File: CODETREE_SIMPLIFIER.sml

package info (click to toggle)
polyml 5.6-8
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 31,892 kB
  • ctags: 34,453
  • sloc: cpp: 44,983; ansic: 24,520; asm: 14,850; sh: 11,730; makefile: 551; exp: 484; python: 253; awk: 91; sed: 9
file content (941 lines) | stat: -rw-r--r-- 45,086 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
(*
    Copyright (c) 2013 David C.J. Matthews

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.
    
    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.
    
    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
*)

(*
    This is a cut-down version of the optimiser which simplifies the code but
    does not apply any heuristics.  It follows chained bindings, in particular
    through tuples, folds constants expressions involving built-in functions,
    expands inline functions that have previously been marked as inlineable.
    It does not detect small functions that can be inlined nor does it
    code-generate functions without free variables.
*)

functor CODETREE_SIMPLIFIER(
    structure BASECODETREE: BaseCodeTreeSig

    structure CODETREE_FUNCTIONS: CodetreeFunctionsSig

    structure REMOVE_REDUNDANT:
    sig
        type codetree
        type loadForm
        type codeUse
        val cleanProc : (codetree * codeUse list * (int -> loadForm) * int) -> codetree
        structure Sharing: sig type codetree = codetree and loadForm = loadForm and codeUse = codeUse end
    end

    sharing
        BASECODETREE.Sharing
    =   CODETREE_FUNCTIONS.Sharing
    =   REMOVE_REDUNDANT.Sharing
) :
    sig
        type codetree and codeBinding and envSpecial

        val simplifier:
            codetree * int -> (codetree * codeBinding list * envSpecial) * int * bool
        val specialToGeneral:
            codetree * codeBinding list * envSpecial -> codetree

        structure Sharing:
        sig
            type codetree = codetree
            and codeBinding = codeBinding
            and envSpecial = envSpecial
        end
    end
=
struct
    open BASECODETREE
    open Address
    open CODETREE_FUNCTIONS

    exception InternalError = Misc.InternalError

    exception RaisedException

    type simpContext =
    {
        lookupAddr: loadForm -> envGeneral * envSpecial,
        enterAddr: int * (envGeneral * envSpecial) -> unit,
        nextAddress: unit -> int,
        reprocess: bool ref
    }

    fun envGeneralToCodetree(EnvGenLoad ext) = Extract ext
    |   envGeneralToCodetree(EnvGenConst w) = Constnt w

    fun mkDec (laddr, res) = Declar{value = res, addr = laddr, use=[]}

    fun mkEnv([], exp) = exp
    |   mkEnv(decs, exp as Extract(LoadLocal loadAddr)) =
        (
            (* A common case is where we have a binding as the last item
               and then a load of that binding.  Reduce this so other
               optimisations are possible.
               This is still something of a special case that could/should
               be generalised. *)
            case List.last decs of
                Declar{addr=decAddr, value, ... } =>
                    if loadAddr = decAddr
                    then mkEnv(List.take(decs, List.length decs - 1), value)
                    else Newenv(decs, exp)
            |   _ => Newenv(decs, exp)
        )
    |   mkEnv(decs, exp) = Newenv(decs, exp)

    fun isConstnt(Constnt _) = true
    |   isConstnt _ = false

    (* Wrap up the general, bindings and special value as a codetree node.  The
       special entry is discarded except for Constnt entries which are converted
       to ConstntWithInline.  That allows any inlineable code to be carried
       forward to later passes. *)
    fun specialToGeneral(g, b as _ :: _, s) = mkEnv(b, specialToGeneral(g, [], s))
    |   specialToGeneral(Constnt(w, p), [], s) = Constnt(w, setInline s p)
    |   specialToGeneral(g, [], _) = g

    (* Call and RTS function to fold constants.  The function must be safe to evaluate "early". *)
    fun callRTSFunction(rtsCall: machineWord, argList) =
    let
        exception Interrupt = Thread.Thread.Interrupt
        val _ = (isIoAddress(toAddress rtsCall) andalso earlyRtsCall rtsCall)
                    orelse raise InternalError "not early rts"

        (* Turn the arguments into a vector.  *)
        val argVector =
            case makeConstVal(mkTuple argList) of
                Constnt(w, _) => w
            |   _ => raise InternalError "makeConstVal: Not constant"

