1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
|
(*
Copyright David C. J. Matthews 1991, 2000-2001, 2009-10, 2012-13, 2015
Derived from code
Copyright (c) 2000
Cambridge University Technical Services Limited
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*
Title: Pseudo-stack Operations for Code Generator.
Author: Dave Matthews, Edinburgh University / Prolingua Ltd.
Copyright D.C.J. Matthews 1991
*)
(* This part of the code-generator deals with the pseudo-stack and the
translation of addresses into stack offsets. *)
(* TODO: Many of the functions involve complete scans of the pseudo-stack.
This leads to quadratic increase in compile-time with large numbers
of bindings. Hotspots are marked in the code. *)
functor CODEGEN_TABLE (
structure CODECONS : CODECONSSIG
structure DEBUG: DEBUGSIG
structure PRETTY: PRETTYSIG
structure MISC :
sig
exception InternalError of string;
val quickSort : ('a -> 'a -> bool) -> 'a list -> 'a list
end
sharing PRETTY.Sharing = CODECONS.Sharing
) : CODEGEN_TABLESIG =
struct
open CODECONS;
open DEBUG;
open MISC;
open Address;
structure StretchArray = StretchArray
open RegSet
fun forLoop f i n = if i > n then () else (f i; forLoop f (i + 1) n);
type stackIndex = int
val first: stackIndex = 0
val noIndex: stackIndex = ~1 (* An invalid index. *)
datatype stackUnion =
Register of reg * int (* In a register. The int is the stack offset if
the value was originally a container. *)
| Literal of machineWord (* A constant (was "int") *)
| CodeRef of code (* Forward reference to code *)
| Direct of {base: reg, offset: int} (* Register/Offset *)
| StackW of int (* On the real stack. *)
(* Container entries are a group of items on the stack. They are used
for tuples and also for function closures. A function closure
can contain the addresses of other function closures so these
must be retained until the last references to the closure
that references them. *)
| Container of { items: stackIndex list, dependencies: stackIndex list}
datatype stackEntry =
NoStackEntry
| StackEntry of
{
ent: stackUnion,
cache: regSet,
uses: int,
destStack: int option,
(* destStack is used to indicate where on the stack this
entry must be placed if it has to be spilled. A value
of NONE means that we don't care. The reason for having
this is to ensure that if we split a flow of control
(e.g. the then- and else-parts of an "if") with a value
in a register and have to spill the register in one branch
then we spill it to the same location on the other branch.
This ensures that when we merge the flows of control we don't
have to mess around with the stack. *)
lifeTime: int
(* lifeTime is a measure of how long the item will live.
Because these values are derived from a depth first
scan in preCode lower values mean longer life except
that zero means temporary. The lifeTime is used to
decide which items to spill from registers if we
need to. *)
}
fun forIndDownTo(i, finishInd, perform: stackIndex->unit) =
if i >= finishInd
then (perform i; forIndDownTo (i - 1, finishInd, perform))
else ()
fun revfoldIndDownTo(f, x, i, finishInd) =
if i >= finishInd
then revfoldIndDownTo(f, f i x, i - 1, finishInd)
else x
(* The set of available registers. A register is free if its use-count
is zero. A register has a reference for each occurence in an entry
on the pseudo-stack or cache field (even if the use-count of the
stack entry is zero). *)
(* Added modification set to indicate if a register has been changed.
We assume that if a register is allocated it has been modified.
DCJM 26/11/00. *)
type rset = {vec: int array, modSet: regSet ref, freeRegs: regSet ref};
val vecSize = regs;
(* Returns the first free register. *)
(* This is a major hotspot in the compiler. *)
fun getAcceptableRegister ({vec, modSet, freeRegs}:rset, acceptable: regSet) =
let
val available = regSetIntersect(!freeRegs, acceptable)
in
if available = noRegisters
then NONE
else (* Mark the register as in use. *)
let
val r = oneOf available
val i = nReg r
in
Array.update (vec, i, 1); (* Set the register use-count to 1 *)
modSet := regSetUnion(singleton r, ! modSet); (* Mark as used *)
freeRegs := regSetMinus(!freeRegs, singleton r);
SOME r
end
end
(* Print the allocated registers. *)
fun printRegs printStream ({vec, ...}) =
let
fun printReg i =
let
val useCount = Array.sub (vec, i)
in
if useCount > 0
then
(
printStream " "; printStream (regRepr (regN i));
printStream "="; printStream(Int.toString useCount)
)
else ()
end (* printReg *);
in
forLoop printReg 0 (vecSize - 1)
end
fun free ({freeRegs, vec, ...}) reg =
let
val r = nReg reg
val useCount = Array.sub (vec, r)
in
if useCount = 0
then raise InternalError ("free: register already free:" ^ regRepr(regN r))
else
(
Array.update (vec, r, useCount - 1);
if useCount = 1
then
(
freeRegs := regSetUnion(!freeRegs, singleton reg);
freeRegister reg
)
else []
)
end
fun freeSet(regs, regSet) =
List.foldl (fn (r, l) => free regs r @ l) [] (setToList regSet)
(* Increment use count. *)
fun incr ({freeRegs, vec, ...}) reg =
let
val r = nReg reg
val useCount = Array.sub (vec, r)
in
Array.update (vec, r, useCount + 1);
if useCount = 0
then
(
freeRegs := regSetMinus(!freeRegs, singleton reg);
activeRegister reg
)
else []
end
fun lastRegRef({vec, ...}, reg) = Array.sub (vec, nReg reg) = 1
fun rsetMake () : rset = {vec = Array.array (vecSize, 0), modSet = ref noRegisters, freeRegs = ref allRegisters}
(* This table maps declaration numbers for a particular function
into pseudo-stack offsets. The pseudo-stack simulates the real stack and
gives the real locations of objects which may be in store, on the real stack
or in registers. It maintains use-counts for values and allows the stack
to be contracted and registers to be re-used when they are no longer required. *)
datatype ttab = Ttab of
{
regset: rset,
pstack: stackEntry StretchArray.stretchArray, (* Pseudo-stack *)
pstackptr: stackIndex ref,
realstackptr: int ref, (* The number of items on the real stack. *)
maxstack: int ref, (* The maximum number of items on the real stack. *)
exited: bool ref,
branched: bool ref,
marker: stackIndex ref,
markReal: int ref,
lowestDirect: stackIndex ref,
pstackTrace: bool,
printStream: string->unit
}
fun ttabCreate(localCount, debugSwitches) =
let
val printStream = PRETTY.getSimplePrinter debugSwitches
in
Ttab
{
regset = rsetMake(),
pstack = StretchArray.stretchArray ((* Hint *)localCount, NoStackEntry),
pstackptr = ref first,
realstackptr = ref 0,
maxstack = ref 1,
exited = ref false,
branched = ref false,
marker = ref first,
markReal = ref 0,
lowestDirect = ref first,
pstackTrace = DEBUG.getParameter DEBUG.pstackTraceTag debugSwitches,
printStream = printStream
}
end
fun pstackEntry (Ttab{pstack, ...}, locn) = StretchArray.sub(pstack, locn)
and setPstackEntry(Ttab{pstack, ...}, locn, entry) = StretchArray.update(pstack, locn, entry)
(* Returns the entry after removing the option type. *)
fun pstackRealEntry (ttab, locn) =
case pstackEntry(ttab, locn) of
StackEntry record => record
| NoStackEntry =>
raise InternalError ("pstackRealEntry: not entry: " ^ Int.toString(locn))
fun printStackUnion printStream stackun =
case stackun of
Register(reg, _) => printStream(regRepr reg)
| Literal w =>
if isShort w
then printStream(Int.toString (Word.toIntX (toShort w)))
else printStream "?" (* ??? *)
| CodeRef si =>
(
printStream "(";
printStream (procName si);
printStream ")"
)
| Direct {base, offset} =>
(
printStream(regRepr base);
printStream "@(";
printStream(Int.toString offset);
printStream ")"
)
| StackW i =>
(
printStream "base@(";
printStream(Int.toString i);
printStream ")"
)
| Container{items, ...} =>
(
printStream "[";
List.app (fn i => (printStream(Int.toString(i)); printStream " ")) items;
printStream "]"
)
fun printEntry _ NoStackEntry _ = ()
| printEntry printStream (StackEntry {ent, uses, cache, destStack, lifeTime}) entry =
(
printStream(Int.toString(entry));
printStream " ";
printStream(Int.toString uses);
printStream " ";
printStackUnion printStream ent;
if cache <> noRegisters
then (printStream " in "; printStream(regSetRepr cache))
else ();
if lifeTime = 0 then printStream " temp "
else printStream(" life " ^ Int.toString lifeTime ^ " ");
case destStack of
NONE => ()
| SOME stack => (printStream " to base@("; printStream(Int.toString stack); printStream")");
printStream "\n"
)
fun printStack (table as Ttab {printStream, realstackptr=ref realstackVal, pstackptr, marker, regset, ...},
why, recentInstrs) =
(
printStream ("\n" ^ why ^"\n");
List.app(fn i => printOperation(i, printStream)) (List.rev recentInstrs);
printStream "psp=";
printStream(Int.toString(! pstackptr));
printStream " lim=";
printStream(Int.toString(!marker));
printStream " rsp=";
printStream (Int.toString realstackVal);
printStream "\n";
printStream "regs=";
printRegs printStream regset;
printStream "\n";
let
fun pEntry i =
if i <= 0 then ()
else
(
printEntry printStream (pstackEntry(table, i)) i;
pEntry (i-1)
)
in
pEntry (! pstackptr)
end;
printStream "-\n" (* Extra line break between entries. *)
)
(* Removes empty entries from the top of the stack. *)
fun clearOff(table as Ttab{pstackptr, marker, ...}) =
let
val newIndex = ! pstackptr - 1
in
if newIndex >= ! marker
then
case pstackEntry(table, newIndex) of
NoStackEntry =>
(
pstackptr := newIndex;
clearOff table
)
| StackEntry _ => ()
else ()
end (* clearOff *)
(* Reset the real stack pointer iff there are items that are no longer referenced.
This has been added since much of the other code was written and that assumed
that the stack wouldn't be popped so there are only a few places where this
is safe to use. *)
(* TODO: When there are a lot of bindings this becomes a major hotspot. *)
fun removeOldItemsFromRealStack(
table as Ttab{realstackptr as ref current, markReal=ref markReal, pstackptr=ref pstackptr, ...}) =
let
fun maxStack(i, n) =
if i = pstackptr then n
else case pstackEntry(table, i) of (* HOTSPOT - 510 *)
StackEntry{ent=StackW addr, ...} => maxStack(i+1, Int.max(addr+1, n))
| StackEntry{ent=Register(_, addr), ...} => maxStack(i+1, Int.max(addr+1, n))
| _ => maxStack(i+1, n)
val stackMax = maxStack(first, markReal)
in
if current > stackMax
then (realstackptr := stackMax; resetStack (current-stackMax))
else []
end
(* Removes an entry which is no longer required. If the entry is cached it
may be retained unless it refers to the stack or another register when
it MUST be removed. *)
fun removeEntry (table as Ttab{regset, ...}, entry, keepIfCache): operation list =
case pstackEntry(table, entry) of
NoStackEntry => []
| StackEntry {ent = stacken, cache, lifeTime, ...} =>
(* If we are removing an entry from the real stack it must not be
retained in the cache since we may push something else into that
location. Actual parameters to procedures are not use-counted in
the same way as locals so it is worth keeping them cached. *)
let
val (cacheRegs, code) =
if cache = noRegisters
then (noRegisters, [])
else if not keepIfCache orelse
(case stacken of
Register _ => true
| StackW i => i > 0 (* Parameters on the stack have -ve address. *)
| _ => false)
then (* Clear cache. *)
(noRegisters, freeSet(regset, cache))
else (* Retain cache value. *) (cache, [])
in
if cacheRegs = noRegisters
then (* If the cache is (now) empty we can remove the entry completely. *)
let
(* clobber the entry. *)
val () = setPstackEntry (table, entry, NoStackEntry)
val freeCode =
case stacken of
Register(reg, _) => free regset reg
| Direct {base, ...} => free regset base
| Container{items, dependencies} =>
let
(* Release the dependencies. The normal use count mechanism
doesn't remove mutually recursive closures and so they may be
forcibly removed at the end of a block. Since the dependencies
form a loop when we come back to the start we will find an
entry that has already been clobbered. *)
fun releaseDep(i, f) =
case pstackEntry(table, i) of
NoStackEntry => f
| _ => incrUseCount(table, i, ~1) @ f
val releaseList = List.foldl releaseDep
in
releaseList (releaseList [] items) dependencies
end
| _ => []
val () = clearOff table
in
code @ freeCode
end
(* otherwise we just leave the entry there. *)
else
(
setPstackEntry (table, entry,
StackEntry { ent = stacken, cache = cacheRegs, uses = 0, destStack = NONE, lifeTime=lifeTime });
code
)
end (* end removeEntry *)
(* Add the number of uses to the use count of an item on the stack. *)
and incrUseCount (table, entry, incr) : operation list =
case pstackEntry(table, entry) of
NoStackEntry => raise InternalError ("incrUseCount: no entry " ^ Int.toString(entry))
| StackEntry {ent, cache, uses, destStack, lifeTime} =>
let
val newUses = uses + incr;
in
if newUses <= 0
then removeEntry(table, entry, true)
else
(
setPstackEntry (table, entry,
StackEntry {ent=ent, cache=cache, uses=newUses, destStack=destStack, lifeTime=lifeTime});
[]
)
end
and setLifetime(table, entry, life) =
case pstackEntry(table, entry) of
NoStackEntry => raise InternalError ("setLifetime: no entry " ^ Int.toString(entry))
| StackEntry {ent, cache, uses, destStack, ...} =>
setPstackEntry (table, entry,
StackEntry {ent=ent, cache=cache, uses=uses, destStack=destStack, lifeTime=life})
(* True if this is the last reference to this entry. i.e. the use-count *)
(* of this entry is 1. *)
fun lastReference table entry =
case pstackEntry(table, entry) of
NoStackEntry => raise InternalError "lastReference: no entry"
| StackEntry {uses, ...} => uses = 1
(* Push a value on the stack and return its location. *)
fun pushPstack (table as Ttab{pstackTrace, pstackptr, ...}, entry, name, ops) =
let
val stacktop = ! pstackptr;
val psp = stacktop;
val destStack =
case entry of
StackW addr => SOME addr
| _ => NONE
in
setPstackEntry (table, psp,
StackEntry {ent=entry, cache=noRegisters, uses=1, destStack=destStack, lifeTime=0});
pstackptr := stacktop + 1;
if pstackTrace then printStack(table, name, ops) else ();
stacktop
end
(* Push a value onto the real stack. *)
fun incsp(table as Ttab{maxstack, realstackptr, ...}) =
let
val stackaddr = ! realstackptr
in
realstackptr := ! realstackptr + 1;
if ! realstackptr > ! maxstack
then maxstack := ! realstackptr
else ();
pushPstack(table, StackW stackaddr, "incsp", [])
end;
(* The top of the pseudo-stack is held in a register *)
fun pushRegFromContainer(table, reg, offset) =
pushPstack(table, Register(reg, offset), "pushReg", [])
fun pushReg (table, reg) = pushRegFromContainer(table, reg, 0)
(* The top of the pseudo-stack is a constant *)
fun pushConst (table, v : machineWord) = pushPstack(table, Literal v, "pushConst", [])
(* The top of the pseudo-stack is a forward reference to a procedure. *)
fun pushCodeRef (table, rf : code) = pushPstack(table, CodeRef rf, "pushCodeRef", [])
fun addRegUse (Ttab{regset, ...}, reg) = incr regset reg
(* If we load a value into the last available register and then need to
load another value (e.g. a second argument), it is possible for the
first to be pushed onto the stack and the register to be re-used. To
avoid this we increment the use count on the first register before
we attempt to load the second value. This doesn't prevent the register
being pushed onto the stack but it does prevent the register being
reused. *)
fun lockRegister (table as Ttab{pstackTrace, ...}, reg) =
let
val _ = addRegUse (table, reg);
in
if pstackTrace then printStack(table, "lockRegister:"^regRepr reg, []) else ()
end;
fun unlockRegister (table as Ttab{pstackTrace, regset, ...}, reg) : operation list =
let
val code = free regset reg
in
if pstackTrace then printStack(table, "unlockRegister:"^regRepr reg, []) else ();
code
end
(* Puts a value in the real stack onto the pseudo-stack.
