1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
|
(*
Copyright David C. J. Matthews 2009
Largely extracted from STRUCTURES_.ML
Copyright (c) 2000
Cambridge University Technical Services Limited
Modified D.C.J. Matthews 2001-2015
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*
Title: Module Structure and Operations.
Author: Dave Matthews, Cambridge University Computer Laboratory
Copyright Cambridge University 1985
*)
functor SIGNATURES (
structure LEX : LEXSIG
structure STRUCTVALS : STRUCTVALSIG;
structure EXPORTTREE: EXPORTTREESIG
structure PRETTY : PRETTYSIG
structure COPIER: COPIERSIG
structure TYPETREE : TYPETREESIG
structure PARSETREE : PARSETREESIG
structure VALUEOPS : VALUEOPSSIG;
structure UNIVERSALTABLE:
sig
type universal = Universal.universal
type univTable
type 'a tag = 'a Universal.tag
val univEnter: univTable * 'a tag * string * 'a -> unit;
val univLookup: univTable * 'a tag * string -> 'a option;
val univFold: univTable * (string * universal * 'a -> 'a) * 'a -> 'a;
end;
structure DEBUG: DEBUGSIG
structure UTILITIES :
sig
val noDuplicates: (string * 'a * 'a -> unit) ->
{ apply: (string * 'a -> unit) -> unit,
enter: string * 'a -> unit,
lookup: string -> 'a option };
val searchList: unit -> { apply: (string * 'a -> unit) -> unit,
enter: string * 'a -> unit,
lookup: string -> 'a option };
end;
sharing LEX.Sharing = TYPETREE.Sharing = PARSETREE.Sharing
= PRETTY.Sharing = EXPORTTREE.Sharing = STRUCTVALS.Sharing = COPIER.Sharing
= VALUEOPS.Sharing = UNIVERSALTABLE
) : SIGNATURESSIG =
struct
open Misc (* Open this first because it contains Value. *)
open LEX STRUCTVALS EXPORTTREE PRETTY COPIER TYPETREE PARSETREE UNIVERSALTABLE DEBUG
open VALUEOPS UTILITIES Universal
datatype sigs =
SignatureIdent of string * location * locationProp list ref (* A signature name *)
| SigDec of specs list * location (* sig ... end *)
| WhereType of whereTypeStruct (* type realisation. *)
and specs =
StructureSig of structSigBind list * location
| ValSig of (* Signature of a value. *)
{ name: string * location, typeof: typeParsetree, line: location }
| ExSig of (* Signature of an exception. May be a nullary exception. *)
{ name: string * location, typeof: typeParsetree option, line: location }
| CoreType of (* Any other decln. *)
{
dec: parsetree, (* The value *)
location: location
}
| Sharing of shareConstraint (* Sharing constraints. *)
| IncludeSig of sigs list * location (* Include. *)
withtype shareConstraint =
{
isType: bool,
shares: (string * location) list,
line: location
}
and structSigBind =
{
name: string, (* The name of the structure *)
nameLoc: location,
sigStruct: sigs * bool * location,
line: location
}
and whereTypeStruct =
{
sigExp: sigs,
typeVars: typeVarForm list,
typeName: string,
realisation: typeParsetree,
line: location
}
fun mkSigIdent(name, nameLoc) = SignatureIdent(name, nameLoc, ref [])
fun mkCoreType (dec, location) =
CoreType { dec = dec, location = location };
fun mkValSig (nameLoc, typeof, line) =
ValSig
{
name = nameLoc,
typeof = typeof,
line = line
};
fun mkExSig (nameLoc, typeof, line) =
ExSig
{
name = nameLoc,
typeof = typeof,
line = line
};
fun mkSharing (isType, shares, line) =
Sharing {
isType = isType,
shares = shares,
line = line
};
fun mkWhereType (sigexp, typeVars, name, types, line) =
WhereType {
sigExp = sigexp,
typeVars = typeVars,
typeName = name,
realisation = types,
line = line
};
val mkInclude = IncludeSig
and mkStructureSig = StructureSig
and mkSig = SigDec
fun mkStructureSigBinding ((name, nameLoc), signat, fullLoc):structSigBind =
{
name = name,
nameLoc = nameLoc,
sigStruct = signat,
line = fullLoc
}
(* Make a signature for initialisating variables and for
undeclared signature variables. *)
val undefinedSignature =
makeSignature("<undefined>", makeSignatureTable(), 0, [], fn _ => raise Subscript, []);
(* We use a name that isn't otherwise valid for a signature. *)
fun isUndefinedSignature(Signatures{name, ...}) = name = "<undefined>"
fun displayList ([], _, _) _ = []
| displayList ([v], _, depth) dodisplay =
if depth <= 0
then [PrettyString "..."]
else [dodisplay (v, depth)]
| displayList (v::vs, separator, depth) dodisplay =
if depth <= 0
then [PrettyString "..."]
else
let
val brk = if separator = "," orelse separator = ";" then 0 else 1
in
PrettyBlock (0, false, [],
[
dodisplay (v, depth),
PrettyBreak (brk, 0),
PrettyString separator
]
) ::
PrettyBreak (1, 0) ::
displayList (vs, separator, depth - 1) dodisplay
end (* displayList *)
fun displaySigs (str, depth) =
if depth <= 0 (* elide further text. *)
then PrettyString "..."
else
case str of
SignatureIdent (name : string, _, _) =>
PrettyString name
| SigDec (structList : specs list, _) =>
PrettyBlock (0, true, [],
PrettyString "sig" ::
PrettyBreak (1, 0) ::
displayList (structList, "", depth) displaySpecs @
[ PrettyBreak (1, 0), PrettyString "end"]
)
| WhereType { sigExp, typeVars, typeName, realisation, ... } =>
PrettyBlock (3, false, [],
displaySigs (sigExp, depth) ::
PrettyBreak (1, 0) ::
PrettyString "where" ::
PrettyBreak (1, 0) ::
PrettyString "type" ::
PrettyBreak (1, 0) ::
displayTypeVariables (typeVars, depth) @
[
PrettyString typeName,
PrettyBreak (1, 0),
PrettyString "=",
PrettyBreak (1, 0),
displayTypeParse (realisation, depth - 1, emptyTypeEnv)
]
)
and displaySpecs (specs, depth) =
if depth <= 0 (* elide further text. *)
then PrettyString "..."