        (* Call the function.  If it raises an exception (e.g. divide
           by zero) generate code to raise the exception at run-time.
           We don't do that for Interrupt which we assume only arises
           by user interaction and not as a result of executing the
           code so we reraise that exception immediately. *)
    in
        Constnt (call(toAddress rtsCall, argVector), [])
            handle exn as Interrupt => raise exn (* Must not handle this *)
            | exn => Raise (Constnt(toMachineWord exn, []))
    end

    fun simplify(c, s) = mapCodetree (simpGeneral s) c

    (* Process the codetree to return a codetree node.  This is used
       when we don't want the special case. *)
    and simpGeneral { lookupAddr, ...} (Extract ext) =
        let
            val (gen, spec) = lookupAddr ext
        in
            SOME(specialToGeneral(envGeneralToCodetree gen, [], spec))
        end

    |   simpGeneral context (Newenv envArgs) =
            SOME(specialToGeneral(simpNewenv(envArgs, context)))

    |   simpGeneral context (Lambda lambda) =
            SOME(Lambda(#1(simpLambda(lambda, context, NONE, NONE))))

    |   simpGeneral context (Eval {function, argList, resultType}) =
            SOME(specialToGeneral(simpFunctionCall(function, argList, resultType, context)))

    |   simpGeneral context (Cond(condTest, condThen, condElse)) =
            SOME(specialToGeneral(simpIfThenElse(condTest, condThen, condElse, context)))

    |   simpGeneral context (Tuple { fields, isVariant }) =
            SOME(specialToGeneral(simpTuple(fields, isVariant, context)))

    |   simpGeneral context (Indirect{ base, offset, isVariant }) =
            SOME(specialToGeneral(simpFieldSelect(base, offset, isVariant, context)))

    |   simpGeneral context (SetContainer{container, tuple, filter}) =
        let
            val optCont = simplify(container, context)
            val (cGen, cDecs, cSpec) = simpSpecial(tuple, context)
        in
            case cSpec of
                (* If the tuple is a local binding it is simpler to pick it up from the
                   "special" entry. *)
                EnvSpecTuple(size, recEnv) =>
                let
                    val fields = List.tabulate(size, envGeneralToCodetree o #1 o recEnv)
                in
                    SOME(simpPostSetContainer(optCont, Tuple{isVariant=false, fields=fields}, cDecs, filter))
                end

            |   _ => SOME(simpPostSetContainer(optCont, cGen, cDecs, filter))
        end

    |   simpGeneral (context as { enterAddr, nextAddress, reprocess, ...}) (BeginLoop{loop, arguments, ...}) =
        let
            val didReprocess = ! reprocess
            (* To see if we really need the loop first try simply binding the
               arguments and process it.  It's often the case that if one
               or more arguments is a constant that the looping case will
               be eliminated.
               It would be possible to look more carefully and eliminate
               arguments that do not change round the loop. *)
            val withoutBeginLoop =
                simplify(mkEnv(List.map (Declar o #1) arguments, loop), context)
            (* Check if the Loop instruction is there.  This assumes that these
               are the only tail-recursive cases. *)
            fun hasLoop (Loop _) = true
            |   hasLoop (Newenv(_, exp)) = hasLoop exp
            |   hasLoop (Cond(_, t, e)) = hasLoop t orelse hasLoop e
            |   hasLoop (Handle {handler, ...}) = hasLoop handler
            |   hasLoop (SetContainer{tuple, ...}) = hasLoop tuple
            |   hasLoop _ = false
        in
            if not (hasLoop withoutBeginLoop)
            then SOME withoutBeginLoop
            else
            let
                (* Reset "reprocess".  It may have been set in the withoutBeginLoop
                   that's not the code we're going to return. *)
                val () = reprocess := didReprocess
                (* We need the BeginLoop. Create new addresses for the arguments. *)
                fun declArg({addr, value, use, ...}, typ) =
                    let
                        val newAddr = nextAddress()
                    in
                        enterAddr(addr, (EnvGenLoad(LoadLocal newAddr), EnvSpecNone));
                        ({addr = newAddr, value = simplify(value, context), use = use }, typ)
                    end
                 val declArgs = map declArg arguments
                 val beginBody = simplify(loop, context)
            in
                SOME(BeginLoop {loop=beginBody, arguments=declArgs})
            end
        end

    |   simpGeneral context (TagTest{test, tag, maxTag}) =
        (
            case simplify(test, context) of
                Constnt(testResult, _) =>
                    if isShort testResult andalso toShort testResult = tag
                    then SOME CodeTrue
                    else SOME CodeFalse
            |   sTest => SOME(TagTest{test=sTest, tag=tag, maxTag=maxTag})
        )

    |   simpGeneral _ _ = NONE

    (* Where we have an Indirect or Eval we want the argument as either a tuple or
       an inline function respectively if that's possible.  Getting that also involves
       various other cases as well. Because a binding may later be used in such a
       context we treat any binding in that way as well. *)
    and simpSpecial (Extract ext, { lookupAddr, ...}) =
        let
            val (gen, spec) = lookupAddr ext
        in
            (envGeneralToCodetree gen, [], spec)
        end

    |   simpSpecial (Newenv envArgs, context) = simpNewenv(envArgs, context)

