1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
|
(*
Copyright David C. J. Matthews 2010, 2012
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(* Produce the low-level code for the X86. *)
functor X86LOWLEVEL (
structure X86CODE: X86CODESIG
structure X86OPTIMISE:
sig
type operation
type code
type operations = operation list
val optimise: code * operations -> operations
structure Sharing:
sig
type operation = operation
type code = code
end
end
sharing X86CODE.Sharing = X86OPTIMISE.Sharing
) : CODECONSSIG =
struct
open Address
open Misc
open X86CODE
open RegSet
infix 5 << <<+ <<- >> >>+ >>- ~>> ~>>+ ~>>- (* Shift operators *)
infix 3 andb orb xorb andbL orbL xorbL andb8 orb8 xorb8
val op orb = Word.orb
val op andb8 = Word8.andb
val wordToWord8 = Word8.fromLargeWord o Word.toLargeWord
and word8ToWord = Word.fromLargeWord o Word8.toLargeWord
val exp2_30 = 0x40000000
(* This actually checks that the value will fit in 31 bits because we normally have to
tag it later. *)
fun is31bitSigned a =
isShort a andalso let val aI = Word.toIntX(toShort a) in ~exp2_30 <= aI andalso aI < exp2_30 end
(* tag a short constant *)
fun tag c = 2 * c + 1;
(* shift a short constant, but don't set tag bit *)
fun semitag c = 2 * c;
(* Not real registers. *)
val regNone = NONE;
val regClosure = edx; (* Addr. of closure for fn. call goes here. *)
val regStackPtr = esp;
datatype argType = ArgGeneral | ArgFP
(* The first two general arguments are passed in eax and ebx (X86/32) or the
first five arguments (X86/64), with the first three floating point
args in fp0, fp1, fp2. The cost of pushing floating point values to the stack is high
so it's almost certainly better to use registers if possible. *)
fun argRegs l =
let
fun allocReg ([], _, _) = []
| allocReg (ArgGeneral :: l, genReg :: genRegs, fpRegs) =
SOME genReg :: allocReg(l, genRegs, fpRegs)
| allocReg (ArgFP :: l, genRegs, fpReg :: fpRegs) =
SOME fpReg :: allocReg(l, genRegs, fpRegs)
| allocReg (_ :: l, genRegs, fpRegs) = NONE :: allocReg(l, genRegs, fpRegs)
in
allocReg(l, if isX64 then [eax, ebx, r8, r9, r10] else [eax, ebx], [fp0, fp1, fp2])
end
fun resultReg ArgGeneral = eax (* Result is in eax *)
| resultReg ArgFP = fp0 (* Result is in fp0 *)
infix 7 ** infix 6 ++ -- infix 4 ins
val op ** = regSetIntersect and op ++ = regSetUnion and op -- = regSetMinus and op ins = inSet
fun allocStore{size, flags, output} =
if isX64 andalso flags <> 0w0
then
[StoreByteConstToMemory{toStore=flags, address=BaseOffset{offset= ~1, base=output, index=NoIndex}},
StoreConstToMemory{toStore=size, address=BaseOffset{offset= ~wordSize, base=output, index=NoIndex}},
AllocStore{size=size, output=output}]
else
let
val lengthWord = IntInf.orb(size, IntInf.<<(Word8.toInt flags, 0w24))
in
[StoreConstToMemory{toStore=lengthWord, address=BaseOffset{offset= ~wordSize, base=output, index=NoIndex}},
AllocStore{size=size, output=output}]
end
val allocationComplete = [StoreInitialised]
(* Code to load a floating point constant. *)
fun loadFPConstant source =
(* Real constants are the addresses of 64-bit quantities on the heap. *)
let
val realConst: real =
if isShort source
then (* This can occur when the higher level puts a dummy zero value
on after raising an exception. *)
if toShort source = 0w0 then 0.0 else raise InternalError "moveConstantToRegister: short real value"
else if getFlags(toAddress source) <> F_bytes
orelse length(toAddress source) <> 0w8 div Word.fromInt wordSize
then raise InternalError "moveConstantToRegister to fp reg: invalid source"
else RunCall.unsafeCast source
in
FPLoadFromConst realConst
end
datatype implement = ImplementGeneral | ImplementLiteral of machineWord
(*
| checkAndReduce(InstrMulA, args as [arg1, arg2], mapper) =
(
(* The only special case we recognise is multiplication by 2. *)
case List.map mapper args of
[_, SOME lit] =>
if isShort lit andalso toShort lit = 0w2
then SOME(InstrMulAConst2, [arg1])
else SOME(InstrMulA, args)
| [SOME lit, _] =>
if isShort lit andalso toShort lit = 0w2
then SOME(InstrMulAConst2, [arg2])
else SOME(InstrMulA, args)
| _ => SOME(InstrMulA, args)
)
*)
(* Argument negotiation. The idea is to get the arguments into the "best" locations
for the instruction. *)
datatype regHint = UseReg of regSet | NoHint | NoResult
(* These are almost the same as source values except that a value
may be in more than one register. *)
datatype actionSource =
ActLiteralSource of machineWord
| ActInRegisterSet of { modifiable: RegSet.regSet, readable: RegSet.regSet}
| ActBaseOffset of reg * int
| ActCodeRefSource of code (* The address of another function *)
| ActStackAddress of int (* Offset within the stack. *)
datatype argAction =
ActionDone of (* The output register if any and the final operation. *)
{ outReg: reg option, operation: operations }
| ActionLockRegister of (* Lock the register of an argument. *)
{ argNo: int, reg: reg, willOverwrite: bool, next: nextAction }
| ActionLoadArg of (* Load an argument into a register. *)
{ argNo: int, regSet: regSet, willOverwrite: bool, next: nextAction }
| ActionGetWorkReg of (* Get a work/result register. *)
{ regSet: regSet, setReg: reg -> nextAction }
withtype nextAction = actionSource list -> argAction
type negotiation = regHint -> nextAction
and negotiateTests = unit -> nextAction * label
type 'a instrs = 'a list * ('a -> machineWord option) -> (negotiation * 'a list) option
and 'a tests = 'a list * ('a -> machineWord option) -> (negotiateTests * 'a list) option
type forwardLabel = label
and backwardLabel = label
fun negotiateArguments(perform, pref) = perform pref
and negotiateTestArguments perform = perform()
(* See if the instruction is implemented but otherwise do nothing else. Nearly all
the operations are implemented on this architecture. *)
fun checkAndReduce(instr, args, f) = instr(args, f)
and checkAndReduceBranches(tests, args, f) = tests(args, f)
(* Exported versions of operations datatype *)
fun callFunction v = [CallFunction v]
and jumpToFunction v = [JumpToFunction v]
and returnFromFunction v = [ReturnFromFunction v]
and indexedCase { testReg, workReg, minCase, maxCase, isArbitrary, isExhaustive } =
let
val defaultLab as Labels{uses=defUses, ...} = mkLabel()
fun makeLab _ =
let
val lab as Labels{uses, ...} = mkLabel()
in
uses := 1;
lab
end
val indexLabels =
List.tabulate(Word.toInt(maxCase-minCase+0w1), makeLab)
val testCode =
if isExhaustive
then []
else
let
(* If this is an arbitrary precision int we need to check it's short
and go to the default if it isn't. *)
val testTag =
if isArbitrary
then
(
defUses := 3;
[ConditionalBranch{test=JE, predict=PredictNotTaken, label=defaultLab},
TestTagR testReg]
)
else (defUses := 2; [])
(* Range checks. *)
val range1 =
[ConditionalBranch{test=JB, predict=PredictNotTaken, label=defaultLab},
ArithRConst{ opc=CMP, output=testReg, source=tag(Word.toInt minCase) }]
val range2 =
[ConditionalBranch{test=JA, predict=PredictNotTaken, label=defaultLab},
ArithRConst{ opc=CMP, output=testReg, source=tag(Word.toInt maxCase) }]
in
range2 @ range1 @ testTag
end
val code = [IndexedCase{testReg=testReg, workReg=workReg, min=minCase, cases=indexLabels}] @ testCode
in
(code, indexLabels, defaultLab)
end
and forwardJumpLabel v = [JumpLabel v]
and jumpBack (v as Labels{uses, ...}) = (uses := !uses+1; [UncondBranch v])
(* We're only interested in when floating point registers are freed in order to
optimise the code. For the moment at least we don't use FFree here because
that actually generates code and the higher levels call freeRegister
after branches which puts them in the wrong position. *)
and activeRegister _ = []
and freeRegister r =
if r ins floatingPtRegisters then [FreeRegisters(singleton r)] else []
and moveRegisterToRegister(source as GenReg _, output as GenReg _) =
[MoveRR{source=source, output=output}]
| moveRegisterToRegister(source as GenReg _, output as FPReg _) =
[FPStoreToFPReg{output=output, andPop=true}, FPLoadFromGenReg source]
| moveRegisterToRegister(source as FPReg _, output as FPReg _) =
[FPStoreToFPReg{output=output, andPop=true}, FPLoadFromFPReg{source=source, lastRef=false}]
| moveRegisterToRegister(source as FPReg _, output as GenReg _) =
(* We need to allocate memory to contain the value. *)
[StoreInitialised,
FPStoreToMemory{ base=output, offset=0, andPop=true },
FPLoadFromFPReg{source=source, lastRef=false}]
@ allocStore{size=8 div wordSize, flags=F_bytes, output=output}
and moveMemoryToRegister(base, offset, output) =
(* Destination can only be a general register not a FP reg. *)
[LoadMemR{source=BaseOffset{base=base, offset=offset, index=NoIndex}, output=output}]
and moveConstantToRegister(lit, output as GenReg _) =
if isShort lit
then [MoveConstR{source=tag(Word.toIntX(toShort lit)), output=output}]
else [MoveLongConstR{source=lit, output=output}]
| moveConstantToRegister(source, output as FPReg _) =
(* Real constants are the addresses of 64-bit quantities on the heap. *)
[FPStoreToFPReg{output=output, andPop=true}, loadFPConstant source]
and moveCodeRefToRegister(code, output) = (* The address of another function *)
[LoadCodeRef{code=code, output=output}]
(* Set a register to an address in the stack. Just a reg-reg move if
offset is zero otherwise a load-address. *)
and moveStackAddress(0, output) =
[MoveRR{source=esp, output=output}]
| moveStackAddress(stackAddr, output) =
[LoadAddress{base=SOME esp, offset=stackAddr*wordSize, index=NoIndex, output=output}]
and storeRegisterToStack(reg, loc) =
if loc < 0 then raise InternalError "storeRegisterToStack: Negative stack offset"
else [StoreRegToMemory{toStore=reg, address=BaseOffset{offset=loc, base=esp, index=NoIndex}}]
and storeConstantToStack(lit, loc) =
let
val addr = BaseOffset{offset=loc, base=regStackPtr, index=NoIndex}
in
if loc < 0 then raise InternalError "storeRegisterToStack: Negative stack offset"
else if isShort lit