Used for references to arguments that have not been passed in registers. *)
fun pushStack (table as Ttab{pstackptr, ...}, addr : int) : stackIndex =
let (* Enter it only if it is not already there. *)
fun search s =
if s >= ! pstackptr
then pushPstack(table, StackW addr, "pushStack", [])
else
case pstackEntry(table, s) of
StackEntry {ent = StackW index, ...} =>
if index = addr
then (incrUseCount (table, s, 1); s)
else search (s + 1)
| _ => search (s + 1)
in
search first
end
fun clearCacheEntry(table as Ttab{regset, ...}, regSet, entry): operation list =
case pstackEntry(table, entry) of (* HOTSPOT - 198 *)
NoStackEntry => []
| StackEntry {ent = stacken, cache, uses, destStack, lifeTime} =>
if cache = noRegisters
then []
else
let
val keep = regSetMinus(cache, regSet)
val remove = regSetIntersect(cache, regSet)
in
if uses = 0 andalso
(* If it has a zero use count we are keeping it only because of the cache.
We completely remove an entry, which frees all the registers both in the
cache and the entry, either if the cache is now empty or if the entry
itself contains a register we want. *)
(keep = noRegisters orelse
(case stacken of
Register(reg, _) => inSet(reg, regSet)
| Direct {base,...} => inSet(base, regSet)
| _ => false)
)
then removeEntry(table, entry, false)
else
(
setPstackEntry (table, entry,
StackEntry {ent = stacken, cache=keep, uses=uses,
destStack=destStack, lifeTime=lifeTime});
freeSet(regset, remove)
)
end
(* Remove registers from the cache. *)
fun removeFromCache (table as Ttab{pstackTrace, pstackptr, ...}, regSet, continue: unit -> bool) =
let
fun clear (entry: stackIndex, limit: stackIndex) =
if entry < limit
then clearCacheEntry(table, regSet, entry) @
(if continue () then clear (entry + 1, limit) else [])
else []
val clearRegs = clear (first, ! pstackptr);
in
if pstackTrace then printStack(table, "removeFromCache"^regSetRepr regSet, clearRegs) else ();
clearRegs
end
(* Remove everything from the cache. *)
fun clearCache table = removeFromCache(table, allRegisters, fn () => true)
fun removeRegistersFromCache (table, regs) = removeFromCache(table, regs, fn () => true);
(* The value on the stack is no longer required.
This now just decrements the use count. *)
fun removeStackEntry (table, index) =
incrUseCount(table, index, ~1)
(* Reset the real stack stack pointer after a function call. *)
fun decsp (table as Ttab{pstackTrace, realstackptr, ...}, args) =
(
realstackptr := ! realstackptr - args;
if pstackTrace then printStack(table, "decsp", []) else ()
)
(* Frees registers by pushing values onto the stack or moving them to
other registers. `selectRegister' selects which registers are
affected, `selectEntry' selects which entries are affected. Used
either to clear all registers or just to free a particular one.
`loadIfPoss' is true if it is sufficient to move the entry to
another register. *)
fun pushRegisters (table as Ttab{pstackTrace, maxstack, realstackptr, pstackptr, regset, ...},
setToFree, selectEntry, loadIfPoss, dontCache) =
let
(*fun freeSet rset = List.app (free regset) (setToList rset)*)
(* Sort the items by the longest lifetime first. The idea is to push items with a
longer time to go before those with shorter lifetimes. *)
local
fun enumerate(n, l) =
if n >= ! pstackptr
then l
else case pstackEntry(table, n) of (* HOTSPOT - 103 *)
StackEntry{lifeTime, ent=Direct _, ...} => enumerate(n+1, (lifeTime, n) :: l)
| StackEntry{lifeTime, ent=Register _, ...} => enumerate(n+1, (lifeTime, n) :: l)
| _ => enumerate(n+1, l)
(* Temporary values with a lifetime of zero should go after those with a finite
lifetime but otherwise we put smaller values first because those represent longer
lives. *)
fun leq (_, _) (0, _) = true
| leq (0, _) (_, _) = false
| leq (l1, _) (l2, _) = l1 <= l2
in
val lifeList = quickSort leq (enumerate(first, []))
end
fun pushEntries([], instrList) = (* Finished *) instrList
| pushEntries((_, entry)::entries, instrList: operation list) =
let
val stackent = pstackEntry(table, entry);
val pushThis: operation list =
case stackent of
StackEntry {uses, ent = Direct {base, offset}, cache = cacheReg,
destStack, lifeTime} =>
(* Values which are cached but are otherwise not needed
have a zero use-count. There is no need to push them. *)
if uses = 0 orelse not (selectEntry entry)
then []
else
let
(* Push reg onto the stack without changing the use count.*)
fun saveDirectOnStack () =
let
val alignInstrs = alignStack(table, [], destStack);
val pushInstr =
if regSetIntersect(cacheReg, generalRegisters) <> noRegisters
then pushRegisterToStack(oneOf(regSetIntersect(cacheReg, generalRegisters)))
else pushMemoryToStack(base, offset)
val freeCode1 = free regset base
val (newCache, freeCode2) =
if dontCache then (noRegisters, freeSet(regset, cacheReg)) else (cacheReg, [])
(* Overwrite this entry with a reference to the stack. *)
val stackAddr = ! realstackptr
val () =
setPstackEntry (table, entry,
StackEntry{ent=StackW stackAddr, cache=newCache, uses=uses,
destStack=SOME stackAddr, lifeTime=lifeTime})
in
realstackptr := ! realstackptr + 1;
if ! realstackptr > !maxstack
then maxstack := ! realstackptr
else ();
freeCode2 @ freeCode1 @ pushInstr @ alignInstrs
end
fun saveDirectInReg destReg =
let
(* Free the base register. *)
val freeCode1 = free regset base
(* Free all cache registers except the destination, if it's in there. *)
val freeCode2 = freeSet(regset, regSetMinus(cacheReg, singleton destReg))
val loadInstrs =
if inSet(destReg, cacheReg)
then [] (* already cached in destination register. *)
else if regSetIntersect(cacheReg, generalRegisters) <> noRegisters
then (* Cached in a different register - move it there and free the cache. *)
moveRegisterToRegister(oneOf(regSetIntersect(cacheReg, generalRegisters)), destReg)
else (* Not in a suitable cache register. *)
moveMemoryToRegister(base, offset, destReg)
in
(* Clear out the cache and overwrite this entry with a
reference to the register. *)
setPstackEntry (table, entry,
StackEntry{ent=Register(destReg, 0), cache=noRegisters, uses=uses,
destStack=destStack, lifeTime=lifeTime});
freeCode2 @ freeCode1 @ loadInstrs
end
in
if not (inSet(base, setToFree)) then []
else if uses = 0 then (* discardDirect () *) (removeEntry(table, entry, false); [])
else if not loadIfPoss (* Not allowed to move it to another register. *)
then saveDirectOnStack ()
else if regSetMinus(cacheReg, setToFree) <> noRegisters
(* It's cached in an acceptable register i.e. one NOT in setToFree. *)
then saveDirectInReg(oneOf(regSetMinus(cacheReg, setToFree)))
else (* Is there an acceptable register free? If so load it into that. *)
case getAcceptableRegister (regset, regSetMinus(generalRegisters, setToFree)) of
SOME destReg => saveDirectInReg destReg
| NONE => saveDirectOnStack ()
end
| StackEntry {uses, ent = Register(reg, _), cache = cacheReg, destStack, lifeTime} =>
if (* uses = 0 orelse *) not (selectEntry entry)
then []
else
let
(* Push reg onto the stack without changing the use count.*)
fun saveRegOnStack () =
let
val alignInstrs = alignStack(table, [], destStack);
val pushInstr = pushRegisterToStack reg
(* Have pushed a register - can treat the register as caching
the stack location we have pushed it into. *)
val (newCache, freeCode) =
if dontCache
then (noRegisters, freeSet(regset, regSetUnion(cacheReg, singleton reg)))
else (regSetUnion(cacheReg, singleton reg), [])
val stackAddr = ! realstackptr
in
(* Overwrite this entry with a reference to the stack. *)
setPstackEntry (table, entry,
StackEntry {ent=StackW stackAddr, cache=newCache, uses=uses,
destStack=SOME stackAddr, lifeTime=lifeTime});
realstackptr := ! realstackptr + 1;
if ! realstackptr > ! maxstack
then maxstack := ! realstackptr
else ();
freeCode @ pushInstr @ alignInstrs
end
(* If we have any direct references using this register we can adjust them to
use the new register. This is particularly important if we are moving values
out of this register because we want to load it with something else. *)
fun saveRegInReg destReg =
let
fun regChanged entry =
if entry < ! pstackptr
then
let
val freeCode =
case pstackEntry(table, entry) of
StackEntry {ent = Direct {base, offset}, cache, uses, destStack, lifeTime} =>
if base = reg
then
let(* Decrement the use count for the source reg
and increment it for the destination. *)
val freeCode = free regset reg;
val _ = addRegUse (table, destReg);
in
setPstackEntry (table, entry,
StackEntry {ent = Direct {base = destReg, offset = offset},
cache=cache, uses=uses, destStack=destStack, lifeTime=lifeTime});
freeCode
end
else []
| _ => []
in
regChanged (entry + 1) @ freeCode
end
else []
val moveInstrs =
if inSet(destReg, cacheReg)
then [] (* already cached in destination register *)
else moveRegisterToRegister(reg, destReg)
(* Free this register *)
val freeCode1 = free regset reg
(* Free all cache registers except the destination, if it's in there. *)
val freeCode2 = freeSet(regset, regSetMinus(cacheReg, singleton destReg))
val freeCode3 = regChanged entry (* Start from this entry not from the bottom *)
in
(* Clear out the cache and overwrite this entry with a
reference to the register. *)
setPstackEntry (table, entry,
StackEntry {ent = Register(destReg, 0), cache=noRegisters, uses=uses,
destStack=destStack, lifeTime=lifeTime});
freeCode3 @ freeCode2 @ freeCode1 @ moveInstrs
end
in
if not (inSet(reg, setToFree)) then []
else if uses = 0
then (* discardReg () *) (removeEntry(table, entry, false); [])
else if not loadIfPoss then saveRegOnStack ()
else if regSetMinus(cacheReg, setToFree) <> noRegisters
(* It's cached in a register that we don't need - save it there. *)
then saveRegInReg(oneOf(regSetMinus(cacheReg, setToFree)))
else
let
val prefSet =
if inSet(reg, floatingPtRegisters)
then floatingPtRegisters else generalRegisters
in
case getAcceptableRegister (regset, regSetMinus(prefSet, setToFree)) of
SOME destReg => saveRegInReg destReg
| NONE =>saveRegOnStack ()
end
end (* let for saveReg etc. *)
| _ => [] (* neither Direct nor Register *)
in
pushEntries (entries, pushThis @ instrList)
end
val code = pushEntries(lifeList, [])
in
if pstackTrace then printStack(table, "pushRegisters"^regSetRepr setToFree, code) else ();
code
end
and pushAnyEntryAtCurrentSP(table as Ttab{realstackptr, ...}): (bool * operation list) =
(* Check that the next stack location is not the destination of an entry
which has not yet been pushed and pushes it if it is. *)
let
val currentSp = ! realstackptr
fun selectEntry addr =
case pstackEntry(table, addr) of
NoStackEntry => raise InternalError "pushAnyEntryAtCurrentSP: no entry"
| StackEntry {ent=StackW addr, ...} =>
(* Ok if already pushed. Check that we don't have an entry above the stack pointer. *)
if addr > currentSp
then raise InternalError "pushAnyEntryAtCurrentSP: entry above rsp"
else false
| StackEntry {destStack=NONE, ...} => false
| StackEntry {destStack=SOME destStack, ...} =>
(* Consistency check to make sure that we haven't got an unpushed
entry below the current sp. *)
if destStack < currentSp
then raise InternalError "pushAnyEntryAtCurrentSP: unpushed entry"
else destStack = currentSp (* Push it if we're there. *)
val pushInstrs =
pushRegisters(table, allRegisters (* Any register *), selectEntry, false, false)
in
(* Return true if the stack pointer has changed. *)
(! realstackptr <> currentSp, pushInstrs)
end
and alignStack (table as Ttab{realstackptr, pstackptr, ...}, previous, NONE) = (* Can use any offset. *)
(* There is a problem when we have gaps where we have
reserved addresses which are not consecutive.