    |   simpSpecial (Lambda lambda, context) =
        let
            val (gen, spec) = simpLambda(lambda, context, NONE, NONE)
        in
            (Lambda gen, [], spec)
        end

    |   simpSpecial (Eval {function, argList, resultType}, context) =
            simpFunctionCall(function, argList, resultType, context)

    |   simpSpecial (Cond(condTest, condThen, condElse), context) =
            simpIfThenElse(condTest, condThen, condElse, context)

    |   simpSpecial (Tuple { fields, isVariant }, context) = simpTuple(fields, isVariant, context)

    |   simpSpecial (Indirect{ base, offset, isVariant }, context) = simpFieldSelect(base, offset, isVariant, context)

    |   simpSpecial (c: codetree, s: simpContext): codetree * codeBinding list * envSpecial =
        let
            (* Anything else - copy it and then split it into the fields. *)
            fun split(Newenv(l, e)) =
                let
                    (* Pull off bindings. *)
                    val (c, b, s) = split e
                in
                    (c, l @ b, s)
                end
            |   split(Constnt(m, p)) = (Constnt(m, p), [], findInline p)
            |   split c = (c, [], EnvSpecNone)
        in
            split(simplify(c, s))
        end

    (* Process a Newenv.  We need to add the bindings to the context. *)
    and simpNewenv((envDecs, envExp), context as { enterAddr, nextAddress, reprocess, ...}) =
    let
        fun copyDecs [] =
            (* End of the list - process the result expression. *)
            simpSpecial(envExp, context)

        |   copyDecs (Declar{addr, value, ...} :: vs) =
            (
                case simpSpecial(value, context) of
                    (* If this raises an exception stop here. *)
                    vBinding as (Raise _, _, _) => vBinding

                |   vBinding =>
                    let
                        (* Add the declaration to the table. *)
                        val (optV, dec) = makeNewDecl(vBinding, context)
                        val () = enterAddr(addr, optV)                  
                        (* Deal with the rest of the block. *)
                        val (rGen, rDecs, rSpec) = copyDecs vs
                    in
                        (rGen, dec @ rDecs, rSpec)
                    end
            )

        |   copyDecs(NullBinding v :: vs) = (* Not a binding - process this and the rest.*)
            (
                case simpSpecial(v, context) of
                    (* If this raises an exception stop here. *)
                    vBinding as (Raise _, _, _) => vBinding

                |   (cGen, cDecs, _) =>
                    let
                        val (rGen, rDecs, rSpec) = copyDecs vs
                    in
                        (rGen, cDecs @ (NullBinding cGen :: rDecs), rSpec)
                    end
            )

        |   copyDecs(RecDecs mutuals :: vs) =
            (* Mutually recursive declarations. Any of the declarations may
               refer to any of the others. They should all be lambdas.

               The front end generates functions with more than one argument
               (either curried or tupled) as pairs of mutually recursive
               functions.  The main function body takes its arguments on
               the stack (or in registers) and the auxiliary inline function,
               possibly nested, takes the tupled or curried arguments and
               calls it.  If the main function is recursive it will first
               call the inline function which is why the pair are mutually
               recursive.
               As far as possible we want to use the main function since that
               uses the least memory.  Specifically, if the function recurses
               we want the recursive call to pass all the arguments if it
               can. *)
            let
                (* Reorder the function so the explicitly-inlined ones come first.
                   Their code can then be inserted into the main functions. *)
                local
                    val (inlines, nonInlines) =
                        List.partition (
                            fn {lambda = { isInline=Inline, ...}, ... } => true | _ => false) mutuals
                in
                    val orderedDecs = inlines @ nonInlines
                end

                (* Go down the functions creating new addresses for them and entering them in the table. *)
                val addresses =
                    map (fn {addr, ... } =>
                        let
                            val decAddr = nextAddress()
                        in
                            enterAddr (addr, (EnvGenLoad(LoadLocal decAddr), EnvSpecNone));
                            decAddr
                        end)
                    orderedDecs

                fun processFunction({ lambda, addr, ... }, newAddr) =
                let
                    val (gen, spec) = simpLambda(lambda, context, SOME addr, SOME newAddr)
                    (* Update the entry in the table to include any inlineable function. *)
                    val () = enterAddr (addr, (EnvGenLoad (LoadLocal newAddr), spec))
                in
                    {addr=newAddr, lambda=gen, use=[]}
                end
                
                val rlist = ListPair.map processFunction (orderedDecs, addresses)

