1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
|
(*
Copyright (c) 2013, 2015 David C.J. Matthews
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*
Derived from the original parse-tree
Copyright (c) 2000
Cambridge University Technical Services Limited
Further development:
Copyright (c) 2000-13 David C.J. Matthews
Title: Parse Tree Structure and Operations.
Author: Dave Matthews, Cambridge University Computer Laboratory
Copyright Cambridge University 1985
*)
functor MATCH_COMPILER (
structure BASEPARSETREE : BaseParseTreeSig
structure PRINTTREE: PrintParsetreeSig
structure LEX : LEXSIG
structure CODETREE : CODETREESIG
structure DEBUGGER : DEBUGGERSIG
structure TYPETREE : TYPETREESIG
structure TYPEIDCODE: TYPEIDCODESIG
structure STRUCTVALS : STRUCTVALSIG
structure VALUEOPS : VALUEOPSSIG
structure DATATYPEREP: DATATYPEREPSIG
structure DEBUG: DEBUGSIG
structure MISC :
sig
(* These are handled in the compiler *)
exception Conversion of string (* string to int conversion failure *)
(* This isn't handled at all (except generically) *)
exception InternalError of string (* compiler error *)
end
structure ADDRESS : AddressSig
sharing BASEPARSETREE.Sharing
= PRINTTREE.Sharing
= LEX.Sharing
= CODETREE.Sharing
= DEBUGGER.Sharing
= TYPETREE.Sharing
= TYPEIDCODE.Sharing
= STRUCTVALS.Sharing
= VALUEOPS.Sharing
= DATATYPEREP.Sharing
= ADDRESS
): MatchCompilerSig =
struct
open BASEPARSETREE
open PRINTTREE
open CODETREE
open TYPEIDCODE
open LEX
open TYPETREE
open DEBUG
open STRUCTVALS
open VALUEOPS
open MISC
open DATATYPEREP
open TypeVarMap
open RuntimeCalls; (* for POLY_SYS numbers *)
datatype environEntry = datatype DEBUGGER.environEntry
type debuggerStatus = DEBUGGER.debuggerStatus
(* To simplify passing the context it is wrapped up in this type.
This is a subset of the context used in CODEGEN_PARSETREE. *)
type matchContext =
{ mkAddr: int->int, level: level, typeVarMap: typeVarMap, lex: lexan }
(* Devised by Mike Fourman, Nick Rothwell and me (DCJM). First coded
up by Nick Rothwell for the Kit Compiler. First phase of the match
compiler. The purpose of this phase is to take a match (a set of
patterns) and bring together the elements that will be discriminated
by testing any particular part of the value. Where a pattern is a
tuple, for example, it is possible to discriminate on each of the
fields independently, but it may be more efficient to discriminate
on one of the fields first, and then on the others. The aim is to
produce a set of tests that discriminate between the patterns
quickly. *)
abstype patSet = PatSet of int list
with
(* Each leaf in the tree contains a number which identifies the
pattern it came from. As well as linking back to the patterns,
these numbers represent an ordering, because earlier patterns
mask out later ones. *)
(* A set of pattern identifiers. *)
val empty = PatSet [];
fun singleton i = PatSet [i];
fun list (PatSet p) = p;
infix 3 :::;
fun a ::: b = PatSet (a :: list b);
fun isEmptySet (PatSet []) = true | isEmptySet _ = false
fun first (PatSet p) = hd p;
fun next (PatSet p) = PatSet (tl p);
fun cardinality(PatSet p) = List.length p
(* Set from i to j inclusive. *)
fun from i j = if i > j then empty else i ::: from (i + 1) j;
infix 3 plus;
infix 4 inside;
infix 5 intersect;
infix 6 diff;
infix 7 eq;
infix 8 eqSc
infix 9 neq;
(* Union of sets. *)
fun a plus b =
if isEmptySet a then b
else if isEmptySet b then a
else if first a = first b then first a ::: (next a plus next b)
else if first a < first b then first a ::: (next a plus b)
else first b ::: (a plus next b);
(* Set membership. *)
fun i inside a =
if isEmptySet a then false
else if i = first a then true
else if i < first a then false
else i inside next a
(* Intersection of sets. *)
fun a intersect b =
if isEmptySet a orelse isEmptySet b
then empty
else if first a = first b
then first a ::: ((next a) intersect (next b))
else if first a < first b
then (next a) intersect b
else a intersect next b;
(* Set difference. *)
fun a diff b =
if isEmptySet a
then empty
else if isEmptySet b
then a
else if first a = first b
then (next a) diff (next b)
else if first a < first b
then first a ::: ((next a) diff b)
else a diff next b;
(* Set equality. *)
fun (PatSet a) eq (PatSet b) = a = b
end (* patSet *);
datatype aot =
Aot of
{
patts: aots, (* Choices made at this point. *)
defaults: patSet, (* Patterns that do not discriminate on this node. *)