then [StoreConstToMemory{toStore=tag(Word.toIntX(toShort lit)), address=addr}]
else [StoreLongConstToMemory{toStore=lit, address=addr}]
end
fun pushRegisterToStack v = [PushR v]
and pushMemoryToStack(reg, offset) = [PushMem{base=reg, offset=offset}]
fun pushConstantToStack lit =
if is31bitSigned lit (* Push only allows a 32-bit literal *)
then [PushConst(tag(Word.toIntX(toShort lit)))]
else [PushLongConst lit]
fun resetStack 0 = []
| resetStack n =
if n < 0 then raise InternalError "resetStack: negative" else [ResetStack n]
val raiseException = [RaiseException]
val interruptCheck = [InterruptCheck]
val pushToReserveSpace = pushConstantToStack(toMachineWord 0)
fun uncondBranch() =
let
val label as Labels{uses, ...} = mkLabel()
in
uses := 1;
([UncondBranch label], label)
end
fun condBranch(test, predict) =
let
val label as Labels{uses, ...} = mkLabel()
in
uses := 1;
([ConditionalBranch{test=test, predict=predict, label=label}], label)
end
fun backJumpLabel() =
let
val loopLabel = mkLabel()
in
([JumpLabel loopLabel], loopLabel)
end
fun loadCurrentHandler output =
[LoadMemR{ source=BaseOffset{base=ebp, offset=memRegHandlerRegister, index=NoIndex}, output=output }]
and storeToHandler reg =
[StoreRegToMemory{
toStore=reg, address=BaseOffset{offset=memRegHandlerRegister, base=ebp, index=NoIndex}}]
val pushCurrentHandler = [PushMem{base=ebp, offset=memRegHandlerRegister}]
fun loadHandlerAddress v = [LoadHandlerAddress v]
(* Start of handler. Set the label, reload esp from the handler register, remove the handler
address and restore old handler. *)
and startHandler v =
storeToHandler ebx @
[ ResetStack 2, LoadMemR{ source=BaseOffset{base=esp, offset=wordSize, index=NoIndex}, output=ebx }]
@ loadCurrentHandler esp @ [StartHandler v]
(* Default action for all operations. *)
local
datatype source =
InRegister of reg
| LiteralSource of machineWord
| BaseOffsetSource of { base: reg, offset: int }
fun getArg(instr, regSet, outputReg, operands) args =
let
(* Take each NONE in the operand list and replace it with the appropriate operand. *)
fun nextArg([], [], _) =
(* All done *)
ActionDone{
outReg=outputReg,
operation=instr(List.map valOf operands, outputReg)
}
| nextArg(NONE :: otherOps, arg :: _, argNo) =
(
case arg of (* Look at the next argument *)
(ActInRegisterSet{ readable, ...}) =>
if regSetIntersect(readable, regSet) <> noRegisters
then
let
val aReg = oneOf(regSetIntersect(readable, regSet))
in
(* It's in a register. Lock it, record it and go on to the next arg. *)
ActionLockRegister{argNo=argNo, reg=aReg, willOverwrite=false,
next=getArg(instr, regSet, outputReg,
List.take(operands, argNo) @ (SOME(InRegister aReg) :: otherOps))}
end
else ActionLoadArg{argNo=argNo, regSet=regSet, willOverwrite=false,
(* Load into a register - won't modify it afterwards. Next action is
to look at this again after it's been loaded. *)
next=getArg(instr, regSet, outputReg, operands)}
| _ => (* If the value is not in a register we need to load it first to a
general register even if the eventual destination is a floating pt reg. *)
ActionLoadArg{argNo=argNo, regSet=generalRegisters, willOverwrite=false,
(* Load into a register - won't modify it afterwards. Next action is
to look at this again after it's been loaded. *)
next=getArg(instr, regSet, outputReg, operands)}
)
| nextArg(SOME _ :: otherOps, _ :: otherArgs, argNo) =
nextArg(otherOps, otherArgs, argNo+1)
| nextArg _ = raise Empty
in
nextArg(operands, args, 0)
end
(* Replace an entry in the operand list, which should be NONE, with SOME operand. *)
fun replaceOperand(n, repWith) (operands, results) =
case List.nth(operands, n) of
NONE =>
(List.take(operands, n) @ SOME repWith :: List.drop(operands, n+1), results)
| SOME _ => raise InternalError "replaceOperand: Operand already present"
fun generateInstruction genInstr (operands, results) _ =
ActionDone{ outReg=results, operation=genInstr(List.map valOf operands, results) }
(* If we have specified a preferred register set use one of those unless they're already in
use. *)
fun prefAsSet(UseReg regs, regSet, operands) =
let
fun inUse(SOME(InRegister r), s) = s ++ singleton r
| inUse(_, s) = s
val available = (regs ** regSet) -- List.foldl inUse noRegisters operands
in
if available <> noRegisters
then singleton (oneOf available) else regSet
end
| prefAsSet(_, regSet, _) = regSet
(* Get a register for the results. In some cases, e.g. loadWord/byte we may
already have a result register. *)
fun getResultRegister(regSet, pref: regHint, whenDone) (operands, NONE) _ =
ActionGetWorkReg{regSet=prefAsSet(pref, regSet, operands), (* Use the preferred destination. *)
setReg = fn reg => whenDone (operands, SOME reg)}
| getResultRegister(_, _, whenDone) operandAndResults args = whenDone operandAndResults args
fun getWorkingRegister(regSet, whenDone) opAndResults _ =
ActionGetWorkReg{regSet=regSet, setReg = fn reg => whenDone reg opAndResults}
(* Load the argument to one of a set of possible registers. *)
fun loadToOneOf(regSet, overWrite, argNo, whenDone) opAndResults args =
case List.nth(args, argNo) of
(ActInRegisterSet{ modifiable, readable, ...}) =>
let
val chooseFrom = if overWrite then modifiable else readable
in
if regSetIntersect(regSet, chooseFrom) <> noRegisters
then
let
val aReg = oneOf(regSetIntersect(chooseFrom, regSet))
in
ActionLockRegister{argNo=argNo, reg=aReg, willOverwrite=overWrite,
next=whenDone (replaceOperand(argNo, InRegister aReg) opAndResults)}
end
else (* Not in the right register - move it. *)
ActionLoadArg{argNo=argNo, regSet=regSet, willOverwrite=overWrite,
next=loadToOneOf(regSet, overWrite, argNo, whenDone) opAndResults}
end
| _=>
let
(* We can't load directly into a floating point register so if the set
does not include any general registers we first need to load the
value into a general register and then once it's in a
register move it over. Actually, we're not loading from the general
register to the floating point register: the "move" involves loading
the boxed value that contains the real number into the fp register. *)
val (loadSet, write) =
if regSetIntersect(regSet, generalRegisters) <> noRegisters
then (regSet, overWrite) else (generalRegisters, false)
in
ActionLoadArg{argNo=argNo, regSet=loadSet, willOverwrite=write,
next=loadToOneOf(regSet, overWrite, argNo, whenDone) opAndResults}
end
(* Load to a register (read-only) or, if it's a literal leave it. In
64-bit mode we load anything that won't fit in 32-bits when tagged. *)
fun loadToRegOrLiteral(regSet, argNo, whenDone) opAndResults args =
case List.nth(args, argNo) of
ActLiteralSource lit =>
if not isX64 orelse is31bitSigned lit
then whenDone (replaceOperand(argNo, LiteralSource lit) opAndResults) args
else loadToOneOf(regSet, false, argNo, whenDone) opAndResults args
| _ => loadToOneOf(regSet, false, argNo, whenDone) opAndResults args
(* Load a base address for a load or store operation. We can use a constant source but
only if the index is zero. The base address is the first argument and the index is the
second. We can't use a constant base address in 64-bit mode because inline addresses
aren't possible (the equivalent code means PC-relative). *)
fun loadBaseAddress (pref, whenDone) (opAndResults as (_, resReg))
(args as (ActLiteralSource base :: ActLiteralSource index :: _)) =
if isShort index andalso toShort index = 0w0 andalso not isX64
then whenDone (replaceOperand(0, LiteralSource base) opAndResults) args
else ActionLoadArg{argNo=0, regSet=generalRegisters,
willOverwrite=
case (pref, resReg) of (NoResult, _) => false | (_, SOME _) => false | _ => true,
next=loadBaseAddress(pref, whenDone) opAndResults}
| loadBaseAddress (pref, whenDone) (opAndResults as (ops, resReg))
(ActInRegisterSet{modifiable, readable} :: _) =
if modifiable ** generalRegisters <> noRegisters
then
let
val reg = oneOf(prefAsSet(pref, modifiable ** generalRegisters, ops))
(* We can use this for the result if we want one and don't already have one. *)
val (outReg, modify) =
case (resReg, pref) of
(_, NoResult) => (resReg, false)
| (SOME _, _) => (resReg, false)
| _ => (SOME reg, true)
in
ActionLockRegister { argNo=0, reg=reg, willOverwrite=modify,
next=whenDone (replaceOperand(0, InRegister reg) (ops, outReg)) }
end
else if readable ** generalRegisters <> noRegisters (* The base register isn't modifiable. *)
then
let
val reg = oneOf(prefAsSet(pref, readable ** generalRegisters, ops))
in
ActionLockRegister { argNo=0, reg=reg, willOverwrite=false,
next=whenDone (replaceOperand(0, InRegister reg) opAndResults) }
end
else ActionLoadArg { argNo=0, regSet=generalRegisters, willOverwrite=true,
next=loadBaseAddress (pref, whenDone) opAndResults }
| loadBaseAddress (pref, whenDone) (opAndResults as (_, resReg)) _ =
(* It's not a literal or in a register - load it. *)
ActionLoadArg{argNo=0, regSet=generalRegisters,
willOverwrite=
case (pref, resReg) of (NoResult, _) => false | (_, SOME _) => false | _ => true,
next=loadBaseAddress(pref, whenDone) opAndResults}
(* Process all the remaining arguments i.e. those with NONE in the argument list. *)
fun allArgs (eachArg, whenDone) (operands as (opers, _)) =
let
(* Take each NONE in the operand list and replace it with the appropriate operand. *)
fun nextArg([], _) = (* All done *) whenDone operands
| nextArg(NONE :: _, argNo) =
eachArg (argNo, fn operands => allArgs (eachArg, whenDone) operands) operands
| nextArg(SOME _ :: otherOps, argNo) = nextArg(otherOps, argNo+1)
in
nextArg(opers, 0)
end
(* This deals with any remaining operands and puts them into registers. It is the fall-back
in a lot of cases. *)
fun allInRegisters (regSet, whenDone) =
allArgs(fn (argNo, whenDone) => loadToOneOf(regSet, false, argNo, whenDone), whenDone)
fun allInRegsOrLiterals (regSet, whenDone) =
allArgs(fn (argNo, whenDone) => loadToRegOrLiteral(regSet, argNo, whenDone), whenDone)
(* Some cases require arguments in specific registers. *)