else
case specs of
StructureSig (structList : structSigBind list, _) =>
let
fun displaySigsBind (
{name, sigStruct=(sigStruct, opaque, _), ...}: structSigBind, depth) =
PrettyBlock (3, false, [],
[
PrettyString name,
PrettyString (if opaque then " :>" else " :"),
PrettyBreak (1, 0),
displaySigs (sigStruct, depth - 1)
]
)
in
PrettyBlock (3, false, [],
PrettyString "structure" ::
PrettyBreak (1, 0) ::
displayList (structList, "and", depth) displaySigsBind
)
end
| ValSig {name = (name, _), typeof, ...} =>
PrettyBlock (0, false, [],
[
PrettyString "val",
PrettyBreak (1, 1),
PrettyString (name ^ " :"),
PrettyBreak (1, 0),
displayTypeParse (typeof, depth - 1, emptyTypeEnv)
]
)
| ExSig {name = (name, _), typeof = NONE, ...} =>
PrettyBlock (0, false, [],
[
PrettyString "exception",
PrettyBreak (1, 1),
PrettyString (name)
]
)
| ExSig {name = (name, _), typeof = SOME typeof, ...} =>
PrettyBlock (0, false, [],
[
PrettyString "exception",
PrettyBreak (1, 1),
PrettyString (name ^ " :"),
PrettyBreak (1, 0),
displayTypeParse (typeof, depth - 1, emptyTypeEnv)
]
)
| Sharing { isType, shares, ... } =>
PrettyBlock (3, false, [],
PrettyString "sharing" ::
PrettyBreak (1, 0) ::
(
if not isType then []
else [ PrettyString "type", PrettyBreak (1, 0) ]
) @
displayList (shares, "=", depth) (fn ((name, _), _) => PrettyString name)
)
| IncludeSig (structList : sigs list, _) =>
PrettyBlock (3, true, [],
PrettyString "include" ::
PrettyBreak (1, 0) ::
displayList (structList, "", depth - 1) displaySigs
)
| CoreType {dec, ...} =>
displayParsetree (dec, depth - 1)
(* End displaySigs *)
fun sigExportTree(navigation, s: sigs) =
let
(* Common properties for navigation and printing. *)
val commonProps =
PTprint(fn d => displaySigs(s, d)) ::
exportNavigationProps navigation
fun asParent () = sigExportTree(navigation, s)
in
case s of
SignatureIdent(_, loc, ref decLocs) =>
(loc, mapLocationProps decLocs @ commonProps)
| SigDec(structList, location) =>
(location, exportList(specExportTree, SOME asParent) structList @ commonProps)
| WhereType _ => (nullLocation, commonProps)
end
and specExportTree(navigation, s: specs) =
let
(* Common properties for navigation and printing. *)
val commonProps =
PTprint(fn d => displaySpecs(s, d)) ::
exportNavigationProps navigation
fun asParent () = specExportTree(navigation, s)
in
case s of
StructureSig(sbl, location) =>
let
fun exportSB(navigation, sb as {name, nameLoc, sigStruct=(theSig, _, _), line, ...}) =
let
fun exportThis () = exportSB(navigation, sb)
fun getName () =
getStringAsTree({parent=SOME exportThis, previous=NONE, next=SOME getSigStruct}, name, nameLoc, [])
and getSigStruct () =
sigExportTree({parent=SOME exportThis, previous=SOME getName, next=NONE}, theSig)
in
(line, PTfirstChild getName :: exportNavigationProps navigation)
end
val expChild = exportList(exportSB, SOME asParent) sbl
in
(location, expChild @ commonProps)
end
| ValSig{name=(name, nameLoc), typeof, line, ...} =>
let
(* The first position is the value name, the second the type. *)
(* TODO: Include the actual type as PTtype? *)
fun getName () =
getStringAsTree({parent=SOME asParent, previous=NONE, next=SOME getType}, name, nameLoc, [])
and getType () =
typeExportTree({parent=SOME asParent, previous=SOME getName, next=NONE}, typeof)
in
(line, PTfirstChild getName :: commonProps)
end
| ExSig{name=(name, nameLoc), typeof = NONE, line, ...} =>
let
(* The first position is the value name, the second the type. *)
fun getName () =
getStringAsTree({parent=SOME asParent, previous=NONE, next=NONE}, name, nameLoc, [])
in
(line, PTfirstChild getName :: commonProps)
end
| ExSig{name=(name, nameLoc), typeof = SOME typeof, line, ...} =>
let
(* The first position is the value name, the second the type. *)
(* TODO: Include the actual type as PTtype? *)
fun getName () =
getStringAsTree({parent=SOME asParent, previous=NONE, next=SOME getType}, name, nameLoc, [])
and getType () =
typeExportTree({parent=SOME asParent, previous=SOME getName, next=NONE}, typeof)
in
(line, PTfirstChild getName :: commonProps)
end
| CoreType {dec, ...} => (* A value parse-tree entry. *)
getExportTree(navigation, dec)
| Sharing _ => (nullLocation, commonProps)
| IncludeSig (sigs, loc) =>
(loc, exportList(sigExportTree, SOME asParent) sigs @ commonProps)
end
(* Puts out an error message and then prints the piece of tree. *)
fun errorMsgNear (lex, hard, near, lno, message) : unit =
let
val parameters = debugParams lex
val errorDepth = getParameter errorDepthTag parameters
in
reportError lex
{
hard = hard, location = lno, message = message,
context = SOME(near errorDepth)
}
end
fun errorNear(lex, hard, near, lno, message: string) =
errorMsgNear (lex, hard, near, lno,
PrettyBlock (0, false, [], [PrettyString message]))
fun giveError (sVal : sigs, lno : LEX.location, lex : lexan) : string -> unit =
fn (message : string) => errorNear (lex, true, fn n => displaySigs(sVal, n), lno, message)
and giveSpecError(sVal : specs, lno : LEX.location, lex : lexan) : string -> unit =
fn (message : string) => errorNear (lex, true, fn n => displaySpecs(sVal, n), lno, message);
val makeEnv = fn x => let val Env e = makeEnv x in e end;
fun printId(TypeId{description, ...}) = printDesc description
and printDesc{ location: location, name: string, description = "" } =
PrettyBlock(0, false, [ContextLocation location], [PrettyString name])
| printDesc{ location: location, name: string, description: string } =
PrettyBlock(0, false, [ContextLocation location],
[PrettyString name, PrettyBreak(1, 0), PrettyString ("(*" ^ description ^ "*)")])
(* Formal paramater to a functor - either value or exception. *)
fun mkFormal (name : string, class, typ, addr, locations) =
Value{class=class, name=name, typeOf=typ, access=Formal addr, locations=locations,
references = NONE, instanceTypes=NONE}
(* Get the value from a signature-returning expression
(either the name of a signature or sig ... end.