                (* Deal with the rest of the block *)
                val (rGen, rDecs, rSpec) = copyDecs vs
            in
                (* and put these declarations onto the list. *)
                (rGen, partitionMutableBindings(RecDecs rlist) @ rDecs, rSpec)
            end

        |   copyDecs (Container{addr, size, setter, ...} :: vs) =
            let
                (* Enter the new address immediately - it's needed in the setter. *)
                val decAddr = nextAddress()
                val () = enterAddr (addr, (EnvGenLoad(LoadLocal decAddr), EnvSpecNone))
                val (setGen, setDecs, _) = simpSpecial(setter, context)
            in
                (* If we have inline expanded a function that sets the container
                   we're better off eliminating the container completely. *)
                case setGen of
                    SetContainer { tuple, filter, container } =>
                    let
                        (* Check the container we're setting is the address we've made for it. *)
                        val _ =
                            (case container of Extract(LoadLocal a) => a = decAddr | _ => false)
                                orelse raise InternalError "copyDecs: Container/SetContainer"
                        val newDecAddr = nextAddress()
                        val () = enterAddr (addr, (EnvGenLoad(LoadLocal newDecAddr), EnvSpecNone))
                        val (rGen, rDecs, rSpec) = copyDecs vs
                        val tupleAddr = nextAddress()
                        val tupleDec = Declar{addr=tupleAddr, use=[], value=tuple}
                        val tupleLoad = mkLoadLocal tupleAddr
                        val resultTuple =
                            BoolVector.foldri(fn (i, true, l) => mkInd(i, tupleLoad) :: l | (_, false, l) => l) [] filter
                        val _ = List.length resultTuple = size
                                    orelse raise InternalError "copyDecs: Container/SetContainer size"
                        val containerDec = Declar{addr=newDecAddr, use=[], value=mkTuple resultTuple}
                        val _ = reprocess := true
                    in
                        (rGen, setDecs @ tupleDec :: containerDec :: rDecs, rSpec)
                    end

                |   _ =>
                    let
                        val (rGen, rDecs, rSpec) = copyDecs vs
                        val dec = Container{addr=decAddr, use=[], size=size, setter=mkEnv(setDecs, setGen)}
                    in
                        (rGen, dec :: rDecs, rSpec)
                    end
            end
    in
        copyDecs envDecs
    end

    (* Prepares a binding for entry into a look-up table.  Returns the entry
       to put into the table together with any bindings that must be made.
       If the general part of the optVal is a constant we can just put the
       constant in the table. If it is a load (Extract) it is just renaming
       an existing entry so we can return it.  Otherwise we have to make
       a new binding and return a load (Extract) entry for it. *)
    and makeNewDecl((Constnt w, decs, spec), _) = ((EnvGenConst w, spec), decs)
                (* No need to create a binding for a constant. *)

    |   makeNewDecl((Extract ext, decs, spec), _) = ((EnvGenLoad ext, spec), decs)
                (* Binding is simply giving a new name to a variable
                   - can ignore this declaration. *) 

    |   makeNewDecl((gen, decs, spec), { nextAddress, ...}) =
        let (* Create a binding for this value. *)
            val newAddr = nextAddress()
        in
            ((EnvGenLoad(LoadLocal newAddr), spec), decs @ [mkDec(newAddr, gen)])
        end

    and simpLambda({body, isInline, name, argTypes, resultType, closure, localCount, ...},
                  { lookupAddr, reprocess, ... }, myOldAddrOpt, myNewAddrOpt) =
        let
            (* A new table for the new function. *)
            val oldAddrTab = Array.array (localCount, NONE)
            val optClosureList = makeClosure()
            val isNowRecursive = ref false

            local
                fun localOldAddr (LoadLocal addr) = valOf(Array.sub(oldAddrTab, addr))
                |   localOldAddr (ext as LoadArgument _) = (EnvGenLoad ext, EnvSpecNone)
                |   localOldAddr (ext as LoadRecursive) = (EnvGenLoad ext, EnvSpecNone)
                |   localOldAddr (LoadClosure addr) =
                    let
                        val oldEntry = List.nth(closure, addr)
                        (* If the entry in the closure is our own address this is recursive. *)
                        fun isRecursive(EnvGenLoad(LoadLocal a), SOME b) =
                            if a = b then (isNowRecursive := true; true) else false
                        |   isRecursive _ = false
                    in
                        if isRecursive(EnvGenLoad oldEntry, myOldAddrOpt) then (EnvGenLoad LoadRecursive, EnvSpecNone)
                        else
                        let
                            val newEntry = lookupAddr oldEntry
                            val makeClosure = addToClosure optClosureList