fun loadToSpecificReg(specReg, overWrite, argNo, whenDone) =
loadToOneOf(singleton specReg, overWrite, argNo, whenDone)
in
(* Default if we don't need a result register. *)
fun noresultNegotiator instr args =
allInRegisters(generalRegisters, generateInstruction instr) (List.map(fn _ => NONE) args, NONE) args
(* Default if we need a result which is different from the argument registers. *)
fun generalNegotiator(instr, pref) args =
getResultRegister(generalRegisters, pref,
allInRegisters(generalRegisters, generateInstruction instr)
) (List.map(fn _ => NONE) args, NONE) args
local (* Single argument case *)
fun loadDestArg(instr, pref) [ActInRegisterSet{ modifiable, ...}] =
if regSetIntersect(modifiable, generalRegisters) <> noRegisters
then
let
val aReg = oneOf(regSetIntersect(modifiable, generalRegisters))
in
ActionLockRegister{argNo=0, reg=aReg, willOverwrite=true,
next=getArg(instr, generalRegisters, SOME aReg, [SOME(InRegister aReg)])}
end
else ActionLoadArg{argNo=0, regSet=prefAsSet(pref, generalRegisters, []), willOverwrite=true,
next=loadDestArg(instr, pref)}
| loadDestArg(instr, pref) [_] = (* Not in a register. *)
ActionLoadArg{argNo=0, regSet=prefAsSet(pref, generalRegisters, []), willOverwrite=true,
next=loadDestArg(instr, pref)}
| loadDestArg _ _ = raise InternalError "loadDestArg: not a single argument"
in
val sharedSingleArgNegotiator = loadDestArg
end
local
fun genStoreWord([base, index, value], NONE) =
let
val address =
case (base, index) of
(InRegister address, InRegister indexR) =>
if wordSize = 4
then BaseOffset{offset= ~2, base=address, index=Index2 indexR} (* Index is tagged so double *)
else (*8*) BaseOffset{offset= ~4, base=address, index=Index4 indexR}
| (InRegister address, LiteralSource offset) =>
BaseOffset{offset=Word.toInt(toShort offset)*wordSize, base=address, index=NoIndex}
| (LiteralSource address, LiteralSource index) =>
if isShort index andalso toShort index = 0w0 andalso not isX64
then ConstantAddress address
else raise InternalError "genStoreWord"
| _ => raise InternalError "genStoreWord"
in
case value of
InRegister storeReg =>
[StoreRegToMemory{toStore=storeReg, address=address}]
| LiteralSource storeConst =>
if isShort storeConst
then [StoreConstToMemory{ toStore=tag(Word.toIntX(toShort storeConst)), address=address}]
else [StoreLongConstToMemory{ toStore=storeConst, address=address}]
| BaseOffsetSource _ => raise InternalError "genStoreWord"
end
| genStoreWord _ = raise InternalError "genStoreWord"
fun storeWordNegotiator _ =
(* The first argument, the address needs to be in a register even if
it's a constant. The others may be literals. Actually the first
argument could be a constant as well if the offset is zero. *)
loadBaseAddress(NoResult,
loadToRegOrLiteral(generalRegisters, 1,
loadToRegOrLiteral(generalRegisters, 2,
generateInstruction genStoreWord
))) ([NONE, NONE, NONE], NONE)
in
val instrStoreW: 'a instrs = fn(args, _) => SOME(storeWordNegotiator, args)
end
local
(* Remove the mutable bit from the flag byte. *)
fun genLockSeg([InRegister reg], NONE) = [LockMutableSegment reg]
| genLockSeg _ = raise InternalError "genLockSeg"
in
val instrLockSeg: 'a instrs = fn (args, _) => SOME(fn _ => noresultNegotiator genLockSeg, args)
end
local
(* Load word or load byte. Load word with a constant offset is very common since it's used
for refs. Load byte is more likely to be with an index and since we have to untag the
index it's better to reuse it for the result if we can. *)
fun loadIndex (pref, isWord, whenDone) (opAndResults as (ops, resReg))
(_ :: ActInRegisterSet{modifiable, readable} ::_) =
if modifiable ** generalRegisters <> noRegisters
then (* It's in a modifiable register. *)
let
val reg = oneOf(prefAsSet(pref, modifiable ** generalRegisters, ops))
(* We can use this for the result if we don't already have one. *)
val outReg = case resReg of NONE => SOME reg | resReg => resReg
in
ActionLockRegister { argNo=1, reg=reg, willOverwrite=true,
next=whenDone (replaceOperand(1, InRegister reg) (ops, outReg)) }
end
else if isWord andalso readable ** generalRegisters <> noRegisters
(* We don't have a writable index register. If this is a word operation we
can use a readable one but if it's a byte operation we need to use a
writable one. *)
then
let
val reg = oneOf(readable ** generalRegisters)
in
ActionLockRegister { argNo=1, reg=reg, willOverwrite=false,
next=whenDone (replaceOperand(1, InRegister reg) opAndResults) }
end
else ActionLoadArg { argNo=1, regSet=generalRegisters, willOverwrite=true,
next=loadIndex (pref, isWord, whenDone) opAndResults }
| loadIndex (_, _, whenDone) opAndResults (args as [_, ActLiteralSource offset]) =
(* Constant index - record it and go on to the base register *)
whenDone (replaceOperand(1, LiteralSource offset) opAndResults) args
| loadIndex (pref, isWord, whenDone) opAndResults _ =
(* Not in a register or a literal. Load it. *)
ActionLoadArg { argNo=1, regSet=generalRegisters, willOverwrite=true,
next=loadIndex (pref, isWord, whenDone) opAndResults }
fun genLoadInstr isWord ([LiteralSource base, LiteralSource offset], SOME destReg) =
if isShort offset andalso toShort offset = 0w0 andalso not isX64
then [(if isWord then LoadMemR else LoadByteR)
{source=ConstantAddress base, output=destReg}]
else raise InternalError "genLoadWord: not zero"
| genLoadInstr true (*Word*) ([InRegister base, LiteralSource offset], SOME destReg) =
[LoadMemR{
source=BaseOffset{base=base, offset=Word.toInt(toShort offset)*wordSize, index=NoIndex},
output=destReg}]
| genLoadInstr false (*Byte*) ([InRegister base, LiteralSource offset], SOME destReg) =
(* Byte values need to be tagged. The offset is a byte offset. *)
[TagValue{source=destReg, output=destReg},
LoadByteR{source=BaseOffset{base=base, offset=Word.toInt(toShort offset), index=NoIndex},
output=destReg}]
| genLoadInstr true (*Word*) ([InRegister base, InRegister indexR], SOME destReg) =
let
val (offset, scale) =
(* The index is tagged: Multiply by the wordSize/2 and subtract the scaled tag. *)
if wordSize = 4
then (~2, Index2 indexR)
else (~4, Index4 indexR)
in
[LoadMemR{source=BaseOffset{base=base, offset=offset, index=scale}, output=destReg}]
end
| genLoadInstr false (*Byte*) ([InRegister base, InRegister indexR], SOME destReg) =
(* The index needs to be made safe unless it's actually the result. *)
let
val safeIndex =
if indexR = destReg then [] else [MakeSafe indexR] (* Retag the index. *)
in
safeIndex @
[TagValue{source=destReg, output=destReg},
LoadByteR{source=BaseOffset{base=base, offset=0, index=Index1 indexR}, output=destReg},
ShiftConstant{shiftType=SRL, output=indexR, shift=0w1} (* Untag. *)]
end
| genLoadInstr _ _ = raise InternalError "genLoadInstr"
fun genLoadWord isWord pref =
loadIndex(pref, isWord,
loadBaseAddress(pref,
getResultRegister(generalRegisters, pref,
generateInstruction(genLoadInstr isWord))
)
) ([NONE, NONE], NONE)
in
fun instrLoad(args, _) = SOME(genLoadWord true, args)
and instrLoadB(args, _) = SOME(genLoadWord false, args)
end
local
(* The allocStore operation takes three arguments: a number of words to allocate,
the flags byte to go into the newly allocated store, and the initial value
for each of the words of the memory. We implement some common cases here
and leave the rest to the allocator in the RTS. *)
fun genFixedAlloc(length, flags) ([InRegister initReg], SOME output) =
let
fun initialiser n =
StoreRegToMemory{
toStore=initReg, address=BaseOffset{offset=n * wordSize, base=output, index=NoIndex}}
in
[StoreInitialised] @
List.tabulate(length, initialiser) @
allocStore{size=length, flags=flags, output=output}
end
| genFixedAlloc _ _ = raise InternalError "genFixedAlloc"
(* Allocate memory whose length isn't known at compile time and initialise it. *)
fun genVarAlloc flags ([InRegister _(*ecx*), InRegister _(*eax*)], SOME _ (* edi*)) =
let
val initialiser =
if (flags andb8 F_bytes) <> 0w0
then (* Initialise it as bytes. *)
[MakeSafe eax, RepeatOperation STOSB,
(* Untag the initialiser in eax. *)
ShiftConstant{ shiftType=SRL, output=eax, shift=0w1},
(* Convert the length, which is in words, to bytes. *)
ShiftConstant{shiftType=SLL, output=ecx,
shift=if wordSize=4 then 0w2 else 0w3}]
else [RepeatOperation STOSL]
in
[PopR edi, StoreInitialised] @ (* Pop the saved edi; initialisation done *)
initialiser @
[
(* Now initialise the memory. *)
(* Save edi before we start. *)
PushR edi,
(* Set the flags. At least the mutable bit should be set. *)
StoreByteConstToMemory{
toStore=flags,
address=BaseOffset{offset= ~1, base=edi, index=NoIndex}},
(* Store it as the length field. *)
StoreRegToMemory{toStore=ecx,
address=BaseOffset{base=edi, offset= ~wordSize, index=NoIndex}},
(* It's now safe to untag ecx *)
ShiftConstant{ shiftType=SRL, output=ecx, shift=0w1},
(* Allocate the memory *)
AllocStoreVariable edi,
(* Compute the number of bytes into edi. The length in ecx is the number
of words as a tagged value so we need to multiply it, add wordSize to
include one word for the header then subtract the, multiplied, tag. *)
if wordSize = 4
then LoadAddress{output=edi, base=SOME ecx, offset=wordSize-2, index=Index1 ecx }
else LoadAddress{output=edi, base=NONE, offset=wordSize-4, index=Index4 ecx }
]
end
| genVarAlloc _ _ = raise InternalError "genVarAlloc"
in
(* Decide if we can implement it. *)
fun instrAllocStore([lengthArg, flagArg, initValArg], mapper) =
let
(* This is used to allocate memory for refs, arrays, strings etc. The first
arg is the length, the second the flags byte and the third the initial
value used to initialise each word, for word segments, or byte for
byte segs. *)
val len = (* We only use the fixed length version for small segments of words
(possibly with the noOverwrite/weak flag as well). *)
case (mapper lengthArg, mapper flagArg) of
(SOME constLength, SOME constFlags) =>
if toShort constLength < 0w5 andalso