The type IDs in the signature are bound names. *)
fun sigVal(str : sigs,
initTypeId : int,
outerTypeIdEnv: int->typeId,
Env globalEnv : env,
lex,
lno : LEX.location
) : signatures =
let
datatype varId =
SharedWith of int (* Index of shared ID, always less than current index. *)
| VariableSlot of { boundId: typeId, descriptions: string list }
| FreeSlot of typeId (* Bound to a Free type ID. *)
| Unset
val idCount = ref initTypeId
val mapArray = StretchArray.stretchArray(10 (* Guess initial size. *), Unset)
val sourceArray = StretchArray.stretchArray(10 (* Guess initial size. *), NONE)
fun makeVariableId(arity, isEq, isDt, requireUpdate, { location, name, description }, structPath) =
let
val fullName = structPath^name
val descr = { location=location, name=fullName, description=description}
(* Make a new bound ID after any existing ones. *)
val newIdNumber = !idCount before (idCount := !idCount+1)
val newId =
(if requireUpdate then makeBoundIdWithEqUpdate else makeBoundId)
(arity, Formal 0 (* Not used. *), newIdNumber, isEq, isDt, descr)
(* Enter a variable entry in the array. *)
val arrayEntry = VariableSlot{ boundId=newId, descriptions = [fullName] }
val () = StretchArray.update(mapArray, newIdNumber-initTypeId, arrayEntry)
val () = StretchArray.update(sourceArray, newIdNumber-initTypeId, SOME newId)
in
newId
end
(* Follow a chain of shared IDs. This should terminate because we always
point down the array. *)
fun realId n =
case StretchArray.sub(mapArray, n) of
SharedWith m =>
if m >= n
then raise InternalError "realId: Sharing loop"
else realId m
| id => id
fun isVariableId(TypeId{idKind=Bound{offset, ...}, ...}) =
if offset < initTypeId then false (* Outside the signature. *)
else
(
case realId(offset-initTypeId) of
VariableSlot _ => true
| FreeSlot _ => false
| _ => raise InternalError "isVar"
)
| isVariableId _ (* Free or TypeFunction *) = false
(* The internal type ID map after mapping to the internal Bound IDs but before the application of
any "where types" or sharing. *)
fun typeIdEnv () =
let
val v = Vector.tabulate(!idCount-initTypeId, fn n => valOf(StretchArray.sub(sourceArray, n)))
in
fn n =>
if n < initTypeId
then outerTypeIdEnv n
else Vector.sub(v, n-initTypeId)
end
fun linkFlexibleTypeIds(typeId1, typeId2) =
(* Link together and share two IDs. The result is an equality type if either
was an equality type and a datatype if either was a datatype. *)
case (typeId1, typeId2) of
(TypeId{idKind=Bound{offset=offset1, ...}, ...}, TypeId{idKind=Bound{offset=offset2, ...}, ...}) =>
(
case (realId(offset1-initTypeId), realId(offset2-initTypeId)) of
(VariableSlot{descriptions = desc1,
boundId=TypeId{
idKind=Bound{eqType=eqType1, offset=off1, isDatatype=isDatatype1, arity=arity1, ...}, description, ...}},
VariableSlot{descriptions = desc2,
boundId=TypeId{
idKind=Bound{eqType=eqType2, offset=off2, isDatatype=isDatatype2, arity=arity2, ...}, ...}}) =>
if off1 = off2
then () (* They may already share. *)
else
let
val resOffset = Int.min(off1, off2)
val setOffset = Int.max(off1, off2)
val isDatatype = isDatatype1 orelse isDatatype2
val _ = arity1 = arity2 orelse raise InternalError "linkFlexibleTypeIds: different arities"
val newId =
makeBoundId(arity1, Formal 0, resOffset, pling eqType1 orelse pling eqType2,
isDatatype, description (* Not used *))
val newEntry =
VariableSlot{ boundId=newId, descriptions = desc1 @ desc2 }
in
StretchArray.update(mapArray, resOffset-initTypeId, newEntry);
StretchArray.update(mapArray, setOffset-initTypeId, SharedWith(resOffset-initTypeId))
end
| _ => raise InternalError "linkFlexibleTypeIds: not variable"
)
| _ => raise InternalError "linkFlexibleTypeIds: not bound"
local (* Sharing *)
fun shareTypes(typeA as TypeConstrSet(constrA, _), aPath, aMap,
typeB as TypeConstrSet(constrB, _), bPath, bMap, lno, nearStruct) =
let
fun cantShare reason =
let
fun showTypeCons(TypeConstrSet(t, _), p) =
let
val context =
case List.find(fn DeclaredAt _ => true | _ => false) (tcLocations t) of
SOME(DeclaredAt loc) => [ContextLocation loc]
| _ => []
in
PrettyBlock(0, false, context, [PrettyString(p ^ tcName t)])
end
in
errorMsgNear (lex, true, fn n => displaySigs(nearStruct, n), lno,
PrettyBlock(3, false, [],
[
PrettyString "Cannot share type",
PrettyBreak(1, 2),
showTypeCons(typeA, aPath),
PrettyBreak(1, 0),
PrettyString "with type",
PrettyBreak(1, 0),
showTypeCons(typeB, bPath),
PrettyBreak(0, 0),
PrettyString ".",
PrettyBreak(1, 0),
reason
]))
end
fun alreadyBound(path, typeName, tcId) =
cantShare (
PrettyBlock(3, false, [],
[
PrettyString(path ^ typeName),
PrettyBreak(1, 0),
PrettyString "is already defined as",
PrettyBreak(1, 0),
printId tcId
]))
in
if isUndefinedTypeConstr constrA orelse isUndefinedTypeConstr constrB
then ()
else if tcArity constrA <> tcArity constrB (* Check arity. *)
then cantShare(PrettyString "The type constructors take different numbers of arguments.")