vars: values list (* The variables bound at this point. *)
}
and aots =
TupleField of aot list (* Each element of the list is a field of the tuple. *)
| Cons of consrec list * int (* List of constructors and the number of different constructors. *)
| Excons of exconsrec list (* Exception constructors. *)
| Scons of sconsrec list (* Int, char, string, real. *)
| Wild (* Patterns that do not discriminate at all. *)
(* Datatype constructors and exception constructors. *)
withtype consrec =
{
constructor: values, (* The constructor itself. *)
patts: patSet, (* Patterns that use this constructor *)
appliedTo: aot, (* Patterns this constructor was applied to. *)
polyVars: types list (* If this was polymorphic, the matched types. *)
}
and exconsrec =
{
constructor: values,
patts: patSet,
appliedTo: aot,
exValue: machineWord option
}
and sconsrec =
{
eqFun: codetree, (* Equality functions for this type*)
specVal: machineWord option, (* The constant value. NONE here means we had a conversion error. *)
patts: patSet (* Patterns containing this value. *)
}
fun makeAot(patts, defaults, vars) =
Aot
{
patts = patts,
defaults = defaults,
vars = vars
}
fun makeConsrec(constructor, patts, appliedTo, polyVars): consrec =
{
constructor = constructor,
patts = patts,
appliedTo = appliedTo,
polyVars = polyVars
}
fun makeExconsrec(constructor, patts, appliedTo, exValue): exconsrec =
{
constructor = constructor,
patts = patts,
appliedTo = appliedTo,
exValue = exValue
}
fun makeSconsrec(eqFun, specVal, patts) : sconsrec =
{
eqFun = eqFun,
specVal = specVal,
patts = patts
}
(* An empty wild card - can be expanded as required. *)
val aotEmpty = makeAot(Wild, empty, [])
(* A new wild card entry with the same defaults as a previous entry. *)
fun wild (Aot {defaults, ...}) = makeAot(Wild, defaults, [])
local
(* Add a default (wild card or variable) to every node in the tree. *)
fun addDefault (Aot {patts, defaults, vars}) patNo =
let
val newPatts =
case patts of
TupleField pl =>
TupleField (map (fn a => addDefault a patNo) pl)
| Cons(cl, width) =>
let
fun addDefaultToConsrec {constructor, patts, appliedTo, polyVars} =
makeConsrec(constructor, patts, addDefault appliedTo patNo, polyVars)
in
Cons (map addDefaultToConsrec cl, width)
end
| Excons cl =>
let
fun addDefaultToExconsrec {constructor, patts, appliedTo, exValue} =
makeExconsrec(constructor, patts, addDefault appliedTo patNo, exValue)
in
Excons (map addDefaultToExconsrec cl)
end
| otherPattern => (* Wild, Scons *) otherPattern
in
makeAot(newPatts, defaults plus singleton patNo, vars)
end (* addDefault *)
fun addVar (Aot {patts, defaults, vars}) var = makeAot(patts, defaults, var :: vars)
(* Add a constructor to the tree. It can only be added to a
cons node or a wild card. *)
fun addConstr(cons, noOfConstrs, doArg, tree as Aot {patts = Wild, defaults, vars, ...}, patNo, polyVars) =
let (* Expand out the wildCard into a constructor node. *)
val cr =
makeConsrec(cons, singleton patNo, (* Expand the argument *) doArg (wild tree), polyVars);
in
makeAot(Cons([cr], noOfConstrs), defaults, vars)
end
| addConstr(cons, _, doArg, tree as Aot {patts = Cons(pl, width), defaults, vars}, patNo, polyVars) =
let
(* Merge this constructor with other occurences. *)
fun addClist [] = (* Not there - add this on the end. *)
[makeConsrec(cons, singleton patNo, doArg (wild tree), polyVars)]
| addClist ((ccl as {constructor, patts, appliedTo, ... })::ccls) =
if valName constructor = valName cons
then (* Merge in. *)
makeConsrec(cons, singleton patNo plus patts, doArg appliedTo, polyVars)
:: ccls
else (* Carry on looking. *) ccl :: addClist ccls;
in
makeAot (Cons (addClist pl, width), defaults, vars)
end
| addConstr _ = raise InternalError "addConstr: badly-formed and-or tree"
(* Add a special constructor to the tree. Very similar to preceding. *)
fun addSconstr(eqFun, cval, Aot {patts = Wild, defaults, vars, ...}, patNo, _) =
(* Expand out the wildCard into a constructor node. *)
makeAot (Scons [makeSconsrec(eqFun, cval, singleton patNo)], defaults, vars)
| addSconstr(eqFun, cval, Aot {patts = Scons pl, defaults, vars, ...}, patNo, lex) =
let (* Must be scons *)
(* Merge this constructor with other occurrences. *)
(* Special constants may be overloaded so we don't have a fixed set of types
here. We need to use the type-specific equality function to test.
