1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
|
(*
Copyright (c) 2000
Cambridge University Technical Services Limited
Modified D.C.J. Matthews 2001-2015
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*
Title: Module Structure and Operations.
Author: Dave Matthews, Cambridge University Computer Laboratory
Copyright Cambridge University 1985
*)
functor STRUCTURES_ (
structure LEX : LEXSIG
structure CODETREE : CODETREESIG
structure STRUCTVALS : STRUCTVALSIG;
structure VALUEOPS : VALUEOPSSIG;
structure EXPORTTREE: EXPORTTREESIG
structure TYPETREE : TYPETREESIG
structure PARSETREE : PARSETREESIG
structure PRETTY : PRETTYSIG
structure COPIER: COPIERSIG
structure TYPEIDCODE: TYPEIDCODESIG
structure SIGNATURES: SIGNATURESSIG
structure DEBUGGER : DEBUGGERSIG
structure UTILITIES :
sig
val noDuplicates: (string * 'a * 'a -> unit) ->
{ apply: (string * 'a -> unit) -> unit,
enter: string * 'a -> unit,
lookup: string -> 'a option };
val searchList: unit -> { apply: (string * 'a -> unit) -> unit,
enter: string * 'a -> unit,
lookup: string -> 'a option };
val splitString: string -> { first:string,second:string }
end;
structure UNIVERSALTABLE:
sig
type universal = Universal.universal
type univTable
type 'a tag = 'a Universal.tag
val univEnter: univTable * 'a tag * string * 'a -> unit;
val univLookup: univTable * 'a tag * string -> 'a option;
val univFold: univTable * (string * universal * 'a -> 'a) * 'a -> 'a;
end;
structure DEBUG: DEBUGSIG
sharing LEX.Sharing = VALUEOPS.Sharing = TYPETREE.Sharing = PARSETREE.Sharing
= PRETTY.Sharing = EXPORTTREE.Sharing = STRUCTVALS.Sharing = COPIER.Sharing
= CODETREE = UNIVERSALTABLE = TYPEIDCODE.Sharing = SIGNATURES.Sharing = DEBUGGER.Sharing
) : STRUCTURESSIG =
(*****************************************************************************)
(* STRUCTURES functor body *)
(*****************************************************************************)
struct
open Misc;
open PRETTY;
open COPIER;
open LEX;
open CODETREE;
open STRUCTVALS;
open VALUEOPS;
open TYPETREE;
open PARSETREE;
open UTILITIES;
open DEBUG;
open UNIVERSALTABLE;
open Universal; (* for tag record selectors *)
open EXPORTTREE;
open TYPEIDCODE
open SIGNATURES
open DEBUGGER
(* Transitional bindings. Calls to these should be replaced by pattern matching. *)
fun sigTab (Signatures {tab,...}) = tab
and sigMinTypes (Signatures {firstBoundIndex,...}) = firstBoundIndex
and sigMaxTypes (Signatures {firstBoundIndex, boundIds,...}) = firstBoundIndex + List.length boundIds
and sigTypeIdMap (Signatures {typeIdMap, ...}) = typeIdMap
and sigBoundIds (Signatures {boundIds, ...}) = boundIds
fun structName (Struct {name,...}) = name
and structAccess (Struct {access,...}) = access
and structLocations (Struct {locations,...}) = locations
and structSignat (Struct {signat,...}) = signat
(* Union of the various kinds of core language declaration. Structures are included
because they can be declared by opening a structure with substructures. *)
datatype coreDeclaration =
CoreValue of values
| CoreType of typeConstrSet
| CoreFix of string*fixStatus (* Include the name because it isn't part of fixStatus. *)
| CoreStruct of structVals
(* Description of the actions to perform when a structure matches a signature. *)
datatype valueMatching =
ValueMatch of
{ sourceValue: values, targetType: types, coercion: valueCoercions }
| StructureMatch of
{ sourceStructure: structVals, contentsMatch: structureMatch}
| TypeIdMatch of
{ sourceIdNo: int, isEquality: bool }
and valueCoercions = (* The coercions that may apply to a value. *)
NoCoercion
| ExceptionToValue
| ConstructorToValue
withtype structureMatch = (int * valueMatching) list
(* "structs" is the abstract syntax for the module language. *)
datatype structValue =
StructureIdent of (* A structure name *)
{
name: string, (* The name *)
valRef: structVals option ref, (* The variable found. *)
location: location
}
| StructDec of (* struct ... end *)
{
alist: structDec list, (* List of items in it. *)
location: location,
matchToResult: structureMatch ref
}
| FunctorAppl of (* Application of a functor. *)
{
name: string,
arg: structValue,
valRef: functors option ref, (* The functor looked up. *)
nameLoc: location, (* The location of the name itself. *)
fullLoc: location, (* The location of the full application. *)
argIds: { source: typeId, dest: typeId } list ref, (* The IDs that are required in the arguments. *)
resIds: { source: typeId, dest: typeId } list ref, (* Generative IDs in the result. *)
matchToArgument: structureMatch ref
}
| LetDec of (* let strdec in strexp. *)
{
decs: structDec list,
body: structValue,
line: location
}
| SigConstraint of (* Constraint of str to match sig. *)
{
str: structValue, (* Structure to constrain *)
csig: sigs, (* Constraining signature *)
opaque: bool, (* True if opaque, false if transparent. *)
sigLoc: location,
opaqueIds: { source : typeId, dest: typeId } list ref,
matchToConstraint: structureMatch ref
}
and structDec =
StructureDec of (* List of structure decs *)
{
bindings: structBind list,
typeIdsForDebug: typeId list ref,
line: location
}
| CoreLang of (* Any other decln. *)
{
dec: parsetree, (* The value *)
vars: coreDeclaration list ref, (* The declarations *)
location: location
}
| Localdec of (* Local strdec in strdec. *)
{
decs: structDec list,
body: structDec list,
line: location
}
withtype structBind =
{
name: string, (* The name of the structure *)
nameLoc: location,
haveSig: bool, (* Whether we moved an explicit signature to the value. *)
value: structValue, (* And its value *)
valRef: structVals option ref, (* The structure variable declared. *)
line: location
}
fun mkStructIdent (name, location) =
StructureIdent
{
name = name,
valRef = ref NONE,
location = location
}
(* For struct...end, make a signature to accept the values. *)
fun mkStruct(alist, location) =
StructDec
{
alist = alist,
location = location,
matchToResult = ref []
};
fun mkCoreLang (dec, location) =
CoreLang
{
dec = dec,
vars = ref [],
location = location
};
fun mkFunctorAppl (name, arg, nameLoc, fullLoc) =
FunctorAppl
{
name = name,
arg = arg,
valRef = ref NONE,
nameLoc = nameLoc,
fullLoc = fullLoc,
argIds = ref nil,
resIds = ref nil,
matchToArgument = ref []
};
fun mkFormalArg (name, signat) =
{
name = name,
sigStruct = signat,
valRef = ref NONE
}
fun mkLocaldec (decs, body, line) =
Localdec
{
decs = decs,
body = body,
line = line
};
fun mkLetdec (decs, body, line) =
LetDec
{
decs = decs,
body = body,
line = line
};
fun mkSigConstraint(str, csig, opaque, sigLoc) =
SigConstraint
{
str=str, csig=csig, opaque=opaque, sigLoc=sigLoc,
opaqueIds=ref nil, matchToConstraint = ref []
}
fun mkStructureDec(bindings, line) =
StructureDec { bindings = bindings, typeIdsForDebug = ref [], line = line }
fun mkStructureBinding ((name, nameLoc), signat, value, fullLoc): structBind =
let
(* If there's an explicit signature move that to a constraint. *)
val value =
case signat of
NONE => value
| SOME (csig, opaque, sigLoc) =>
mkSigConstraint(value, csig, opaque, sigLoc)
in
{
name = name,
nameLoc = nameLoc,
haveSig = isSome signat,
value = value,
valRef = ref NONE,
line = fullLoc
}
end;
type formalArgStruct =
{
name: string,
sigStruct: sigs,