else
let
fun mapId (map, TypeId{idKind=Bound{offset, ...}, ...}) = map offset
| mapId (_, id) = id
val aId = mapId(aMap, tcIdentifier constrA)
and bId = mapId(bMap, tcIdentifier constrB)
in
(* The type constructors are only looked up in the signature but they
already may be set to another type through a "where type" or they may
have been created with Free IDs through type t=s declarations. This
could be a free identifier or a type function. *)
if not (isVariableId aId)
then alreadyBound(aPath, tcName constrA, aId)
else if not (isVariableId bId)
then alreadyBound(bPath, tcName constrB, bId)
else linkFlexibleTypeIds(aId, bId)
end
end (* shareTypes *);
(* Find all the structures and type constructors in one structure. *)
fun structsAndTypes((Struct{signat=Signatures { tab, typeIdMap, ... }, ...}, path, oldMap), start) =
let
val newMap = composeMaps(typeIdMap, oldMap)
fun get(name, dVal, (ts, ss)) =
if tagIs structVar dVal
then (ts, (name, (tagProject structVar dVal, path ^ name ^ ".", newMap)) :: ss)
else if tagIs typeConstrVar dVal
then ((name, (tagProject typeConstrVar dVal, path, newMap)) :: ts, ss)
else (ts, ss)
in
univFold (tab, get, start)
end
(* Get all the structures and type constructors in a list of structures. *)
fun allStructsAndTypes structs = List.foldl structsAndTypes ([], []) structs
(* Turn a list of names and structures/types into a list of lists. Each entry in
the result list is all those structures/types with the same name. *)
fun getMatchedEntries entries =
let
(* Sort the items so that items with the same name are brought together.
A signature is not allowed to have items of the same kind with the
same name so this means that we are bringing together items from
different structures. Then filter the result to produce sets of items
with the same name. Discard singletons in the result. *)
val sortedEntries = quickSort (fn (s1, _) => fn (s2, _) => s1 <= s2) entries
(* *)
fun getEquals([], _, [], res) = res (* End of empty list. *)
| getEquals([], _, [_], res) = res (* Last item was singleton: discard *)
| getEquals([], _, acc, res) = acc :: res (* Return last item. *)
| getEquals((s, t) :: r, a: string, acc, res) =
if a = s then getEquals(r, a, t :: acc, res) (* Same name as last item. *)
else case acc of (* Different from last item: *)
[] => getEquals(r, s, [t], res) (* No previous item. *)
| [_] => getEquals(r, s, [t], res) (* Last was singleton: discard. *)
| acc => getEquals(r, s, [t], acc :: res)
in
getEquals(sortedEntries, "", [], [])
end
(* Recursively apply the sharing constraints to corresponding types in a list of
structures. *)
fun structureSharing(structs, line, near) =
let
fun shareStructs structs =
let
val (allTypes, allSubstructs) = allStructsAndTypes structs
(* Get the lists of structures and types to share. *)
val matchedTypes = getMatchedEntries allTypes
val matchedStructs = getMatchedEntries allSubstructs
in
List.app(fn types => (* Share types. *)
case types of
[] => raise List.Empty
| (hd, hdName, hdMap) :: tl => (* Share the rest of the list with the first item. *)
List.app(fn (t, tName, tMap) =>
shareTypes(hd, hdName, hdMap, t, tName, tMap, line, near)) tl) matchedTypes;
List.app shareStructs matchedStructs (* Recursively share sub-structures. *)
end
in
shareStructs(List.map(fn (s as Struct{name=sName, ...}) => (s, sName ^ ".", typeIdEnv())) structs)
end
in
(* Process a sharing constraint. *)
fun applySharingConstraint({shares, isType, line}, Env tEnv, near) : unit =
let
(* When looking up the structure and type names we look only
in the signature in ML97. We add this to make it clear that
we are only looking up in the signature otherwise we get
confusing messages such as "type (int) has not been declared". *)
fun lookupFailure locn msg =
giveError (str, locn, lex) (msg ^ " in signature.")
in
if isType
then
let (* Type sharing. *)
fun lookupSharing (name, locn) =
lookupTyp
({
lookupType = #lookupType tEnv,
lookupStruct = #lookupStruct tEnv
},
name, lookupFailure locn)
in
case shares of
nil => raise Empty
| hd :: tl =>
let
val first = lookupSharing hd
in
if isUndefinedTypeConstr(tsConstr first)
then ()
else List.app (fn typ =>
shareTypes (lookupSharing typ, "", typeIdEnv(), first, "", typeIdEnv(), line, near)) tl
end
end
else
let (* structure sharing. *)
fun getStruct(name, locn) = lookupStructureAsSignature (#lookupStruct tEnv, name, lookupFailure locn)
in (* Now share all these signatures. *)
structureSharing(List.mapPartial getStruct shares, line, near)
end
end (* applySharingConstraint *)
end (* Sharing *)
(* Look up a signature. Signatures can only be in the global environment. *)
fun lookSig (name : string, lno : LEX.location) : signatures =
case #lookupSig globalEnv name of
SOME v => v
| NONE =>
(
giveError (str, lno, lex)("Signature (" ^ name ^ ") has not been declared");
undefinedSignature
)
(* Construct a signature. All the type IDs within the signature are variables. *)
fun sigValue (str : sigs, Env env : env, _ : LEX.location, structPath) =
case str of
SignatureIdent(name, loc, declLoc) =>
signatureIdentValue(name, loc, declLoc, Env env, structPath)
| WhereType {sigExp, typeVars, typeName, realisation, line, ...} =>
signatureWhereType(sigExp, typeVars, typeName, realisation, line, Env env, structPath)
| SigDec(sigList, lno) =>
makeSigInto(sigList, Env env, lno, 0, structPath)
and signatureIdentValue(name, loc, declLocs, _, structPath) =
let
(* Look up the signature and copy it to turn bound IDs into variables.