Since only the basis library overloads constants we can assume that
eqFun is a constant. *)
fun equalSpecials(SOME a, SOME b) =
let
val eqCode = mkEval(eqFun, [mkTuple[mkConst a, mkConst b]])
in
RunCall.unsafeCast(valOf(evalue(genCode(eqCode, debugParams lex, 0)())))
end
| equalSpecials _ = false
fun addClist [] = (* Not there - add this on the end. *)
[makeSconsrec(eqFun, cval, singleton patNo)]
| addClist ((ccl as { specVal, patts, ...}) :: ccls) =
if equalSpecials(cval, specVal)
then (* Merge in. *)
makeSconsrec(eqFun, cval, singleton patNo plus patts) :: ccls
else (* Carry on looking. *) ccl :: addClist ccls
in
makeAot (Scons (addClist pl), defaults, vars)
end
| addSconstr _ = raise InternalError "addSconstr: badly-formed and-or tree"
(* Return the exception id if it is a constant. It may be a
top-level exception or it could be in a top-level structure. *)
local
fun testAccess(Global code) = evalue code
| testAccess(Selected{addr, base = Struct{access, ...}}) =
(
case testAccess access of
NONE => NONE
| SOME c => evalue(mkInd(addr, mkConst c))
)
| testAccess _ = NONE
in
fun exceptionId(Value{access, ...}) = testAccess access
end
(* Add an exception constructor to the tree. Similar to the above
now that non-constant exceptions are excluded from codePatt. *)
fun addExconstr(cons, doArg, tree as Aot {patts = Wild, defaults, vars, ...}, patNo) =
(* Expand out the wildCard into a constructor node. *)
let
val cr =
makeExconsrec (cons, singleton patNo, doArg(wild tree), exceptionId cons)
in
makeAot (Excons [cr], defaults, vars)
end
| addExconstr(cons, doArg, tree as Aot {patts = Excons cl, defaults, vars, ...}, patNo) =
let
(* See if this is a constant. *)
val newExval = exceptionId cons
(* Two exceptions can only be considered the same if they are both
constants and the same value. *)
fun sameException(SOME a, SOME b) = PolyML.pointerEq(a, b)
| sameException _ = false
(* It would not be safe to merge exceptions if we were *)
fun addClist [] = (* Not there - add this on the end. *)
[makeExconsrec(cons, singleton patNo, doArg(wild tree), newExval)]
| addClist ((ccl as {constructor, patts, appliedTo, exValue, ... })::ccls) =
if sameException(newExval, exValue)
then (* Merge in. *)
makeExconsrec(constructor, singleton patNo plus patts, doArg appliedTo, exValue)
:: ccls
else (* Carry on looking. *) ccl :: addClist ccls
in
makeAot (Excons (addClist cl), defaults, vars)
end
| addExconstr _ = raise InternalError "addExconstr: badly-formed and-or tree"
in
(* Take a pattern and merge it into an andOrTree. *)
fun buildAot (Ident {value=ref ident, expType=ref expType, ... }, tree, patNo, line, context as { typeVarMap, ...} ) =
let
val polyVars =
List.map #value (getPolymorphism (ident, expType, typeVarMap))
fun doArg a = buildAot(WildCard nullLocation, a, patNo, line, context)
in
case ident of
Value{class=Constructor {ofConstrs, ...}, ...} =>
(* Only nullary constructors. Constructors with arguments
will be dealt with by ``isApplic'. *)
addConstr(ident, ofConstrs, doArg, tree, patNo, polyVars)
| Value{class=Exception, ...} =>
addExconstr(ident, doArg, tree, patNo)
| _ => (* variable - matches everything. Defaults here and pushes a var. *)
addVar (addDefault tree patNo) ident
end
| buildAot (TupleTree{fields, location, ...},
tree as Aot {patts = Wild, defaults = treeDefaults, vars = treeVars, ...},
patNo, _, context) =
(* Adding tuple to existing wild-card *)
let
val tlist = map (fn el => buildAot(el, wild tree, patNo, location, context)) fields
in
makeAot (TupleField tlist, treeDefaults, treeVars)
end
| buildAot (TupleTree{fields, ...},
Aot {patts = TupleField pl, defaults = treeDefaults, vars = treeVars, ...},
patNo, line, context) =
let (* Adding tuple to existing tuple. *)
(* Merge each field of the tuple in with the corresponding
field of the existing tree. *)
val tlist =
ListPair.mapEq (fn(t, a) => buildAot(t, a, patNo, line, context)) (fields, pl)
in
makeAot (TupleField tlist, treeDefaults, treeVars)
end
| buildAot (TupleTree _, _, _, _, _) =
raise InternalError "pattern is not a tuple in a-o-t"
| buildAot (vars as Labelled {recList, expType=ref expType, location, ...},
tree, patNo, _, context as { lex, ...}) =
let
(* Treat as a tuple, but in the order of the record entries.
Missing entries are replaced by wild-cards. The order of
the patterns given may bear no relation to the order in
the record which will be matched.
e.g. case X of (a = 1, ...) => ___ | (b = 2, a = 3) => ___ *)
(* Check that the type is frozen. *)
val () =
if recordNotFrozen expType
then errorNear (lex, true, vars, location,
"Can't find a fixed record type.")