valRef: structVals option ref
} (* The structure variable. *)
(* Top level declarations and program. *)
datatype topdec =
StrDec of structDec * typeId list ref (* Structure decs and core lang. *)
| FunctorDec of functorBind list * location (* List of functor decs. *)
| SignatureDec of sigBind list * location (* List of signature decs *)
withtype (* Functor binding. *)
functorBind =
{
name: string,
nameLoc: location,
haveSig: bool, (* Whether we moved an explicit signature to the value. *)
body: structValue,
arg: formalArgStruct,
valRef: functors option ref, (* The functor variable declared. *)
resIds: { source: typeId, dest: typeId } list ref,
line: location,
matchToResult: structureMatch ref,
(* If we are debugging we need these at code-gen time. *)
debugArgVals: values list ref,
debugArgStructs: structVals list ref,
debugArgTypeConstrs: typeConstrSet list ref
}
and sigBind =
{
name: string, (* The name of the signature *)
nameLoc: location,
sigStruct: sigs,(* Its value *)
sigRef: signatures ref, (* The "value" of the signature. *)
line: location
}
fun mkTopDec t = StrDec(t, ref nil)
and mkFunctorDec s = FunctorDec s
and mkSignatureDec s = SignatureDec s;
fun mkFunctorBinding (name, nameLoc, signat, body, arg, line): functorBind =
let
(* If there's an explicit signature move that to a constraint. *)
val body =
case signat of
NONE => body
| SOME (csig, opaque, sigLoc) =>
mkSigConstraint(body, csig, opaque, sigLoc)
in
{
name = name,
nameLoc = nameLoc,
haveSig = isSome signat,
body = body,
arg = arg,
valRef = ref NONE,
resIds = ref nil,
line = line,
matchToResult = ref [],
debugArgVals = ref [],
debugArgStructs = ref [],
debugArgTypeConstrs = ref []
}
end
and mkSignatureBinding ((name, nameLoc), sg, ln) =
{
name = name,
nameLoc = nameLoc,
sigStruct = sg,
line = ln,
sigRef = ref undefinedSignature
}
type program = topdec list * location
fun mkProgram tl = tl
(* Pretty printing *)
fun displayList ([], _, _) _ = []
| displayList ([v], _, depth) dodisplay =
if depth <= 0
then [PrettyString "..."]
else [dodisplay (v, depth)]
| displayList (v::vs, separator, depth) dodisplay =
if depth <= 0
then [PrettyString "..."]
else
let
val brk = if separator = "," orelse separator = ";" then 0 else 1
in
PrettyBlock (0, false, [],
[
dodisplay (v, depth),
PrettyBreak (brk, 0),
PrettyString separator
]
) ::
PrettyBreak (1, 0) ::
displayList (vs, separator, depth - 1) dodisplay
end (* displayList *)
fun displayStruct (str, depth) =
if depth <= 0 (* elide further text. *)
then PrettyString "..."
else
case str of
StructureDec { bindings = structList, ...} =>
let
fun displayStructBind (
{name, haveSig, value, ...}: structBind, depth) =
let
(* If we desugared this before, return it to its original form. *)
val (sigStruct, value) =
case (haveSig, value) of
(true, SigConstraint{str, csig, opaque, sigLoc, ...}) =>
(SOME(csig, opaque, sigLoc), str)
| _ => (NONE, value)
in
PrettyBlock (3, false, [],
PrettyString name ::
(
case sigStruct of (* Signature is optional *)
NONE => []
| SOME (sigStruct, opaque, _) =>
[
PrettyString (if opaque then " :>" else " :"),
PrettyBreak (1, 0),
displaySigs (sigStruct, depth - 1)
]
) @
[
PrettyString " =",
PrettyBreak (1, 0),
displayStructValue (value, depth - 1)
]
)
end
in
PrettyBlock (3, false, [],
PrettyString "structure" ::
PrettyBreak (1, 0) ::
displayList (structList, "and", depth) displayStructBind
)
end
| Localdec {decs, body, ...} =>
PrettyBlock (3, false, [],
PrettyString "local" ::
PrettyBreak (1, 0) ::
displayList (decs, ";", depth - 1) displayStruct @
[ PrettyBreak (1, 0), PrettyString "in", PrettyBreak (1, 0)] @
displayList (body, ";", depth - 1) displayStruct @
[ PrettyBreak (1, 0), PrettyString "end" ]
)
| CoreLang {dec, ...} =>
displayParsetree (dec, depth - 1)
and displayStructValue (str, depth) =
if depth <= 0 (* elide further text. *)
then PrettyString "..."
else
case str of
StructureIdent {name, ...} =>
PrettyString name
| StructDec {alist, ...} =>
PrettyBlock (1, true, [],
PrettyString "struct" ::
PrettyBreak (1, 0) ::
displayList (alist, "", depth) displayStruct @
[ PrettyBreak (1, 0), PrettyString "end"]
)
| FunctorAppl {name, arg, ...} =>
PrettyBlock (1, false, [],
[
PrettyString (name ^ "("),
PrettyBreak (0, 0),
displayStructValue (arg, depth),
PrettyBreak (0, 0),
PrettyString ")"
]
)
| LetDec {decs, body, ...} =>
PrettyBlock (3, false, [],
PrettyString "let" ::
PrettyBreak (1, 0) ::
displayList (decs, ";", depth - 1) displayStruct @
[ PrettyBreak (1, 0), PrettyString "in", PrettyBreak (1, 0),
displayStructValue (body, depth - 1) ] @
[ PrettyBreak (1, 0), PrettyString "end" ]
)
| SigConstraint{str, csig, opaque, ...} =>
PrettyBlock (0, false, [],
[
displayStructValue (str, depth - 1),
PrettyString (if opaque then " :>" else " :"),
PrettyBreak (1, 0),
displaySigs (csig, depth - 1)
]
)
fun displayTopDec(top, depth) =
if depth <= 0 (* elide further text. *)
then PrettyString "..."
else
case top of
StrDec(s, _) => displayStruct(s, depth)
| SignatureDec (structList : sigBind list, _) =>
let
fun displaySigBind ({name, sigStruct, ...}: sigBind, depth) =
PrettyBlock (3, false, [],
[
PrettyString (name ^ " ="),
PrettyBreak (1, 0),
displaySigs (sigStruct, depth - 1)
]
)
in
PrettyBlock (3, false, [],
PrettyString "signature" ::
PrettyBreak (1, 0) ::
displayList (structList, "and", depth) displaySigBind
)
end
| FunctorDec (structList : functorBind list, _) =>
let
fun displayFunctBind (
{name, arg={name=argName, sigStruct=argStruct, ...}, haveSig, body, ...}, depth) =
let
val (sigStruct, body) =
case (haveSig, body) of
(true, SigConstraint{str, csig, opaque, sigLoc, ...}) =>
(SOME(csig, opaque, sigLoc), str)
| _ => (NONE, body)
in
PrettyBlock (3, false, [],
PrettyString (name ^ "(") ::
PrettyBreak (1, 0) ::
PrettyBlock (1, false, [],
(
if argName = "" then []
else [ PrettyString (argName ^ " :"), PrettyBreak (1, 2)]
) @
[displaySigs (argStruct, depth - 1)]
) ::
PrettyString ")" ::
(
case sigStruct of
NONE => [] (* Signature is optional *)
| SOME (sigStruct, opaque, _) =>
[
PrettyString(if opaque then " :>" else " :"),
PrettyBreak (1, 0),
displaySigs (sigStruct, depth - 1)
]
) @
[
PrettyBreak (1, 0),
PrettyString "=",
PrettyBreak (1, 0),
displayStructValue (body, depth - 1)
]
)
end
in
PrettyBlock (3, false, [],
PrettyString "functor" ::
PrettyBreak (1, 0) ::
displayList (structList, "and", depth) displayFunctBind
)
end
(* End displayTopDec *)
fun displayProgram ((sl, _), d) =
PrettyBlock(0, true, [],
displayList (sl, "", d) displayTopDec
)
fun structExportTree(navigation, s: structDec) =
let
(* Common properties for navigation and printing. *)
val commonProps =
PTprint(fn d => displayStruct(s, d)) ::
exportNavigationProps navigation
fun asParent () = structExportTree(navigation, s)
in
case s of
StructureDec{ bindings = sbl, line = location, ...} =>
let
fun exportSB(navigation, sb as {name, nameLoc, haveSig, value, line, ...}) =
let
(* If we desugared this before, return it to its original form. *)
val (sigStruct, value) =
case (haveSig, value) of
(true, SigConstraint{str, csig, opaque, sigLoc, ...}) =>
(SOME(csig, opaque, sigLoc), str)
| _ => (NONE, value)
fun exportThis () = exportSB(navigation, sb)
(* Three groups: name, signature and structures.