                            fun convertResult(genEntry, specEntry) =
                                (* If after looking up the entry we get our new address it's recursive. *)
                                if isRecursive(genEntry, myNewAddrOpt)
                                then (EnvGenLoad LoadRecursive, EnvSpecNone)
                                else
                                let
                                    val newGeneral =
                                        case genEntry of
                                            EnvGenLoad ext => EnvGenLoad(makeClosure ext)
                                        |   EnvGenConst w => EnvGenConst w
                                    (* Have to modify the environment here so that if we look up free variables
                                       we add them to the closure. *)
                                    fun convertEnv env args = convertResult(env args)
                                    val newSpecial =
                                        case specEntry of
                                            EnvSpecTuple(size, env) => EnvSpecTuple(size, convertEnv env)
                                        |   EnvSpecInlineFunction(spec, env) => EnvSpecInlineFunction(spec, convertEnv env)
                                        |   EnvSpecNone => EnvSpecNone
                                in
                                    (newGeneral, newSpecial)
                                end
                        in
                            convertResult newEntry
                        end
                    end

                and setTab (index, v) = Array.update (oldAddrTab, index, SOME v)
            in
                val newAddressAllocator = ref 0

                fun mkAddr () = 
                    ! newAddressAllocator before newAddressAllocator := ! newAddressAllocator + 1

                val newCode =
                    simplify (body,
                    {
                        enterAddr = setTab, lookupAddr = localOldAddr,
                        nextAddress=mkAddr,
                        reprocess = reprocess
                    })
            end

            val closureAfterOpt = extractClosure optClosureList
            val localCount = ! newAddressAllocator
            (* If we have mutually recursive "small" functions we may turn them into
               recursive functions.  We have to remove the "small" status from
               them to prevent them from being expanded inline anywhere else.  The
               optimiser may turn them back into "small" functions if the recursion
               is actually tail-recursion. *)
            val isNowInline =
                case isInline of
                    Inline =>
                        if ! isNowRecursive then NonInline else Inline
                |   NonInline => NonInline

            (* Clean up the function body at this point if it could be inlined.
               There are examples where failing to do this can blow up.  This
               can be the result of creating both a general and special function
               inside an inline function. *)
            val cleanBody =
                case isNowInline of
                    NonInline => newCode
                |   _ => REMOVE_REDUNDANT.cleanProc(newCode, [UseExport], LoadClosure, localCount)

            val copiedLambda: lambdaForm =
                {
                    body          = cleanBody,
                    isInline      = isNowInline,
                    name          = name,
                    closure       = closureAfterOpt,
                    argTypes      = argTypes,
                    resultType    = resultType,
                    localCount    = localCount,
                    recUse        = []
                }

            val inlineCode =
                case isNowInline of
                    NonInline => EnvSpecNone
                |   _ => EnvSpecInlineFunction(copiedLambda, fn addr => (EnvGenLoad(List.nth(closureAfterOpt, addr)), EnvSpecNone))
         in
            (
                copiedLambda,
                inlineCode
            )
        end

    and simpFunctionCall(function, argList, resultType, context as { reprocess, ...}) =
    let
        (* Function call - This may involve inlining the function.  We may
           also be able to call the function immediately if it is a simple
           built-in function and the arguments are constants. *)

        (* Get the function to be called and see if it is inline or
           a lambda expression. *)
        val funct as (genFunct, decsFunct, specFunct) = simpSpecial(function, context)
        (* We have to make a special check here that we are not passing in the function
           we are trying to expand.  This could result in an infinitely recursive expansion.  It is only
           going to happen in very special circumstances such as a definition of the Y combinator.
           If we see that we don't attempt to expand inline.  It could be embedded in a tuple
           or the closure of a function as well as passed directly. *)
        val isRecursiveArg =
            case function of
                Extract extOrig =>
                    let
                        fun containsFunction(Extract thisArg, v) = (v orelse thisArg = extOrig, FOLD_DESCEND)
                        |   containsFunction(Lambda{closure, ...}, v) =
                                (* Only the closure, not the body *)
                                (foldl (fn (c, w) => foldtree containsFunction w (Extract c)) v closure, FOLD_DONT_DESCEND)
                        |   containsFunction(Eval _, v) = (v, FOLD_DONT_DESCEND) (* OK if it's called *)
                        |   containsFunction(_, v) = (v, FOLD_DESCEND)
                    in
                        List.exists(fn (c, _) => foldtree containsFunction false c) argList
                    end
            |   _ => false
    in
        case (specFunct, genFunct, isRecursiveArg) of
            (EnvSpecInlineFunction({body=lambdaBody, localCount, argTypes, ...}, functEnv), _, false) =>
            let
                val _ = List.length argTypes = List.length argList
                            orelse raise InternalError "simpFunctionCall: argument mismatch"
                val () = reprocess := true (* If we expand inline we have to reprocess *)
                val (_, functDecs, _) = funct
                and { nextAddress, reprocess, ...} = context

                (* Expand a function inline, either one marked explicitly to be inlined or one detected as "small". *)
                (* Calling inline proc or a lambda expression which is just called.
                   The function is replaced with a block containing declarations
                   of the parameters.  We need a new table here because the addresses
                   we use to index it are the addresses which are local to the function.
                   New addresses are created in the range of the surrounding function. *)
                val localVec = Array.array(localCount, NONE)

                local
                    val (params, bindings) =
                        ListPair.unzip(
                            List.map (fn (h, _) => makeNewDecl(simpSpecial(h, context), context)) argList)

                    val paramVec = Vector.fromList params
                in
                    fun getParameter n = Vector.sub(paramVec, n)