else ()
(* Get the maximum number of patterns. *)
val wilds = List.tabulate(recordWidth expType, fn _ => WildCard nullLocation)
(* Now REPLACE entries from the actual pattern, leaving
the defaulting ones behind. *)
(* Take a pattern and add it into the list. *)
fun mergen (_ :: t) 0 pat = pat :: t
| mergen (h :: t) n pat = h :: mergen t (n - 1) pat
| mergen [] _ _ = raise InternalError "mergen";
fun enterLabel ({name, valOrPat, ...}, l) =
(* Put this label in the appropriate place in the tree. *)
mergen l (entryNumber (name, expType)) valOrPat
val tupleList = List.foldl enterLabel wilds recList
in
(* And process it as a tuple. *)
buildAot(TupleTree{fields=tupleList, location=location, expType=ref expType}, tree, patNo, location, context)
end
| buildAot (Applic{f = Ident{value = ref applVal, expType = ref expType, ...}, arg, location, ...},
tree, patNo, _, context as { typeVarMap, ...}) =
let
val polyVars = List.map #value (getPolymorphism (applVal, expType, typeVarMap))
fun doArg atree = buildAot(arg, atree, patNo, location, context)
in
case applVal of
Value{class=Constructor{ofConstrs, ...}, ...} =>
addConstr(applVal, ofConstrs, doArg, tree, patNo, polyVars)
| Value{class=Exception, ...} => addExconstr(applVal, doArg, tree, patNo)
| _ => tree (* Only if error *)
end
| buildAot (Applic _ , tree, _, _, _) = tree (* Only if error *)
| buildAot (Unit _, tree, patNo, _, _) =
(* There is only one value so it matches everything. *)
addDefault tree patNo
| buildAot (WildCard _, tree, patNo, _, _) = addDefault tree patNo (* matches everything *)
| buildAot (List{elements, location, expType=ref expType, ...},
tree, patNo, _, context) =
let (* Generate suitable combinations of cons and nil.
e.g [1,2,3] becomes ::(1, ::(2, ::(3, nil))). *)
(* Get the base type. *)
val elementType = mkTypeVar (generalisable, false, false, false)
val listType = mkTypeConstruction ("list", tsConstr listConstr, [elementType], [DeclaredAt inBasis])
val _ = unifyTypes(listType, expType)
val polyVars = [elementType]
fun processList [] tree =
(* At the end put in a nil constructor. *)
addConstr(nilConstructor, 2,
fn a => buildAot (WildCard nullLocation, a, patNo, location, context), tree, patNo, polyVars)
| processList (h :: t) tree = (* Cons node. *)
let
fun mkConsPat (Aot {patts = TupleField [hPat, tPat], defaults, vars, ...}) =
let (* The argument is a pair consisting of the
list element and the rest of the list. *)
val tlist = [buildAot(h, hPat, patNo, location, context), processList t tPat];
in
makeAot (TupleField tlist, defaults, vars)
end
| mkConsPat (tree as Aot {patts = Wild, defaults, vars, ...}) =
let
val hPat = wild tree;
val tPat = wild tree;
val tlist = [buildAot(h, hPat, patNo, location, context), processList t tPat];
in
makeAot (TupleField tlist, defaults, vars)
end
| mkConsPat _ =
raise InternalError "mkConsPat: badly-formed parse-tree"
in
addConstr(consConstructor, 2, mkConsPat, tree, patNo, polyVars)
end
(* end processList *);
in
processList elements tree
end
| buildAot (vars as Literal{converter, literal, expType=ref expType, location},
tree, patNo, _, {lex, level, ...}) =
let
(* At the same time we have to get the equality function
for this type to plug into the code. Literals are overloaded
so this may require first resolving the overload to the
preferred type. *)
val constr = typeConstrFromOverload(expType, true)
val equality =
equalityForType(
mkTypeConstruction(tcName constr, constr, [], []), level,
defaultTypeVarMap(fn _ => raise InternalError "equalityForType", baseLevel) (* Should never be used. *))
val litValue: machineWord option =
getLiteralValue(converter, literal, expType, fn s => errorNear(lex, true, vars, location, s))
in
addSconstr(equality, litValue, tree, patNo, lex)
end
| buildAot (Constraint {value, location, ...}, tree, patNo, _, context) = (* process the pattern *)
buildAot(value, tree, patNo, location, context)
| buildAot (Layered {var, pattern, location}, tree, patNo, _, context) =(* process the pattern *)
let
(* A layered pattern may involve a constraint which
has to be removed. *)
fun getVar (Ident {value, ...}) = !value
| getVar (Constraint {value, ...}) = getVar value
| getVar _ = undefinedValue (* error *)
in
addVar (buildAot(pattern, tree, patNo, location, context)) (getVar var)
end
| buildAot (Parenthesised(p, location), tree, patNo, _, context) =
buildAot(p, tree, patNo, location, context)
| buildAot (_, tree, _, _, _) = tree (* error cases *)
end
fun buildTree (patts: matchtree list, context) =
let (* Merge together all the patterns into a single tree. *)
fun maket [] _ tree = tree
| maket ((MatchTree{vars, location, ...})::t) patNo tree =
maket t (patNo + 1) (buildAot(vars, tree, patNo, location, context))
in
maket patts 1 aotEmpty
end