It's all complicated because the signature
may not be present. *)
fun getName () =
let
val next =
case sigStruct of
SOME _ => getSigStruct
| NONE => getValue
in
getStringAsTree({parent=SOME exportThis, previous=NONE, next=SOME next}, name, nameLoc, [])
end
and getSigStruct () =
let
val next = SOME getValue
val (theSig, _, _) = valOf sigStruct
in
sigExportTree({parent=SOME exportThis, previous=SOME getName, next=next}, theSig)
end
and getValue () =
let
val previous =
case sigStruct of
NONE => getName
| SOME _ => getSigStruct
in
structValueExportTree({parent=SOME exportThis, previous=SOME previous, next=NONE}, value)
end
in
(line, PTfirstChild getName :: exportNavigationProps navigation)
end
val expChild = exportList(exportSB, SOME asParent) sbl
in
(location, expChild @ commonProps)
end
| CoreLang {dec, ...} => (* A value parse-tree entry. *)
getExportTree(navigation, dec)
| Localdec {decs, body, line, ...} =>
(line, exportList(structExportTree, SOME asParent) (decs @ body) @ commonProps)
end
and structValueExportTree(navigation, s: structValue) =
let
(* Common properties for navigation and printing. *)
val commonProps =
PTprint(fn d => displayStructValue(s, d)) ::
exportNavigationProps navigation
fun asParent () = structValueExportTree(navigation, s)
in
case s of
StructureIdent { valRef = ref var, location, ... } =>
let
val locs =
case var of
SOME(Struct{locations, ...}) => locations
| NONE => []
in
(* Get the location properties for the identifier. *)
(location, mapLocationProps locs @ commonProps)
end
| StructDec{ location, alist, ...} =>
(location, exportList(structExportTree, SOME asParent) alist @ commonProps)
| FunctorAppl { valRef, name, nameLoc, fullLoc, arg, ... } =>
let
val locs =
case ! valRef of
SOME(Functor { locations, ...}) => locations
| NONE => []
(* Navigate between the functor name and the argument. *)
(* The first position is the expression, the second the type *)
fun getFunctorName () =
getStringAsTree({parent=SOME asParent, previous=NONE, next=SOME getFunctorArg},
name, nameLoc, mapLocationProps locs)
and getFunctorArg () =
structValueExportTree({parent=SOME asParent, previous=SOME getFunctorName, next=NONE}, arg)
in
(fullLoc, PTfirstChild getFunctorName :: commonProps)
end
| LetDec {decs, body, line, ...} =>
let (* For simplicity just merge these as a single list. *)
datatype allEntries = Value of structValue | Dec of structDec
fun exportEntries(navigation, Value strval) = structValueExportTree(navigation, strval)
| exportEntries(navigation, Dec strdec) = structExportTree(navigation, strdec)
in
(line, exportList(exportEntries, SOME asParent) (List.map Dec decs @ [Value body]) @ commonProps)
end
| SigConstraint { str, csig, sigLoc, ... } =>
let
(* Navigate between the functor name and the argument. *)
(* The first position is the expression, the second the type *)
fun getStructure () =
structValueExportTree({parent=SOME asParent, previous=NONE, next=SOME getSignature}, str)
and getSignature () =
sigExportTree({parent=SOME asParent, previous=SOME getStructure, next=NONE}, csig)
in
(sigLoc, PTfirstChild getStructure :: commonProps)
end
end
fun topDecExportTree(navigation, top: topdec) =
let
(* Common properties for navigation and printing. *)
val commonProps =
PTprint(fn d => displayTopDec(top, d)) ::
exportNavigationProps navigation
fun asParent () = topDecExportTree(navigation, top)
in
case top of
StrDec(s, _) => structExportTree(navigation, s)
| SignatureDec(sigs, location) =>
let
fun exportSB(navigation, sb as {name, nameLoc, sigStruct, line, ...}) =
let
fun exportThis () = exportSB(navigation, sb)
fun getName () =
getStringAsTree({parent=SOME exportThis, previous=NONE, next=SOME getSig}, name, nameLoc, [])
and getSig () =
sigExportTree({parent=SOME exportThis, previous=SOME getName, next=NONE}, sigStruct)
in
(line, PTfirstChild getName :: exportNavigationProps navigation)
end
in
(location, exportList(exportSB, SOME asParent) sigs @ commonProps)
end
| FunctorDec(fbl, location) =>
let
fun exportFB(navigation,
fb as {name, nameLoc, haveSig, arg={sigStruct=argStruct, ...}, body, line, ...}) =
let
val (sigStruct, body) =
case (haveSig, body) of
(true, SigConstraint{str, csig, opaque, sigLoc, ...}) =>
(SOME(csig, opaque, sigLoc), str)
| _ => (NONE, body)
val fbProps = exportNavigationProps navigation
fun exportThis () = exportFB(navigation, fb)
(* Because the signature is optional navigation on the arg and body depends on
whether there's a signature. *)
fun getName() =
getStringAsTree({parent=SOME exportThis, previous=NONE, next=SOME getArg},
name, nameLoc, [])
and getArg() =
let
val next =
if isSome sigStruct then getSig else getBody
in
sigExportTree({parent=SOME exportThis, previous=SOME getName, next=SOME next},
argStruct)
end
and getSig() =
sigExportTree({parent=SOME exportThis, previous=SOME getArg, next=SOME getBody},
#1(valOf sigStruct))
and getBody() =
let
val previous = if isSome sigStruct then getSig else getArg
in
structValueExportTree({parent=SOME exportThis, previous=SOME previous, next=NONE}, body)
end
in
(line, PTfirstChild getName :: fbProps)
end
val expChild = exportList(exportFB, SOME asParent) fbl
in
(location, expChild @ commonProps)
end
end
(* Convert a "program" into a navigable tree. *)
fun structsExportTree (parentTree, trees: program) =
let
val parentTreeNav = exportNavigationProps parentTree
(* The top level is actually a list. *)
fun exportTree(([], location)) = (location, parentTreeNav)
| exportTree(topdec as (sl, location)) =
let
fun getEntry(this as (s :: sl), getPrevious) (): exportTree =
topDecExportTree(
{
parent = SOME(fn () => exportTree topdec), (* Parent is this. *)
previous = getPrevious,
(* If we have a successor then that is the entry and
its predecessor returns here. *)
next =
case sl of
[] => NONE
| t => SOME(getEntry(t, SOME(getEntry(this, getPrevious))))
},
s
)
| getEntry _ () = raise Empty
in
(location, parentTreeNav @ [PTfirstChild(getEntry(sl, NONE))])
end
in
exportTree trees
end
(* Puts out an error message and then prints the piece of tree. *)
fun errorMsgNear (lex, hard, near, lno, message) : unit =
let
val parameters = debugParams lex
val errorDepth = getParameter errorDepthTag parameters
in
reportError lex
{
hard = hard, location = lno, message = message,
context = SOME(near errorDepth)
}
end;