(wordToWord8(toShort constFlags) andb8 0w3) = F_words
then SOME(toShort constLength)
else NONE
| _ => NONE
in
case mapper flagArg of
NONE => NONE (* Non-constant flags: leave it to the RTS. *)
| SOME constFlags =>
let
val flags = wordToWord8(toShort constFlags)
fun allocStoreFixedLength(length, flags) prefs =
(* Get a result reg and put the initial value in a reg. *)
generalNegotiator(genFixedAlloc(length, flags), prefs)
fun allocStoreVarLength flags pref =
(* When allocating vectors/arrays we have to initialise the store and the easiest way to
do that is to put the length in ecx, the initialiser in eax and get the result in edi. *)
loadToSpecificReg(ecx, true, 0,
(* We don't actually need this to be modifiable if we're initialising with words. *)
loadToSpecificReg(eax, true, 1,
getResultRegister(singleton edi, pref, generateInstruction(genVarAlloc flags))))
([NONE, NONE], NONE)
in
case len of
SOME len => SOME(allocStoreFixedLength(Word.toInt len, flags), [initValArg])
| NONE => SOME(allocStoreVarLength flags, [lengthArg, initValArg])
end
end
| instrAllocStore _ = raise InternalError "instrAllocStore: Wrong number of args"
end
local
fun makeTest(InRegister reg) = TestTagR reg
| makeTest(BaseOffsetSource{base, offset}) = TestByteMem{base=base, offset=offset,bits=0w1}
| makeTest _ = raise InternalError "makeTest"
(* Test tags for the arguments and call the emulator if either is long. Unless the
operation is just a comparison check for overflow and jump to the emulator
if the operation overflowed. Rather than try to follow the static pattern
we just generate the shortest code. *)
fun testTags checkOverflow (operations, tag1, tag2) =
let
fun checkTag(LiteralSource l) =
if isShort l then ([], [])
else (* Long constant - shouldn't be code-generating. *)
raise InternalError "testTags: long constant"
| checkTag tag =
let
val (code, lab) = condBranch(JE, PredictNotTaken)
in
(code @ [makeTest tag], forwardJumpLabel lab)
end
val (tag1Check, tag1Lab) = checkTag tag1
and (tag2Check, tag2Lab) = checkTag tag2
val (overflowCheck, overflowLab) =
if checkOverflow
then
let
val (code2, lab2) = condBranch(JO, PredictNotTaken)
in
(code2, (* Emulate if overflow. *) forwardJumpLabel lab2)
end
else ([], [])
val (skipEmulatorCode, skipEmulatorLabel) = uncondBranch()
val (backToInstrCode, backToInstrLabel) = backJumpLabel()
in
forwardJumpLabel skipEmulatorLabel @ jumpBack backToInstrLabel @ [CallRTS memRegArbEmulation] @
overflowLab @ tag2Lab @ tag1Lab @ skipEmulatorCode @ (* Skip the emulator call. *)
overflowCheck @ operations (* The actual instruction *) @
backToInstrCode @ tag2Check @ tag1Check
end
in
val testTagsForArithmetic = testTags true
fun reverseTestOp JE = JE
| reverseTestOp JNE = JNE
| reverseTestOp JA = JB
| reverseTestOp JB = JA
| reverseTestOp JNA = JNB
| reverseTestOp JNB = JNA
| reverseTestOp JL = JG
| reverseTestOp JG = JL
| reverseTestOp JLE = JGE
| reverseTestOp JGE = JLE
| reverseTestOp _ = raise InternalError "reverseTestOp: unknown branch"
(* If we're comparing a value with a short constant we don't need to
emulate the comparison even if the value is actually long. We just
need to look at the sign to decide if it's less or greater because
every positive long form value is greater than any short value and
every negative long form value is less than any short value. *)
fun testTagsForComparison (shortTestAndJump, tag1, LiteralSource tag2Const, opc, destLab) =
let
(* The constant should always be short. *)
val _ = isShort tag2Const orelse raise InternalError "testTagsForComparison: long"
val (jumpOnLongCode, longLab) = condBranch(JE, PredictNotTaken)
val (skipLongCode, skipLongLabel) = uncondBranch()
val tag1Reg =
case tag1 of
InRegister reg => reg
| _ => raise InternalError "testTagsForComparison: not reg"
(* If we're jumping on greater (equal) we jump if the value is
positive (sign bit clear). If less (equal) we jump if it's
negative. We need to increment the reference count for the
destination label. *)
val Labels{uses, ...} = destLab
val () = uses := !uses + 1
val skipOnSign =
case opc of
JG => ConditionalBranch{test=JE, predict=PredictNeutral, label=destLab}
| JGE => ConditionalBranch{test=JE, predict=PredictNeutral, label=destLab}
| JL => ConditionalBranch{test=JNE, predict=PredictNeutral, label=destLab}
| JLE => ConditionalBranch{test=JNE, predict=PredictNeutral, label=destLab}
| _ => raise InternalError "testTagsForComparison: opc"
in
forwardJumpLabel skipLongLabel @
[skipOnSign, TestByteMem{base=tag1Reg, offset= ~1, bits=word8ToWord F_negative}] @
forwardJumpLabel longLab @ skipLongCode @ shortTestAndJump @ jumpOnLongCode @ [makeTest tag1]
end
| testTagsForComparison (operations, tag1 as LiteralSource _, tag2, opc, destLab) =
(* First argument is the constant - reverse the arguments and the test. *)
testTagsForComparison(operations, tag2, tag1, reverseTestOp opc, destLab)
| testTagsForComparison (operations, tag1, tag2, _, _) =
testTags false (operations, tag1, tag2)
(* Because short integers are normalised we can skip the tag tests
completely when comparing short constants for equality. Otherwise we
only need emulation if both arguments are long. *)
fun eqTestTags(operations, LiteralSource l1, _, _, _) =
if isShort l1 then operations else operations @ [CallRTS memRegArbEmulation]
| eqTestTags(operations, _, LiteralSource l2, _, _) =
if isShort l2 then operations else operations @ [CallRTS memRegArbEmulation]
| eqTestTags(operations, tag1, tag2, _, _) =
let
val (code1, lab1) = condBranch(JNE, PredictTaken)
and (code2, lab2) = condBranch(JNE, PredictTaken)
in
operations @ forwardJumpLabel lab1 @ forwardJumpLabel lab2 @
[CallRTS memRegArbEmulation] @ code2 @ [makeTest tag2] @ code1 @ [makeTest tag1]
end
fun noTagTest (operations, _, _) = operations (* When we don't need a test. *)
end
local
(* Various instructions also affect the tag and that has to be reinstated after
the operation. *)
fun postTagAdjust(ADD, _) = [] (* Dealt with before the operation. *)
| postTagAdjust(SUB, reg) = [ArithRConst{opc=ADD, source=1, output=reg}]
| postTagAdjust(OR, _) = [] (* Doesn't affect the tag. *)
| postTagAdjust(AND, _) = [] (* Doesn't affect the tag. *)
| postTagAdjust(XOR, reg) = [ArithRConst{opc=ADD, source=1, output=reg}]
| postTagAdjust(CMP, _) = raise InternalError "postTagAdjust"
fun preTagAdjust(ADD, reg) = [PreAddDetag reg]
| preTagAdjust _ = []
(* TODO: If we have the same argument on both sides (e.g. a+a) this seems to
force them into different registers. That also involves a double tag test. *)
(* First select an output register. Unless this is a SUB instruction we can choose
a modifiable register from either argument. *)
fun wordSelectDest (opT as (opcode, _)) pref [ActInRegisterSet{ modifiable=mod1, ... },
ActInRegisterSet{ modifiable=mod2, ...}] =
let
(* Assume that these are in general registers because of the type.
If this is subtraction we can only use a register from the
first argument. *)
val options = case opcode of SUB => mod1 | _ => mod1 ++ mod2
in
if options = noRegisters (* No suitable modifiable register is available. *)
then ActionLoadArg{ argNo=0, regSet=generalRegisters, willOverwrite=true,
next = wordSelectDest opT pref }
else (* There is one available. Pick a prefered reg is possible otherwise any. *)
let
val choice = oneOf(prefAsSet(pref, options, []))
in
if choice ins mod1
then ActionLockRegister { argNo=0, reg=choice, willOverwrite=true,
next=wordSelectedLeft (opT, choice) }
else ActionLockRegister { argNo=1, reg=choice, willOverwrite=true,
next=wordSelectedRight (opT, choice) }
end
end
| wordSelectDest opT pref [ActInRegisterSet{ modifiable, ... }, _] =
if modifiable = noRegisters (* No suitable modifiable register is available. *)
then ActionLoadArg{ argNo=0, regSet=generalRegisters, willOverwrite=true,
next = wordSelectDest opT pref }
else (* There is one available. Pick a prefered reg is possible otherwise any. *)
let
val choice = oneOf(prefAsSet(pref, modifiable, []))
in
ActionLockRegister { argNo=0, reg=choice, willOverwrite=true,
next=wordSelectedLeft(opT, choice) }
end
| wordSelectDest (opT as (SUB, _)) pref _ = (* Not reversible - load first arg. *)
ActionLoadArg{ argNo=0, regSet=generalRegisters, willOverwrite=true,
next = wordSelectDest opT pref }
| wordSelectDest opT pref [_, ActInRegisterSet{ modifiable, ... }] =
if modifiable = noRegisters (* No suitable modifiable register is available. *)
then ActionLoadArg{ argNo=0, regSet=generalRegisters, willOverwrite=true,
next = wordSelectDest opT pref }
else (* There is one available. Pick a prefered reg is possible otherwise any. *)
let
val choice = oneOf(prefAsSet(pref, modifiable, []))
in
ActionLockRegister { argNo=1, reg=choice, willOverwrite=true,
next=wordSelectedRight(opT, choice) }
end
| wordSelectDest opT pref _ = (* Neither in reg - load first arg. *)
ActionLoadArg{ argNo=0, regSet=generalRegisters, willOverwrite=true,
next = wordSelectDest opT pref }
(* We have selected a result register. Get the other argument. *)
and wordSelectedLeft ((opcode, tagTest), result) [_, ActInRegisterSet{ readable, ...}] =
let
val argReg = oneOf readable
in
ActionDone{ outReg=SOME result,
operation=postTagAdjust(opcode, result) @
tagTest(ArithRR{opc=opcode, source=argReg, output=result} ::
preTagAdjust(opcode, result),
InRegister result, InRegister argReg)}
end
| wordSelectedLeft (opRes as ((opcode, tagTest), result)) [_, ActLiteralSource lit] =
if isShort lit
then
let
val intArg = Word.toIntX(toShort lit)
val source =
case opcode of
ADD => semitag intArg (* Shift but don't tag. *)
| SUB => semitag intArg
| OR => tag intArg (* Could use either tag or semitag *)
| AND => tag intArg (* Must include the tag bit *)
| XOR => semitag intArg (* Leave the tag bit unchanged. *)
| _ => raise InternalError "addWordArg: opcode"
in
ActionDone{ outReg=SOME result,