fun bindPattVars(arg, vars, { mkAddr, level, ...}) =
let
val addressOfVar = mkAddr 1
val dec = mkDec (addressOfVar, arg)
and load = mkLoadLocal addressOfVar
(* Set the addresses of the variables and create debug entries. *)
fun setAddr (Value{access=Local{addr=lvAddr, level=lvLevel}, ...}) =
( (* Set the address of the variable. *)
lvAddr := addressOfVar;
lvLevel := level
)
| setAddr _ = raise InternalError "setAddr"
val () = List.app setAddr vars
in
(load, dec)
end
local
(* Find the "depth" of pattern i.e. the position of
any defaults. If one of the fields is itself a
tuple find the maximum depth of its fields, since
if we decide to discriminate on this field we will
come back and choose the deepest in that tuple. *)
fun pattDepth (Aot {patts=TupleField pl, ...}, active) =
List.foldl (fn (t, d) => Int.max(pattDepth(t, active), d)) 0 pl
| pattDepth (Aot {patts, defaults,...}, active) =
let (* Wild cards, constructors etc. *)
val activeDefaults = defaults intersect active
in
if not (isEmptySet activeDefaults)
then first activeDefaults
else
(* No default - the depth is the number of
patterns that will be discriminated. Apart
from Cons which could be a complete match,
all the other cases will only occur
if the match is not exhaustive. *)
case patts of
Cons (cl, _) => length cl + 1
| Excons cl => length cl + 1
| Scons sl => length sl + 1
| _ => 0 (* Error? *)
end
in
fun bestColumn(colsToDo, noOfCols, asTuples, active) =
let
fun findDeepest(column, bestcol, depth) =
if column = noOfCols (* Finished. *)
then bestcol
else if column inside colsToDo
then
let
val thisDepth = pattDepth (List.nth(asTuples, column), active)
in
if thisDepth > depth
then findDeepest (column + 1, column, thisDepth)
else findDeepest (column + 1, bestcol, depth)
end
else findDeepest (column + 1, bestcol, depth)
in
findDeepest(0, 0, 0)
end
end
(* The result of compiling the pattern match code. *)
datatype pattCodeOption =
PattCodeLeaf (* All the discrimination is done. *)
| PattCodeBindTuple of (* The value is a tuple - take it apart. *)
{ tupleNo: int, next: pattCode }
| PattCodeTupleSelect of (* Select a field of a tuple. *)
{ tupleNo: int, fieldOffset: int, next: pattCode }
| PattCodeConstructors of (* Test a set of constructors *)
{
nConstrs: int, (* Number of constrs in datatype. 0 = infinite *)
patterns: (pattCodeConstructor * pattCode) list, (* Constructor and pattern to follow. *)
default: pattCode (* Pattern if none match *)
}
| PattCodeNaive of (* Do all the discrimination for each pattern separately. *)
{ pattNo: int, tests: (naiveTest * values list) list } list
and pattCodeConstructor =
PattCodeDatatype of values * types list
| PattCodeException of values
| PattCodeSpecial of codetree * machineWord option
and naiveTest =
NaiveWild
| NaiveBindTuple of int
| NaiveTupleSelect of { tupleNo: int, fieldOffset: int }
| NaivePattTest of pattCodeConstructor
withtype pattCode =
{
leafSet: patSet, (* Set of different patterns fired by the discrimination. *)
leafCount: int, (* Count of number of leaves - >= cardinality of leafSet *)
vars: values list, (* Variables bound to this node. May be layered i.e. id as pat *)
code: pattCodeOption (* Code to apply at this node. *)
}
local
fun pattCode(Aot {patts, defaults, vars, ...}, active: patSet, nextMatch: patSet * int -> pattCode, tupleNo) =
let
(* Get the set of defaults which are active. *)
val activeDefaults = defaults intersect active
fun makePattTest(patts, default, nConstrs) =
let
(* If we have included all the constructors the default may be
redundant. *)
val nPatts = length patts
val (initSet, initCount) =
if nPatts = nConstrs
then (empty, 0)
else (#leafSet default, #leafCount default)
val defaultSet = #leafSet default
(* If we have a default above a constructor then we may not need to
discriminate on the constructor. This can occur in tuples where
we have already discriminated on a different constructor.
e.g (1, _) => ...| (_, SOME _) => ... | (_, NONE) => ...
The values (1, NONE) and (1, SOME _) will both match the first
pattern. *)
val allSame = List.all (fn (_, { leafSet, ...}) => leafSet eq defaultSet) patts
in
if allSame
then default
else
let
val unionSet = foldl (fn ((_, {leafSet, ...}), s) => s plus leafSet) initSet patts
val leafCount = foldl (fn ((_, {leafCount, ...}), n) => n + leafCount) initCount patts
val constrs =
{
leafSet = unionSet,
vars = [],
code = PattCodeConstructors{nConstrs = nConstrs, patterns=patts, default=default},
leafCount = leafCount
}
in
(* If the patterns are blowing up we are better off using naive matching.
leafCount indicates the number of different times a pattern is fired.
The cardinality of the unionSet is the number of different patterns.
In particular we can have pathological cases that really blow up.