This can arise if we have something like:
val a = ... val b = ...
val c = if ...then ...(*X*)[push a]; [push b] a(last ref)
else (if ...
then (*Y*)[push b because we need its register}
else (*Z*)[push a into the unused addr ???];
[push b to its explicit addr]...;
a(last ref)
)
in ... b ... end.
At X a and b are pushed and given explicit addresses but
a is removed at the end of the branch. At Y we've lost
the explicit address for "a" so we have a gap. What should
we put in the gap? We might be lucky and push a into it but
what if we put something else in there? All this is only a
problem if, when we merge the states, we only try to push
entries. If we could store into the stack we'd be fine.
We can store registers into the stack but not "direct"
entries.
For the moment, use the lowest value above the current sp
which is not currently reserved.
DCJM 25/1/01.*)
let
fun minReserved s i =
case pstackEntry(table, s) of (* HOTSPOT - 117 *)
StackEntry {destStack=NONE, ...} => i
| StackEntry {destStack=SOME destStack, ...} => Int.max(destStack+1, i)
| _ => i
val newAddr =
revfoldIndDownTo(minReserved, ! realstackptr, ! pstackptr - 1, first)
in
alignStack (table, previous, SOME newAddr)
end
| alignStack (table as Ttab{realstackptr, ...}, previous, destAddr as SOME addr) = (* Can use any offset. *)
(* We have an explicit offset *)
(
if addr < ! realstackptr
then raise InternalError "pushRegisters: unpushed register"
else ();
if addr = ! realstackptr
then previous (* Got there. *)
else
let
val (pushIt, pushInstrs) = pushAnyEntryAtCurrentSP table
val alignInstrs =
(* If there is another entry for this address push it. *)
if pushIt then pushInstrs @ previous
else (* Push any register simply to align the stack. *)
(
realstackptr := ! realstackptr + 1;
pushToReserveSpace @ pushInstrs @ previous
)
in
alignStack(table, alignInstrs, destAddr) (* Keep going. *)
end
)
(* Push a specific entry. This should really be incorporated into
pushRegisters since at the moment it processes all the entries
and only selects the particular one. *)
fun pushSpecificEntry (table, entry) =
pushRegisters(table, allRegisters, fn e => e = entry, false, false)
(* Used particularly before procedure calls where we want to ensure
that anything in a register is pushed onto the stack unless its
last reference is in the call itself. Also used before a handler. *)
fun pushAllBut (table as Ttab{pstackptr, ...}, but, pushTheseRegs) =
let
val useTab = Array.array(!pstackptr, 0)
in
but
(fn addr =>
let
val ind = addr
in
Array.update (useTab, ind, Array.sub (useTab, ind) + 1)
end);
pushRegisters(table,
(* registers that are modified *)
pushTheseRegs,
(* entries with more uses than this *)
fn addr =>
case pstackEntry(table, addr) of
NoStackEntry =>
raise InternalError "pushAllBut: no entry"
| StackEntry {uses, destStack, ent, cache, lifeTime} =>
if uses > Array.sub (useTab, addr)
then true
else
(
(* Set the destination stack for this entry to "undefined".
That's safe because we're going to remove this entry.
We do this because we may be about to push some arguments
or exception handlers and destStack may be in that area. *)
case destStack of
NONE => ()
| SOME _ =>
setPstackEntry (table, addr,
StackEntry {ent=ent, cache=cache, uses=uses, destStack=NONE, lifeTime=lifeTime});
false
),
false, false)
end;
(* Ensures that all values which need to be preserved across a function
call are pushed onto the stack or are in registers that will not
be modified. *)
fun pushNonArguments (table as Ttab{pstackptr, ...}, args, pushTheseRegs) : (reg list * operation list) =
let
fun checkAddress [] _ = false
| checkAddress (h::t) addr = h = addr orelse checkAddress t addr
val onList = checkAddress args
(* Get the list of registers which weren't pushed. We need to lock
them so that they don't get pushed onto the stack while we are
pushing the arguments. Actually I'm not sure this achieves what
we want. *)
fun getRegisterList entry regs =
if entry < ! pstackptr
then if onList entry (* Is it an argument? *)
then (* Ignore this. *) getRegisterList (entry + 1) regs
else
let
val stackent = pstackEntry(table, entry) (* HOTSPOT - 90 *)
val nextRegs =
case stackent of
StackEntry {uses, ent = Direct {base, ...}, ...} =>
if uses = 0 then regs
else (lockRegister(table, base); base::regs)
| StackEntry {uses, ent = Register(reg, _), ...} =>
if uses = 0 then regs
else (lockRegister(table, reg); reg::regs)
| _ => (* neither Direct nor Register *) regs
in
getRegisterList (entry + 1) nextRegs
end
else regs
val instrs =
pushRegisters(table,
(* registers that are modified *)
pushTheseRegs,
(* Ignore entries corresponding to the arguments but only if they
have a use count of exactly one, *)
fn addr =>
case pstackEntry(table, addr) of
NoStackEntry => raise InternalError "pushNonArguments: no entry"
| StackEntry {uses, destStack, ent, cache, lifeTime} =>
if uses > 1 orelse not (onList addr)
then true (* Must push it now if the register is modified. *)
else (* Don't need to save it because it's an argument. *)
(
(* Set the destination stack for this entry to "undefined".
That's safe because we're going to remove this entry.
We do this because we may be about to push some arguments
and destStack may be in that area.
There may not be the same need for this as in pushAllBut
but it shouldn't do any harm. *)
case destStack of NONE => ()
| SOME _ =>
setPstackEntry (table, addr,
StackEntry {ent=ent, cache=cache, uses=uses,
destStack=NONE, lifeTime=lifeTime });
false
),
(* If all the registers must be pushed there's no point in trying to
move to another register. *)
not (isAllRegs pushTheseRegs), false)
in
(getRegisterList first [], instrs)
end
type savedState = { pStackPtr: stackIndex, realStackPtr: int, pStack: stackEntry Vector.vector }
fun pStackPtr ({pStackPtr ,...}:savedState) = pStackPtr;
fun realStackPtr ({realStackPtr,...}:savedState) = realStackPtr;
fun pStack ({pStack ,...}:savedState) = pStack;
fun saveStateEntry ({pStack, ...}: savedState, locn) =
if locn >= Vector.length pStack then NoStackEntry
else Vector.sub(pStack, locn)
fun printState printStream (save: savedState as {pStackPtr, realStackPtr, ... }) name =
( printStream name;
printStream "\n";
printStream " psp=";
printStream(Int.toString(pStackPtr));
printStream " rsp=";
printStream(Int.toString realStackPtr);
printStream "\n";
forIndDownTo(pStackPtr, first, fn i => printEntry printStream (saveStateEntry(save, i)) i)
);
fun pStackRealEntry (table:savedState, locn:stackIndex) =
let
val pstack = pStack table
in
case (Vector.sub(pstack, locn)) of
NoStackEntry =>
raise InternalError "pStackRealEntry: no entry"
| StackEntry record => (locn,record)
end
(* Sets the pseudo stack into a state to which it can be restored later.
It is used when there are conditional branches to ensure that the state
is the same if the branch falls through or is taken. *)
fun saveState (table as Ttab{pstackTrace, printStream, realstackptr, pstackptr, ...}) : savedState =
let
val maxIndex = ! pstackptr
val state =
{
pStackPtr = ! pstackptr,
realStackPtr = ! realstackptr,
pStack = Vector.tabulate(maxIndex, fn n => pstackEntry(table, n))
}
in
if pstackTrace then printState printStream state "saveState" else ();
state
end
(* Extract one of the acceptable registers. *)
fun getRegisterInSet(table as Ttab{pstackTrace, regset, ...}, rSet) : reg * operation list =
let
fun getReg() = getAcceptableRegister(regset, rSet)
(* First see if there is one free and grab that. *)
val rAndCode =
case getReg () of
SOME r => (r, [])
| NONE =>
let
(* We seem to have run out. First flush the cache, then if that
fails push a register. *)
fun untilSomethingFree () =
case getReg () of NONE => true | SOME r => let val _ = free regset r in false end
val clearAll = removeFromCache(table, rSet, untilSomethingFree)
in
case getReg () of
SOME r => (r, clearAll)
| NONE =>
let
val pushInstrs =
pushRegisters(table, rSet,
fn _ => untilSomethingFree(), true (* Allow moves *),
true (* Free it once it's been pushed *))
(* Pushed values stay in the cache. *)
val clearPush = removeFromCache(table, rSet, untilSomethingFree)
in (* If we still haven't found anything we are in big trouble. *)
case getReg () of
SOME r => (r, clearPush @ pushInstrs @ clearAll)
| NONE => raise InternalError("No free registers: " ^ regSetRepr rSet)
end
end
in
if pstackTrace
then printStack(table, "getRegisterInSet", #2 rAndCode)
else ();
rAndCode
end
fun getRegister(table, reg) = #2(getRegisterInSet(table, singleton reg))
and getAnyRegister table = getRegisterInSet(table, generalRegisters)
(* Resets the stack to the value given by removing any entries with
non-zero use counts above it. This is fairly rare so does not have
to be particularly efficient. Assumes that there are enough data
registers to hold all the values. *)
(* We use the stack for saving values, for function parameters and for
handler entries. Function parameters and handler entries have specific
formats with multiple words which must be contiguous. If we have to
spill a register after, say, pushing one parameter and while computing
another, we must reload any spilled values and set the real stack pointer
correctly before continuing. *)
fun resetButReload (
table as Ttab{pstackTrace, realstackptr, pstackptr, regset, ...}, stackOffset) : operation list =
let
val oldSp = ! realstackptr
(* Load any values above "stackOffset". *)
fun loadEntries(entry, otherCode): operation list =
if entry < first
then otherCode
else
let
val stackent = pstackEntry(table, entry);
val thisCode =
case stackent of
StackEntry {ent = StackW addr, cache, uses, lifeTime, ...} =>
if addr >= stackOffset (* Above the limit on the stack. *)
then
let
(* Load it without changing the use count. *)
val (reg, regCode) =
if cache <> noRegisters
then (oneOf cache, [])
else
let
val (reg, code) = getAnyRegister table
val stackOffset = (addr - ! realstackptr + 1) * ~wordSize
val fullCode =
moveMemoryToRegister(regStackPtr, stackOffset, reg) @ code
in
(reg, fullCode)
end
(* Free all cache registers except the destination, if it's in there. *)
val freeCode = freeSet(regset, regSetMinus(cache, singleton reg))
in (* Clear out the cache and overwrite this entry with a reference to the register. *)
setPstackEntry (table, entry,
StackEntry {ent = Register(reg, 0), cache=noRegisters, uses=uses,
destStack=NONE, lifeTime=lifeTime});
freeCode @ regCode
end
else []
| _ => []
in
loadEntries (entry - 1, thisCode @ otherCode)
end (* loadEntries *);
val loadCode = loadEntries ((! pstackptr) - 1, []);
(* If the real stack ptr has changed we must have pushed something,
so our check has been useless. *)
val () =
if ! realstackptr <> oldSp
then raise InternalError "resetButReload: must have pushed something more"
else ();
val finalCode = resetStack (! realstackptr - stackOffset) @ loadCode
in
(* Now reset the stack pointer. *)
realstackptr := stackOffset;
if pstackTrace then printStack(table, "resetButReload", finalCode) else ();
finalCode
end;
fun freeRegister (Ttab{regset, ...}, reg) = free regset reg
(* Choose a register to be used to hold the result e.g. of a "case". *)
fun chooseRegister (Ttab{regset, ...}) : reg option =
let
fun chooseReg ({vec, ...}:rset) =
let
val nextReg = 0
fun next n = if n = 0 then (vecSize - 1) else (n - 1);
fun findFree (i : int) : reg option =
if Array.sub (vec, i) = 0 andalso inSet(regN i, generalRegisters)
then SOME(regN i)
else
let
val n = next i;
in
if n = nextReg then (* None free. *) NONE
else findFree n
end
in
findFree nextReg
end
in
chooseReg regset
end
(* Return the set of modified registers for this function. *)
fun getModifedRegSet (Ttab{regset={modSet=ref modSet, ...}, ...}) = modSet
(* Add a set of registers to those modified by this function.