This is needed because we may have sharing. *)
val Signatures { name, tab, typeIdMap, firstBoundIndex, boundIds, locations, ...} = lookSig(name, loc);
(* Remember the declaration location for possible browsing. *)
val () = declLocs := locations
val startNewIds = ! idCount
(* Create a new variable ID for each bound ID. Type functions have to be copied to
replace references to other bound IDs. These must be earlier in the list. *)
fun makeNewIds([], _) = []
| makeNewIds(
(oldId as TypeId{description, idKind=Bound { isDatatype, offset, arity, ...}, ...}) :: rest,
typeMap
) =
let
val newId =
makeVariableId(arity, isEquality oldId, isDatatype, false, description, structPath)
fun newMap(id as TypeId{idKind=Bound{offset=n, ...}, ...}) =
if n = offset then SOME newId else typeMap id
| newMap _ = NONE
in
newId :: makeNewIds(rest, newMap)
end
| makeNewIds _ = raise InternalError "Map does not return Bound Id"
val v = Vector.fromList(makeNewIds(boundIds, fn _ => NONE))
(* Map bound IDs only. *)
val mapIds =
if firstBoundIndex = startNewIds orelse null boundIds
then typeIdMap (* Optimisation to reduce space: don't add map if it's not needed. *)
else
let
fun mapId n =
if n < firstBoundIndex then outerTypeIdEnv n
else Vector.sub (v, n - firstBoundIndex)
in
composeMaps(typeIdMap, mapId)
end
in
makeSignature(name, tab, !idCount, locations, mapIds, [])
end
and signatureWhereType(sigExp, typeVars, typeName, realisationType, line, Env globalEnv, structPath) =
let
(* We construct the signature into the result signature. When we apply the
"where" we need to look up the types (and structures) only within the
signature constrained by the "where" and not in the surrounding signature.
e.g. If we have sig type t include S where type t = ... end
we need to generate an error if S does not include t. Of course
if it does that's also an error since t would be rebound!
Equally, we must look up the right hand side of a where type
in the surrounding scope, which will consist of the global environment
and the signature excluding the entries we're adding here. *)
val resSig as Signatures { typeIdMap = idMap, tab = resTab, ... } =
sigValue(sigExp, Env globalEnv, lno, structPath)
val sigEnv = makeEnv resTab
fun lookupFailure msg =
giveError (str, line, lex) (msg ^ " in signature.")
(* Look up the type constructor in the signature. *)
val sigTypeConstr =
lookupTyp
({
lookupType = #lookupType sigEnv,
lookupStruct = #lookupStruct sigEnv
},
typeName,
lookupFailure);
(* The type, though, is looked up in the surrounding environment. *)
fun lookupGlobal(s, locn) =
lookupTyp
({
lookupType = #lookupType globalEnv,
lookupStruct = #lookupStruct globalEnv
},
s,
giveError (str, locn, lex))
(* Process the type, looking up any type constructors. *)
val realisation = assignTypes (realisationType, lookupGlobal, lex);
fun cantSet(reason1, reason2) =
let
val typeEnv =
{
lookupType = fn s => case #lookupType globalEnv s of NONE => NONE | SOME t => SOME(t, NONE),
lookupStruct = fn s => case #lookupStruct globalEnv s of NONE => NONE | SOME t => SOME(t, NONE)
}
in
errorMsgNear (lex, true, fn n => displaySigs(sigExp, n), lno,
PrettyBlock(3, false, [],
[
PrettyString "Cannot apply type realisation.",
PrettyBreak(1, 2),
PrettyString("``" ^ typeName ^ "''"),
PrettyBreak(1, 0),
PrettyString reason1,
PrettyBreak(1, 0),
display(realisation, 1000, typeEnv),
PrettyBreak(0, 0),
PrettyString reason2
]))
end
in
(* Now try to set the target type to the type function. *)
if isUndefinedTypeConstr (tsConstr sigTypeConstr)
then () (* Probably because looking up the type constructor name failed. *)
else
let
(* Map the type identifier to be set. *)
val typeId =
case tcIdentifier (tsConstr sigTypeConstr) of
TypeId{idKind=Bound{offset, ...}, ...} => idMap offset
| id => id
in
if not (isVariableId typeId)
then (* May have been declared as type t=int or bound by a where type already. *)
errorMsgNear (lex, true, fn n => displaySigs(sigExp, n), lno,
PrettyBlock(3, false, [],
[
PrettyString "Cannot apply type realisation.",
PrettyBreak(1, 2),
PrettyString("``" ^ typeName ^ "''"),
PrettyBreak(1, 0),
PrettyString " has already been set to",
PrettyBreak(1, 0),
printId typeId
]))
else
case typeId of
TypeId{idKind=Bound { offset, ... }, ...} =>
(
case realId(offset-initTypeId) of
VariableSlot {boundId=varId as TypeId{idKind=Bound{eqType, offset, isDatatype, ...}, ...}, ... } =>
(
(* The rule for "where type" says that we must check that an eqtype
is only set to a type that permits equality and that the result
is "well-formed". This seems to mean that if the type we're
setting is a datatype (has constructors) it can only be set to
a type that is a type name and not a general type function. *)
if pling eqType andalso not(typePermitsEquality realisation)
then cantSet ("is an eqtype but", "does not permit equality.")
else case typeNameRebinding (typeVars, realisation) of
SOME typeId =>
(* Renaming an existing constructor e.g. type t = s. Propagate the id.