operation=if intArg = 0 andalso opcode <> AND then [] (* Discard *)
else tagTest([ArithRConst{opc=opcode, source=source, output=result}],
InRegister result, LiteralSource lit)}
end
else (* Long literal - put it into a register. We'd have been better not code-generating
this at all. *)
ActionLoadArg{ argNo=1, regSet=generalRegisters, willOverwrite=false,
next = wordSelectedLeft opRes }
| wordSelectedLeft ((opcode, tagTest), result) [_, ActBaseOffset(base, offset)] =
ActionDone{ outReg=SOME result,
operation=postTagAdjust(opcode, result) @
tagTest(ArithRMem{opc=opcode, base=base, offset=offset, output=result} ::
preTagAdjust(opcode, result),
InRegister result, BaseOffsetSource{base=base, offset=offset})}
| wordSelectedLeft _ _ = raise InternalError "addWordArg"
and wordSelectedRight opRes (args as [ActLiteralSource lit, _]) =
if isShort lit then wordSelectedLeft opRes (List.rev args)
else (* Long literal - put it into a register. *)
ActionLoadArg{ argNo=0, regSet=generalRegisters, willOverwrite=false,
next = wordSelectedRight opRes }
| wordSelectedRight opRes args = wordSelectedLeft opRes (List.rev args)
(* If either of the arguments are long constants we don't code-generate and
instead fall back to the RTS. This is likely to be more efficient. *)
fun checkShort (opc, args, mapper) =
if List.exists(fn a => case mapper a of SOME n => not(isShort n) | NONE => false) args
then NONE
else SOME(wordSelectDest(opc, testTagsForArithmetic), args)
in
val instrAddA = fn (args, mapper) => checkShort(ADD, args, mapper)
and instrSubA = fn (args, mapper) => checkShort(SUB, args, mapper)
and instrAddW = fn (args, _) => SOME(wordSelectDest(ADD, noTagTest), args)
and instrSubW = fn (args, _) => SOME(wordSelectDest(SUB, noTagTest), args)
and instrOrW = fn (args, _) => SOME(wordSelectDest(OR, noTagTest), args)
and instrAndW = fn (args, _) => SOME(wordSelectDest(AND, noTagTest), args)
and instrXorW = fn (args, _) => SOME(wordSelectDest(XOR, noTagTest), args)
end
local
(* If the source or the index are in registers they have to be untagged first and
then retagged afterwards. *)
fun genStoreByte([base, index, toStore], NONE) =
let
val (untagIndex, retagIndex) =
case index of
InRegister indexReg =>
([ShiftConstant{shiftType=SRL, output=indexReg, shift=0w1}],
[TagValue{source=indexReg, output=indexReg }])
| _ => ([], [])
val address =
case (base, index) of
(InRegister address, InRegister index) =>
BaseOffset{offset=0, base=address, index=Index1 index}
| (InRegister address, LiteralSource offset) =>
BaseOffset{offset=Word.toInt(toShort offset), base=address, index=NoIndex }
| (LiteralSource address, LiteralSource offset) =>
if isShort offset andalso toShort offset = 0w0 andalso not isX64
then ConstantAddress address
else raise InternalError "genStoreByte"
| _ => raise InternalError "genStoreByte"
in
case toStore of
InRegister toStore =>
retagIndex @
[
TagValue{source=toStore, output=toStore },
StoreByteRegToMemory{ toStore=toStore, address=address },
ShiftConstant{shiftType=SRL, output=toStore, shift=0w1}(* Untag value to store *)
] @ untagIndex
| LiteralSource toStore =>
retagIndex @
[ StoreByteConstToMemory{ toStore=wordToWord8(toShort toStore), address=address}] @
untagIndex
| _ => raise InternalError "genStoreByte"
end
| genStoreByte _ = raise InternalError "genStoreByte"
(* We store from the low order byte of a register so we want the value in one of
the registers that has a low-byte form i.e. AL. BL, CL, DL. *)
fun storeByte _ =
loadToRegOrLiteral(listToSet[eax, ebx, ecx, edx], 2,
loadBaseAddress(NoResult,
loadToRegOrLiteral(generalRegisters, 1,
generateInstruction genStoreByte))) ([NONE, NONE, NONE], NONE)
in
fun instrStoreB(args, _) = SOME(storeByte, args)
end
local
(* Load the flags byte from a memory segment. The result must be tagged. *)
(* We could reuse the base register for the output. *)
fun genVecFlags([InRegister baseReg], SOME outReg) =
[TagValue{source=outReg, output=outReg},
LoadByteR{source=BaseOffset{base=baseReg, offset= ~1, index=NoIndex}, output=outReg}]
| genVecFlags _ = raise InternalError "genVecFlags"
in
fun instrVecflags(args, _) = SOME(fn pref => generalNegotiator(genVecFlags, pref), args)
end
local
(* Get the first word of a long integer. Used when converting to "word". *)
fun genFirstLong([InRegister baseReg], SOME outReg) =
let
val (code, lab) = condBranch(JE, PredictNeutral)
in
[TagValue{source=outReg, output=outReg} ] @ forwardJumpLabel lab @
[Group3Ops(outReg, NEG)] @ (* Negate if the sign was set. *)
code @
[
(* Test the the sign bit in the header. *)
TestByteMem{offset= ~1, base=baseReg, bits=0w16 },
LoadMemR{source=BaseOffset{base=baseReg, offset=0, index=NoIndex}, output=outReg}
]
end
| genFirstLong _ = raise InternalError "genFirstLong"
in
(* This is another case where we could reuse the argument for the result. *)
fun instrGetFirstLong(args, _) = SOME(fn pref => generalNegotiator(genFirstLong, pref), args)
end
local (* Get the length of a string. *)
fun genStringLength([InRegister rs], SOME rd) =
let
val (condBr, lab1) = condBranch(JE, PredictTaken(*More likely long*))
and (uncondBr, lab2) = uncondBranch()
in
forwardJumpLabel lab2 @
[
TagValue{source=rd, output=rd},
LoadMemR{source=BaseOffset{base=rs, offset=0, index=NoIndex}, output=rd} (* It's an address. *)
] @ forwardJumpLabel lab1 @ uncondBr @
[MoveConstR{source=tag 1, output=rd}] @ (* It's a byte: result is 1 *) condBr @
[TestTagR rs (* Is it a single byte? *)]
end
| genStringLength _ = raise InternalError "genStringLength"
(* We could use the same register for the result and the argument. For the
moment we force it to use different regs. *)
in
fun instrStringLength(args, _) =
SOME(fn pref => generalNegotiator(genStringLength, pref), args)
end
local (* Set the length word of a string. *)
fun genSetStringStringLength ([InRegister base, InRegister length], NONE) =
[
TagValue{ source=length, output=length }, (* Retag it *)
StoreRegToMemory{ toStore=length, address=BaseOffset{offset=0, base=base, index=NoIndex }},
ShiftConstant{shiftType=SRL, output=length, shift=0w1 } (* Untag it *)
]
| genSetStringStringLength _ = raise InternalError "genSetStringStringLength"
in
fun instrSetStringLength(args, _) = SOME(fn _ => noresultNegotiator genSetStringStringLength, args)
end
local
(* Shift operations: shifting by a variable amount requires ecx.
Some special cases of multiplication can be implemented as shifts. *)
(* Variable shifts always use the cl register i.e. the low order byte of ecx. *)
fun loadShiftArg (instr, pref) opAndResult =
loadToSpecificReg(ecx, true, 1, loadResultArg(instr, pref)) opAndResult
(* Load the first argument into a register we can use for the result. *)
and loadResultArg (instr, pref) opAndResult [arg1, _] =
(
case arg1 of
(ActInRegisterSet{ modifiable, ...}) =>
if regSetIntersect(modifiable, generalRegisters) <> noRegisters
then
let
val aReg = oneOf(regSetIntersect(modifiable, generalRegisters))
in
ActionLockRegister{argNo=0, reg=aReg, willOverwrite=true,
next=finished(instr, aReg)}
end
else (* Can't clobber this register - move the value. *)
ActionLoadArg{argNo=0, regSet=generalRegisters, willOverwrite=true,
next=loadResultArg(instr, pref) opAndResult}
| _ =>
ActionLoadArg{argNo=0, regSet=generalRegisters, willOverwrite=true,
next=loadResultArg(instr, pref) opAndResult}
)
| loadResultArg _ _ _ = raise InternalError "loadResultArg: bad arguments"
and finished (genInstr, resReg) _ =
ActionDone{
outReg=SOME resReg,
operation=genInstr([InRegister resReg, InRegister ecx], SOME resReg)
}
fun shiftNegotiator (instr, pref) = loadShiftArg (instr, pref) ([NONE, NONE], NONE)
(* We have to consider what happens to the tag. Shifts are word values so are
always non-negative. N.B. This is the untagged value i.e. 31 or 63. *)
val maxShift = Word.fromInt wordSize * 0w8 - 0w1
fun genConstShift(_, 0w0) _ = [] (* Zero shifts do nothing *)
| genConstShift(SLL, shift) (_, SOME reg) =
(* Left shift. Use LEAL for some cases otherwise perform the
shift and then subtract 1 << shift -1. This removes the existing shifted
tag and sets the bottom bit. *)
if shift > maxShift
then [MoveConstR{source=tag 0, output=reg}](* This is defined to return zero. *)
else
(
case shift of
0w1 => [LoadAddress{output=reg, base=SOME reg, index=Index1 reg, offset= ~1}]
| 0w2 => [LoadAddress{output=reg, base=NONE, index=Index4 reg, offset= ~3}]
| 0w3 => [LoadAddress{output=reg, base=NONE, index=Index8 reg, offset= ~7}]
| _ =>
if shift < 0w32
then (* Can remove the shifted tag and set the new tag. *)
[ArithRConst{opc=SUB, output=reg, source=IntInf.<<(1, shift) -1 },
ShiftConstant{shiftType=SLL, output=reg, shift=wordToWord8 shift}]
else (* 64-bit only. If the shift is more than 32 bits we remove the
tag beforehand and put it back afterwards. *)
[ArithRConst{opc=OR, output=reg, source=1 },
ShiftConstant{shiftType=SLL, output=reg, shift=wordToWord8 shift},
ArithRConst{opc=SUB, output=reg, source=1 }]
)
| genConstShift(SRL, shift) (_, SOME reg) = (* Right logical shift. *)
if shift > maxShift
then [MoveConstR{source=tag 0, output=reg}](* This is defined to return zero. *)
else (* The original tag will have been shifted out but we have to
set the bottom bit as the tag. *)
[ArithRConst{opc=OR, output=reg, source=1 },
ShiftConstant{shiftType=SRL, output=reg, shift=wordToWord8 shift}]
| genConstShift(SRA, shift) (_, SOME reg) = (* Right shifts absorb the tag. *)
(* If the shift is more than the word length this returns 0 for positive values
and all ones for negative. We just limit the shift to 31/63. *)
[ArithRConst{opc=OR, output=reg, source=1 },
ShiftConstant{shiftType=SRA, output=reg,
shift=wordToWord8(Word.min(maxShift, shift))}]
| genConstShift _ _ = raise InternalError "genConstShift"
(* The X86 masks the shift value but the ML basis library requires shift values
greater than the word size to set the value to 0/-1 as appropriate.