See Tests/Succeed/Test133.ML. *)
if leafCount > 1 andalso leafCount >= cardinality unionSet * 2 - 1
then makeNaive constrs
else constrs
end
end
val codePatt =
(* If the active set is empty (match is not exhaustive) or
everything will default we can skip further checks. *)
if isEmptySet active orelse active eq activeDefaults
then nextMatch(active, tupleNo)
else case patts of
TupleField [single] =>
(* Singleton tuple - this is just the same as the field. *)
pattCode(single, active, nextMatch, tupleNo)
| TupleField asTuples =>
let
val thisTuple = tupleNo
(* The address is used to refer to this tuple. *)
val nextTupleNo = tupleNo+1
(* A simple-minded scheme would despatch the first column
and then do the others. The scheme used here tries to do
better by choosing the column that has any wild card
furthest down the column. *)
val noOfCols = length asTuples
fun despatch colsToDo (active, tupleNo) =
(* If we have done all the columns we can stop. (Or if
the active set is empty). *)
if isEmptySet colsToDo orelse isEmptySet active
then nextMatch(active, tupleNo)
else
let
(* Choose the best column. *)
val bestcol = bestColumn(colsToDo, noOfCols, asTuples, active)
(* Discriminate on the constructors in it. *)
val code as { leafSet, leafCount, ...} =
pattCode(List.nth(asTuples, bestcol), active,
despatch (colsToDo diff (singleton bestcol)),
tupleNo)
(* Code to do the selection. *)
val select = PattCodeTupleSelect{tupleNo = thisTuple, fieldOffset = bestcol, next = code }
in
{ leafSet = leafSet, leafCount = leafCount, vars = [], code = select }
end
val takeApartTuple as { leafSet, leafCount, ...} = despatch (from 0 (noOfCols-1)) (active, nextTupleNo)
val code = PattCodeBindTuple { tupleNo=tupleNo, next = takeApartTuple }
in
{ leafSet = leafSet, leafCount = leafCount, vars=[], code=code }
end
| Cons(cl, width) =>
let
fun doConstr({ patts, constructor, appliedTo, polyVars, ...}, rest) =
let
(* If this pattern is in the active set
we discriminate on it. *)
val newActive = patts intersect active
in
if isEmptySet newActive
then (* No point *) rest
else
let
val thenCode =
pattCode(appliedTo, newActive plus activeDefaults, nextMatch, tupleNo)
in
(PattCodeDatatype(constructor, polyVars), thenCode) :: rest
end
end
val pattList = foldl doConstr [] cl
in
makePattTest(pattList, nextMatch(activeDefaults, tupleNo), width)
end
| Excons cl =>
let
(* We now process exception constructors in the same way as datatype constructors.
This is only valid because all the exception constructors are constants. *)
fun doConstr({ patts, constructor, appliedTo, ...}, rest) =
let
(* If this pattern is in the active set
we discriminate on it. *)
val newActive = patts intersect active
in
if isEmptySet newActive
then (* No point *) rest
else
let
val thenCode =
pattCode(appliedTo, newActive plus activeDefaults, nextMatch, tupleNo)
in
(PattCodeException constructor, thenCode) :: rest
end
end
val pattList = foldl doConstr [] cl
in
makePattTest(pattList, nextMatch(activeDefaults, tupleNo), 0)
end
| Scons sl =>
let (* Int, char, string *)
(* Generate if..then..else for each of the choices. *)
fun doConstr({ patts, eqFun, specVal, ...}, rest) =
let
val newActive = patts intersect active
in
if isEmptySet newActive
then (* No point *) rest
else (PattCodeSpecial(eqFun, specVal), nextMatch(newActive plus activeDefaults, tupleNo)) :: rest
end
val pattList = foldl doConstr [] sl
in
makePattTest(pattList, nextMatch(activeDefaults, tupleNo), 0)
end
| Wild => nextMatch(activeDefaults, tupleNo)
in
{ leafSet = #leafSet codePatt, leafCount = #leafCount codePatt, vars=vars @ #vars codePatt, code = #code codePatt }
end
(* Turn a decision tree into a series of tests for each pattern. *)
and makeNaive(pattern as { leafSet, vars, ... }) =
let
fun createTests(_, { code = PattCodeLeaf, vars, ...}) = [(NaiveWild, vars)]
| createTests(pat, { code = PattCodeBindTuple{ tupleNo, next }, vars, ... }) =
(NaiveBindTuple tupleNo, vars) :: createTests(pat, next)
| createTests(pat, { code = PattCodeTupleSelect { tupleNo, fieldOffset, next }, vars, ...}) =
(NaiveTupleSelect { tupleNo = tupleNo, fieldOffset = fieldOffset }, vars) :: createTests(pat, next)
| createTests(pat, { code = PattCodeConstructors { patterns, default, ... }, vars, ...}) =
if pat inside #leafSet default (* If it's in the default set we don't discriminate here. *)
then (NaiveWild, vars) :: createTests(pat, default)
else
let
(* If it's not in the default it must be in one of the constructors. *)
val (constr, code) = valOf(List.find(fn (_, {leafSet, ...}) => pat inside leafSet) patterns)
in
(NaivePattTest constr, vars) :: createTests(pat, code)
end
| createTests(pat, { code = PattCodeNaive l, vars, ...}) =
let
val { tests, ...} = valOf(List.find(fn{pattNo, ...} => pat = pattNo) l)
in
(NaiveWild, vars) :: tests
end
fun createPatts setToDo =
if isEmptySet setToDo
then []
else
let
val pat = first setToDo
val entry = { pattNo = pat, tests = createTests(pat, pattern) }
val otherPatts = createPatts(setToDo diff singleton pat)