"s" may be free or it may be within the signature and equivalent to
a sharing constraint.
e.g. sig type t structure S: sig type s end where type s = t end. *)
let
(* We need to check what it has been set to if it's already set. *)
val linkedId =
case typeId of
id as TypeId{idKind=Bound{offset, ...}, ...} =>
if offset < initTypeId
then FreeSlot id (* Outside the sig: treat it as Free. *)
else realId(offset-initTypeId)
| id => FreeSlot id (* Free *)
in
case linkedId of
VariableSlot _ => linkFlexibleTypeIds(typeId, varId)
| _ => StretchArray.update(mapArray, offset-initTypeId, linkedId)
end
| NONE =>
if isDatatype
(* The type we're trying to set is a datatype but the type
we're setting it to isn't. *)
then cantSet ("is a datatype but", "is not a simple type.")
else
let
val typeId =
makeTypeFunction(
{ location = line, description = "", name = typeName },
(typeVars, realisation))
in
StretchArray.update(mapArray, offset-initTypeId, FreeSlot typeId)
end
)
| _ => (* Already checked. *) raise InternalError "setWhereType"
)
| _ => (* Already checked. *) raise InternalError "setWhereType"
end;
resSig
end (* signatureWhereType *)
(* Constructs a signature and inserts it into an environment at a given offset.
Generally offset will be zero except if we are including a signature.
All the type IDs corresponding to local types are variables. There may be free
IDs (and bound IDs?) as a result of "where type" constraints. *)
and makeSigInto(sigsList: specs list,
Env globalEnv, (* The surrounding environment excluding this sig. *)
lno: LEX.location, offset: int, structPath): signatures =
let
(* Make a new signature. *)
val newTable = makeSignatureTable();
(* Copy everything into the new signature. *)
local
(* ML 97 does not allow multiple declarations in a signature. *)
fun checkAndEnter (enter, lookup, kind, locs) (s: string, v) =
case lookup s of
SOME _ => (* Already there. *)
let
fun getDecLoc(DeclaredAt loc :: _) = loc
| getDecLoc [] = lno
| getDecLoc(_::rest) = getDecLoc rest
(* TODO: This shows the location of the identifier that is the duplicate.
It would be nice if it could also show the original location. *)
in
errorNear (lex, true, fn n => displaySigs(str, n), getDecLoc(locs v),
kind ^ " (" ^ s ^ ") is already present in this signature.")
end
| NONE => enter(s, v)
val structEnv = makeEnv newTable;
in
val structEnv =
{
lookupVal = #lookupVal structEnv,
lookupType = #lookupType structEnv,
lookupFix = #lookupFix structEnv,
lookupStruct = #lookupStruct structEnv,
lookupSig = #lookupSig structEnv,
lookupFunct = #lookupFunct structEnv,
enterVal =
checkAndEnter (#enterVal structEnv, #lookupVal structEnv, "Value",
fn (Value{ locations, ...}) => locations),
enterType =
checkAndEnter (#enterType structEnv, #lookupType structEnv, "Type", tcLocations o tsConstr),
enterStruct =
checkAndEnter (#enterStruct structEnv, #lookupStruct structEnv, "Structure", fn Struct{locations, ...} => locations),
(* These next three can't occur. *)
enterFix = fn _ => raise InternalError "Entering fixity in signature",
enterSig = fn _ => raise InternalError "Entering signature in signature",
enterFunct = fn _ => raise InternalError "Entering functor in signature",
allValNames = #allValNames structEnv
}
end
(* Process the entries in the signature and allocate an address
to each. *)
fun processSig (signat: specs, offset : int, lno : LEX.location) : int =
case signat of
StructureSig (structList : structSigBind list, _) =>
let
(* Each element in the list should be a structure binding. *)
fun pStruct [] offset = offset
| pStruct (({name, sigStruct = (sigStruct, _, _), line, ...}: structSigBind) :: t) offset =
let
(* Create a new surrounding environment to include the surrounding
structure. This is the scope for any structures or types.
Specifically, if we look up a type defined by a "where type"
we use this environment and not the signature we're creating. *)
val newEnv =
{
lookupVal = #lookupVal structEnv,
lookupType =
lookupDefault (#lookupType structEnv) (#lookupType globalEnv),
lookupFix = #lookupFix structEnv,
lookupStruct =
lookupDefault (#lookupStruct structEnv) (#lookupStruct globalEnv),
lookupSig = #lookupSig structEnv,
lookupFunct = #lookupFunct structEnv,
enterVal = #enterVal structEnv,
enterType = #enterType structEnv,
enterStruct = #enterStruct structEnv,
enterFix = #enterFix structEnv,
enterSig = #enterSig structEnv,
enterFunct = #enterFunct structEnv,
allValNames = fn () => (#allValNames structEnv () @ #allValNames globalEnv ())
};
val resSig = sigValue (sigStruct, Env newEnv, line, structPath ^ name ^ ".");
(* Process the rest of the list before declaring
the structure. *)
val result = pStruct t (offset + 1);
(* Make a structure. *)
val locations = [DeclaredAt lno, SequenceNo (newBindingId lex)]
val resStruct = makeFormalStruct (name, resSig, offset, locations)
val () = #enterStruct structEnv (name, resStruct);
in
result (* One slot for each structure. *)
end
in
pStruct structList offset
end
| ValSig {name=(name, nameLoc), typeof, line, ...} =>
let
val errorFn = giveSpecError (signat, line, lex);
fun lookup(s, locn) =
lookupTyp
({
lookupType =
lookupDefault (#lookupType structEnv) (#lookupType globalEnv),
lookupStruct =
lookupDefault (#lookupStruct structEnv) (#lookupStruct globalEnv)
},
s,
giveSpecError (signat, locn, lex));
(* Check for rebinding of built-ins. "it" is allowed here. *)
val () = if name = "true" orelse name = "false" orelse name = "nil"
orelse name = "::" orelse name = "ref"
then errorFn("Specifying \"" ^ name ^ "\" is illegal.")
else ();
val typeof = assignTypes (typeof, lookup, lex)
val locations = [DeclaredAt nameLoc, SequenceNo (newBindingId lex)]
in (* If the type is not found give an error. *)
(* The type is copied before being entered in the environment.