                    (* Bindings necessary for the arguments *)
                    val copiedArgs = List.foldr (op @) [] bindings
                end

                local
                    fun localOldAddr(LoadLocal addr) = valOf(Array.sub(localVec, addr))
                    |   localOldAddr(LoadArgument addr) = getParameter addr
                    |   localOldAddr(LoadClosure closureEntry) = functEnv closureEntry
                    |   localOldAddr LoadRecursive = raise InternalError "localOldAddr: LoadRecursive"

                    fun setTabForInline (index, v) = Array.update (localVec, index, SOME v)
                    val lambdaContext =
                    {
                        lookupAddr=localOldAddr, enterAddr=setTabForInline,
                        nextAddress=nextAddress, reprocess = reprocess
                    }
                in
                    val (cGen, cDecs, cSpec) = simpSpecial(lambdaBody,lambdaContext)
                end

            in
                (cGen, functDecs @ (copiedArgs @ cDecs), cSpec)
            end

        |   (_, gen as Constnt(w, _), _) => (* Not inlinable - constant function. *)
            let
                val copiedArgs = map (fn (arg, argType) => (simplify(arg, context), argType)) argList
                (* If the function is an RTS call that is safe to evaluate immediately and all the
                   arguments are constants evaluate it now. *)
                val evCopiedCode = 
                    if isIoAddress(toAddress w) andalso earlyRtsCall w andalso List.all (isConstnt o #1) copiedArgs
                    then callRTSFunction(w, List.map #1 copiedArgs)
                    else Eval {function = gen, argList = copiedArgs, resultType=resultType}
            in
                (evCopiedCode, decsFunct, EnvSpecNone)
            end

        |   (_, gen, _) => (* Anything else. *)
            let
                val copiedArgs = map (fn (arg, argType) => (simplify(arg, context), argType)) argList
                val evCopiedCode = 
                    Eval {function = gen, argList = copiedArgs, resultType=resultType}
            in
                (evCopiedCode, decsFunct, EnvSpecNone)
            end
    end

    and simpIfThenElse(condTest, condThen, condElse, context) =
    (* If-then-else.  The main simplification is if we have constants in the
       test or in both the arms. *)
    let
        val word0 = toMachineWord 0
        val word1 = toMachineWord 1
  
        val False = word0
        val True  = word1
    in
        case simpSpecial(condTest, context) of
            (* If the test is a constant we can return the appropriate arm and
               ignore the other.  *)
            (Constnt(testResult, _), bindings, _) =>
                let
                    val arm = 
                        if wordEq (testResult, False) (* false - return else-part *)
                        then condElse (* if false then x else y == y *)
                        (* if true then x else y == x *)
                        else condThen
                    val (c, b, s) = simpSpecial(arm, context)
                in
                    (c, bindings @ b, s)
                end
        |   test =>
            let
                val simpTest = specialToGeneral test
                local
                    open RuntimeCalls
                    val ioOp : int -> machineWord = RunCall.run_call1 POLY_SYS_io_operation
                    fun rtsFunction v = Constnt(ioOp v, [])

                    fun mkEval (ct, clist)   =
                    Eval {
                        function = ct,
                        argList = List.map(fn c => (c, GeneralType)) clist,
                        resultType=GeneralType
                    }
                in
                    fun mkNot arg = mkEval (rtsFunction POLY_SYS_not_bool, [arg])
                end
            in
                case (simpSpecial(condThen, context), simpSpecial(condElse, context)) of
                    ((thenConst as Constnt(thenVal, _), [], _), (elseConst as Constnt(elseVal, _), [], _)) =>
                        (* Both arms return constants.  This situation can arise in
                           situations where we have andalso/orelse where the second
                           "argument" has been reduced to a constant. *)
                        if wordEq (thenVal, elseVal)
                        then (* Include the test in the decs in case it has side-effects. *)
                            (thenConst (* or elseConst *), [NullBinding simpTest], EnvSpecNone)
              
                        (* if x then true else false == x *)
                        else if wordEq (thenVal, True) andalso wordEq (elseVal, False)
                        then (simpTest, [], EnvSpecNone)
          
                        (* if x then false else true == not x  *)
                        else if wordEq (thenVal, False) andalso wordEq (elseVal, True)
                        then (mkNot simpTest, [], EnvSpecNone)
          
                        else (* can't optimise *) (Cond (simpTest, thenConst, elseConst), [], EnvSpecNone)