This will be the set of registers modified by a function
called by this one. *)
fun addModifiedRegSet (transtable: ttab, regs: regSet): unit =
let
val Ttab{regset={modSet, ...}, ...} = transtable
in
modSet := regSetUnion(!modSet, regs)
end
(* Generates code for an entry on the pseudo-stack. *)
(* Moves the entry (at locn) into destReg, decrementing the
use-count for entry. Doesn't push anything new on the pstack. *)
fun loadPstackEntry (table as Ttab{pstackTrace, realstackptr, regset, ...}, locn (* Offset on the stack *), destReg) =
let
val {cache = cacheReg, ent, ...} = pstackRealEntry(table, locn)
fun moveFromMemory(base, offset, destReg) =
if inSet(destReg, floatingPtRegisters)
then
(* We can't load directly to the FP regs - put first into a general reg.
This is X86-specific and really should be in a negotiator but since
we only have FP regs on the X86 leave it. *)
let
val (aReg, regCode) = getAnyRegister table
in
free regset aReg @ moveRegisterToRegister(aReg, destReg) @
moveMemoryToRegister(base, offset, aReg) @ regCode
end
else moveMemoryToRegister(base, offset, destReg)
val loadCode =
if inSet(destReg, cacheReg)
then []
else if cacheReg <> noRegisters
then moveRegisterToRegister(oneOf cacheReg, destReg)
else
case ent of
Register(reg, _) =>
if reg <> destReg
then moveRegisterToRegister(reg, destReg)
else []
| Literal lit => moveConstantToRegister(lit, destReg)
| CodeRef code => moveCodeRefToRegister(code, destReg)
| Direct {base, offset} => moveFromMemory(base, offset, destReg)
| StackW index =>
moveFromMemory(regStackPtr, (! realstackptr - index - 1) * wordSize, destReg)
| Container{items, ...} => (* The first entry in the container gives us the address. *)
case pstackRealEntry(table, hd items) of
{ent = StackW index, ...} => moveStackAddress(! realstackptr - index -1, destReg)
| _ => raise InternalError "loadPstackEntry: container entry is not on stack";
(* Decrement use count and remove if done. *)
val codeAndRelease = incrUseCount (table, locn, ~1) @ loadCode
in
if pstackTrace then printStack(table, "loadPstackEntry", codeAndRelease) else ();
codeAndRelease
end (* loadPstackEntry *)
(* Pushes a new pstack entry; loads value into register;
decrements the use count of old pstack entry. *)
fun loadEntryToSet (table as Ttab{regset, ...}, entry, rSet, willTrample) =
let
val realLoc = entry
val {ent = stackEntry, cache = cacheReg, uses, destStack, lifeTime} =
pstackRealEntry(table, entry)
(* If we find an entry in the cache or already in a register we can use
it provided it will not be modified or this is its last use. Otherwise
we must make a copy of it. *)
val lastRef = lastReference table entry
val acceptable =
case stackEntry of
Register(reg, _) =>
if inSet(reg, rSet)
then if not willTrample (* It's acceptable. *)
then SOME (reg, entry)
else if lastRef
then
(
(* We are going to trample on it but this is the last reference
so we can use it. It may, though, be caching a value so
we must remove it from the cache before we return it. *)
removeRegistersFromCache(table, listToSet [reg]);
SOME (reg, entry)
)
else NONE (* Must copy it. *)
(* TODO: Won't this result in double copying? Once to free this and again to move the value
into the now free register. *)
else NONE (* Not in the right register. *)
| _ => (* May be cached. *)
if regSetIntersect(cacheReg, rSet) <> noRegisters
then (* There's an acceptable register in the cache. *)
let
val destReg = oneOf(regSetIntersect(cacheReg, rSet))
(* Get the register, increment its use count and put it on the stack *)
(* If we are going to trample on the register we must remove it
from the cache. If this is the last real reference that will
not matter, but if this is actually a reference to a parameter
which could be loaded onto the stack again we have to be careful
that the cache does not indicate a register which has been changed. *)
val () =
if willTrample
then setPstackEntry (table, realLoc,
StackEntry{ent=stackEntry, cache=regSetMinus(cacheReg, singleton destReg),
uses=uses, destStack=destStack, lifeTime=lifeTime})
else (addRegUse (table, destReg); ())
val newEntry = pushReg (table, destReg)
in
(* Must decrement the use-count of the entry we are loading as though
we had actually loaded it. *)
incrUseCount (table, entry, ~1);
SOME (destReg, newEntry)
end
else NONE
in
case acceptable of
SOME (reg, entry) => (reg, entry, []) (* Can use what we have. *)
| NONE =>
let
(* It is loaded into a register. This is complicated because we want
to put entries into the cache if we can. They must not be put into
the cache until after they have been loaded otherwise the load
instruction will simply copy the new cache value. It is possible
that a value might be cached in a data register when it is needed
in an address register or vice-versa. *)
val (resultReg, regCode) =
(* If we have a Direct entry which currently uses the register we want to load into
as the base register the default code will load this into a different register
in order to free the base register and then move this into the destination.
We can avoid that if this is the last reference to the base register and the
Direct entry. This is a very common case. *)
case stackEntry of
Direct{base, ...} =>
if cacheReg = noRegisters andalso inSet(base, rSet) andalso lastRef andalso
lastRegRef(regset, base)
then (base, incr regset base)
else getRegisterInSet(table, rSet)
| _ => getRegisterInSet(table, rSet)(* N.B. May side-effect table. *)
in
(* Get the entry again - getAnyRegister could have forced the
entry onto the stack if it had run out of registers. *)
case pstackEntry(table, realLoc) of
NoStackEntry => raise InternalError "loadEntry: entry deleted"
| StackEntry {ent, uses, cache, destStack, lifeTime} =>
let
(* If the value is already cached, keep it in the old
cache register, rather than the new one. This should
help to minimise register-register moves when we have
to merge branches. *)
val cacheIt =
not willTrample andalso
case ent of
Direct{base, ...} => base <> resultReg
(* Cannot cache it if we are about to pop it. *)
| StackW index => (0 >= index orelse not lastRef)
| _ => false
(* If we are going to cache it we musn't let it be removed. *)
val freeCode1 = if cacheIt then incrUseCount (table, entry, 1) else []
(* If we're loading the address of a container we need to ensure that it
stays on the stack as long as the register is in use. This is only a
problem if we're calling a function which returns its result via a
container but in this particular case its result is discarded. In that
case loading its address in order to pass it into the function will be
the last reference so the container entry will be removed from the
pstack and removeOldItemsFromRealStack could remove the container from
the real stack before the function is called. *)
val stackOffset =
case ent of
Container{items, ...} =>
(
case pstackRealEntry(table, hd items) of
{ent = StackW index, ...} => index
| _ => raise InternalError "loadPstackEntry: container entry is not on stack"
)
| _ => 0
val loadEntry = loadPstackEntry(table, entry, resultReg)
val newEntry = pushRegFromContainer(table, resultReg, stackOffset)
val freeCode2 =
if cacheIt
then
(
(* put in the cache and restore use-count. *)
setPstackEntry (table, realLoc,
StackEntry {ent=ent, cache=regSetUnion(cache, singleton resultReg),
uses=uses, destStack=destStack, lifeTime=lifeTime});
addRegUse (table, resultReg);
incrUseCount (table, entry, ~1)
)
else []
(* If we call removeOldItemsFromRealStack now we may be able to
change a load into a pop. *)
val removeCode = removeOldItemsFromRealStack table
in
(resultReg, newEntry, removeCode @ freeCode2 @ loadEntry @ freeCode1 @ regCode)
end
end (* useNewRegister *)
end
fun loadToSpecificReg (table, reg, entry, needExclusive) =
let
val (_, regIndex, ops) = loadEntryToSet(table, entry, singleton reg, needExclusive)
in
(regIndex, ops)
end
(* Make sure that the entry will not require an allocation in order to put it into
memory. This really means that the value must not be in a floating point register.
This is used when evaluating expressions that will be stored into a newly allocated
piece of memory. A value in a FP register first has to be stored into memory
and this has to be done first. *)
fun ensureNoAllocation(table, entry) =
case pstackRealEntry(table, entry) of
{ ent = Register(reg, _), ... } =>
if inSet(reg, floatingPtRegisters)
then
let
val (_, regIndex, ops) =
loadEntryToSet(table, entry, generalRegisters, false)
in
(regIndex, ops)
end
else (entry, []) (* Safe *)
| _ =>
(* We must remove any floating point registers that cache this entry.
This is a bit of a shame because we may want the FP register
further on but is because argAsSource chooses ActInRegisterSet
if the cache is non-empty. That's wrong if we want the FP value
in memory because we will attempt to store the FP register again.
See Tests/Succeed/Test159.ML *)
(entry, clearCacheEntry(table, floatingPtRegisters, entry))
(* Checks if we are going to overwrite the stack, and loads the entry
into a register. *)
fun loadEntryBeforeOverwriting (table as Ttab{realstackptr, pstackptr, regset, ...}, offset:int) =
if 0 <= offset andalso offset < ! realstackptr
then
let (* May have to reload something. *)
fun findTheEntry (entry: stackIndex, previousCode) =
if entry < first then previousCode (* finish *)
else
let
val stackent = pstackEntry(table, entry)
val thisCode =
case stackent of
StackEntry {ent = StackW addr, cache, uses, lifeTime, ...} =>
if addr = offset
then
let (* This is the entry. *)
(* Load it without changing the use count. *)
val (reg, code) =
if cache <> noRegisters
then (oneOf cache, [])
else
let
val (reg, regCode) = getAnyRegister table
val off = (! realstackptr - 1 - addr) * wordSize;
in
(reg, moveMemoryToRegister(regStackPtr, off, reg) @ regCode)
end;
(* Free all cache registers except the destination, if it's in there. *)
val freeCode = freeSet(regset, regSetMinus(cache, singleton reg))
val newStackent =
(* Make a new entry with a NEW stack destination.
If we have to push it we have to use a new location.
I don't like this but it's safe because this only occurs
for a tail-recursive value or for a temporary value
in an exception handler.
It does have implications when setting the state which is
why we no longer check that destinations match in "setState". *)
StackEntry {ent = Register(reg, 0), cache=noRegisters, uses=uses,
destStack=NONE, lifeTime=lifeTime}
in
(* Clear out the cache and overwrite this entry with a
reference to the register. *)
setPstackEntry (table, entry, newStackent);
freeCode @ code
end
else [] (* not this entry *)
| _ => []
in
findTheEntry (entry - 1, thisCode @ previousCode)
end (* findTheEntry *)
in
findTheEntry ((! pstackptr) - 1, [])
end
else [] (* end of loadEntryBeforeOverwriting *)
(* Store a pseudo-stack entry at a given location on the real stack. Used
when making a tail-recursive call. The problem is that the old entry
in the real stack may be in use, so we may have to reload it first.
We load all the values before storing any, so there is no danger of
overwriting entries in the argument area, but we may have had to push
some of the registers while doing the load, so those entries will have
to be saved. *)
fun storeInStack (table as Ttab{maxstack, realstackptr, markReal as ref initMark, ...}, entry, locn) =
let
(* Make sure we don't reset the stack below this point. *)
val () = markReal := Int.max(locn, initMark)
(* Move it to the stack, using a move-immediate if possible. *)
fun inc x = (x := !x + 1);
fun generalStoreInStack () = (* General case. *)
let
val (reg, regEntry, code) = loadEntryToSet(table, entry, generalRegisters, false)
(* Lock the register, otherwise it might be used to load an entry. *)
val () = lockRegister (table, reg)
val loadCode = loadEntryBeforeOverwriting(table, locn)
(* N.B. loadEntry may push values onto the stack,
so we cannot use isPush. *)
val pushCode =
if ! realstackptr = locn
then
(
inc realstackptr;
pushRegisterToStack reg
)
else
let
val loc = (! realstackptr - locn - 1) * wordSize
in
storeRegisterToStack(reg, loc)
end
in
unlockRegister (table, reg);
removeStackEntry(table, regEntry);
pushCode @ loadCode @ code
end;
val isPush = ! realstackptr = locn
val {ent = valEnt, cache = cacheReg, ...} = pstackRealEntry(table, entry);
(* Select the best instruction to use. The default is to load it
into a register and store or push that. *)
val code =
case valEnt of
Literal lit =>
if isPush andalso isPushI lit
then
let
val loadCode = loadEntryBeforeOverwriting(table, locn)
in
(* Push-immediate. *)
incrUseCount (table, entry, ~1);
inc realstackptr;
pushConstantToStack lit @ loadCode
end
else if false (* isStoreI(lit, false) *) (* TEMPORARILY *)
then
let (* Store immediate. *)
val loadCode = loadEntryBeforeOverwriting(table, locn)
val locn = (! realstackptr - locn - 1) * wordSize
in
(* Remove the entry for the literal. *)
incrUseCount (table, entry, ~1);
storeConstantToStack(lit, locn) @ loadCode
end
else generalStoreInStack ()
| Direct {base, offset} =>
if isPush andalso cacheReg = noRegisters
then
let (* Push memory. *)
val loadCode = loadEntryBeforeOverwriting(table, locn)
in
incrUseCount (table, entry, ~1);
inc realstackptr;
pushMemoryToStack(base, offset) @ loadCode
end
else generalStoreInStack ()
| StackW index =>
if isPush andalso cacheReg = noRegisters
then
let (* Push stack entry. *)
val loadCode = loadEntryBeforeOverwriting(table, locn)
val locn = (! realstackptr - 1 - index) * wordSize;
in
incrUseCount (table, entry, ~1);
inc realstackptr;
pushMemoryToStack(regStackPtr, locn) @ loadCode
end
else generalStoreInStack ()
| _ => generalStoreInStack ();
val stackEntry = pushPstack(table, StackW locn, "pushValueToStack", [])
in
if ! realstackptr > ! maxstack
then maxstack := ! realstackptr
else ();
markReal := initMark;
(stackEntry, code)
end (* storeInStack *);
fun genError() = raise InternalError "pushValueToStack: Couldn't push to stack"
(* Ensures that the top of the pseudo stack has been copied onto the
real stack and is at the correct position. stackOffset contains the
stack offset it should have. Primarily used to push arguments to
procedures. *)
fun pushValueToStack (table as Ttab{realstackptr, ...}, entry, stackOffset) : stackIndex * operation list =
let
val stackAddr = stackOffset - 1
val (storeLocn, storeCode) = storeInStack (table, entry, stackAddr)
val clearCode = (* Remove any entries above the stack offset we need. *)
if ! realstackptr > stackOffset
then resetButReload (table, stackOffset)
else []
in
(* The stack pointer should now be the required value. *)
if ! realstackptr <> stackOffset
then genError()
else ();
(storeLocn, clearCode @ storeCode)
end;
fun reserveStackSpace(table: ttab, space: int): stackIndex * operation list =
(* Reserve space on the stack for a tuple. *)
let
(* We must first make sure that the space we're going to allocate
hasn't been reserved for a register. *)
val alignCode = alignStack(table, [], NONE)
(* Initialise the store so that the garbage collector doesn't
accidentally pick up an invalid pointer. *)
(* The stack grows downwards so we want the entries in reverse order.