We set the shift to the maximum if it is larger rather than trying to
set the result to the appropriate value. The shift value is always in ecx. *)
and genVarShift shift ([InRegister r, InRegister shiftR], SOME reg) =
let
val _ = r = reg orelse raise InternalError "genVarShift: different regs"
val _ = shiftR = ecx orelse raise InternalError "genVarShift: shift not in ecx"
val (test, lab) = condBranch(JNA, PredictTaken)
in
[
MakeSafe ecx, (* ecx may be invalid. *)
ArithRConst{ opc=OR, output=reg, source= 1 }, (* Set dest tag. *)
ShiftVariable { shiftType=shift, output=reg }, (* Do the shift *)
ShiftConstant{shiftType=SRL, output=ecx, shift=0w1}(* Untag ecx *)
] @ forwardJumpLabel lab @
[ MoveConstR{ source=tag(Word.toInt maxShift), output=ecx } ] @ test @
[ ArithRConst{ opc=CMP, output=ecx, source=tag(Word.toInt maxShift) }
] @
(
(* If this is a left shift we have to remove the tag. That isn't needed
for right shifts. Use a subtraction because we may be able to merge
this with preceding operations. *)
case shift of SLL => [ArithRConst{ opc=SUB, output=reg, source= 1}]
| _ => []
)
end
| genVarShift _ _ = raise InternalError "genVarShift"
fun constantShift(opc, shift) pref = sharedSingleArgNegotiator(genConstShift(opc, shift), pref)
and variableShift opc pref = shiftNegotiator(genVarShift opc, pref)
fun shiftInstr opc (args as [arg1, arg2], mapper) =
(
case mapper arg2 of
SOME lit => SOME(constantShift(opc, toShort lit), [arg1])
| NONE => SOME(variableShift opc, args)
)
| shiftInstr _ _ = raise InternalError "shiftInstr"
fun getPower2 n =
let
fun p2 (n, l) =
if n = 0w1 then SOME l
else if Word.andb(n, 0w1) = 0w1 then NONE
else p2(Word.>>(n, 0w1), l+0w1)
in
if n = 0w0 then NONE else p2(n,0w0)
end
local
(* Multiply always places the result in EDX:EAX. Since we're going to modify those
registers the best arrangement for the arguments is to get the first argument into
eax and the second into edx. *)
val eaxSet = singleton eax and edxSet = singleton edx
fun loadArg1 instr [(ActInRegisterSet{ modifiable, ...}), _] =
if regSetIntersect(modifiable, eaxSet) <> noRegisters
then ActionLockRegister{argNo=0, reg=eax, willOverwrite=true, next=loadArg2 instr}
else (* Not in the right register - move it. *)
ActionLoadArg{argNo=0, regSet=eaxSet, willOverwrite=true, next=loadArg1 instr}
| loadArg1 instr [_, _] =
ActionLoadArg{argNo=0, regSet=eaxSet, willOverwrite=true, next=loadArg1 instr}
| loadArg1 _ _ = raise InternalError "loadArg1: bad arguments"
and loadArg2 instr [_, (ActInRegisterSet{ modifiable, ...})] =
if regSetIntersect(modifiable, edxSet) <> noRegisters
then ActionLockRegister{argNo=1, reg=edx, willOverwrite=true, next=finished instr}
else (* Not in the right register - move it. *)
ActionLoadArg{argNo=1, regSet=edxSet, willOverwrite=true, next=loadArg2 instr}
| loadArg2 instr [_, _] =
ActionLoadArg{argNo=1, regSet=edxSet, willOverwrite=true, next=loadArg2 instr}
| loadArg2 _ _ = raise InternalError "loadArg1: bad arguments"
and finished genInstr _ =
ActionDone{
outReg=SOME eax,
operation=genInstr([InRegister eax, InRegister edx], SOME eax)
}
in
val multiplyNegotiator = loadArg1
end
fun genMultiplyUnsigned _ = (* The arguments are in eax and edx and result in eax. *)
[
MakeSafe edx, (* Could just copy eax in here *)
(* Add back the tag, but don't shift. *)
ArithRConst{opc=ADD, output=eax, source=1},
Group3Ops(edx, MUL),
(* Shift down the multiplier. *)
ShiftConstant{shiftType=SRL, output=edx, shift=0w1 },
(* Untag, but don't shift the multiplicand. *)
ArithRConst{opc=SUB, output=eax, source=1}
]
(* The only case we treat specially is multiplication by two because the overflow
flag isn't defined for larger shifts. *)
fun genAddSelf(_, SOME output) =
let
val (skipEmulator, skipEmulatorLab) = uncondBranch()
val (lab1Code, lab1) = condBranch(JE, PredictNotTaken)
val (lab2Code, lab2) = condBranch(JO, PredictNotTaken)
val (backToInstr, backToInstrLab) = backJumpLabel()
in
[ArithRConst{opc=SUB, source=1, output=output}] @
forwardJumpLabel skipEmulatorLab @ jumpBack backToInstrLab @
[CallRTS memRegArbEmulation] @ forwardJumpLabel lab1 @
forwardJumpLabel lab2 @ skipEmulator @ lab2Code @
[ArithRR{opc=ADD, source=output, output=output}] @ backToInstr @ lab1Code @
[TestTagR output]
end
| genAddSelf _ = raise InternalError "genAddSelf"
fun mulAConst2 pref = sharedSingleArgNegotiator(genAddSelf, pref)
in
fun instrUpshiftW am = shiftInstr SLL am
and instrDownshiftW am = shiftInstr SRL am
and instrDownshiftArithW am = shiftInstr SRA am
fun instrMulW(args as [arg1, arg2], mapper) =
(
(* This is implemented specially for powers of 2. It could also
be implemented specially for some other cases as well. *)
case List.map (Option.composePartial(getPower2 o toShort, mapper)) args of
[_, SOME shift] => SOME(constantShift(SLL, shift), [arg1])
| [SOME shift, _] => SOME(constantShift(SLL, shift), [arg2])
| _ => SOME(fn _ => multiplyNegotiator genMultiplyUnsigned, args)
)
| instrMulW _ = raise InternalError "instrMulW"
fun instrMulA(args as [arg1, arg2], mapper) =
(
(* The only special case we recognise is multiplication by 2. *)
case List.map mapper args of
[_, SOME lit] =>
if isShort lit andalso toShort lit = 0w2
then SOME(mulAConst2, [arg1])
else NONE(*SOME(InstrMulA, args)*)
| [SOME lit, _] =>
if isShort lit andalso toShort lit = 0w2
then SOME(mulAConst2, [arg2])
else NONE(*SOME(InstrMulA, args)*)
| _ => NONE(*SOME(InstrMulA, args)*)
)
| instrMulA _ = raise InternalError "instrMulA"
local (* Unsigned word div and mod. *)
(* Division by a power of two is just a right shift. *)
fun shiftDown shift = constantShift(SRL, shift)
(* Modulo by a power of two is a mask. *)
fun maskBits shift pref =
let
fun genMask(_, SOME resReg) =
if shift > maxShift
then []
else (* Because we're going to mask a tagged value we need to add 1 to the shift. *)
[ArithRConst{opc=AND, output=resReg, source=IntInf.<<(1, shift+0w1) -1 }]
| genMask _ = raise InternalError "genMask"
in
sharedSingleArgNegotiator(genMask, pref)
end
(* If the dividend is not a power of two we have to use the DIV instruction.
This takes the divisor in the EDX/EAX pair and the dividend in a separate
register. We get EDX as a work register and put the divisor in EAX. *)
fun genDivMod isDiv ([_, InRegister dividend], _) =
let
val (notZero, notZeroLab) = condBranch(JNE, PredictTaken)
(* The instruction to add back the tag to "dividend" was missing and this caused
a rare crash on X86/64. I've now added it in to fix the bug and I'm assuming
that dividend cannot be either eax or edx. This next test to just to make sure. *)
val _ =
if dividend = eax orelse dividend = edx then raise InternalError "genDivMod" else ()
in
(* Because we didn't shift the dividend and the divisor we don't
need to shift the remainder but just add in the tag. We do have
to shift and tag the quotient. Either way we have to make the
other register safe. *)
(if isDiv
then [MakeSafe edx, TagValue{source=eax, output=eax}]
else [MakeSafe eax, ArithRConst{opc=ADD, output=edx, source=1}]) @
[
ArithRConst{opc=ADD, source=1, output=dividend},
(* Clear the high order of the accumulator and do the division. *)
Group3Ops(dividend, DIV),
ArithRR{opc=XOR, source=edx, output=edx},
(* Untag, but don't shift, the divisor and dividend. At the
same time check for zero and raise an exception if it is. *)
ArithRConst{opc=SUB, source=1, output=eax}
] @ forwardJumpLabel notZeroLab @ [CallRTS memRegRaiseDiv ] @ notZero @
[ArithRConst{opc=SUB, source=1, output=dividend}]
end
| genDivMod _ _ = raise InternalError "genDivMod"
fun divModCode isDiv _ =
getWorkingRegister(singleton edx,
fn _ => loadToSpecificReg(eax, true, 0,
loadToOneOf(generalRegisters, false, 1,
generateInstruction(genDivMod isDiv)
)
)
) ([NONE, NONE], SOME(if isDiv then eax else edx))
fun checkPower2 (p2Code, genCode, args as [arg1, arg2], mapper) =
( (* Special case where the dividend is a power of two. We could maybe
take out the special case of zero here and just raise an exception but
that's hardly worth it. *)
case Option.composePartial(getPower2 o toShort, mapper) arg2 of
SOME n => SOME(p2Code n, [arg1])
| NONE => SOME(genCode, args)
)
| checkPower2 _ = raise InternalError "checkPower2"
in
fun instrDivW(args, mapper) = checkPower2(shiftDown, divModCode true, args, mapper)
and instrModW(args, mapper) = checkPower2(maskBits, divModCode false, args, mapper)
end
end
local
(* Load the length word from a memory cell. We could reuse the base for the
result rather than getting a new register here. *)
val mask = IntInf.<<(1, (Word.fromInt wordSize-0w1)*0w8) - 1
fun vecLen([InRegister base], SOME output) =
[TagValue{source=output, output=output},
ArithRMem{opc=AND, output=output, base=base, offset= ~ wordSize },
MoveConstR{source= mask, output=output }]
| vecLen _ = raise InternalError "vecLen"
in
fun instrVeclen(args, _) = SOME(fn prefs => generalNegotiator(vecLen, prefs), args)
end
local
(* Load the "self" entry from the thread-specific block. *)
fun threadSelf([], SOME output) =
[LoadMemR{source=BaseOffset{base=ebp, offset=memRegThreadSelf, index=NoIndex}, output=output}]
| threadSelf _ = raise InternalError "threadSelf"
in
fun instrThreadSelf(args, _) = SOME(fn prefs => generalNegotiator(threadSelf, prefs), args)
end
local
fun atomicOp incr ([InRegister rs], SOME rd) =
[
(* Since xadd returns the original value we have to add in the value again. *)
ArithRConst{opc=ADD, output=rd, source=semitag incr},
AtomicXAdd{base=rs, output=rd},
MoveConstR{source=semitag incr, output=rd}
]
| atomicOp _ _ = raise InternalError "atomicOp"
in
fun instrAtomicIncr(args, _) = SOME(fn pref => generalNegotiator(atomicOp 1, pref), args)
and instrAtomicDecr(args, _) = SOME(fn pref => generalNegotiator(atomicOp ~1, pref), args)
end
local
fun byteMemMove([InRegister _, sourceOffset, InRegister _, destOffset, InRegister _], _) =
let (* Byte move. The offsets are byte offsets. *)
fun getOffset(InRegister offsetReg, baseReg) =
[
(* If it's in a register untag it, add it and then retag. *)
TagValue{ source=offsetReg, output=offsetReg},
ArithRR{ opc=ADD, output=baseReg, source=offsetReg },
ShiftConstant{ shiftType=SRL, output=offsetReg, shift=0w1}
]
| getOffset(LiteralSource lit, baseReg) =
let
val shortLit = toShort lit
in
if shortLit = 0w0 then [] else
[ArithRConst{opc=ADD, output=baseReg, source=Word.toInt shortLit}]
end
| getOffset _ = raise InternalError "getOffset"
in
[MakeSafe ecx, MakeSafe esi, MakeSafe edi, RepeatOperation MOVSB] @
getOffset(destOffset, edi) @ getOffset(sourceOffset, esi) @
(* Untag the length. *)
[ShiftConstant{ shiftType=SRL, output=ecx, shift=0w1}]
end
| byteMemMove _ = raise InternalError "byteMemMove"
and wordMemMove([InRegister _, sourceOffset, InRegister _, destOffset, InRegister _], _) =
let
(* Word move. The offsets and the count are the number of words.
We can compute the offset by using the LEAL instruction. *)
fun getOffset(InRegister offsetReg, baseReg) =
if wordSize = 4
then [LoadAddress{output=baseReg, offset= ~2, base=SOME baseReg, index=Index2 offsetReg }]
else [LoadAddress{output=baseReg, offset= ~4, base=SOME baseReg, index=Index4 offsetReg }]
| getOffset(LiteralSource lit, baseReg) =
let
val shortLit = toShort lit
in
if shortLit = 0w0 then [] else
[ArithRConst{opc=ADD, output=baseReg, source=Word.toInt shortLit * wordSize}]
end
| getOffset _ = raise InternalError "getOffset"
in
[MakeSafe ecx, MakeSafe esi, MakeSafe edi, RepeatOperation MOVSL] @
getOffset(destOffset, edi) @ getOffset(sourceOffset, esi) @
(* Untag the length. *)
[ShiftConstant{ shiftType=SRL, output=ecx, shift=0w1}]
end
| wordMemMove _ = raise InternalError "byteMemMove"
fun genMemMove memMove _ =
(* Memory moves: The source must be in esi, the destination in edi and the count in ecx.