(* TODO: If the item being errored is in a substructure it currently doesn't report
the name of the substructure. *)
(* Report an error about signature-structure matching. *)
fun sigStructMatchMsg (lex, near, lno, structName) (doDisplay: 'a -> pretty)
(structValue: 'a, sigValue: 'a, reason) =
let
val message =
PrettyBlock(3, true, [],
[
PrettyString
("Structure does not match signature" ^
(if structName = "" then "." else " in sub-structure " ^ structName)),
PrettyBreak(1, 0),
PrettyBlock(3, false, [],
[
PrettyString "Signature:",
PrettyBreak(1, 0),
doDisplay sigValue
]),
PrettyBreak(1, 0),
PrettyBlock(3, false, [],
[
PrettyString "Structure:",
PrettyBreak(1, 0),
doDisplay structValue
]),
PrettyBreak(1, 0),
PrettyBlock(3, false, [],
[
PrettyString "Reason:",
PrettyBreak(1, 0),
reason
])
])
in
errorMsgNear(lex, true, near, lno, message)
end
fun sigStructMissingMsg (lex, near, lno, structName) (doDisplay: 'a -> pretty) (sigValue: 'a) =
let
val message =
PrettyBlock(3, true, [],
[
PrettyString
("Structure does not match signature" ^
(if structName = "" then "." else " in sub-structure " ^ structName)),
PrettyBreak(1, 0),
PrettyBlock(3, false, [],
[
PrettyString "Signature:",
PrettyBreak(1, 0),
doDisplay sigValue
]),
PrettyBreak(1, 0),
PrettyBlock(3, false, [],
[
PrettyString "Structure:",
PrettyBreak(1, 0),
PrettyString "Not present"
])
])
in
errorMsgNear(lex, true, near, lno, message)
end
(* Older version: prints just a string message. *)
fun errorNear(lex, hard, near, lno, message: string) =
errorMsgNear (lex, hard, near, lno,
PrettyBlock (0, false, [], [PrettyString message]))
fun errorDepth lex =
let
open DEBUG
val parameters = LEX.debugParams lex
in
getParameter errorDepthTag parameters
end
(* Error message routine for lookupType and lookupStructure. *)
fun giveError (sVal : structValue, lno : LEX.location, lex : lexan) : string -> unit =
fn (message : string) => errorNear (lex, true, fn n => displayStructValue(sVal, n), lno, message);
(* Turn a result from matchTypes into a pretty structure so that it
can be included in a message. *)
(* TODO: When reporting type messages from inside the structure we should use
the environment from within the structure and for type within the signature the signature env. *)
fun matchErrorReport(lex, structTypeEnv, sigTypeEnv) =
unifyTypesErrorReport(lex, structTypeEnv, sigTypeEnv, "match")
datatype matchTypeResult =
MatchError of matchResult
| MatchSuccess of types
(* Check that two types match. Returns either an error result or the set
of polymorphic variables for the source and the target. *)
fun matchTypes (candidate, target, targMap: int -> typeId option, _) =
let
fun copyId(TypeId{idKind=Bound{ offset, ...}, ...}) = targMap offset
| copyId _ = NONE
fun copyATypeConstr tcon = copyTypeConstr(tcon, copyId, fn x => x, fn s => s)
fun copyTarget t = (* Leave type variables. *)
copyType (t, fn x => x, copyATypeConstr);
val copiedTarget = copyTarget target
(* Do the match to a version of the candidate with copies of the
type variables so that we can instantiate them. We could do
this by passing in a mapping function but the problem is that
if we have a type variable that gets unified to another variable
we will not map it properly if it occurs again (we call "eventual"
and get the second tv before calling the map function so we get a
second copy and not the first copy). *)
val (copiedCandidate : types, _) = generalise candidate;
in
case unifyTypes (copiedCandidate, copiedTarget) of
NONE => (* Succeeded. Return the unified type. Either will do. *)
MatchSuccess copiedTarget
| SOME error => MatchError error
end;
(* Check that a matching has succeeded, and check the value
constructors if they are datatypes. *)
fun checkTypeConstrs (candidSet as TypeConstrSet(candid, candidConstrs),
targetSet as TypeConstrSet(target, targetConstrs),
targTypeMap: int -> typeId option, lex, near, lno, typeEnv, structPath) =
let
val candidName : string = tcName candid;
val targetName : string = tcName target;
val tvars =
List.tabulate(tcArity target (* either will do *),
fn _ => mkTypeVar(generalisable, false, false, false))
(* If we get an error in the datatype itself print the full datatype. *)
val printTypeEnv = { lookupType = fn _ => NONE, lookupStruct = fn _ => NONE }
val errorInDatatype =
sigStructMatchMsg(lex, near, lno, structPath)(fn t => displayTypeConstrs(t, errorDepth lex, printTypeEnv))
in
if tcArity candid <> tcArity target
then () (* Have already given the error message. *)
else (* Check the type constructors themselves first. This checks
that the sharing constraints have been satisfied. *)
case matchTypes (mkTypeConstruction (candidName, candid, tvars, []),
mkTypeConstruction (targetName, target, tvars, []),
targTypeMap, lex) of
MatchError error => (* Report the error. *)
errorInDatatype(candidSet, targetSet, matchErrorReport(lex, typeEnv, typeEnv) error)
| MatchSuccess _ =>
(* We have already checked for matching a type in the structure to a datatype in the signature.
In ML97 we can't rebind an identifier in a signature so each constructor for this datatype
must be present in the signature i.e. it can't be hidden by a constructor for another datatype.
So we can check the types of the constructors when we check the values. We still need to
check that if this has constructors that the candidate does not have more constructors. *)
if null targetConstrs then () (* Target is just a type: this isn't a problem. *)
else if List.length candidConstrs <= List.length targetConstrs
then () (* If it's less then it will be picked up later. *)
else
let
fun checkConstrs(Value{name=candidConstrName, ...}) =
if List.exists(fn Value{name, ...} => name=candidConstrName) targetConstrs
then ()
else errorNear(lex, true, near, lno,
concat["Error while matching datatype ", candidName, ": constructor ", candidConstrName,
" was present in the structure but not in the signature."]);
in
List.app checkConstrs candidConstrs
end
end
(* Check that a candidate signature (actually the environment part of
a structure) matches a target signature. The direction is important
because a candidate is allowed to have more components and more
polymorphism than the target. As part of the matching process we
build up a map of typeIDs in the target to type IDs in the candidate
and that is returned as the result.