                        (* Rewrite "if x then raise y else z" into "(if x then raise y else (); z)"
                           The advantage is that any tuples in z are lifted outside the "if". *)
                |   (thenPart as (Raise _, _, _), (elsePart, elseBindings, elseSpec)) =>
                        (* then-part raises an exception *)
                        (elsePart, NullBinding(Cond (simpTest, specialToGeneral thenPart, CodeZero)) :: elseBindings, elseSpec)

                |   ((thenPart, thenBindings, thenSpec), elsePart as (Raise _, _, _)) =>
                        (* else part raises an exception *)
                        (thenPart, NullBinding(Cond (simpTest, CodeZero, specialToGeneral elsePart)) :: thenBindings, thenSpec)

                |   (thenPart, elsePart) => (Cond (simpTest, specialToGeneral thenPart, specialToGeneral elsePart), [], EnvSpecNone)
            end
    end

    (* Tuple construction.  Tuples are also used for datatypes and structures (i.e. modules) *)
    and simpTuple(entries, isVariant, context) =
     (* The main reason for optimising record constructions is that they
        appear as tuples in ML. We try to ensure that loads from locally
        created tuples do not involve indirecting from the tuple but can
        get the value which was put into the tuple directly. If that is
        successful we may find that the tuple is never used directly so
        the use-count mechanism will ensure it is never created. *)
    let
        val tupleSize = List.length entries
        (* The record construction is treated as a block of local
           declarations so that any expressions which might have side-effects
           are done exactly once. *)
        val (fieldEntries, bindings) =
            ListPair.unzip(List.map(fn h => makeNewDecl(simpSpecial(h, context), context)) entries)

        (* Make sure we include any inline code in the result.  If this tuple is
           being "exported" we will lose the "special" part. *)
        fun envResToCodetree(EnvGenLoad(ext), _) = Extract ext
        |   envResToCodetree(EnvGenConst(w, p), s) = Constnt(w, setInline s p)

        val generalFields = List.map envResToCodetree fieldEntries

        val genRec =
            if List.all isConstnt generalFields
            then makeConstVal(Tuple{ fields = generalFields, isVariant = isVariant })
            else Tuple{ fields = generalFields, isVariant = isVariant }

        val allBindings = List.foldr(op @) [] bindings
        
        val specRec = EnvSpecTuple(tupleSize, fn addr => List.nth(fieldEntries, addr))
    in
        (genRec, allBindings, specRec)
    end

    and simpFieldSelect(base, offset, isVariant, context) =
    let
        val (genSource, decSource, specSource) = simpSpecial(base, context)
    in
        (* Try to do the selection now if possible. *)
        case specSource of
            EnvSpecTuple(_, recEnv) =>
            let
                (* The "special" entry we've found is a tuple.  That means that
                   we are taking a field from a tuple we made earlier and so we
                   should be able to get the original code we used when we made
                   the tuple.  That might mean the tuple is never used and
                   we can optimise away the construction of it completely. *)
                val (newGen, newSpec) = recEnv offset
            in
                (envGeneralToCodetree newGen, decSource, newSpec)
            end
                   
        |   _ => (* No special case possible. If the tuple is a constant mkInd/mkVarField
                    will do the selection immediately. *)
                ((if isVariant then mkVarField else mkInd) (offset, genSource), decSource, EnvSpecNone)
    end

    (* Process a SetContainer.  Unlike the other simpXXX functions this is called
       after the arguments have been processed.  We try to push the SetContainer
       to the leaves of the expression. *)
    and simpPostSetContainer(container, Tuple{fields, ...}, tupleDecs, filter) =
        let
            (* Apply the filter now. *)
            fun select(n, hd::tl) =
                if n >= BoolVector.length filter
                then []
                else if BoolVector.sub(filter, n) then hd :: select(n+1, tl) else select(n+1, tl)
            |   select(_, []) = []
            val selected = select(0, fields)
            (* Frequently we will have produced an indirection from the same base.  These
               will all be bindings so we have to reverse the process. *)

            fun findOriginal a =
                List.find(fn Declar{addr, ...} => addr = a | _ => false) tupleDecs

            fun checkFields(last, Extract(LoadLocal a) :: tl) =
                (
                    case findOriginal a of
                        SOME(Declar{value=Indirect{base=Extract ext, isVariant=false, offset, ...}, ...}) =>
                        (
                            case last of
                                NONE => checkFields(SOME(ext, [offset]), tl)
                            |   SOME(lastExt, offsets) =>
                                    (* It has to be the same base and with increasing offsets
                                       (no reordering). *)
                                    if lastExt = ext andalso offset > hd offsets
                                    then checkFields(SOME(ext, offset :: offsets), tl)
                                    else NONE
                        )
                    |   _ => NONE
                )
            |   checkFields(_, _ :: _) = NONE
            |   checkFields(last, []) = last