The source and destination offsets can be any registers. We can't add the offsets in
advance because that would create invalid addresses. *)
loadToSpecificReg(esi, true, 0,
loadToSpecificReg(edi, true, 2,
loadToSpecificReg(ecx, true, 4,
allInRegsOrLiterals(generalRegisters, generateInstruction memMove)
))) ([NONE, NONE, NONE, NONE, NONE], NONE)
in
fun instrMoveBytes(args, _) = SOME(genMemMove byteMemMove, args)
and instrMoveWords(args, _) = SOME(genMemMove wordMemMove, args)
end
local
(* Pick an argument register from the general register set. *)
fun chooseGenReg{readable, ...} = oneOf(regSetIntersect(readable, generalRegisters))
(* Test to see if this is testing arbitrary precision for ordering. Because of
the way we deal with long-precision comparisons we can't use the memory-constant
form for arbitrary precision valuess. *)
fun isIntOrdering JG = true
| isIntOrdering JGE = true
| isIntOrdering JL = true
| isIntOrdering JLE = true
| isIntOrdering _ = false
(* Word comparisons are used both for the word type itself but also for tests
such as tag tests and pointer comparisons. The x86 allows most combinations
of registers, memory and constants. *)
fun testActions (testType, destLabel, tagTest) ([ActBaseOffset _, ActBaseOffset _]) =
(* Both in memory: Load one. *)
ActionLoadArg{argNo=0, regSet=generalRegisters, willOverwrite=false,
next=testActions(testType, destLabel, tagTest)}
| testActions (testType, destLabel, tagTest) ([ActLiteralSource _, ActLiteralSource _]) =
(* Both constants: Should have been optimised. *)
ActionLoadArg{argNo=0, regSet=generalRegisters, willOverwrite=false,
next=testActions(testType, destLabel, tagTest)}
| testActions (testType, destLabel, tagTest) ([ActInRegisterSet s1, ActInRegisterSet s2]) =
let
val reg1 = chooseGenReg s1 and reg2 = chooseGenReg s2
val Labels{uses, ...} = destLabel
val () = uses := !uses+1
in
ActionDone{ outReg=NONE,
operation=ConditionalBranch { test=testType, label=destLabel, predict=PredictNeutral }::
tagTest([ArithRR{opc=CMP, output=reg1, source=reg2}],
InRegister reg1, InRegister reg2, testType, destLabel) }
end
| testActions (testType, destLabel, tagTest) ([ActInRegisterSet s1, ActLiteralSource constnt]) =
let
val reg1 = chooseGenReg s1
val Labels{uses, ...} = destLabel
val () = uses := !uses+1
in
ActionDone{ outReg=NONE,
operation=
tagTest(
[ConditionalBranch { test=testType, label=destLabel, predict=PredictNeutral },
if isShort constnt
then ArithRConst{opc=CMP, output=reg1,
source=tag(Word.toIntX(toShort constnt))}
else ArithRLongConst{opc=CMP, output=reg1, source=constnt}],
InRegister reg1, LiteralSource constnt, testType, destLabel) }
end
| testActions (testType, destLabel, tagTest) ([ActLiteralSource constnt, ActInRegisterSet s2]) =
let
val reg2 = chooseGenReg s2
val Labels{uses, ...} = destLabel
val () = uses := !uses+1
val revTest = reverseTestOp testType
in
ActionDone{ outReg=NONE,
operation=
tagTest(
[ConditionalBranch
{ test=revTest, label=destLabel, predict=PredictNeutral },
if isShort constnt
then ArithRConst{opc=CMP, output=reg2,
source=tag(Word.toIntX(toShort constnt))}
else ArithRLongConst{opc=CMP, output=reg2, source=constnt}],
InRegister reg2, LiteralSource constnt, revTest, destLabel) }
end
| testActions (testType, destLabel, tagTest) ([ActInRegisterSet s1, ActBaseOffset(base, offset)]) =
let
val reg1 = chooseGenReg s1
val Labels{uses, ...} = destLabel
val () = uses := !uses+1
in
ActionDone{ outReg=NONE,
operation=
tagTest([ConditionalBranch { test=testType, label=destLabel, predict=PredictNeutral },
ArithRMem{opc=CMP, output=reg1, base=base, offset=offset}],
InRegister reg1, BaseOffsetSource{base=base, offset=offset},
testType, destLabel)}
end
| testActions (testType, destLabel, tagTest) ([ActBaseOffset(base, offset), ActInRegisterSet s2]) =
let
val reg2 = chooseGenReg s2
val Labels{uses, ...} = destLabel
val () = uses := !uses+1
val revTest = reverseTestOp testType
in
ActionDone{ outReg=NONE,
operation=
tagTest([ConditionalBranch
{ test=revTest, label=destLabel, predict=PredictNeutral },
ArithRMem{opc=CMP, output=reg2, base=base, offset=offset}],
InRegister reg2, BaseOffsetSource{base=base, offset=offset},
revTest, destLabel)}
end
| testActions (testType, destLabel, tagTest) ([ActBaseOffset(base, offset), ActLiteralSource constnt]) =
if not (isIntOrdering testType) andalso (not isX64 orelse is31bitSigned constnt)
then (* In 32-bit mode we can put all constants inline but in 64-bit mode anything
that won't fit in 32-bits as well as all addresses need to go in the
constant area. That requires memory addressing and we don't have
memory-memory comparison operations. *)
let
val Labels{uses, ...} = destLabel
val () = uses := !uses+1
in
ActionDone{ outReg=NONE,
operation=
tagTest(
[ConditionalBranch { test=testType, label=destLabel, predict=PredictNeutral },
if isShort constnt
then ArithMemConst{opc=CMP, base=base, offset=offset,
source=tag(Word.toIntX(toShort constnt))}
else ArithMemLongConst{opc=CMP, base=base, offset=offset, source=constnt}],
BaseOffsetSource{base=base, offset=offset}, LiteralSource constnt,
testType, destLabel)}
end
else (* If it won't fit in 32-bits we have to load one of the args. *)
ActionLoadArg{argNo=0, regSet=generalRegisters, willOverwrite=false,
next=testActions(testType, destLabel, tagTest)}
| testActions (testType, destLabel, tagTest) ([ActLiteralSource constnt, ActBaseOffset(base, offset)]) =
if not (isIntOrdering testType) andalso (not isX64 orelse is31bitSigned constnt)
then
let
val Labels{uses, ...} = destLabel
val () = uses := !uses+1
val revTest = reverseTestOp testType
in
ActionDone{ outReg=NONE,
operation=
tagTest(
[ConditionalBranch
{ test=revTest, label=destLabel, predict=PredictNeutral },
if isShort constnt
then ArithMemConst{opc=CMP, base=base, offset=offset,
source=tag(Word.toIntX(toShort constnt))}
else ArithMemLongConst{opc=CMP, base=base, offset=offset, source=constnt}],
BaseOffsetSource{base=base, offset=offset}, LiteralSource constnt,
revTest, destLabel) }
end
else (* If it won't fit in 32-bits we have to load one of the args. *)
ActionLoadArg{argNo=1, regSet=generalRegisters, willOverwrite=false,
next=testActions(testType, destLabel, tagTest)}
| testActions _ _ = raise InternalError "testActions"
fun makeBranch (testType, tagTest) () =
let
val destLabel = mkLabel()
in
(testActions(testType, destLabel, tagTest), destLabel)
end
fun lengthTest test () =
let
val destLabel as Labels{uses, ...} = mkLabel()
fun testActions ([ActInRegisterSet regs]) =
(
uses := !uses+1;
ActionDone { outReg=NONE,
operation=[ConditionalBranch { test=test, label=destLabel, predict=PredictNeutral },
TestTagR(chooseGenReg regs)]}
)
| testActions([ActBaseOffset(base, offset)]) =
(
uses := !uses+1;
ActionDone { outReg=NONE,
operation=[ConditionalBranch { test=test, label=destLabel, predict=PredictNeutral },
TestByteMem{base=base, offset=offset, bits=0w1}]}
)
| testActions([ActLiteralSource _]) =
(* This should have been optimised away. *)
ActionLoadArg{argNo=0, regSet=generalRegisters, willOverwrite=false,
next=testActions}
| testActions _ = raise InternalError "lengthTestActions"
in
(testActions: nextAction, destLabel)
end
(* If either of the arguments are long constants we don't code-generate and
instead fall back to the RTS. This is likely to be more efficient. *)
fun checkShort (opc, test) (args, mapper) =
if List.exists(fn a => case mapper a of SOME n => not(isShort n) | NONE => false) args
then NONE
else SOME(makeBranch(opc, test), args)
fun noTagTest (operations, _, _, _, _) = operations (* When we don't need a test. *)
in
fun testNeqW(args, _) = SOME(makeBranch(JNE, noTagTest), args)
fun testEqW(args, _) = SOME(makeBranch(JE, noTagTest), args)
fun testGeqW(args, _) = SOME(makeBranch(JNB, noTagTest), args) (* These are unsigned. *)
fun testGtW (args, _) = SOME(makeBranch(JA, noTagTest), args)
fun testLeqW(args, _) = SOME(makeBranch(JNA, noTagTest), args)
fun testLtW(args, _) = SOME(makeBranch(JB, noTagTest), args)
fun testNeqA(args, mapper) = checkShort(JNE, eqTestTags)(args, mapper)
and testEqA(args, mapper) = checkShort(JE, eqTestTags)(args, mapper)
and testGeqA(args, mapper) = checkShort(JGE, testTagsForComparison)(args, mapper)
and testGtA(args, mapper) = checkShort(JG, testTagsForComparison)(args, mapper)
and testLeqA(args, mapper) = checkShort(JLE, testTagsForComparison)(args, mapper)
and testLtA(args, mapper) = checkShort(JL, testTagsForComparison)(args, mapper)
fun Short(args, _) = SOME(lengthTest JNE, args)
fun Long(args, _) = SOME(lengthTest JE, args)
end
local
fun genByteVec test () =
let
val destLabel as Labels{uses, ...} = mkLabel()
fun generateByteVec([InRegister addr1, offset1, InRegister addr2, offset2, InRegister len]) =
let
val () = if addr1 = esi andalso addr2 = edi andalso len = ecx then ()
else raise InternalError "Incorrect registers"
fun getOffset(InRegister offsetReg, baseReg) =
[
(* If it's in a register untag it, add it and then retag. *)
TagValue{ source=offsetReg, output=offsetReg },
ArithRR{opc=ADD, output=baseReg, source=offsetReg},
ShiftConstant{shiftType=SRL, output=offsetReg, shift=0w1}
]
| getOffset(LiteralSource lit, baseReg) =
let
val shortLit = toShort lit
in
if shortLit = 0w0 then []
else [ArithRConst{opc=ADD, output=baseReg, source=Word.toInt shortLit}]
end
| getOffset _ = raise InternalError "getOffset"
val () = uses := !uses+1
in
[
ConditionalBranch { test=test, label=destLabel, predict=PredictNeutral },
MakeSafe ecx, (* These will now be invalid *)
MakeSafe esi,
MakeSafe edi,
RepeatOperation CMPSB, (* Compare the bytes. *)
ArithRR{opc=CMP, output=ecx, source=ecx}, (* Set the Z flag before we start. *)
ShiftConstant{shiftType=SRL, output=ecx, shift=0w1} (* Untag the length. *)
] @ getOffset(offset2, edi) @ getOffset(offset1, esi)
end
| generateByteVec _ = raise InternalError "generateByteVec"
fun generateCode (operands, _) _ =
ActionDone{ outReg=NONE, operation=generateByteVec(List.map valOf operands) }
val testActions =
(* The vectors to compare are in esi and edi and the count in ecx. Since it doesn't
matter which is in esi and which in edi it would be nice if we could leave that open
but for the moment we require the first in esi and the second in edi.