The first entry must be lowest address. *)
fun pushEntries(0, code) = ([], code)
| pushEntries(n, code) =
let
val (pushRest, pushCode) = pushEntries (n-1, code)
val stackLocn = incsp table
in
(* Reserve space on the stack. *)
(stackLocn :: pushRest, pushToReserveSpace @ pushCode)
end;
val (entries, code) = pushEntries(space, alignCode)
in
(pushPstack(table, Container{items=entries, dependencies=[]}, "reserveStackSpace", code), code)
end
(* Generates an indirection on an item on the pseudo-stack. *)
fun indirect (wordOffset, entry, table as Ttab{pstackptr, lowestDirect, ...}) : stackIndex * operation list =
case pstackRealEntry(table, entry) of
{ent = Container {items, ...}, ...} =>
(* If we are indirecting off a container we can simply load the entry. *)
let
val resIndex = List.nth(items, wordOffset)
in
(* Increment its use count. *)
incrUseCount (table, resIndex, 1);
removeStackEntry(table, entry); (* Remove the container entry. *)
(resIndex, [])
end
| {ent = Literal i, ...} =>
(
removeStackEntry(table, entry); (* Remove the container entry. *)
(* We won't normally get this because it will have been optimised out.
The exception is when we have SetContainer with a tuple which is a constant.
For safety we check that we have a valid address here although
unlike in findEntryInBlock we should never actually get an invalid one. *)
(* Actually, we can, in cases such as val (a,b) = raise ... where we will
do an indirection on the dummyValue put on the pstack to represent the
non-existent result of the "raise". In that case we put in a dummy result
of zero. *)
if isShort i andalso toShort i = 0w0
then (pushConst(table, toMachineWord 0), [])
else if isShort i orelse Address.length (toAddress i) <= Word.fromInt wordOffset
then raise InternalError "indirect - invalid constant address"
else (pushConst (table, loadWord (toAddress i, Word.fromInt wordOffset)), [])
)
| _ =>
let
val (topReg, topEntry, code) = loadEntryToSet(table, entry, generalRegisters, false)
val _ = removeStackEntry(table, topEntry) (* Remove the entry for the register. *)
(* and push the indirection *)
(* Profiling shows that this search is where the compiler can spend most
of its time. To speed it up we keep a lower limit pointer which saves
us searching below the lowest direct entry. *)
(* See if it is already on the stack. *)
fun search(s, max, foundD) =
if s >= max
then
(
(* Not there. *)
addRegUse (table, topReg);
(* If this is below the previous lower limit we need to reset it. *)
if ! lowestDirect > ! pstackptr
then lowestDirect := ! pstackptr
else ();
pushPstack(table, Direct {base = topReg, offset = wordOffset * wordSize}, "indirect", code)
)
else case pstackEntry(table, s) of
StackEntry {ent = Direct {base, offset}, ...} =>
(
(* If we found no direct entries below here
then remember this as the first. *)
if not foundD then lowestDirect := s else ();
if base = topReg andalso offset = wordOffset * wordSize
then (* Found it *)
(
incrUseCount (table, s, 1);
s
)
else search(s + 1, max, true (* Found one *))
)
| _ => search (s + 1, max, foundD); (* end search *)
in
(search (! lowestDirect, ! pstackptr, false), code)
end
(* Loads a value into a register if it is in the argument area. Used
for tail-recursive calls. "storeInStack" checks for overwriting
entries elsewhere on the stack, but because the argument area is not
represented by entries on the pstack it won't work for them. *)
fun loadIfArg (table, entry) : stackIndex * operation list =
case pstackRealEntry(table, entry) of
{ent = StackW index, ...} =>
if index < 0
then
let
val (_, newEntry, loadCode) = loadEntryToSet(table, entry, generalRegisters, false)
in
(newEntry, loadCode)
end
else (entry, [])
| _ => (entry, []) (* return the original. *)
(* Get the register set for a function that has already been compiled or for an RTS function. *)
fun getRegisterSetForFunction addr =
let
val doCall: int*machineWord -> Word.word
= RunCall.run_call2 RuntimeCalls.POLY_SYS_poly_specific
val rSet = doCall(103, addr) (* Get the bit pattern from the function. *)
in
getRegisterSet rSet
end
fun getRegisterSetForCode (cvec: code) : regSet =
(* Get the register set for a forward reference which may or may not
have already been compiled. *)
case codeAddress cvec of
SOME addr => (* Now compiled - return the register set. *)
getRegisterSetForFunction (toMachineWord addr)
| NONE =>
(* We haven't compiled this yet: assume worst case. *) allRegisters
(* Get the register set for an entry on the stack which will be the entry
point of a function. If it's not a constant we have to assume it
modifies any of the registers. *)
fun getFunctionRegSet(index: stackIndex, transtab: ttab) : regSet =
let
val {ent = stacken, ...} = pstackRealEntry(transtab, index)
in
case stacken of
Literal lit => getRegisterSetForFunction lit
| CodeRef code => getRegisterSetForCode code
| _ => allRegisters
end
(* An optional result. i.e. if the code before the jump has returned a result
this is the offset in the table of the result. *)
datatype mergeResult = NoMerge | MergeIndex of stackIndex;
(* A code label packaged up with a saved state. *)
abstype labels =
NoLabels
| Labels of {result: mergeResult, lab: CODECONS.forwardLabel, state: savedState}
with
val noJump = NoLabels;
fun isEmptyLabel NoLabels = true | isEmptyLabel _ = false;
fun makeLabels(res, cLab, sState) = Labels {result=res, lab = cLab, state = sState};
fun labs (Labels {lab ,...}) = lab | labs _ = raise Match;
fun state (Labels {state,...}) = state | state _ = raise Match;
fun result (Labels {result,...}) = result | result _ = raise Match;
end
(* Set the state to the saved values. This could almost certainly be radically simplified.
Most of the complicating factors have now been removed. *)
fun setState (save : savedState,
table as
Ttab{pstackTrace, printStream, pstackptr, realstackptr, regset, markReal, ...},
carry, mark, isMerge, isRestoreLoop): mergeResult * operation list =
let
val () = if pstackTrace then printState printStream save "setState" else ()
val topReg: reg =
case carry of
NoMerge => regClosure (* Unused *)
| MergeIndex savedTop =>
(
case pStackRealEntry(save, savedTop) of
(_,{ent = Register(reg, _), ...}) => reg
| (_,{cache, ...}) =>
if cache = noRegisters then raise InternalError "setState: not a register"
else oneOf cache
)
(* Clobber all entries above the "mark".
This will remove the result register if there is one. *)
(* TODO: I don't like this. I think we should explicitly remove it. *)
fun freeAbove i =
if i < mark then []
else removeEntry(table, i, true) @ freeAbove(i-1)
val freeTop = freeAbove(! pstackptr - 1)
(* Set up the saved state. Need to set the register set.
Free the registers from the table. *)
fun frees s =
if s >= ! pstackptr
then []
else
let
val stacken = pstackEntry(table, s)
val freeEntry =
case stacken of
NoStackEntry => []
| StackEntry {ent, cache, ...} =>
let
val freeThis =
case ent of
Register(reg, _) => freeRegister (table, reg)
| Direct {base, ...} => freeRegister (table, base)
| _ => []
in
freeSet(regset, cache) @ freeThis
end
in
frees(s + 1) @ freeEntry
end
val freeTable = frees first
val () = realstackptr := realStackPtr save;
local
val oldPstackptr = ! pstackptr
val () = pstackptr := pStackPtr save
(* Go up the entries putting them onto the table from the saved
state, then come back setting the use-counts where appropriate.
We have to do it this way because of copy entries. *)
(* But we don't have copy entries any longer so this could
be improved. DCJM 30/11/99. *)
fun putOnEntries s =
if s >= pStackPtr save
then []
else
let
val saveEntry = saveStateEntry(save, s)
val (tabUseCount, tabDestStack) =
(* Get the use-count and stack destination in the table. *)
if s >= oldPstackptr then (0, NONE)
else
case pstackEntry(table, s) of
NoStackEntry => (0, NONE)
| StackEntry {uses, destStack, ...} =>
(uses, (*if ! exited then NONE else*) destStack)
in
(* Put the saved entry into the table. *)
setPstackEntry (table, s, saveEntry);
case saveEntry of
NoStackEntry => putOnEntries (s + 1)
| StackEntry {ent, cache, uses, lifeTime, ...} =>
let
(* Compute the new register set. *)
val loadReg =
case ent of
Register(reg, _) => incr regset reg
| Direct {base, ...} => incr regset base
| _ => []
val cacheRegs = List.foldl(fn (r, l) => incr regset r @ l) [] (setToList cache)
(* The destination stack information is intended to avoid problems
when a value is pushed to the stack in different flows of control.
The first flow of control sets the destination stack with the
actual location where the value was pushed and then when we set
the state we record the destination stack location as the
location where subsequent flows of control should push it.
This goes wrong if we are using setState to restore the loop
state rather than set the initial state for a new flow of control.
In the first case we need to ensure that the destination stack
values are inherited from the current state and override those in
the saved state, because we may have popped items during the first
flow and subsequently pushed different items in their place,
whereas if we're restoring the state we want to throw away any
destination stack information in the current state and take
the information only from the saved state. *)
val () =
if isRestoreLoop
then ()
else setPstackEntry (table, s,
StackEntry {ent=ent, cache=cache, uses=uses,
destStack=tabDestStack, lifeTime=lifeTime})
val otherEntries = putOnEntries (s + 1)
(* Can now set the use counts. The use-counts may have changed
and entries may have been removed because the use-counts of
copy entries have been decremented. *)
(* This no longer applies now that copy entries have been
removed. Continue to do it that way for the moment.
Note that with the change from use-counts to last-references
we no longer reduce the use count to the lower of the
saved and current values in the case where we are setting
the state at the start of a parallel flow of control (e.g.
at the start of the else-part of an if-then-else) but only
when this is being used to "merge" flows of control where
one flow has actually exited. In that case the use counts should
normally agree but there may be cases where they don't, maybe
associated with statically-linked functions. *)
val () =
if isMerge
then
let
val currUseCount =
if s >= (! pstackptr) then 0
else
case pstackEntry(table, s) of
NoStackEntry => 0
| StackEntry {uses, ...} => uses
in
if tabUseCount < currUseCount
then (incrUseCount (table, s, tabUseCount - currUseCount); ())
else ()
end
else ()
in
otherEntries @ cacheRegs @ loadReg
end
end
(* If the state we're setting into has a destination location for an entry we don't
override it with an entry for the saved state but instead merge in. However we
could have pushed something else on route to the saved state and even though the
entry is no longer on the pstack we could now find that the real stack pointer is
above the current destination location. We need to reset the stack if that happens
so that we can push the entry if we need to. *)
fun checkUnPushed s min =
case pstackEntry(table, s) of
StackEntry{ent=StackW _, ...} => min
| StackEntry{destStack=SOME dest, ...} => Int.min(dest, min)
| _ => min
in
val addRegs = putOnEntries first
val minUnpushed = revfoldIndDownTo(checkUnPushed, ! realstackptr, ! pstackptr - 1, first)
val andReset =
if minUnpushed < ! realstackptr
then if minUnpushed < !markReal
then raise InternalError "Unpushed entry below stack mark"
else
let
val current = !realstackptr;
in
realstackptr := minUnpushed;
resetStack(current-minUnpushed)
end
else []
end
val regLoadFree = andReset @ addRegs @ freeTable @ freeTop
val result =
case carry of
MergeIndex _ =>(* Put the result register onto the stack. *)
let
val regCode = getRegister (table, topReg)
in
(MergeIndex(pushReg (table, topReg)), activeRegister topReg @ regCode @ regLoadFree)
end
| NoMerge => (NoMerge, regLoadFree)
in
if pstackTrace then printStack(table, "setState", #2 result) else ();
result
end
fun unconditionalBranch (result, table as Ttab { branched, ...}) : labels * operation list =
if ! branched then (noJump, [])
else
let
val state = saveState table
val (branchCode, label) = uncondBranch()
in
branched := true;
(makeLabels(result, label, state), branchCode)
end;
fun jumpBack(start, Ttab { branched, ...}): operation list =
(
branched := true;
(* Check for interrupts when jumping backwards. *)
CODECONS.jumpBack start @ interruptCheck
)
(* Record the stack limit when we diverge and then use it when we merge
back again. *)
type stackMark =
{
newMark: stackIndex,
oldMark: stackIndex,
oldReal: int
}
fun newMark ({newMark,...}: stackMark) = newMark
fun markStack(Ttab{pstackptr, marker, markReal, realstackptr, ...}) =
{ newMark = ! pstackptr, oldMark = ! marker, oldReal = ! markReal } before
(marker := ! pstackptr; markReal := ! realstackptr)
fun unmarkStack(Ttab{marker, markReal, ...}, {oldMark, oldReal, ...}) =
( marker := oldMark; markReal := oldReal )
(* mergeState is used when two flows of control merge e.g. at the end of
the else-part of an if-then-else when the state saved at the end of the
then-part has to be merged with the state resulting from the else-part.
