, specialToGeneral elsePart), [], EnvSpecNone)
end
end
(* Tuple construction. Tuples are also used for datatypes and structures (i.e. modules) *)
and simpTuple(entries, isVariant, context) =
(* The main reason for optimising record constructions is that they
appear as tuples in ML. We try to ensure that loads from locally
created tuples do not involve indirecting from the tuple but can
get the value which was put into the tuple directly. If that is
successful we may find that the tuple is never used directly so
the use-count mechanism will ensure it is never created. *)
let
val tupleSize = List.length entries
(* The record construction is treated as a block of local
declarations so that any expressions which might have side-effects
are done exactly once. *)
val (fieldEntries, bindings) =
ListPair.unzip(List.map(fn h => makeNewDecl(simpSpecial(h, context), context)) entries)
(* Make sure we include any inline code in the result. If this tuple is
being "exported" we will lose the "special" part. *)
fun envResToCodetree(EnvGenLoad(ext), _) = Extract ext
| envResToCodetree(EnvGenConst(w, p), s) = Constnt(w, setInline s p)
val generalFields = List.map envResToCodetree fieldEntries
val genRec =
if List.all isConstnt generalFields
then makeConstVal(Tuple{ fields = generalFields, isVariant = isVariant })
else Tuple{ fields = generalFields, isVariant = isVariant }
val allBindings = List.foldr(op @) [] bindings
val specRec = EnvSpecTuple(tupleSize, fn addr => List.nth(fieldEntries, addr))
in
(genRec, allBindings, specRec)
end
and simpFieldSelect(base, offset, isVariant, context) =
let
val (genSource, decSource, specSource) = simpSpecial(base, context)
in
(* Try to do the selection now if possible. *)
case specSource of
EnvSpecTuple(_, recEnv) =>
let
(* The "special" entry we've found is a tuple. That means that
we are taking a field from a tuple we made earlier and so we
should be able to get the original code we used when we made
the tuple. That might mean the tuple is never used and
we can optimise away the construction of it completely. *)
val (newGen, newSpec) = recEnv offset
in
(envGeneralToCodetree newGen, decSource, newSpec)
end
| _ => (* No special case possible. If the tuple is a constant mkInd/mkVarField
will do the selection immediately. *)
((if isVariant then mkVarField else mkInd) (offset, genSource), decSource, EnvSpecNone)
end
(* Process a SetContainer. Unlike the other simpXXX functions this is called
after the arguments have been processed. We try to push the SetContainer
to the leaves of the expression. *)
and simpPostSetContainer(container, Tuple{fields, ...}, tupleDecs, filter) =
let
(* Apply the filter now. *)
fun select(n, hd::tl) =
if n >= BoolVector.length filter
then []
else if BoolVector.sub(filter, n) then hd :: select(n+1, tl) else select(n+1, tl)
| select(_, []) = []
val selected = select(0, fields)
(* Frequently we will have produced an indirection from the same base. These
will all be bindings so we have to reverse the process. *)
fun findOriginal a =
List.find(fn Declar{addr, ...} => addr = a | _ => false) tupleDecs
fun checkFields(last, Extract(LoadLocal a) :: tl) =
(
case findOriginal a of
SOME(Declar{value=Indirect{base=Extract ext, isVariant=false, offset, ...}, ...}) =>
(
case last of
NONE => checkFields(SOME(ext, [offset]), tl)
| SOME(lastExt, offsets) =>
(* It has to be the same base and with increasing offsets
(no reordering). *)
if lastExt = ext andalso offset > hd offsets
then checkFields(SOME(ext, offset :: offsets), tl)
else NONE
)
| _ => NONE
)
| checkFields(_, _ :: _) = NONE
| checkFields(last, []) = last
fun fieldsToFilter fields =
let
val maxDest = List.foldl Int.max ~1 fields
val filterArray = BoolArray.array(maxDest+1, false)
val _ = List.app(fn n => BoolArray.update(filterArray, n, true)) fields
in
BoolArray.vector filterArray
end
in
case checkFields(NONE, selected) of
SOME (ext, fields) =>
let
val filter = fieldsToFilter fields
in
case ext of
LoadLocal localAddr =>
let
(* Is this a container? If it is and we're copying all of it we can
replace the inner container with a binding to the outer.