The offsets can be in any register. Edi, esi and ecx are marked as modifiable
and are left as values that need to be made safe. Offset values are
read-only and need to be restored in case they're reused. *)
loadToSpecificReg(esi, true, 0,
loadToSpecificReg(edi, true, 2,
loadToSpecificReg(ecx, true, 4,
loadToRegOrLiteral(generalRegisters, 1,
loadToRegOrLiteral(generalRegisters, 3, generateCode)))))
([NONE, NONE, NONE, NONE, NONE], NONE)
in
(testActions: nextAction, destLabel)
end
in
fun byteVecEq(args, _) = SOME(genByteVec JE, args)
and byteVecNe(args, _) = SOME(genByteVec JNE, args)
end
local
fun loadBaseOffsets genInstr ops (ActBaseOffset _ :: _) = (* Unary or binary case. *)
(* Base-offset values need to be loaded into a general register because we
don't have a doubly indirect load, at least on X86/32. *)
ActionLoadArg{argNo=0, regSet=generalRegisters, willOverwrite=false,
next=loadBaseOffsets genInstr ops}
| loadBaseOffsets genInstr ops [_, ActBaseOffset _] =
ActionLoadArg{argNo=1, regSet=generalRegisters, willOverwrite=false,
next=loadBaseOffsets genInstr ops}
| loadBaseOffsets genInstr (_, outputReg) args =
let
fun argToSource(ActInRegisterSet { readable, modifiable }) =
(* Choose the best register. First choice is a modifiable FP reg,
then a non-modifiable FP reg, then a general register. *)
if regSetIntersect(modifiable, floatingPtRegisters) <> noRegisters
then InRegister(oneOf(regSetIntersect(modifiable, floatingPtRegisters)))
else if regSetIntersect(readable, floatingPtRegisters) <> noRegisters
then InRegister(oneOf(regSetIntersect(readable, floatingPtRegisters)))
else InRegister(oneOf readable)
| argToSource(ActLiteralSource m) = LiteralSource m
| argToSource _ = raise InternalError "negotiateFP: not reg or literal"
val ops = map argToSource args
in
ActionDone{ outReg=outputReg, operation=genInstr(ops, outputReg) }
end
fun genTest(opc, destLabel as Labels{uses, ...}) ([arg1, arg2], _) =
let
(* We need one argument at the top of the stack. The second
can be anywhere. The order depends on the operation. *)
val (stackArg, secondArg) =
case opc of
JNA => (arg2, arg1) (* Reverse *)
| JB => (arg2, arg1) (* Reverse *)
| JA => (arg1, arg2) (* Forward *)
| JNB => (arg1, arg2) (* Forward *)
(* JE/JNE can be in either order. It might be better to
choose an argument based on which is more likely to be at
the top of the stack but it's probably not worth it. *)
| _ => (arg1, arg2)
val loadToStack =
case stackArg of
InRegister(reg as FPReg _) => FPLoadFromFPReg{source=reg, lastRef=false}
| InRegister(reg as GenReg _) => FPLoadFromGenReg reg
| LiteralSource lit => loadFPConstant lit
| _ => raise InternalError "testActions"
val fpOperation =
case secondArg of
InRegister(reg as FPReg _) => FPArithR{opc=FCOMP, source=reg}
| InRegister(reg as GenReg _) => FPArithMemory{opc=FCOMP, base=reg, offset=0}
| LiteralSource lit => FPArithConst{opc=FCOMP, source=lit}
| _ => raise InternalError "testActions"
val c3 = 0wx4000 and c2 = 0wx0400 and c0 = 0wx0100
val mask =
case opc of
JE => c2 orb c3
| JNE => c2 orb c3
| JB => c0 orb c2 orb c3
| JA => c0 orb c2 orb c3
| JNB => c0 orb c2
| JNA => c0 orb c2
| _ => raise InternalError "testActions"
val () = uses := !uses+1
in
[
ConditionalBranch { test=if opc = JNE then JNE else JE, label=destLabel, predict=PredictNeutral },
MakeSafe eax (* Has an unsafe value in it. *)
] @
(* We use these operations to set the condition codes.
Do we need to put something in to indicate to an optimiser
that we're using the condition code "result" here? *)
(if opc = JE orelse opc = JNE
then [ArithRConst{ opc=XOR, output=eax, source=Word.toInt c3 }]
else []) @
[
(* Mask and set the condition codes. *)
ArithRConst{ opc=AND, output=eax, source=Word.toInt mask },
FPStatusToEAX,
fpOperation, (* Compare and pop. *)
loadToStack (* First arg to stack*)
]
end
| genTest _ _ = raise InternalError "genTest"
fun fpTests opc () =
let
val destLabel = mkLabel()
in
(* We need eax as a work register. *)
(fn _ => ActionGetWorkReg{regSet=singleton eax,
setReg = fn _ => loadBaseOffsets (genTest(opc, destLabel)) ([NONE, NONE], NONE)}, destLabel)
end
fun getFP genInstr pref =
getResultRegister(floatingPtRegisters, pref, loadBaseOffsets genInstr)
([NONE, NONE], NONE)
and getUnaryFP genInstr pref =
getResultRegister(floatingPtRegisters, pref, loadBaseOffsets genInstr)
([NONE], NONE)
and getArctanFP genInstr pref =
(* Arctan requires two items on the stack. The effect is to overwrite fp6 *)
getWorkingRegister(singleton fp6,
fn _ =>
getResultRegister(floatingPtRegisters, pref, loadBaseOffsets genInstr)
) ([NONE], NONE)
val unimplementedInstr = fn _ => NONE
fun genBinaryFP(forward, reverse) ([op1, op2], SOME output) =
let
val (stackArg, secondArg, opc) =
case (op1, op2) of
(InRegister(FPReg fp1), InRegister(FPReg fp2)) =>
(* Choose the reg nearer the top. *)
if fp1 <= fp2 then (op1, op2, forward) else (op2, op1, reverse)
| (_, InRegister(FPReg _)) => (op2, op1, reverse)
| _ => (op1, op2, forward)
val loadToStack =
case stackArg of
InRegister(reg as FPReg _) => FPLoadFromFPReg{source=reg, lastRef=false}
| InRegister(reg as GenReg _) => FPLoadFromGenReg reg
| LiteralSource lit => loadFPConstant lit
| _ => raise InternalError "genBinaryFP"
val fpOperation =
case secondArg of
InRegister(reg as FPReg _) => FPArithR{opc=opc, source=reg}
| InRegister(reg as GenReg _) => FPArithMemory{opc=opc, base=reg, offset=0}
| LiteralSource lit => FPArithConst{opc=opc, source=lit}
| _ => raise InternalError "genBinaryFP"
in
[
FPStoreToFPReg{output=output, andPop=true},
fpOperation, (* Do operation. *)
loadToStack (* First arg to stack*)
]
end
| genBinaryFP _ _ = raise InternalError "genBinaryFP"
fun genUnaryFP opc ([opn], SOME output) =
let
val loadToStack =
case opn of
InRegister(reg as FPReg _) => FPLoadFromFPReg{source=reg, lastRef=false}
| InRegister(reg as GenReg _) => FPLoadFromGenReg reg
| LiteralSource lit => loadFPConstant lit
| _ => raise InternalError "genUnaryFP"
in
case opc of
FPATAN =>
(* The FPATAN function takes two arguments so we need to push 1.0.
We must invalidate FP7 before we push the second argument otherwise
we may get a stack overflow. *)
[FPStoreToFPReg{output=output, andPop=true},
FPUnary FPATAN,
(* Because we have pushed an extra value this appears as
modifying fp6. *)
FreeRegisters(singleton fp6),
FPUnary FLD1,
FPFree fp7,
loadToStack
]
| _ => (* The rest are much simpler. *)
[FPStoreToFPReg{output=output, andPop=true},
FPUnary opc,
loadToStack]
end
| genUnaryFP _ _ = raise InternalError "genUnaryFP"
in
fun instrAddFP(args, _) = SOME(getFP(genBinaryFP(FADD, FADD)), args)
and instrSubFP(args, _) = SOME(getFP(genBinaryFP(FSUB, FSUBR)), args)
and instrMulFP(args, _) = SOME(getFP(genBinaryFP(FMUL, FMUL)), args)
and instrDivFP(args, _) = SOME(getFP(genBinaryFP(FDIV, FDIVR)), args)
fun instrAbsFP(args, _) = SOME(getUnaryFP(genUnaryFP FABS), args)
and instrNegFP(args, _) = SOME(getUnaryFP(genUnaryFP FCHS), args)
and instrSqrtFP(args, _)= SOME(getUnaryFP(genUnaryFP FSQRT), args)
and instrSinFP(args, _) = SOME(getUnaryFP(genUnaryFP FSIN), args)
and instrCosFP(args, _) = SOME(getUnaryFP(genUnaryFP FCOS), args)
and instrAtanFP(args, _)= SOME(getArctanFP(genUnaryFP FPATAN), args)
local
fun genIntToFPInstr([InRegister source], SOME output) =
let
(* This is a bit complicated because we can only load from memory
but the memory needs to be modifiable. We have a special location
we can load from. *)
val (test, skipEmulator) = condBranch(JNE, PredictTaken)
in
[
FPStoreToFPReg{output=output, andPop=true}, (* Store into dest. *)
FPLoadIntAndPop (* Do instr. *)
] @ forwardJumpLabel skipEmulator @
[ CallRTS memRegArbEmulation ] @
test @ [TestTagR source, PushR source (* Push and test tag. *) ]
end
| genIntToFPInstr _ = raise InternalError "genIntToFPInstr"
fun genIntToFP pref =
(* Real.fromInt generates its result in a FP reg but takes its arg in a general reg. *)
getResultRegister(floatingPtRegisters, pref,
loadToOneOf(generalRegisters, true (* Will modify *), 0, generateInstruction genIntToFPInstr)
) ([NONE], NONE)
in
fun instrIntToRealFP(args, _) = SOME(genIntToFP, args)
end
val instrExpFP = unimplementedInstr
and instrLnFP = unimplementedInstr
and instrRealToIntFP = unimplementedInstr
fun testNeqFP(args, _)= SOME(fpTests JNE, args)
fun testEqFP(args, _) = SOME(fpTests JE, args)
fun testGeqFP(args, _)= SOME(fpTests JNB, args)
fun testGtFP(args, _) = SOME(fpTests JA, args)
fun testLeqFP(args, _)= SOME(fpTests JNA, args)
fun testLtFP(args, _) = SOME(fpTests JB, args)
end
end
fun isPushI _ = true
(* The stack limit register is set at least twice this far from the
end of the stack so we can simply compare the stack pointer with
the stack limit register if we need less than this much. Setting
it at twice this value means that procedures which use up to this
much stack and do not call any other procedures do not need to
check the stack at all. *)
val minStackCheck = 20
(* Adds the constants onto the code, and copies the code into a new segment *)
fun copyCode (cvec, operations, stackRequired, registerSet, callsAProc) : address =
let
(* Prelude consists of stack checking code. N.B. This is added on
after the main list is reversed so the code is not reversed. *)
val preludeCode =
let
fun testRegAndTrap(reg, entryPt) =
let
(* Normally we won't have a stack overflow so we will skip the check. *)
val (skipCheck, skipCheckLab) = condBranch(JNB, PredictTaken)
in
[ArithRMem{ opc=CMP, output=reg, offset=memRegStackLimit, base=ebp }] @
skipCheck @ [CallRTS entryPt] @ forwardJumpLabel skipCheckLab
end
in
if stackRequired >= minStackCheck
then
let
(* Compute the necessary amount in edi and compare that. *)
val stackByteAdjust = ~wordSize * stackRequired
val testEdiCode =
testRegAndTrap (edi, memRegStackOverflowCallEx)
in
[LoadAddress{output=edi, base=SOME esp, index=NoIndex, offset=stackByteAdjust}] @ testEdiCode
end
else if callsAProc (* check for interrupt *)
then testRegAndTrap (esp, memRegStackOverflowCall)
else [] (* no stack check required *)
end
(* The code is in reverse order. Reverse it and put the prelude first. *)
in
createCodeSegment(X86OPTIMISE.optimise(cvec, preludeCode @ List.rev operations), registerSet, cvec)
end
structure Sharing =
struct
type code = code
and 'a instrs = 'a instrs
and negotiation = negotiation
and negotiateTests = negotiateTests
and reg = reg
and 'a tests = 'a tests
and addrs = addrs
and operation = operation
and regHint = regHint
and argAction = argAction
and regSet = RegSet.regSet
and forwardLabel = forwardLabel
and backwardLabel = backwardLabel
end
end (* struct *) (* CODECONS *);
|