N.B. the map function takes an argument between minTarget and maxTarget. *)
fun matchSigs(originalCandidate, originalTarget, near, lno, lex, typeIdEnv, typeEnv)
:(int -> typeId) * (int * valueMatching) list =
let
val candidate = (* The structure. *)
let
val Signatures { typeIdMap, firstBoundIndex, boundIds, ... } = originalCandidate
val _ =
case boundIds of
[] => ()
| _ => raise InternalError "Candidate structure with non-empty bound ID list"
in
if isUndefinedSignature originalCandidate
then undefinedSignature
else replaceMap(originalCandidate, typeIdMap, firstBoundIndex, [], typeIdEnv)
end
val target = (* The signature. *)
let
val Signatures { typeIdMap, firstBoundIndex, boundIds, ... } = originalTarget
fun newMap n =
if n < firstBoundIndex then typeIdEnv n
else List.nth(boundIds, n-firstBoundIndex)
in
replaceMap(originalTarget, typeIdMap, firstBoundIndex, boundIds, newMap)
end
local
val minTarget = sigMinTypes target
and maxTarget = sigMaxTypes target
(* All the Bound type IDs in the target are in this range. We create an array
to contain the matched IDs from the candidate. *)
val matchArray = Array.array(maxTarget-minTarget, NONE)
in
(* These two functions are used during the match process. *)
(* When looking up a Bound ID we return NONE if it is out of the range.
Bound IDs below the minimum are treated as global at this level and so
only match if they are the same in the target and candidate. *)
fun lookupType n =
if n < minTarget then NONE else Array.sub(matchArray, n-minTarget)
and enterType (n, id) =
if n < minTarget then () else Array.update(matchArray, n-minTarget, SOME id)
(* This is the result function. If everything is right every entry in the
array will be SOME but if we have had an error there may be entries that
are still NONE. To prevent an exception we return the undefined type in
that case. *)
fun resultType n = getOpt(Array.sub(matchArray, n-minTarget), tcIdentifier undefConstr)
end
(* Match typeIDs for types. This is slightly more
complicated than simply assigning the stamps. *)
fun matchNames (candidate, target, structPath) : unit =
if isUndefinedSignature candidate
then () (* Suppress unnecessary messages. *)
else univFold (sigTab target,
fn (dName, dVal, ()) =>
if tagIs typeConstrVar dVal
then
let (* See if there is one with the same name. *)
val targetSet as TypeConstrSet(target, targetConstrs) = tagProject typeConstrVar dVal;
val printTypeEnv = { lookupType = fn _ => NONE, lookupStruct = fn _ => NONE }
fun displayType t = displayTypeConstrs(t, errorDepth lex, printTypeEnv)
val typeError = sigStructMatchMsg(lex, near, lno, structPath) displayType
in (* Match up the types. This does certain checks but
does not check sharing. Equality is checked for. *)
case univLookup (sigTab candidate, typeConstrVar, dName) of
SOME (candidSet as TypeConstrSet(candid, candidConstrs)) =>
if not (isUndefinedTypeConstr target) (* just in case *)
then
(
(* Check for arity and equality - value constructors
are checked later. If the target is a bound identifier
in the range it can be matched by a candidate. *)
case tcIdentifier target of
TypeId{idKind=Bound { offset, ...}, ...} => enterType (offset, tcIdentifier candid)
| _ => ();
if tcArity target <> tcArity candid
then typeError(candidSet, targetSet,
PrettyString "Types take different numbers of type arguments.")
(* Check that it's a datatype before checking for eqtype. *)
else if not (null targetConstrs) andalso null candidConstrs
then typeError(candidSet, targetSet,
PrettyString "Type in structure is not a datatype")
else if not(tcIsAbbreviation target) andalso tcEquality target
andalso not (permitsEquality candid)
then typeError(candidSet, targetSet,
PrettyString "Type in structure is not an equality type")
else ()
)
else ()
| NONE => sigStructMissingMsg(lex, near, lno, structPath) displayType targetSet
end
else if tagIs structVar dVal
then
let (* and sub-structures. *)
val target = (tagProject structVar) dVal;
(* For each target structure: find a candidate with the
same name and recursively check them. *)
in
case univLookup (sigTab candidate, structVar, dName) of
SOME candid =>
matchNames (structSignat candid, structSignat target, structPath ^ dName ^ ".")
| NONE =>
let
fun displayStructure s =
PrettyBlock(0, false, [],
[PrettyString "structure" , PrettyBreak(1, 3), PrettyString(structName s)])
in
sigStructMissingMsg(lex, near, lno, structPath) displayStructure target
end
end
else (), (* not a type or structure *)
() (* default value for fold *)
) (* matchNames *);
val () = matchNames (candidate, target, "");
(* Match the values and exceptions in the signatures.
This actually does the checking of types. *)
fun matchVals (candidate, target, structPath): (int * valueMatching) list =
if isUndefinedSignature candidate
then [] (* Suppress unnecessary messages. *)
else (* Map the identifiers first, returning the originals if they are
not in the map. *)
let
local
fun matchStructures(dName, dVal, matches) =
if tagIs typeConstrVar dVal
then (* Types *)
let (* For each type in the target ... *)
val target = tagProject typeConstrVar dVal
in
(* Find a candidate with the same name. *)
case univLookup (sigTab candidate, typeConstrVar, dName) of
SOME candid =>
let
(* We don't actually check the value constructors here, just load them if they
match. Because of the no-redefinition rule value constructors in the signature
must also be present in the value environment so we check them there. *)
fun matchConstructor(source as Value{typeOf, ...}, Value{access=Formal addr, ...}, matches) =
(addr,
ValueMatch { sourceValue = source, coercion = NoCoercion, targetType = typeOf }) :: matches
| matchConstructor(_, _, matches) = matches
in
(* Now check that the types match. *)
checkTypeConstrs(candid, target, lookupType, lex, near, lno, typeEnv, structPath);
ListPair.foldl matchConstructor matches (tsConstructors candid, tsConstructors target)
end
| NONE => matches (* If the lookup failed ignore
the error - we've already reported it in matchNames *)
end
else if tagIs structVar dVal
then
let (* and each sub-structure *)
val target = tagProject structVar dVal
in
(* For each target structure: find a candidate with the same
name and recursively check them. *)
case univLookup (sigTab candidate, structVar, dName) of
SOME candid =>
let
val substructMatch = matchVals (structSignat candid, structSignat target, structPath ^ dName ^ ".")
in
(* Produce the match instructions for the sub-structure. We only
include Formal entries here. It's possible that there might be
Global entries in some circumstances. *)
case target of
Struct{access=Formal addr, ...} =>
(addr,
StructureMatch{ sourceStructure=candid,
contentsMatch = substructMatch}) :: matches
| _ => matches
end
| NONE => matches (* Ignore the error - we've already reported it in matchNames *)
end
else matches;
in
val structureMatches = univFold(sigTab target, matchStructures, [])
end
fun displayValue(value as Value {name, locations, typeOf, ...}) =
let
val decLocation =
case List.find (fn DeclaredAt _ => true | _ => false) locations of
SOME(DeclaredAt loc) => [ContextLocation loc]
| _ => []
val valName = PrettyBlock(0, false, decLocation, [PrettyString name])
fun dispVal(kind, typeof) =
PrettyBlock(0, false, [],
[
PrettyString kind,
PrettyBreak(1, 3),
valName,
PrettyBreak(0, 0),
PrettyString(":"),
PrettyBreak(1, 0),
display (typeof, errorDepth lex, typeEnv)
])
in
case value of
Value{class=Constructor _, ...} =>
(* When displaying the constructor show the function type. We may have rebound
the constructor in the candidate structure so that it creates a different datatype. *)
dispVal("constructor", typeOf)
| Value{class=Exception, ...} =>
PrettyBlock(0, false, [],
PrettyString "exception" ::
PrettyBreak(1, 3) ::
valName ::
(
case getFnArgType typeOf of
NONE => []
| SOME excType =>
[
PrettyBreak (1, 1), PrettyString "of",
PrettyBreak (1, 3), display (excType, errorDepth lex, typeEnv) ]
))
| _ => dispVal("val", typeOf)
end
local
fun matchLocalValues(dName, dVal, matches) =
if tagIs valueVar dVal
then
let
val destVal as Value { typeOf=destTypeOf, class=destClass, access=destAccess, ...} = tagProject valueVar dVal
in
case univLookup (sigTab candidate, valueVar, dName) of
NONE => (sigStructMissingMsg(lex, near, lno, structPath) displayValue destVal; matches)
| SOME (candid as Value { typeOf=sourceTypeOf, class=sourceClass, ...}) =>
let
(* If the target is a constructor or exception the candidate must be
similar. If the candidate is a constructor or exception this will
match a value but requires some coercion. *)
datatype matchType = IsOK of valueCoercions | IsWrong of pretty
val matchKind =
case (destClass, sourceClass) of
(Constructor _, Constructor _) => IsOK NoCoercion
| (Constructor _, _) => IsWrong(PrettyString "Value is not a constructor")
| (Exception, Exception) => IsOK NoCoercion
| (Exception, _) => IsWrong(PrettyString "Value is not an exception")
| (_, Exception) => IsOK ExceptionToValue
| (_, Constructor _) => IsOK ConstructorToValue
| _ => IsOK NoCoercion
in
case matchKind of
IsWrong error =>
(
sigStructMatchMsg(lex, near, lno, structPath)
displayValue (candid, destVal, error);
matches
)
| IsOK coercion =>
case matchTypes (sourceTypeOf, destTypeOf, lookupType, lex) of
MatchSuccess instanceType =>
(
(* If it matches an entry in the signature it counts as being exported
and therefore referenced. *)
case candid of
Value { references=SOME{exportedRef, ...}, ...} => exportedRef := true
| _ => ();
(* Add the instance type to the instance types. *)
case candid of
Value{ instanceTypes=SOME instanceRef, ...} =>
(* This has to be generalised before it is added here.