This function first tries to do what it can to make the current state
match the saved state. If it can't do it it may require a "reverse merge"
where we swap over the saved and current states. Ideally we would simply
patch in extra code in the then-part but that's too complicated. Instead
"fixup" does it by generating an unconditional branch, fixing up the original
branch and then calling mergeState to try and merge again. This should only
require one reverse to converge.
I've virtually rewritten this function since it was the source of a number
of bugs, particularly some identified by Simon Finn. The aim now is to
converge by having a (partial) ordering on the types of entries:
Stack > Register/Cached > Direct.
We never load a stack entry into a register.
DCJM 29/6/2000.
*)
fun mergeState (save : savedState, savedResult: mergeResult,
table as
Ttab{pstackTrace, printStream, realstackptr, pstackptr, marker, regset, ...},
currentResult: mergeResult, mark) : bool * mergeResult * operation list =
let
val needOtherWay = ref false;
val () =
if pstackTrace
then
(
printStack(table, "mergeState", []);
printState printStream save "saved state"
)
else ();
val () =
if ! marker <> newMark mark
then raise InternalError "Marker"
else ();
(* Merge the tables together. The only complication is that if both
sides are returning values they may be at different locations on
the pseudo stack. We load the top
of the current stack into the register that was used for the top
of the saved state and then remove it. There is no need to remove
the top of the saved state because those entries will correspond
to zero-use count entries in the current stack. *)
val (topReg, topRegCode) =
case (savedResult, currentResult) of
(MergeIndex savedTop, MergeIndex currentTop) =>
let
val sTopReg =
case pStackRealEntry (save, savedTop) of
(_,{ent = Register(reg, _), ...}) => reg
| (_,{cache, ...}) =>
if cache = noRegisters then raise InternalError "Not a register"
else oneOf cache
(* Load the value on the top of "table" into the same register
(it ought to be there anyway). *)
val (regEntry, loadCode) = loadToSpecificReg (table, sTopReg, currentTop, true);
(* Because this register will be at a different offset in
the table from in the saved state it is easier to remove
the register and put it on later. *)
val removeEntry = removeStackEntry(table, regEntry);
in
(sTopReg, removeEntry @ getRegister (table, sTopReg) @ loadCode)
end
| (NoMerge, NoMerge) => (regClosure (* Unused *), [])
| _ => (* They should agree on whether they will return a result or not. *)
raise InternalError "mergeState - Mismatched result states"
(* Clobber all entries above the "mark". These are values which are
local to the block since the split and so are no longer required.
They should normally have been removed as soon as they were no
longer required. *)
val freeEntries0 =
revfoldIndDownTo (fn s => fn l => removeEntry(table, s, true) @ l, [], ! pstackptr - 1, newMark mark)
(* First pass: get rid of entries which are no longer required.
Also propagate stack destination info. That probably isn't
required because it should already have happened (the saved
state represents a previous state) but shouldn't be a problem. *)
(* The entries on the stack will only be those that were there
before we split the instruction streams we are now merging.
All those pushed since then will be in different positions
in the saved state and current state and so will be removed
from the merged state. The common entries may differ if we
have had to push some values that were in registers onto the
real stack. *)
fun fixEntry s l =
let
val entry =
case (pstackEntry(table, s), saveStateEntry(save, s)) of
(NoStackEntry, _) => [] (* No entry in table. *)
| (StackEntry _, NoStackEntry) =>
(* table entry could be non-empty if it is a cache entry
or if we are doing a backwards merge. If we do a
backwards merge we can have entries in the table
with non-zero use counts, but those can be removed. *)
removeEntry(table, s, false)
| (StackEntry {uses = tabUses, cache = tabCache, ent = tabEnt,
destStack = tabDest, lifeTime},
StackEntry {uses = saveUses, cache = saveCache, ent = saveEnt,
destStack = saveDest, ...}) =>
let
val mergedDest =
case (tabDest, saveDest) of
(tb as SOME tabDest, SOME saveDest) =>
if tabDest <> saveDest
then raise InternalError("merge: mismatched destination "^Int.toString tabDest^ " " ^ Int.toString saveDest)
else tb
| (NONE, saveDest) => saveDest
| (tabDest, _) => tabDest
in
if tabUses = 0 orelse saveUses = 0
(* The use-counts may be zero if we have retained an
entry because it is cached in a register. We remove
these entries unless it is the same value and cached
in the same register *)
then
if tabCache <> saveCache (* TODO: Handle non-empty intersection. *)
then removeEntry(table, s, false)
else
case (tabEnt, saveEnt) of
(Direct {base = tabBase, offset = tabOffset},
Direct {base = saveBase, offset = saveOffset}) =>
if tabBase = saveBase andalso tabOffset = saveOffset
then []
else removeEntry(table, s, false)
| (StackW tabIndex, StackW saveIndex) =>
if tabIndex = saveIndex
then []
else removeEntry(table, s, false)
| _ =>
removeEntry(table, s, false)
else (* We need to retain this entry. *)
(
if tabDest <> mergedDest
then setPstackEntry (table, s,
StackEntry{ent=tabEnt, cache=tabCache, uses=tabUses,
destStack=mergedDest, lifeTime=lifeTime})
else ();
[]
)
end
in
entry @ l
end
val freeEntries1 = revfoldIndDownTo (fixEntry, [], ! pstackptr - 1, first)
local
(* Try to align the real stack pointer by popping unused values.
We MUST remove entries which have been pushed onto the stack
in the saved state but not in the current state since we'll
have to push them here. We must not remove entries which
are currently in use. One further complication is that we
may have exception handler(s) on the real stack so we can't
simply pop everything above the highest used stack position.
It would probably be better if we recorded handler locations
on the pstack - maybe change this. *)
(* Find the highest stack value which is actually in use. *)
fun getInUse s i =
case pstackEntry(table, s) of
StackEntry {ent = StackW addr, ...} =>
(* The stack pointer must be one more
than the highest value in use. *)
Int.max(addr+1, i)
| _ => i
val stackInUse =
(* This is the highest used stack location, but we may have a
handler above it so we can't necessarily reset the stack
to here. *)
revfoldIndDownTo(getInUse, 0, (! pstackptr) - 1, first)
(* Examine the saved stack to see those entries which have
been pushed in the saved state but not in the current
state. We need to reset the stack below this. If
there are no such entries we return the stack pointer
from the saved state. *)
fun getMinStack s i =
case (pstackEntry(table, s), saveStateEntry(save, s)) of
(StackEntry {ent = StackW _, ...}, _) => i
| (StackEntry _, StackEntry{ent = StackW addr, ...}) =>
(* We have an entry which has been pushed in
the saved state but not in the current state.
We have to set sp below this. *)
let
val minStack = Int.min(addr, i)
in
if minStack < stackInUse
(* Check that we don't have entries we're going
to have to push below those we've already
pushed. DCJM 25/1/01. *)
then raise InternalError "mergeState: unpushed entries"
else minStack
end
| _ => i;
val minStack =
revfoldIndDownTo(getMinStack, realStackPtr save, (! pstackptr) - 1, first)
(* We can reset the stack to the maximum of the entries
currently in use and those which need to be pushed or
the saved sp if there aren't any. *)
val maxStack = Int.max(stackInUse, minStack)
in
val resetCode =
if maxStack < ! realstackptr
then
let
val reset = resetStack (! realstackptr - maxStack)
in
realstackptr := maxStack;
reset
end
else []
end;
(* Second pass: push any entry which was pushed in the saved state. *)
(* We have a choice here about what to do when we have a value
which is in a register on one branch and on the stack in the
other. The original approach was to get both values back
into the register by reloading the register from the stack.
That worked well on the Sparc where there were plenty of
registers but less well on the i386. The advantage is that
if we have a branch which is small and frequently taken
we don't incur any cost.
e.g. "val x = ...; val y = if ... then 1 else f();"
The register containing x has to be pushed before we call
f but not before 1. If the then-branch is most frequently
taken we don't want to incur extra cost by pushing x on that
branch as well.
There are two disadvantages of trying to reload registers.
The first is that we may have to spill other registers as
we do it and end up thrashing around trying to get the
values into the correct registers. The other is that if
we have to push the registers anyway we've incurred extra
cost.
The current approach is to move values to the stack. *)
local
fun mustPush s =
case (pstackEntry(table, s), saveStateEntry(save, s)) of
(StackEntry {ent = StackW _, ...}, StackEntry {ent = StackW _, ...}) =>
false (* both on stack *)
| (StackEntry _, StackEntry {ent = StackW _, ...}) =>
true (* Saved value is on stack but current value isn't. *)
| _ => false
in
(* Pushing one entry may result in others being pushed if
they have a lower "destStack". *)
val pushCode = pushRegisters(table, allRegisters, mustPush, false, false)
end;
(* Third pass: Load any entry which is in a register in the saved state
and ensure that values in registers in the current state are moved
into the same register as before. *)
local
(* Put the table entry in a specified register and
make it a register entry. *)
fun loadToReg (s, prefReg: reg option, tabEnt, tabCache: regSet, tabUses, tabDest, tabLife) =
let
(* First get the register to put the value in. *)
val (dReg, getRegCode) =
case prefReg of
NONE => getAnyRegister table
| SOME prefReg =>
if (case tabEnt of Register(reg, _) => reg = prefReg | _ => false) orelse
inSet(prefReg, tabCache) (* Already there. *)
then (addRegUse (table, prefReg); (prefReg, [])) (* Already there. *)
else (prefReg, getRegister (table, prefReg))
(* Now load it. However, we have to be careful. We only call loadToReg
if an entry was in a register or a "Direct". But in the process of getting
the destination register we could have ended up pushing it onto the stack.
This can happen if the destination register was in use. We always
push unpushed entries with a lower "destStack" first so if the register we
want was in an entry with a higher "destStack" and this entry has a lower
"destStack" we could have pushed it. In that case we MUST leave it where
it is and NOT overwrite it. (See Test145.ML) *)
in
case pstackEntry(table, s) of
StackEntry {ent = StackW _, ...} => free regset dReg @ getRegCode
| _ =>
let
val loadCode = loadPstackEntry(table, s, dReg)
(* loadPstackEntry will have decremented the use count and may
have completely removed the entry. If it hasn't we need to
remove it before we replace it with the loaded register. *)
val freeCode =
case (pstackEntry(table, s)) of
NoStackEntry => []
| StackEntry _ => removeEntry(table, s, false)
in
setPstackEntry (table, s,
StackEntry{ent=Register(dReg, 0), cache=noRegisters, uses=tabUses,
destStack=tabDest, lifeTime=tabLife});
freeCode @ loadCode @ getRegCode
end
end
(*
val (dReg, dRegCode) =
case prefReg of
NONE =>
let
val (reg, regCode) = getAnyRegister table
in
(reg, loadPstackEntry(table, s, reg) @ regCode)
end
| SOME prefReg => (* Put it in the preferred register. If it's already there
we need to increment the use count because we will
decrement it in "removeEntry". *)
if (case tabEnt of Register(reg, _) => reg = prefReg | _ => false) orelse
inSet(prefReg, tabCache) (* Already there. *)
then (addRegUse (table, prefReg); (prefReg, [])) (* Already there. *)
else
let
val getRegCode = getRegister (table, prefReg)
in
(prefReg, loadPstackEntry(table, s, prefReg) @ getRegCode)
end
(* loadPstackEntry will have decremented the use count and may
have completely removed the entry. If it hasn't we need to
remove it before we replace it with the loaded register.