in
(* Normally we want the patterns in order since earlier ones
will generally be more specific. If 0 is in the set it
represents "non-exhaustive" and must go last. *)
if pat = 0
then otherPatts @ [entry]
else entry :: otherPatts
end
in
{ leafSet=leafSet, vars=vars, code=PattCodeNaive(createPatts leafSet), leafCount = cardinality leafSet }
end
in
fun buildPatternCode(tree, noOfPats, alwaysNaive) =
let
fun firePatt(pattsLeft, _) =
let
val pattern =
if isEmptySet pattsLeft
then 0 (* This represents non-exhaustive. *)
else first pattsLeft
in
{ vars = [], code = PattCodeLeaf, leafSet = singleton pattern, leafCount = 1 }
end
val patts = pattCode(tree, from 1 noOfPats, firePatt, 0)
in
if alwaysNaive
then makeNaive patts
else patts
end
end
local
(* Raises an exception. *)
fun raiseException(exName, exIden, line) =
mkRaise (mkTuple [exIden, mkStr exName, CodeZero, codeLocation line]);
(* Create exception values - Small integer values are used for
run-time system exceptions. *)
val bindExceptionVal = mkConst (ADDRESS.toMachineWord EXC_Bind);
val matchExceptionVal = mkConst (ADDRESS.toMachineWord EXC_Match);
in
(* Raise match and bind exceptions. *)
fun raiseBindException line = raiseException("Bind", bindExceptionVal, line)
and raiseMatchException line = raiseException("Match", matchExceptionVal, line)
end
(* Turn the decision tree into real code. *)
local
(* Guard and inversion code for constructors *)
fun constructorCode(PattCodeDatatype(cons, polyVars), arg, {level, typeVarMap, ...}) =
(
makeGuard (cons, polyVars, arg, level, typeVarMap),
makeInverse (cons, polyVars, arg, level, typeVarMap)
)
| constructorCode(PattCodeException cons, arg, {level, typeVarMap, ...}) =
(
makeGuard (cons, [], arg, level, typeVarMap),
makeInverse (cons, [], arg, level, typeVarMap)
)
| constructorCode(PattCodeSpecial(eqFun, cval), arg, _) =
let
val constVal = case cval of SOME cv => mkConst cv | NONE => CodeZero
in
(mkEval(eqFun, [mkTuple[arg, constVal]]), CodeZero (* Unused *))
end
(* Sequence of tests for naive match. *)
fun makeNaiveTests([], _, _, _) = CodeTrue
| makeNaiveTests ((NaiveWild, _) :: rest, arg, tupleMap, context) = makeNaiveTests(rest, arg, tupleMap, context)
| makeNaiveTests ((NaiveBindTuple tupleNo, _) :: rest, arg, tupleMap, context) =
let
(* Bind it to a variable. We don't set the addresses of the vars at this point. *)
val (declLoad, declDec) = bindPattVars(arg, [], context)
in
mkEnv([declDec], makeNaiveTests(rest, arg, (tupleNo, declLoad) :: tupleMap, context))
end
| makeNaiveTests ((NaiveTupleSelect { tupleNo, fieldOffset}, _) :: rest, _, tupleMap, context) =
let
val findTuple = List.find(fn(a, _) => tupleNo = a) tupleMap
in
makeNaiveTests(rest, mkInd(fieldOffset, #2 (valOf findTuple)), tupleMap, context)
end
| makeNaiveTests ((NaivePattTest constr, _) :: rest, arg, tupleMap, context) =
let
(* Bind it to a variable. This avoids making multiple copies of code. *)
val (declLoad, declDec) = bindPattVars(arg, [], context)
val (thisTest, inverse) = constructorCode(constr, declLoad, context)
in
mkEnv([declDec], mkCand(thisTest, makeNaiveTests(rest, inverse, tupleMap, context)))
end
(* Load all the variables. *)
fun makeLoads([], _, _, _, _) = []
| makeLoads((pattern, vars) :: rest, patNo, arg, tupleMap, context) =
let
val (declLoad, declDec) = bindPattVars(arg, vars, context)
val pattLoad =
case pattern of
NaiveWild => makeLoads(rest, patNo, declLoad, tupleMap, context)
| NaiveBindTuple tupleNo =>
makeLoads(rest, patNo, declLoad, (tupleNo, declLoad) :: tupleMap, context)
| NaiveTupleSelect { tupleNo, fieldOffset} =>
let
val findTuple = List.find(fn(a, _) => tupleNo = a) tupleMap
in
makeLoads(rest, patNo, mkInd(fieldOffset, #2 (valOf findTuple)), tupleMap, context)
end
| NaivePattTest constr =>
let
val (_, inverse) = constructorCode(constr, declLoad, context)
in
makeLoads(rest, patNo, inverse, tupleMap, context)
end
in
declDec :: pattLoad
end
in
fun codeGenerateMatch(patCode, arg, firePatt,
context: matchContext as {level, typeVarMap, ...}) =
let
fun codeMatch({ leafSet, vars, code, ...}, arg, tupleMap) =
let
(* Bind the current value to a codetree variable and set the addresses
of any ML variables to this. *)
val (declLoad, declDec) = bindPattVars(arg, vars, context)
val pattCode =
case code of
PattCodeLeaf => (* Finished - fire the pattern. *)
firePatt(first leafSet)
| PattCodeBindTuple { tupleNo, next }=>
(* Bind the tuple number to this address. *)
codeMatch(next, arg, (tupleNo, declLoad) :: tupleMap)
| PattCodeTupleSelect { tupleNo, fieldOffset, next } =>
let
(* The tuple number should be in the map. Find the address and
select the field. *)
val findTuple = List.find(fn(a, _) => tupleNo = a) tupleMap
in
codeMatch(next, mkInd(fieldOffset, #2 (valOf findTuple)), tupleMap)
end
| PattCodeConstructors { nConstrs, patterns, default } =>
let
fun doPattern((PattCodeDatatype(cons, polyVars), code) :: rest, 1) =
(* This is the last pattern and we have done all the others.