Unlike normal unification when matching to a signature
any polymorphic variables in the target will not have
been generalised. *)
instanceRef := #1(generalise instanceType) :: !instanceRef
| _ => ();
case destAccess of
Formal destAddr =>
(destAddr,
ValueMatch { sourceValue = candid, coercion = coercion,
targetType = instanceType }) :: matches
| _ => matches (* This could be global. *)
)
| MatchError error =>
(
sigStructMatchMsg(lex, near, lno, structPath)
displayValue (candid, destVal, matchErrorReport(lex, typeEnv, typeEnv) error);
matches
)
end
end
else matches
in
val matchedValues = univFold(sigTab target, matchLocalValues, structureMatches)
end
in
matchedValues
end (* matchVals *);
val doMatch = matchVals (candidate, target, ""); (* Do the match. *)
in
(resultType, doMatch) (* Return the function to look up the results. *)
end (* matchSigs *);
val makeEnv = fn x => let val Env e = makeEnv x in e end;
(* Any values in the signature are counted as exported. This case applies if
there was no result signature because if there was a signature the values
would have been given their references and types in the signature matching. *)
fun markValsAsExported resSig =
let
fun refVals(_, dVal, ()) =
if tagIs valueVar dVal
then
let
val valu = tagProject valueVar dVal
in
case valu of
Value {references=SOME{exportedRef, ...}, ...} =>
exportedRef := true
| _ => ();
(* If we have exported the value without a signature we use
the most general type and discard any, possibly less general,
references. *)
case valu of
Value{ typeOf, instanceTypes=SOME instanceRef, ...} =>
instanceRef := [#1(generalise typeOf)]
| _ => ()
end
else ()
in
univFold(sigTab resSig, refVals, ())
end
(* Construct a set of actions for matching a structure to itself. This is only
really needed to ensure that type IDs are passed through correctly but we
don't actually do them here yet. *)
fun makeCopyActions signat : (int * valueMatching) list =
let
fun matchEntry(_, dVal, matches) =
if tagIs structVar dVal
then
let
val str = tagProject structVar dVal
in
case str of
Struct{access=Formal addr, ...} =>
(addr, StructureMatch{
sourceStructure=str, contentsMatch = makeCopyActions(structSignat str)}) :: matches
| _ => matches
end
else if tagIs valueVar dVal
then
let
val v = tagProject valueVar dVal
in
case v of
Value { access=Formal addr, typeOf, ...} =>
(addr, ValueMatch { sourceValue = v, coercion = NoCoercion, targetType = typeOf }) :: matches
| _ => matches
end
else if tagIs typeConstrVar dVal
then
let
fun matchConstructor(v as Value{access=Formal addr, typeOf, ...}, matches) =
(addr, ValueMatch { sourceValue = v, coercion = NoCoercion, targetType = typeOf }) :: matches
| matchConstructor(_, matches) = matches
in
List.foldl matchConstructor matches (tsConstructors(tagProject typeConstrVar dVal))
end
else matches
in
univFold(sigTab signat, matchEntry, [])
end
(* Actions to copy the type Ids into the result signature. *)
local
fun matchTypeIds(_, []) = []
| matchTypeIds(n, (typeId as TypeId{ access = Formal addr, ...}) :: rest) =
(addr, TypeIdMatch{ sourceIdNo=n, isEquality=isEquality typeId }) ::
matchTypeIds(n+1, rest)
| matchTypeIds(_, _) = raise InternalError "matchTypeIds: Not Formal"
in
fun makeMatchTypeIds destIds = matchTypeIds(0, destIds)
end
(* Second pass - identify names with values and type-check *)
(* Process structure-returning expressions i.e. structure names,
struct..end values and functor applications. *)
fun structValue(str: structValue, newTypeId: (int*bool*bool*bool*typeIdDescription)->typeId, currentTypeCount,
newTypeIdEnv: unit -> int->typeId, Env env, lex, lno, structPath) =
let
val typeEnv =
{
lookupType =
fn s => case #lookupType env s of NONE => NONE | SOME t => SOME(t, SOME(newTypeIdEnv())),
lookupStruct =
fn s => case #lookupStruct env s of NONE => NONE | SOME t => SOME(t, SOME(newTypeIdEnv()))
}
in
case str of
StructureIdent {name, valRef, location} =>
let (* Look up the name and save the value. *)
val result =
lookupStructure ("Structure", {lookupStruct = #lookupStruct env},
name, giveError (str, location, lex))
val () = valRef := result
in
case result of
SOME(Struct{signat, ...}) => signat
| NONE => undefinedSignature
end
| FunctorAppl {name, arg, valRef, nameLoc, fullLoc, argIds, resIds, matchToArgument, ... } =>
(* The result structure must be copied to generate a new
environment. This will make new types so that different
applications of the functor yield different types. There may be
dependencies between the parameters and result signatures so
copying may have to take that into account. *)
(
case #lookupFunct env name of
NONE =>
(
giveError (str, nameLoc, lex) ("Functor (" ^ name ^ ") has not been declared");
undefinedSignature
)
| SOME functr =>
let
val Functor { arg = Struct{signat=formalArgSig, ...}, result=functorResSig, ...} = functr
val () = valRef := SOME functr (* save it till later. *)
(* Apply a functor to an argument. The result structure contains a mixture of IDs
from the argument structure and generative IDs from the result structure.
There are two parts to this process.
1. We have to match the actual argument structure to the formal argument to
ensure that IDs are in the right place for the functor.
2. We have to take the actual argument structure and the functor result structure
and produce a combination of this as a structure. *)
(* IDs:
argIDs: A list of pairs of IDs as Selected/Local/Global values and Formal values.