If we didn't call loadPstackEntry (because we already had
the value in the correct register) we have to call removeEntry
to decrement the register use count (we incremented it above)
and so restore it to the original value. *)
val freeCode =
case (pstackEntry(table, s)) of
NoStackEntry => []
| StackEntry _ => removeEntry(table, s, false);
in
setPstackEntry (table, s,
StackEntry{ent=Register(dReg, 0), cache=noRegisters, uses=tabUses,
destStack=tabDest, lifeTime=tabLife});
freeCode @ dRegCode
end (* loadToReg *)
*)
fun loadEntries(s, others) =
if s >= first
then
let
val thisItem =
case (pstackEntry(table, s), saveStateEntry(save, s)) of
(StackEntry {ent = StackW _, ...}, _) =>
(* If it's in the stack we don't try reloading it. *) []
| (StackEntry {ent = tabEnt, cache, uses, destStack, lifeTime, ...},
StackEntry {ent = Register(savedReg, _), ...}) =>
loadToReg(s, SOME savedReg, tabEnt, cache, uses, destStack, lifeTime)
| (StackEntry{ent = tabEnt as Direct{base = tabBase, offset = tabOffset},
cache = tabCache, uses, destStack, lifeTime, ...},
StackEntry{ent = Direct{base = saveBase, offset = saveOffset},
cache = savedCache, ...}) =>
(
if tabOffset <> saveOffset
then raise InternalError "merge: mismatched offsets"
else ();
(* If the base registers are different (which might
happen if the original reg was required) we need
to load this entry. We will probably also need
to do a reverse merge and load the corresponding
entry in the saved state. *)
if tabBase <> saveBase
then
let
val prefReg =
if regSetIntersect(savedCache, tabCache) <> noRegisters
then SOME(oneOf(regSetIntersect(savedCache, tabCache)))
else NONE (* No preference. *)
in
loadToReg (s, prefReg, tabEnt, tabCache, uses, destStack, lifeTime)
end
else []
)
| _ => []
in
loadEntries(s - 1, thisItem @ others)
end
else others
in
val loadRegCode = loadEntries (! pstackptr - 1, [])
end;
(* Final pass: Check to see if we need to do a "reverse merge" i.e.
operations that have to be done on the saved state before we
can finally merge. Also flush mismatched items from the cache. *)
local
fun checkEntries s l =
let
val entry =
case (pstackEntry(table, s), saveStateEntry(save, s)) of
(StackEntry {uses = tabUses, cache = tabCache, ent = tabEnt,
destStack = tabDest, lifeTime},
StackEntry {cache = saveCache, ent = saveEnt, ...}) =>
let
fun flushCache () =
let
(* Remove all entries from the current cache that are not also in
the saved cache. *)
val keep = regSetIntersect(tabCache, saveCache)
in
setPstackEntry (table, s,
StackEntry {ent=tabEnt, cache=keep, uses=tabUses,
destStack=tabDest, lifeTime=lifeTime});
freeSet(regset, regSetMinus(tabCache, keep))
end
in
case tabEnt of
Register(tabReg, _) =>
(
(* It's fine if the saved value was cached in that register. *)
if inSet(tabReg, saveCache)
then ()
else case saveEnt of
Register(saveReg, _) =>
(* We should have moved these into the same
register. It's possible it got moved again
as a result of loading something else. *)
if tabReg <> saveReg
then needOtherWay := true else ()
| StackW _ =>
(* We should have pushed it in the second pass. *)
raise InternalError "merge: unpushed entry"
| _ => (* Maybe a Direct entry which has to be
loaded in a reverse merge. *)
needOtherWay := true;
[]
)
| Literal _ =>
(
case saveEnt of
Literal _ => flushCache()
| _ => raise InternalError "Literal mismatch"
)
| CodeRef _ =>
(
case saveEnt of
CodeRef _ => flushCache()
| _ => raise InternalError "Coderef mismatch"
)
| Direct {base = tabBase, ...} =>
(
(* As with register entries these should have been
merged but might have diverged again. *)
if saveCache = tabCache (* TODO: Should this be an intersection? *)
then []
else
case saveEnt of
Direct{base=saveBase, ...} =>
if tabBase = saveBase
then flushCache() (* Ok but must flush cache. *)
else (needOtherWay := true; [])
| _ =>
raise InternalError "merge: mismatched Direct"
)
| StackW tabIndex =>
(
case saveEnt of
StackW saveIndex =>
(
(* Consistency check. *)
if tabIndex = saveIndex then ()
else raise InternalError "merge: mismatched stack entries";
flushCache()
)
| _ => (* Need to push this in a reverse merge. *)
(needOtherWay := true; [])
)
| Container _ =>
(
case saveEnt of
Container _ => []
| _ => raise InternalError "merge: mismatched Container"
)
end
| _ => []
in
entry @ l
end
in
val freeEntries2 = revfoldIndDownTo (checkEntries, [], ! pstackptr - 1, first)
end;
(* Last of all, try to align the stack. If the current stack pointer
is greater than the saved value we must have live values on the
stack and have to do a reverse merge. If the saved stack pointer
was greater than the current but otherwise everything is fine
we just push some dummy values rather than doing a reverse merge.
I may change this later. *)
val () =
if realStackPtr save < ! realstackptr
then needOtherWay := true
else ();
val alignCode =
if ! needOtherWay then []
else
let
fun addAlign others =
if realStackPtr save <= ! realstackptr
then others
else
let
val (pushIt, pushInstrs) = pushAnyEntryAtCurrentSP table
in
if pushIt then addAlign(pushInstrs @ others)
else (* Push a register just to align the stack. It would
be better to push a register that wasn't currently
saved but this will do for the moment. *)
(
realstackptr := ! realstackptr + 1;
addAlign pushToReserveSpace @ pushInstrs @ others
)
end
in
addAlign []
end
val (result, resultCode) = (* Push any result. *)
case currentResult of
MergeIndex _ => (MergeIndex(pushReg (table, topReg)), activeRegister topReg)
| NoMerge => (NoMerge, [])
in
if pstackTrace then printStack(table, "mergeState", []) else ();
(!needOtherWay, result,
resultCode @ alignCode @ freeEntries2 @ loadRegCode @ pushCode @ resetCode @
freeEntries1 @ freeEntries0 @ topRegCode)
end
(* Fix up a label after an unconditional branch. *)
fun fixup (lab, table as Ttab { branched, exited, pstackptr, ...}) : operation list =
if not (! branched) then raise InternalError "Not branched"
else if isEmptyLabel lab then []
else
let
val (_, code) = setState (state lab, table, NoMerge, ! pstackptr, false, false)
in
branched := false;
exited := false;
code @ forwardJumpLabel(labs lab)
end
local
(* Fix up a label. If this follows an unconditional branch we replace the
existing state with the saved state, otherwise we have to merge in. *)
fun mergeLab (lab, table as Ttab { branched, exited, ...}, currentResult: mergeResult, mark) =
if isEmptyLabel lab then (currentResult, [])
else if ! branched
then
let
val (newResult, newCode) =
setState (state lab, table, result lab, newMark mark, true, false)
in
branched := false;
exited := false;
(newResult, newCode @ forwardJumpLabel(labs lab))
end
else
let
val (otherWay, mergeRes, mergeCode) =
mergeState (state lab, result lab, table, currentResult, mark);
in (* We can generate code before we fix up the label, but if we
want to add code to the other arm we have to put in an
unconditional branch and make the changes after it. *)
if otherWay
then
let
(* Have to jump round to get the states the same. *)
val (lab1, lab1Code) = unconditionalBranch (mergeRes, table)
val (newResult, newCode) = setState (state lab, table, result lab, newMark mark, true, false)
val () = exited := false;
val () = branched := false;
val (mergeResult, otherMerge) = (* Merge the other way. *)
mergeLab (lab1, table, newResult, mark)
in
(mergeResult, otherMerge @
newCode @ forwardJumpLabel(labs lab) @ lab1Code @ mergeCode)
end
else (mergeRes, forwardJumpLabel(labs lab) @ mergeCode)
end
in
(* Fix up a label. If this follows an unconditional branch we replace the
existing state with the saved state, otherwise we have to merge in. *)
fun merge (lab, table, carry, mark) =
let
val resCode = mergeLab (lab, table, carry, mark);
in (* Reset the marker even if we have not actually done any merging. *)
unmarkStack(table, mark);
resCode
end;
(* Fix up a list of labels, using the same stack mark *)
fun mergeList (labs, table, carry, mark) =
let
fun mergeLabs (l, (carry, otherCode)) =
let
val (newCarry, code) = mergeLab (l, table, carry, mark)
in
(newCarry, code @ otherCode)
end
val resCode = List.foldl mergeLabs (carry, []) labs
in
unmarkStack(table, mark);
resCode
end;
end;
type handler = { lab: addrs ref, oldps: stackIndex };
(* Push the address of a handler. *)
fun pushAddress (table as Ttab{pstackptr, ...}, offset) =
let
(* This is just after a mark. *)
val (reg, regCode) = getAnyRegister table
val oldps = ! pstackptr
val labelRef = ref addrZero
(* Load the address of the handler into a register. *)
val loadCode = loadHandlerAddress{ handlerLab=labelRef, output=reg}
val regEntry = pushReg(table, reg)
(* Push it onto the stack at the specific offset. *)
val (pushedEntry, pushCode) = pushValueToStack (table, regEntry, offset)
in
(pushedEntry, {lab = labelRef, oldps = oldps}, pushCode @ loadCode @ regCode)
end
(* Fixup the address at the start of a handler. *)
fun fixupH ({lab, oldps}, oldsp, table as Ttab{branched, exited, pstackptr, realstackptr, ...}) =
let
val clear = clearCache table (* Don't know the registers here. *)
in
realstackptr := oldsp;
exited := false;
branched := false;
(* Remove any entries above the old pstack pointer. If the expression
whose exceptions we are handling contained static-link functions
there may be entries whose use-counts have not gone to zero. *)
startHandler{ handlerLab=lab} @
revfoldIndDownTo(fn s => fn l => removeEntry(table, s, false) @ l, [], ! pstackptr - 1, oldps) @
clear
end
(* Reload the handler "register" from an entry on the real stack. *)
fun reloadHandler(table, hIndex) =
let
val (reg, entry, loadCode) = loadEntryToSet(table, hIndex, generalRegisters, false)
val storeCode = storeToHandler reg
val clear = incrUseCount (table, entry, ~1)
val clearCode = removeOldItemsFromRealStack table
in
clearCode @ clear @ storeCode @ loadCode
end
(* Generate operations. Negotiates the arguments and results with the machine-specific
code-generator. This module knows where the arguments are as a result of previous operations
but the machine-dependent code-generator will have requirements depending on the available
instructions e.g. some or all the arguments may have to be in registers. *)
local
(* We have to re-evaluate this after each action because we may have
had to push values to the stack that were previously in registers. *)
fun argsAsSources(table as Ttab{realstackptr, ...}, args) =
let
fun argAsSource entry =
let
val {ent = stackEntry, cache, ...} = pstackRealEntry(table, entry);
val lastRef = lastReference table entry;
in
if cache <> noRegisters
then
(
(* This assumes that it is preferable to have the value in a
register. That's generally true but can be wrong if we have
pushed a floating point value to the stack, i.e. we've
allocated a heap cell and stored the FP value into it
then pushed the address of the cell. In that case we
might actually want the heap cell address.
ensureNoAllocation has to clear the cache to make
sure we use the address. *)
if lastRef
then ActInRegisterSet{modifiable=cache, readable=cache}
else ActInRegisterSet{modifiable=noRegisters, readable=cache}
)
else case stackEntry of
Register(reg, _) =>
if lastRef
then ActInRegisterSet{modifiable=singleton reg, readable=singleton reg}
else ActInRegisterSet{modifiable=noRegisters, readable=singleton reg}
| Literal m => ActLiteralSource m
| Direct{base, offset} => ActBaseOffset(base, offset)
| StackW index =>
ActBaseOffset(regStackPtr, (! realstackptr - 1 - index) * wordSize)
| Container{items, ...} =>
(
case pstackRealEntry(table, hd items) of
{ent = StackW index, ...} =>
ActStackAddress((! realstackptr - index -1) * wordSize)
| _ => raise InternalError "argAsSource: container entry is not on stack"
)
| CodeRef code => ActCodeRefSource code
end
in
List.map argAsSource args
end
fun performActions(start, finish, args, table as Ttab{pstackTrace, ...}) =
let
(* Process each action and then get the next action until we are finally finished. *)
fun untilDone(ActionDone{outReg, operation}, args, loadOps, lockedRegs) =
let
(* Finished. Unlock the registers, push the result and return. *)
(* If we have an output register increment its use-count first. *)
val () = case outReg of SOME reg => lockRegister(table, reg) | NONE => ()
val result = finish outReg (* Set the result. *)
val freeLock = List.foldl (fn(reg, l) => unlockRegister(table, reg) @ l) [] lockedRegs
val freeEntries = List.foldl (fn(arg, l) => incrUseCount (table, arg, ~1) @ l) [] args
val () = if pstackTrace then printStack(table, "performActions", operation @ loadOps) else ()
in
(result, freeEntries @ freeLock @ operation @ loadOps)
end
| untilDone(ActionLockRegister{argNo=_, reg, willOverwrite, next}, args, loadOps, lockedRegs) =
let (* Lock a register that's currently being used for an argument so that it won't
be reused for a different argument. *)
(* We only use ActionLockRegister if the entry has been detected as being in a
register but this may be because the entry is a Register or a cache entry. *)
val () = lockRegister (table, reg)
val clear =
if willOverwrite
then removeRegistersFromCache(table, listToSet [reg])
else []
in
untilDone(next(argsAsSources(table, args)), args, clear @ loadOps, reg :: lockedRegs)
end
| untilDone(ActionLoadArg{argNo, regSet, willOverwrite, next}, args, loadOps, lockedRegs) =
let
val arg = List.nth(args, argNo)
val (_, regLoc, loadCode) = loadEntryToSet (table, arg, regSet, willOverwrite)
(* Replace the argument by the location that refers to the register. *)
val repArgs = List.take(args, argNo) @ [regLoc] @ List.drop(args, argNo+1)
in
untilDone(next(argsAsSources(table, repArgs)), repArgs, loadCode @ loadOps, lockedRegs)
end
| untilDone(ActionGetWorkReg{regSet, setReg}, args, loadOps, lockedRegs) =
let
val (reg, regCode) = getRegisterInSet(table, regSet)
in
untilDone(setReg reg (argsAsSources(table, args)), args, regCode @ loadOps, reg :: lockedRegs)
end
in
untilDone(start (argsAsSources(table, args)), args, [], [])
end
in
(* Data operations that return a result in a register. *)
fun dataOp (args, instr, table, hint) =
let
(* Match up the result that the instruction has provided with what we
need for the context. Generally these will match already but we
have to consider the case where a result is being discarded or
where we want the unit result from an assignment function. *)
fun finalOp outReg =
case (outReg, hint) of
(NONE, NoResult) => noIndex
| (NONE, _) => (* Want a unit result. *) pushConst (table, toMachineWord 0)
| (SOME outReg, NoResult) => (* Discard *)
(unlockRegister(table, outReg); noIndex)
| (SOME outReg, _) => (* Want this result. *) pushReg (table, outReg)
in
performActions(negotiateArguments(instr, hint), finalOp, args, table)
end
(* Comparison and test operations that make a conditional branch. *)
and compareAndBranch(args, test, table) : labels * operation list =
let
val (startActions, destLabel) = negotiateTestArguments test
val ((), code) = performActions(startActions, fn _ => (), args, table)
in
(makeLabels(NoMerge, destLabel, saveState table), code)
end
(* Moves an expression into a newly created vector or into a container.