We don't need to test this one and we don't use the default. *)
let
val _ = null rest orelse raise InternalError "doPattern: not at end"
val invertCode = makeInverse (cons, polyVars, declLoad, level, typeVarMap)
in
codeMatch(code, invertCode, tupleMap)
end
| doPattern([], _) = (* We've done all of them - do the default *)
codeMatch(default, arg, tupleMap)
| doPattern((constructor, matchCode) :: next, constrsLeft) =
let
val (testCode, invertCode) = constructorCode(constructor, declLoad, context)
val thenCode = codeMatch(matchCode, invertCode, tupleMap)
in
mkIf(testCode, thenCode, doPattern(next, constrsLeft-1))
end
in
doPattern(patterns, nConstrs)
end
| PattCodeNaive patterns =>
let
fun makePatterns [] = raise InternalError "makeTests: empty"
| makePatterns ({ tests, pattNo} :: rest) =
let
val pattDecs = makeLoads(tests, pattNo, arg, tupleMap, context)
val pattCode = mkEnv(pattDecs, firePatt pattNo)
in
(* If this is the last one there's no need for a test. *)
if null rest
then pattCode
else mkIf(makeNaiveTests(tests, arg, tupleMap, context), pattCode, makePatterns rest)
end
in
makePatterns patterns
end
in
mkEnv([declDec], pattCode)
end
in
codeMatch(patCode, arg, [])
end
(* Binding. This should be a single naive match. Generally it will be exhaustive
so we will only have to load the variables. *)
fun codeBinding(
{ leafSet, vars,
code = PattCodeNaive({ tests, ...} :: _ (* Normally nil but could be PattCodeWild if non-exhaustive *)), ...},
arg, line, context) =
let
(* Bind this to a variable and set any top-level variable(s). *)
val (declLoad, declDec) = bindPattVars(arg, vars, context)
(* Create any test code to raise the bind exception *)
val testCode =
if not (0 inside leafSet)
then [] (* Exhaustive - no test needed. *)
else [mkNullDec(mkIf(makeNaiveTests(tests, declLoad, [], context), CodeZero, raiseBindException line))]
(* Load the variables. *)
val pattDecs = makeLoads(tests, 1, declLoad, [], context)
in
declDec :: testCode @ pattDecs
end
| codeBinding _ = raise InternalError "codeBinding: should be naive pattern match"
end
fun containsNonConstException(Aot{patts = TupleField fields, ...}) =
List.foldl(fn (aot, t) => t orelse containsNonConstException aot) false fields
| containsNonConstException(Aot{patts = Cons(cl, _), ...}) =
List.foldl(fn ({appliedTo, ...}, t) => t orelse containsNonConstException appliedTo) false cl
| containsNonConstException(Aot{patts = Excons cl, ...}) =
List.foldl(fn ({appliedTo, exValue, ...}, t) =>
t orelse not (isSome exValue) orelse containsNonConstException appliedTo) false cl
| containsNonConstException _ = false (* Scons or Wild *)
(* Process a pattern in a binding. *)
(* This previously used codePatt with special options to generate the correct
structure for a binding. This does the test separately from loading
the variables. If the pattern is not exhaustive this may do more work
since the pattern is taken apart both in the test and for loading. *)
fun codeBindingPattern(vbDec, arg, line, context) =
let
(* Build the tree. *)
val andortree = buildAot(vbDec, aotEmpty, 1, line, context)
(* Build the pattern code *)
val patternCode as { leafSet, ... } = buildPatternCode(andortree, 1, true (* Always *))
(* It's not exhaustive if pattern zero is in the set. *)
val exhaustive = not (0 inside leafSet)
val codeDecs = codeBinding(patternCode, arg, line, context)
in
(codeDecs, exhaustive)
end
(* Process a set of patterns in a match. *)
(* Naive match code. Doesn't check for exhaustiveness or redundancy. *)
fun codeMatchPatterns(alt, arg, isHandlerMatch, lineNo, codePatternExpression, context as { lex, ...}) =
let
val noOfPats = length alt
val andortree = buildTree(alt, context)
(* If the match is sparse or there are any non-constant exceptions we
need to use pattern-by-pattern matching. Non-constant exceptions
could involve exception aliasing and this complicates pattern
matching. It could break the rule that says that if a value
matches one constructor it cannot then match any other.
If we are compiling with debugging we also use the naive
match. *)
val alwaysNaive = containsNonConstException andortree
orelse getParameter debugTag (debugParams lex)
val patternCode as { leafSet, ... } = buildPatternCode(andortree, noOfPats, alwaysNaive)
(* It's not exhaustive if pattern zero is in the set. *)
val exhaustive = not (0 inside leafSet)
fun firePatt 0 =
(
exhaustive andalso raise InternalError "codeDefault called but exhaustive";
if isHandlerMatch
then mkRaise arg
else raiseMatchException lineNo
)
| firePatt pattChosen = codePatternExpression(pattChosen - 1)
in
(codeGenerateMatch(patternCode, arg, firePatt, context), exhaustive)
end
(* Types that can be shared. *)
structure Sharing =
struct
type parsetree = parsetree
type typeVarMap = typeVarMap
type level = level
type codetree = codetree
type matchtree = matchtree
type codeBinding = codeBinding
type lexan = lexan
end
end;
|