This contains the IDs that must be passed into the functor.
resIDs: A list of pairs of IDs as Local values and Formal values. The Local value
is the location where a new generative ID is stored and the Formal offset is the
offset within the run-time vector returned by the signature where the source ID
for the generative ID is to be found. *)
(* This provides information about the arguments. *)
(* Get the actual parameter value. *)
val actualArgSig =
structValue(arg, newTypeId, currentTypeCount, newTypeIdEnv, Env env, lex, fullLoc, structPath);
local
(* Check that the actual arguments match formal arguments,
and instantiate the variables. *)
val (matchResults, matchActions) =
matchSigs (actualArgSig, formalArgSig,
fn n => displayStructValue(str, n), fullLoc, lex, newTypeIdEnv(), typeEnv);
(* Record the code to match to this and include instructions to load the typeIDs. *)
val () = matchToArgument := matchActions @ makeMatchTypeIds(sigBoundIds formalArgSig)
in
val matchResults = matchResults
end
(* Create a list of the type IDs that the argument must supply. *)
local
val maxT = sigMaxTypes formalArgSig and minT = sigMinTypes formalArgSig
val results = List.tabulate(maxT-minT, fn n => matchResults(n+minT))
val args = ListPair.mapEq(fn(s, d) => { source = s, dest = d })(results, sigBoundIds formalArgSig)
in
val () = argIds := args; (* Save for code-generation. *)
end
(* Now create the generative typeIDs. These are IDs that are in the bound ID range of
the result signature. Any type IDs inherited from the argument will have type ID
values less than sigMinTypes functorResSig. *)
local
fun makeNewTypeId(
oldId as TypeId{idKind=Bound{isDatatype, arity, ...}, description = { name=oldName, ...}, ...}) =
let
val description =
{ location = fullLoc, name = oldName, description = "Created from applying functor " ^ name }
val newId = newTypeId(arity, false, isEquality oldId, isDatatype, description)
in
{ source = oldId, dest = newId }
end
| makeNewTypeId _ = raise InternalError "Not Bound"
(* The resIds list tells the code-generator where to find the source of each
ID in the result structure and where to save the generative ID. *)
val sdList = List.map makeNewTypeId (sigBoundIds functorResSig)
val _ = resIds := sdList (* Save for code-generation. *)
in
(* This vector contains the resulting type IDs. They all have Local access. *)
val resVector = Vector.fromList(List.map(fn { dest, ...} => dest) sdList)
end
(* Construct a result signature. This will contain all the
IDs created here i.e. IDs in the argument and generative IDs at the start and then
all the values and structures returned from the functor.
When we come to code-generate we need to
1. Use loadOpaqueIds over the resIDs to create the opaque IDs.
2. Basically, do the same as StructDec to match to the result signature.
We don't need to do anything about type IDs from the argument. Processing
the argument will ensure that type IDs created in the argument are declared
as Locals and if we pass localIDs to matchStructure we will load IDs from
both the argument and generative IDs created by loadOpaqueIds. *)
val minCopy = Int.min(sigMinTypes formalArgSig, sigMinTypes functorResSig)
val idEnv = newTypeIdEnv()
fun getCombinedTypeId n =
if n < minCopy then idEnv n
else if n >= sigMinTypes functorResSig
then Vector.sub(resVector, n - sigMinTypes functorResSig)
else if n >= sigMinTypes formalArgSig
then matchResults n
else sigTypeIdMap formalArgSig n
val resSig =
let
val Signatures { name, tab, locations, ... } = functorResSig
in
makeSignature(name, tab, currentTypeCount(), locations,
composeMaps(sigTypeIdMap functorResSig, getCombinedTypeId), [])
end
in
resSig
end
)
| StructDec {alist, location, matchToResult, ...} =>
let
(* Collection of declarations packaged into a structure
or a collection of signatures. *)
(* Some of the environment, the types and the value constructors,
is generated during the first pass. Get the environment from
the structure. *)
val structTable = makeSignatureTable ()
val structEnv = makeEnv structTable
val makeLocalTypeId = newTypeId
val makeLocalTypeIdEnv = newTypeIdEnv
val newEnv =
{
enterType = #enterType structEnv,
enterVal = #enterVal structEnv,
enterStruct = #enterStruct structEnv,
enterSig = fn _ => raise InternalError "Signature in Struct End",
enterFunct = fn _ => raise InternalError "Functor in Struct End",
lookupVal = lookupDefault (#lookupVal structEnv) (#lookupVal env),
lookupType = lookupDefault (#lookupType structEnv) (#lookupType env),
lookupStruct = lookupDefault (#lookupStruct structEnv) (#lookupStruct env),
lookupSig = #lookupSig env, (* Global *)
lookupFunct = #lookupFunct env, (* Global *)
lookupFix = #lookupFix env,
(* Fixity declarations are dealt with in the parsing process. They
are only processed again in this pass in order to get declarations
in the right order. *)
enterFix = fn _ => (),
allValNames = fn () => (#allValNames structEnv () @ #allValNames env ())
}
(* process body of structure *)
val () =
pass2Struct (alist, makeLocalTypeId, currentTypeCount, makeLocalTypeIdEnv, Env newEnv, lex, lno, structPath);
(* We need to make a signature for the result in the form that can be used if there is no
explicit signature, for example if this is used as the result of a functor. That means
creating Formal values for all the values and structures. These Formal entries define
the position in the run-time vector where each of the values and sub-structures are
located. We don't include typeIDs in this. Any typeIDs that need to be included in
the run-time vector are added by the functor declaration code. *)
val finalTable = makeSignatureTable();
val finalEnv = makeEnv finalTable
(* Create the result signature and also build the match structure to match to it. *)
fun enterItem(dName, dVal, (addrs, matches)) =
if tagIs typeConstrVar dVal
then
let
val tConstr as TypeConstrSet(typConstr, valConstrs) = tagProject typeConstrVar dVal
in
if null valConstrs
then (#enterType finalEnv (dName, tConstr); (addrs, matches))
else
let
(* If this is a datatype constructor convert the value constructors.