We have to be careful because it is possible that we may create
and set the inner container, then have some bindings that do some
side-effects with the inner container before then copying it to
the outer container. For simplicity and to maintain the condition
that the container is set in the tails we only merge the containers
if it's at the end (after any "filtering"). *)
val allSet = BoolVector.foldl (fn (a, t) => a andalso t) true filter
fun findContainer [] = NONE
| findContainer (Declar{value, ...} :: tl) =
if sideEffectFree value then findContainer tl else NONE
| findContainer (Container{addr, size, setter, ...} :: tl) =
if localAddr = addr andalso size = BoolVector.length filter andalso allSet
then SOME (setter, tl)
else NONE
| findContainer _ = NONE
in
case findContainer (List.rev tupleDecs) of
SOME (setter, decs) =>
(* Put in a binding for the inner container address so the
setter will set the outer container. *)
mkEnv(List.rev(Declar{addr=localAddr, value=container, use=[]} :: decs), setter)
| NONE =>
mkEnv(tupleDecs,
SetContainer{container=container, tuple = Extract ext, filter=filter})
end
| _ =>
mkEnv(tupleDecs,
SetContainer{container=container, tuple = Extract ext, filter=filter})
end
| NONE =>
mkEnv(tupleDecs,
SetContainer{container=container, tuple = mkTuple selected,
filter=BoolVector.tabulate(List.length selected, fn _ => true)})
end
| simpPostSetContainer(container, Cond(ifpt, thenpt, elsept), tupleDecs, filter) =
mkEnv(tupleDecs,
Cond(ifpt,
simpPostSetContainer(container, thenpt, [], filter),
simpPostSetContainer(container, elsept, [], filter)))
| simpPostSetContainer(container, Newenv(envDecs, envExp), tupleDecs, filter) =
simpPostSetContainer(container, envExp, tupleDecs @ envDecs, filter)
| simpPostSetContainer(container, BeginLoop{loop, arguments}, tupleDecs, filter) =
mkEnv(tupleDecs,
BeginLoop{loop = simpPostSetContainer(container, loop, [], filter),
arguments=arguments})
| simpPostSetContainer(_, loop as Loop _, tupleDecs, _) =
(* If we are inside a BeginLoop we only set the container on leaves
that exit the loop. Loop entries will go back to the BeginLoop
so we don't add SetContainer nodes. *)
mkEnv(tupleDecs, loop)
| simpPostSetContainer(container, Handle{exp, handler}, tupleDecs, filter) =
mkEnv(tupleDecs,
Handle{
exp = simpPostSetContainer(container, exp, [], filter),
handler = simpPostSetContainer(container, handler, [], filter)})
| simpPostSetContainer(container, tupleGen, tupleDecs, filter) =
mkEnv(tupleDecs, mkSetContainer(container, tupleGen, filter))
fun simplifier(c, numLocals) =
let
val localAddressAllocator = ref 0
val addrTab = Array.array(numLocals, NONE)
fun lookupAddr (LoadLocal addr) = valOf(Array.sub(addrTab, addr))
| lookupAddr (env as LoadArgument _) = (EnvGenLoad env, EnvSpecNone)
| lookupAddr (env as LoadRecursive) = (EnvGenLoad env, EnvSpecNone)
| lookupAddr (LoadClosure _) = raise InternalError "top level reached in simplifier"
and enterAddr (addr, tab) = Array.update (addrTab, addr, SOME tab)
fun mkAddr () =
! localAddressAllocator before localAddressAllocator := ! localAddressAllocator + 1
val reprocess = ref false
val code =
simpSpecial(c,
{lookupAddr = lookupAddr, enterAddr = enterAddr, nextAddress = mkAddr, reprocess = reprocess})
in
(code, ! localAddressAllocator, !reprocess)
end
structure Sharing =
struct
type codetree = codetree
and codeBinding = codeBinding
and envSpecial = envSpecial
end
end;
|