            fun fieldsToFilter fields =
            let
                val maxDest = List.foldl Int.max ~1 fields
                val filterArray = BoolArray.array(maxDest+1, false)
                val _ = List.app(fn n => BoolArray.update(filterArray, n, true)) fields
            in
                BoolArray.vector filterArray
            end
        in
            case checkFields(NONE, selected) of
                SOME (ext, fields) =>
                    let
                        val filter = fieldsToFilter fields
                    in
                        case ext of
                            LoadLocal localAddr =>
                            let
                                (* Is this a container?  If it is and we're copying all of it we can
                                   replace the inner container with a binding to the outer.
                                   We have to be careful because it is possible that we may create
                                   and set the inner container, then have some bindings that do some
                                   side-effects with the inner container before then copying it to
                                   the outer container.  For simplicity and to maintain the condition
                                   that the container is set in the tails we only merge the containers
                                   if it's at the end (after any "filtering"). *)
                                val allSet = BoolVector.foldl (fn (a, t) => a andalso t) true filter

                                fun findContainer [] = NONE
                                |   findContainer (Declar{value, ...} :: tl) =
                                        if sideEffectFree value then findContainer tl else NONE
                                |   findContainer (Container{addr, size, setter, ...} :: tl) =
                                        if localAddr = addr andalso size = BoolVector.length filter andalso allSet
                                        then SOME (setter, tl)
                                        else NONE
                                |   findContainer _ = NONE
                            in
                                case findContainer (List.rev tupleDecs) of
                                    SOME (setter, decs) =>
                                        (* Put in a binding for the inner container address so the
                                           setter will set the outer container. *)
                                        mkEnv(List.rev(Declar{addr=localAddr, value=container, use=[]} :: decs), setter)
                                |   NONE =>
                                        mkEnv(tupleDecs,
                                                SetContainer{container=container, tuple = Extract ext, filter=filter})
                            end
                        |   _ =>
                            mkEnv(tupleDecs,
                                    SetContainer{container=container, tuple = Extract ext, filter=filter})
                    end

            |   NONE =>
                    mkEnv(tupleDecs,
                         SetContainer{container=container, tuple = mkTuple selected,
                                       filter=BoolVector.tabulate(List.length selected, fn _ => true)})
        end

    |   simpPostSetContainer(container, Cond(ifpt, thenpt, elsept), tupleDecs, filter) =
            mkEnv(tupleDecs,
                Cond(ifpt,
                    simpPostSetContainer(container, thenpt, [], filter),
                    simpPostSetContainer(container, elsept, [], filter)))

    |   simpPostSetContainer(container, Newenv(envDecs, envExp), tupleDecs, filter) =
            simpPostSetContainer(container, envExp, tupleDecs @ envDecs, filter)

    |   simpPostSetContainer(container, BeginLoop{loop, arguments}, tupleDecs, filter) =
            mkEnv(tupleDecs,
                BeginLoop{loop = simpPostSetContainer(container, loop, [], filter),
                    arguments=arguments})

    |   simpPostSetContainer(_, loop as Loop _, tupleDecs, _) =
            (* If we are inside a BeginLoop we only set the container on leaves
               that exit the loop.  Loop entries will go back to the BeginLoop
               so we don't add SetContainer nodes. *)
            mkEnv(tupleDecs, loop)

    |   simpPostSetContainer(container, Handle{exp, handler}, tupleDecs, filter) =
            mkEnv(tupleDecs,
                Handle{
                    exp = simpPostSetContainer(container, exp, [], filter),
                    handler = simpPostSetContainer(container, handler, [], filter)})

    |   simpPostSetContainer(container, tupleGen, tupleDecs, filter) =
            mkEnv(tupleDecs, mkSetContainer(container, tupleGen, filter))

    fun simplifier(c, numLocals) =
    let
        val localAddressAllocator = ref 0
        val addrTab = Array.array(numLocals, NONE)
        
        fun lookupAddr (LoadLocal addr) = valOf(Array.sub(addrTab, addr))
        |   lookupAddr (env as LoadArgument _) = (EnvGenLoad env, EnvSpecNone)
        |   lookupAddr (env as LoadRecursive) = (EnvGenLoad env, EnvSpecNone)
        |   lookupAddr (LoadClosure _) = raise InternalError "top level reached in simplifier"

        and enterAddr (addr, tab) = Array.update (addrTab, addr, SOME tab)

        fun mkAddr () = 
            ! localAddressAllocator before localAddressAllocator := ! localAddressAllocator + 1
        val reprocess = ref false
        val code =
            simpSpecial(c,
                {lookupAddr = lookupAddr, enterAddr = enterAddr, nextAddress = mkAddr, reprocess = reprocess})
    in
        (code, ! localAddressAllocator, !reprocess)
    end

    structure Sharing =
    struct
        type codetree = codetree
        and codeBinding = codeBinding
        and envSpecial = envSpecial
    end
end;