This isn't logically necessary but has the effect of removing
ref we put in for type constructions. *)
#enterVal structEnv (name,
mkFormal (name, ValBound,
copyType (typeof, fn x => x, fn x => x), offset, locations));
(offset + 1)
end
| ExSig {name=(name, nameLoc), typeof, line, ...} =>
let
val errorFn = giveSpecError (signat, line, lex);
fun lookup(s, _) =
lookupTyp
({
lookupType =
lookupDefault (#lookupType structEnv) (#lookupType globalEnv),
lookupStruct =
lookupDefault (#lookupStruct structEnv) (#lookupStruct globalEnv)
},
s,
errorFn);
val exType =
case typeof of
NONE => exnType
| SOME typeof => mkFunctionType (assignTypes (typeof, lookup, lex), exnType)
val locations = [DeclaredAt nameLoc, SequenceNo (newBindingId lex)]
in (* If the type is not found give an error. *)
(* Check for rebinding of built-ins. "it" is not allowed. *)
if name = "true" orelse name = "false" orelse name = "nil"
orelse name = "::" orelse name = "ref" orelse name = "it"
then errorFn("Specifying \"" ^ name ^ "\" is illegal.")
else ();
#enterVal structEnv (name, mkFormal (name, Exception, exType, offset, locations));
(offset + 1)
end
| IncludeSig (structList : sigs list, _) =>
let
(* include sigid ... sigid or include sigexp. For
simplicity we handle the slightly more general case
of a list of signature expressions.
The contents of the signature are added to the environment. *)
fun includeSigExp (str: sigs, offset) =
let
val address = ref offset
(* The environment for the signature being included must at least include local types. *)
val includeEnv =
{
lookupVal = #lookupVal structEnv,
lookupType =
lookupDefault (#lookupType structEnv) (#lookupType globalEnv),
lookupFix = #lookupFix structEnv,
lookupStruct =
lookupDefault (#lookupStruct structEnv) (#lookupStruct globalEnv),
lookupSig = #lookupSig structEnv,
lookupFunct = #lookupFunct structEnv,
enterVal = #enterVal structEnv,
enterType = #enterType structEnv,
enterStruct = #enterStruct structEnv,
enterFix = #enterFix structEnv,
enterSig = #enterSig structEnv,
enterFunct = #enterFunct structEnv,
allValNames = #allValNames structEnv
}
val resultSig = sigValue(str, Env includeEnv, lno, structPath)
(* Renumber the run-time offsets for Values and Structures as we enter them
into the surrounding signature. *)
fun newAccess(Formal _) =
let val addr = !address in address := addr+1; Formal addr end
| newAccess _ = raise InternalError "newAccess: Not Formal"
fun enterType(name, tySet as TypeConstrSet(ty, tcConstructors)) =
let
(* Process value constructors with the type. Because values can't
be redefined within a signature we can't have overridden this
with a new declaration. We don't allocate run-time IDs to
type identifiers. That's done at the end when we've sorted out
any sharing *)
fun copyConstructor(Value { name, typeOf, access, class, locations, ... }) =
Value{name=name, typeOf = typeOf, access=newAccess access,
class=class, locations=locations, references=NONE,
instanceTypes=NONE}
val newType =
case tcConstructors of
[] => tySet (* Not a datatype. *)
| constrs =>
let
val newTy =
makeTypeConstructor(tcName ty, tcIdentifier ty, tcLocations ty)
in
TypeConstrSet(newTy, List.map copyConstructor constrs)
end;
in
#enterType structEnv(name, newType)
end
and enterStruct(name, Struct{name=strName, signat, access, locations, ...}) =
#enterStruct structEnv
(name, Struct{ name = strName, signat = signat,
access = newAccess access, locations = locations})
and enterVal(dName, Value { name, typeOf, access, class, locations, ... }) =
#enterVal structEnv (dName,
Value{name=name, typeOf = typeOf, access=newAccess access,
class=class, locations=locations, references=NONE,
instanceTypes=NONE})
val tsvEnv =
{ enterType = enterType, enterStruct = enterStruct, enterVal = enterVal }
val () = openSignature(resultSig, tsvEnv, "")
in
! address
end
in
List.foldl includeSigExp offset structList
end
| Sharing (share : shareConstraint) =>
(* Sharing constraint. *)
let
(* In ML90 it was possible to share with any identifier
in scope. In ML97 sharing is restricted to identifiers
in the "spec". *)
val envForSharing = Env structEnv
in
applySharingConstraint (share, envForSharing, str);
offset (* No entry *)
end
| CoreType {dec, ...} =>
let (* datatype or type binding(s) *)
(* This pass puts the data constructors into the environment. *)
val addrs = ref offset
(* Pass2 creates value constructors of datatypes as global values.
Rather than complicate pass2 by trying to make formal values
in this case it's easier to trap the value constructors at
this point. N.B. We may get constructors from a datatype
declaration or from datatype replication. *)
fun convertValueConstr(Value{class=class, typeOf, locations, name, ...}) =
Value{class=class, typeOf=typeOf, access=Formal(!addrs before (addrs := !addrs+1)), name=name,
locations=locations, references=NONE, instanceTypes=NONE}
fun enterVal(name, v) = (#enterVal structEnv)(name, convertValueConstr v)
(* Record all the types and enter them later. *)
val datatypeList = searchList ()
val enterType = #enter datatypeList
val newEnv =
{
lookupVal = #lookupVal structEnv,
lookupType =
lookupDefault (#lookup datatypeList)
(lookupDefault (#lookupType structEnv) (#lookupType globalEnv)),
lookupFix = #lookupFix structEnv,
lookupStruct =
lookupDefault (#lookupStruct structEnv) (#lookupStruct globalEnv),
lookupSig = #lookupSig structEnv,
lookupFunct = #lookupFunct structEnv,
enterVal = enterVal,
enterType = enterType,
enterStruct = #enterStruct structEnv,
enterFix = #enterFix structEnv,
enterSig = #enterSig structEnv,
enterFunct = #enterFunct structEnv,
allValNames = #allValNames structEnv
};
fun makeId (eq, isdt, (args, EmptyType), loc) =
makeVariableId(length args, eq, isdt, true, loc, structPath)
| makeId (_, _, (typeVars, decType), { location, name, description }) =
makeTypeFunction(
{ location = location, name = structPath ^ name, description = description },
(typeVars, decType))
(* We need a map to look up types. This is only used in one place:
if the item we're processing is a datatype then we need to look
at the bindings of type identifiers to compute equality correctly.
e.g. type t = int*int datatype s = X of t . *)
fun equalityForId(TypeId{idKind=TypeFn(_, equiv), ...}) = typePermitsEquality equiv
| equalityForId id = isEquality id
fun findEquality n =
if n < initTypeId
then equalityForId(outerTypeIdEnv n)
else case realId(n-initTypeId) of
FreeSlot t => equalityForId t
| VariableSlot { boundId, ...} => equalityForId boundId
| _ => raise InternalError "internalMap: Not bound or Free"
val _ : types = pass2 (dec, makeId, Env newEnv, lex, findEquality);
(* Replace the constructor list for the datatype with a new set.