The offset is the number of bytes if this a byte store and the number of
words if this is word store. *)
and moveToVec (vecEntry, valueEntry, offset: int, table) : operation list =
let
val freeCode1 = incrUseCount (table, vecEntry, 1) (* This must be kept. *)
(* Turn this into an assignment operation. *)
val arguments = [vecEntry, pushConst(table, toMachineWord offset), valueEntry]
fun mapLiteral ent =
case pstackRealEntry(table, ent) of
{ent = Literal lit, ...} => SOME lit
| _ => NONE
in
case checkAndReduce(instrStoreW, arguments, mapLiteral) of
SOME(ins, args) =>
let
(* Decrement the use counts for entries that we're not using. *)
val freeCode2 = List.foldl(fn (a, l) => incrUseCount (table, a, 1) @ l) [] args
val freeCode3 = List.foldl(fn (a, l) => incrUseCount (table, a, ~1) @ l) [] arguments
in
#2(dataOp(args, ins, table, NoResult)) @ freeCode3 @ freeCode2 @ freeCode1
end
| NONE => raise InternalError "moveToVec: Not implemented"
end
end
(* Tail recursive jump to a function. *)
fun jumpToCode(codeAddr, isIndirect, transtable) =
let
val {ent, ...} = pstackRealEntry(transtable, codeAddr)
val code =
case ent of
Literal lit =>
jumpToFunction(if isIndirect then ConstantClosure lit else ConstantCode lit)
| CodeRef code =>
if isIndirect
then raise InternalError "jumpToCode: indirect call to codeRef"
else jumpToFunction(CodeFun code)
| Register(reg, _) => (* Should only be the closure register and only in
the indirect case. *)
if isIndirect andalso reg = regClosure
then jumpToFunction FullCall
else raise InternalError "jumpToCode: Not indirection through closure reg"
| _ => (* Anything else shouldn't happen. *)
raise InternalError "jumpToCode: Not a constant or register";
in
incrUseCount (transtable, codeAddr, ~1);
code
end;
(* Call a function. *)
fun callCode(codeAddr, isIndirect, transtable) =
let
val {ent, ...} = pstackRealEntry(transtable, codeAddr)
val code =
case ent of
Literal lit =>
callFunction(if isIndirect then ConstantClosure lit else ConstantCode lit)
| CodeRef code =>
if isIndirect
then raise InternalError "callCode: indirect call to codeRef"
else callFunction(CodeFun code)
| Register(reg, _) => (* Should only be the closure register and only in
the indirect case. *)
if isIndirect andalso reg = regClosure
then callFunction FullCall
else raise InternalError "callCode: Not indirection through closure reg"
| _ => (* Anything else shouldn't happen. *)
raise InternalError "callCode: Not a constant or register";
in
incrUseCount (transtable, codeAddr, ~1);
code
end;
datatype argdest = ArgToRegister of reg | ArgToStack of int | ArgDiscard
(* Get the destination for the argument of a loop instruction. This
finds out where the argument was loaded at the start of the loop
so that it can be put back there at the end. *)
fun getLoopDestinations(indices, transtable) =
let
fun getLoopDest entry =
if entry = noIndex
then ArgDiscard
else case pstackRealEntry(transtable, entry) of
{ent = StackW index, ...} => ArgToStack index
| {ent = Register(reg, _), ...} => ArgToRegister reg
| _ => raise InternalError "getLoopDest: wrong entry type"
(* Remove cache registers from loop variables. There was a bug where a
loop variable was not being reloaded when the corresponding stack
entry had been modified within the loop. *)
fun removeCache(entry, ops) =
if entry = noIndex
then ops
else clearCacheEntry(transtable, allRegisters, entry) @ ops
in
(map getLoopDest indices, List.foldl removeCache [] indices)
end
type loopPush = stackIndex
(* Compare the saved state at the start of the loop with the current state at the
point we're looping and see whether we need to modify the original state and
reprocess the loop. We look for differences in the cache and values that have
been pushed to the stack. *)
fun compareLoopStates(table as Ttab{ pstackptr, ...}, state, argIndexes) =
let
fun processTables(entry, cacheSet, pushList: loopPush list) =
if entry = ! pstackptr
then (cacheSet, pushList)
else if List.exists(fn e => entry = e) argIndexes
then (* It's an argument. These can be modified in the loop. *)
processTables(entry+1, cacheSet, pushList)
else case (pstackEntry(table, entry), saveStateEntry(state, entry)) of
(StackEntry{ent=tabEnt, cache=tabCache, ...}, StackEntry{ent=saveEnt, cache=saveCache, ...}) =>
let
(* Add any registers that were cached before but aren't now. It's ok if we have loaded
something in the loop and are currently caching it. *)
val newCacheSet =
regSetUnion(cacheSet, regSetMinus(saveCache, tabCache))
(* Put this on the push list if there are entries that were in registers or
were direct entries and are now on the stack or in registers.
TODO: If we just loaded an entry or moved it to a different register
we might be able to put it in that register rather than having to
push it to the stack. *)
val newPushList =
case (tabEnt, saveEnt) of
(StackW _, Register _) => entry :: pushList
| (StackW _, Direct _) => entry :: pushList
| (Register _, Direct _) => entry :: pushList
| (Register tabReg, Register saveReg) => (* Was moved to a different reg. *)
if tabReg = saveReg then pushList else entry :: pushList
| (StackW _, StackW _) => pushList
| (Literal _, Literal _) => pushList
| (CodeRef _, CodeRef _) => pushList
| (Direct _, Direct _) => pushList
| (Container _, Container _) => pushList
| _ => raise InternalError "Funny entries"
in
processTables(entry+1, newCacheSet, newPushList)
end
| (NoStackEntry, StackEntry{cache, ...}) =>
(
(* We could have entries that started out being cached but which were
subsquently cleared out. We add them here if only to indicate that
we need to reprocess the loop. *)
processTables(entry+1, regSetUnion(cacheSet, cache), pushList)
)
| _ => processTables(entry+1, cacheSet, pushList)
in
processTables(first, noRegisters, [])
end
(* Restore the state if we're reprocessing a loop. *)
fun restoreLoopState(table as Ttab{branched, exited, pstackptr, ...}, state, cacheSet, pushes: loopPush list) =
let
(* We're restoring the state to what it was before the loop and we don't generate
the previous loop code so we can simply discard the "free" instructions here. *)
val (_, _) = setState (state, table, NoMerge, ! pstackptr, false, true)
(* Remove entries from the cache if they've been changed in the loop. *)
val _ = removeFromCache(table, cacheSet, fn () => true);
(* Push items to the stack that are pushed in the loop. Don't move them into other
registers but allow them to be cached. *)
val pushes = pushRegisters(table, allRegisters, fn e => List.exists(fn e' => e=e') pushes, false, false);
val () = exited := false;
val () = branched := false;
in
pushes
end
(* These are exported as read-only. *)
fun maxstack(Ttab{maxstack=ref maxstackVal, ...}) = maxstackVal
fun realstackptr(Ttab{realstackptr=ref realstackVal, ...}) = realstackVal
fun haveExited(Ttab{exited=ref exitedVal, ...}) = exitedVal
(* This is called when we have either made a tail-recursive call,
returned from a function or raised an exception. *)
fun exiting(Ttab{branched, exited, ...}) =
(
branched := true;
exited := true
)
(* Put the arguments and closure/static link register onto the pseudo-stack.
If the lifeTime is zero the parameter/closure is never used and we don't need
to do anything. *)
fun parameterInRegister(reg, lifeTime, transtable as Ttab{pstackTrace, printStream, ...}) =
if lifeTime > 0
then
let
val code = getRegister (transtable, reg)
(* Code is only generated if we have to save something to get the register
and that shouldn't happen here. *)
val () = case code of [] => () | _ => raise InternalError "registerArg: non-empty code"
val addrInd = pushReg (transtable, reg)
val () = setLifetime(transtable, addrInd, lifeTime)
in
if pstackTrace
then
(
printStream "parameterInRegister: locn=";
printStream(Int.toString addrInd);
printStream " lifeTime=";
printStream(Int.toString lifeTime);
printStream "\n"
)
else ();
addrInd
end
else noIndex
(* Check that the only item on the stack after the block is the result.
We could have removed items and replaced them with something else.
We could have pushed values that were previously in registers.
This is purely validation and could be removed. *)
fun checkBlockResult(table as Ttab{pstackptr, marker, ...}, result) =
let
fun checkStack entry =
if entry = ! pstackptr
then ()
else
(
case pstackEntry(table, entry) of
NoStackEntry => ()
| StackEntry {uses = 0, ...} => () (* May be a cache entry. *)
| StackEntry _ =>
if (case result of NoMerge => true | MergeIndex m => m <> entry)
(* Comment out for the moment. Container entries from mutually
recursive stack closures will never get their use counts zero
so they and their stack entries will not be removed. *)
then () (*print "checkBlockResult: Entry not removed\n"*)
else ();
checkStack(entry+1)
)
in
checkStack(!marker)
end
datatype constEntry = ConstLit of machineWord | ConstCode of code | NotConst
fun isConstant(entry, table) =
case pstackRealEntry(table, entry) of
{ent = Literal l, ...} => ConstLit l
| {ent = CodeRef c, ...} => ConstCode c
| _ => NotConst
fun isRegister(entry, table) =
case pstackRealEntry(table, entry) of
{ent = Register(reg, _), ...} => SOME reg
| _ => NONE
fun isContainer(entry, table) =
case pstackRealEntry(table, entry) of
{ent = Container _, ...} => true
| _ => false
(* Create a closure on the stack. There may be entries in the list which have
not yet been set. *)
fun createStackClosure(table, entries) =
let
(* If any entries are containers they need to be added to the dependencies. *)
local
fun depFold (index, (code, deps)) =
if index = noIndex
then (code, deps)
else case pstackEntry(table, index) of
StackEntry { ent = Container _, ...} =>
(incrUseCount(table, index, 1) @ code, index :: deps)
| _ => (code, deps)
in
val (incCode, depends) = List.foldl depFold ([], []) entries
end
(* We must first make sure that the space we're going to allocate
hasn't been reserved for a register. *)
val alignCode = alignStack(table, [], NONE)
(* There's a potential problem if some of the entries are base+offset. We
need to load them into a register before we can push them but that
may involve pushing a register to get a free one. Make sure there
is at least one free register. *)
val (aReg, getRegCode) = getAnyRegister table
val freeCode = freeRegister(table, aReg)
(* Push all entries. There may be entries that refer to other
closures in the same mutually recursive set. Use a zero for
these and fill them in later. *)
fun pushEntry(index :: indices) =
let
(* Push the later entries first. *)
val (pushEntries, pushTail) = pushEntry indices
val sp = realstackptr table
val indexOrDummy =
if index = noIndex
then (* Recursive entry. *) pushConst (table, toMachineWord 0)
else index
val (pushedEntry, pushThis) = pushValueToStack (table, indexOrDummy, sp + 1)
in
(pushedEntry :: pushEntries, pushThis @ pushTail)
end
| pushEntry [] = ([], [])
val (fillEntries, fillCode) = pushEntry entries
val container =
pushPstack(table, Container{items=fillEntries, dependencies=depends}, "createStackClosure", fillCode)
in
(container, fillCode @ freeCode @ getRegCode @ alignCode @ incCode)
end
(* If we are creating mutually recursive closures on the stack we
will have to complete the loop by updating earlier closures
with the addresses of later ones. *)
(* TODO: This effectively prevents the closures from ever being
removed. If we have two mutually recursive closures then the
use-count of neither will ever go to zero. *)
fun setRecursiveClosureEntry(vecEntry, valueEntry, offset, table) =
let
(* This is a dependency of the container. *)
val stackent = pstackEntry(table, vecEntry)
(* Increment the use count so it's not thrown away in moveToVec but
instead add it to the dependencies of the container. *)
val incCode = incrUseCount(table, valueEntry, 1)
val _ =
case stackent of
StackEntry{ ent = Container{items, dependencies}, uses, cache, destStack, lifeTime} =>
setPstackEntry(table, vecEntry,
StackEntry{ ent=Container{items=items, dependencies = valueEntry:: dependencies},
uses=uses, cache=cache, destStack=destStack, lifeTime=lifeTime})
| _ => raise InternalError "setRecursiveClosureEntry: not container"
in
moveToVec(vecEntry, valueEntry, offset, table) @ incCode
end
structure Sharing =
struct
type code = code
and negotiation = negotiation
and reg = reg
and negotiateTests = negotiateTests
and addrs = addrs
and operation = operation
and machineWord = machineWord
and ttab = ttab
and savedState = savedState
and regSet = regSet
and stackIndex = stackIndex
and stackMark = stackMark
and labels = labels
and handler = handler
and regHint = regHint
and argdest = argdest
and loopPush = loopPush
and forwardLabel = forwardLabel
and backwardLabel = backwardLabel
and constEntry = constEntry
end
end;
|