We need to have separate addresses for the constructors in the
datatype environment from those in the value environment. This
is needed for compatibility with the "signature" constructed
from a struct...end block. *)
fun enterFinalType (name, TypeConstrSet(tyCons, constrs)) =
#enterType structEnv (name, TypeConstrSet(tyCons, List.map convertValueConstr constrs))
val _ = #apply datatypeList enterFinalType
in
! addrs
end
(* end processSig *);
val _ =
List.foldl (fn (signat, offset) => processSig (signat, offset, lno))
offset sigsList
val locations = [DeclaredAt lno, SequenceNo (newBindingId lex)]
in
makeSignature("", newTable, ! idCount, locations, typeIdEnv (), [])
end
(* Process the contents of the signature. *)
val resultSig = sigValue (str, Env globalEnv, lno, "")
(* After the signature has been built and any sharing or "where type"
constraints have been applied we replace the remaining variable stamps
by bound stamps. *)
val nextAddress = getNextRuntimeOffset resultSig
val typeCounter = ref initTypeId;
val addrCounter = ref nextAddress
(* Construct final bound IDs for each distinct type ID in the array. *)
local
fun mapIds n =
if n = !idCount-initTypeId
then ([], [])
else
(
(* Process lowest numbered IDs first since they represent
the result of any sharing. *)
case realId n of
VariableSlot {
boundId =
TypeId{
idKind=Bound{eqType, isDatatype, arity, ... },
description = { name, location, description}, ...},
descriptions, ...} =>
let (* Need to make a new ID. *)
(* If we have sharing we want to produce a description that expresses that. *)
val descript =
case descriptions of
descs as _ :: _ :: _ => "sharing " ^ String.concatWith "," descs
| _ => description (* Original description. *)
val newId =
let
(* For each ID we need a new entry in the ID vector. We also
need an entry in the run-time vector for the structure so that
we can pass the equality/print value at run-time. *)
val n = !typeCounter
val () = typeCounter := n + 1
val addr = ! addrCounter
val () = addrCounter := addr + 1
val description =
{ name = name, location = location, description = descript }
in
makeBoundId(arity, Formal addr, n, pling eqType, isDatatype, description)
end
(* Update the entry for any sharing. *)
val () = StretchArray.update(mapArray, n, FreeSlot newId)
val (distinctIds, mappedIds) = mapIds (n+1)
in
(newId :: distinctIds, newId :: mappedIds)
end
| FreeSlot (TypeId{idKind=TypeFn(args, equiv), description, ...}) =>
let
(* Generally, IDs in a FreeSlot will be either Bound or Free but
they could be TypeFunctions as a result of a "where type" and
the function could involve type IDs within the signature. We
have to copy the ID now after all the new IDs have been created. *)
fun copyId(TypeId{idKind=Bound { offset, ...}, ...}) =
if offset < initTypeId then NONE
else (* At this stage we've overwritten all entries with FreeSlots. *)
(
case realId(offset-initTypeId) of
FreeSlot id => SOME id
| _ => raise InternalError "mapIds:copyTypeConstr"
)
| copyId _ = NONE
val copiedEquiv =
copyType(equiv, fn x => x,
fn tcon => copyTypeConstr (tcon, copyId, fn x => x, fn s => s))
(* For the moment always use a Free ID here. *)
val copiedId = makeTypeFunction(description, (args, copiedEquiv))
(* Update the array with this copied version. If other subsequent type functions
use this entry they will then pick up the copied version. Because "where type"
constraints can only refer to earlier types we have to process this from earlier
to later. *)
val () = StretchArray.update(mapArray, n, FreeSlot copiedId)
val (distinctIds, mappedIds) = mapIds (n+1)
in
(distinctIds, copiedId :: mappedIds)
end
| FreeSlot id => (* Free or shares with existing type ID. *)
let
val (distinctIds, mappedIds) = mapIds (n+1)
in
(distinctIds, id :: mappedIds)
end
| _ => raise InternalError "mapIds"
)
val (distinctIds, mappedIds) = mapIds 0
val mapVector = Vector.fromList mappedIds
val resVector = Vector.fromList distinctIds
in
fun mapFunction n =
if n < initTypeId
then outerTypeIdEnv n
else Vector.sub(mapVector, n-initTypeId)
val distinctIds = distinctIds
val allMapped = Vector.length mapVector = Vector.length resVector
end
in
let
val Signatures { tab, name, locations, typeIdMap, ... } = resultSig
(* We have allocated Bound Ids starting at initTypeId. If there has not been any sharing or
where type constraints these Ids will correspond exactly to the bound Ids of the signature
and we can use the result without any further mapping. This is particularly the case if
we have simply used a named signature here. If there have been some sharing or where type
we have to produce a new map so that the boundId list consists of contiguously numbered
items. This is an optimisation to reduce the space of the final signature. *)
val finalMap =
if allMapped then typeIdMap else composeMaps(typeIdMap, mapFunction)
in
makeSignature(name, tab, initTypeId, locations, finalMap, distinctIds)
end
end (* sigVal *);
structure Sharing =
struct
type sigs = sigs
type structSigBind = structSigBind
type parsetree = parsetree
type typeParsetree = typeParsetree
type typeVarForm = typeVarForm
type pretty = pretty
type ptProperties = ptProperties
type env = env
type signatures = signatures
type lexan = lexan
type typeId = typeId
type specs = specs
end
end;
|