The "no redefinition" rule for signatures doesn't apply to a structure
so the signature we create here could have some constructors that have been
hidden by later declarations. We still need the whole value environment in
case of datatype replication. *)
fun convertConstructor(
valVal as Value{class, typeOf, locations, references, name, instanceTypes, ...},
(otherConstrs, (addrs, matches))) =
let
val formalValue =
Value{class=class, name=name, typeOf=typeOf, access=Formal addrs,
locations=locations, references=references, instanceTypes=instanceTypes}
in
(formalValue :: otherConstrs,
(addrs + 1,
(addrs,
ValueMatch { sourceValue = valVal, coercion = NoCoercion, targetType=typeOf}) :: matches))
end
val (newConstrs, newAddrMatch) = List.foldl convertConstructor ([], (addrs, matches)) valConstrs
val newConstructor =
makeTypeConstructor(
tcName typConstr, tcIdentifier typConstr, tcLocations typConstr)
in
#enterType finalEnv (dName, TypeConstrSet(newConstructor, List.rev newConstrs));
newAddrMatch
end
end
else if tagIs structVar dVal
then
let
val strVal = tagProject structVar dVal
val locations = structLocations strVal
val strSig = structSignat strVal
val matchSubStructure = makeCopyActions strSig
in
#enterStruct finalEnv (dName, makeFormalStruct (dName, strSig, addrs, locations));
(addrs + 1,
(addrs, StructureMatch
{ sourceStructure=strVal, contentsMatch = matchSubStructure}) :: matches)
end
else if tagIs valueVar dVal
then
let
val valVal = tagProject valueVar dVal
in
(* If this is a type-dependent function such as PolyML.print we must put in the
original type-dependent version not the version which will have frozen
its type as 'a. *)
case valVal of
value as Value{access = Overloaded _, ...} =>
(
#enterVal finalEnv (dName, value);
(addrs, matches)
)
| Value{class, typeOf, locations, references, instanceTypes, ...} =>
let
val formalValue =
Value{class=class, name=dName, typeOf=typeOf, access=Formal addrs,
locations=locations, references=references,
instanceTypes=instanceTypes}
in
#enterVal finalEnv (dName, formalValue);
(addrs + 1,
(addrs,
ValueMatch { sourceValue = valVal, coercion = NoCoercion, targetType=typeOf}) :: matches)
end
end
else (addrs, matches)
val () = matchToResult := #2(univFold(structTable, enterItem, (0, [])))
val locations = [DeclaredAt location, SequenceNo (newBindingId lex)]
val resSig =
makeSignature("", finalTable, currentTypeCount(), locations, newTypeIdEnv(), [])
in
resSig
end
| LetDec {decs, body = localStr, line, ...} =>
let (* let strdec in strexp end *)
val newEnv = makeEnv (makeSignatureTable());
(* The environment for the local declarations. *)
val localEnv =
{
lookupVal =
lookupDefault (#lookupVal newEnv) (#lookupVal env),
lookupType =
lookupDefault (#lookupType newEnv) (#lookupType env),
lookupFix = #lookupFix newEnv,
lookupStruct =
lookupDefault (#lookupStruct newEnv) (#lookupStruct env),
lookupSig = #lookupSig env,
lookupFunct = #lookupFunct env, (* Sigs and functs are global *)
enterVal = #enterVal newEnv,
enterType = #enterType newEnv,
(* Fixity declarations are dealt with in the parsing process. At
this stage we simply need to make sure that local declarations
aren't entered into the global environment. *)
enterFix = fn _ => (),
enterStruct = #enterStruct newEnv,
enterSig = #enterSig newEnv,
enterFunct = #enterFunct newEnv,
allValNames = fn () => (#allValNames newEnv () @ #allValNames env ())
};
(* Process the local declarations. *)
val () =
pass2Struct (decs, newTypeId, currentTypeCount, newTypeIdEnv, Env localEnv, lex, line, structPath);
in
(* There should just be one entry in the "body" list. *)
structValue(localStr, newTypeId, currentTypeCount, newTypeIdEnv, Env localEnv, lex, line, structPath)
end
| SigConstraint { str, csig, opaque, sigLoc, opaqueIds, matchToConstraint, ... } =>
let
val bodyIds = ref []
val startTypes = currentTypeCount()
val startTypeEnv = newTypeIdEnv()
fun sconstraintMakeTypeId (arity, isVar, eq, isdt, desc) =
let
val newId = newTypeId(arity, isVar, eq, isdt, desc)
in
bodyIds := newId :: ! bodyIds;
newId
end
fun sconstraintTypeIdEnv () n =
if n < startTypes then startTypeEnv n
else valOf(
List.find(fn TypeId{idKind=Bound{offset, ...}, ...} => offset = n | _ => raise Subscript) (!bodyIds))
val resSig =
structValue(str, sconstraintMakeTypeId, currentTypeCount, sconstraintTypeIdEnv, Env env, lex, lno, structPath);
(* Get the explicit signature. *)
val explicitSig = sigVal(csig, startTypes, startTypeEnv, Env env, lex, sigLoc)
val minExplicitSig = sigMinTypes explicitSig and maxExplicitSig = sigMaxTypes explicitSig
(* Match the signature. This instantiates entries in typeMap. *)
val (matchResults, matchActions) =
matchSigs (resSig, explicitSig, fn n => displayStructValue(str, n), sigLoc, lex, startTypeEnv, typeEnv);
val () = matchToConstraint := matchActions
val rSig =
if opaque
then
let
(* Construct new IDs for the generic IDs. For each ID in the signature
we need to make a new Local ID. *)
fun makeNewId(oldId as TypeId{idKind=Bound{ isDatatype, arity, ...}, description = { name, ...}, ...}) =
let
val description =
{ location = sigLoc, name = name, description = "Created from opaque signature" }
in
newTypeId(arity, false, isEquality oldId, isDatatype, description)
end
| makeNewId _ = raise InternalError "Not Bound"
val sources = List.tabulate(maxExplicitSig-minExplicitSig, fn n => matchResults(n+minExplicitSig))
val dests = List.map makeNewId (sigBoundIds explicitSig)
(* Add the matching IDs to a list. When we create the code for
the structure we need to create new run-time ID values using
the original equality code and a new ref to hold the printer. *)
val () = opaqueIds := ListPair.mapEq (fn (s, d) => { source=s, dest=d }) (sources, dests)
(* Create new IDs for all the bound IDs in the signature. *)
val v = Vector.fromList dests
(* And copy it to put in the names from the structure. *)
val currentEnv = newTypeIdEnv()
fun oldMap n =
if n < minExplicitSig
then currentEnv n
else Vector.sub (v, n - minExplicitSig)
val Signatures{locations, name, tab, typeIdMap, ...} = explicitSig
in
makeSignature(name, tab, currentTypeCount(),
locations, composeMaps(typeIdMap, oldMap), [])
end
else (* Transparent: Use the IDs from the structure. *)
let
val newIdEnv = newTypeIdEnv ()
fun matchedIds n = if n < sigMinTypes explicitSig then newIdEnv n else matchResults n
val Signatures{locations, name, tab, typeIdMap, ...} = explicitSig
in
(* The result signature. This needs to be able to enumerate the type IDs
including those we've added. *)
makeSignature(name, tab, currentTypeCount(),
locations, composeMaps(typeIdMap, matchedIds), [])
end
in
rSig
end
end (* structValue *)
and pass2Struct
(strs : structDec list,
makeLocalTypeId : (int * bool * bool * bool * typeIdDescription) -> typeId,
makeCurrentTypeCount: unit -> int,
makeTypeIdEnv: unit -> int -> typeId,
Env env : env,
lex,
lno : LEX.location,
structPath: string
) : unit =
let
fun pass2StructureDec (str : structDec, structList : structBind list, typeIdsForDebug) : unit =
let (* Declaration of structures. *)
(* The declarations must be made in parallel. i.e.
structure A = struct ... end and B = A; binds B to the A
in the PREVIOUS environment, not the A being declared. *)
val sEnv = (* The new names. *)
noDuplicates
(fn(name, _, _) =>
errorNear (lex, true, fn n => displayStruct(str, n), lno,
"Structure " ^ name ^
" has already been bound in this declaration")
)
(* Any new type Ids we create need to be added onto a list in case we need
them for the debugger. *)
fun captureIds args =
let val id = makeLocalTypeId args in typeIdsForDebug := id :: ! typeIdsForDebug; id end
(* Put the new names into this environment. *)
fun pass2StructureBind ({name, value, valRef, line, ...}) : unit=
let (* Each element in the list is a structure binding. *)
val resSig =
structValue(value, captureIds, makeCurrentTypeCount, makeTypeIdEnv,
Env env, lex, line, structPath ^ name ^ ".");
(* Any values in the signature are counted as exported. *)
val () = markValsAsExported resSig;
(* Now make a local structure variable using this signature. *)
val locations = [DeclaredAt line, SequenceNo (newBindingId lex)]
val var = makeLocalStruct (name, resSig, locations)
in
#enter sEnv (name, var);
valRef := SOME var
end
in
List.app pass2StructureBind structList;
(* Put them into the enclosing env. *)
#apply sEnv (#enterStruct env)
end; (* pass2StructureDec *)
fun pass2Localdec (decs : structDec list, body : structDec list) : unit =
let
val newEnv = makeEnv (makeSignatureTable());
(* The environment for the local declarations. *)
val localEnv =
{
lookupVal =
lookupDefault (#lookupVal newEnv) (#lookupVal env),
lookupType =
lookupDefault (#lookupType newEnv) (#lookupType env),
lookupFix = #lookupFix newEnv,
lookupStruct =
lookupDefault (#lookupStruct newEnv) (#lookupStruct env),
lookupSig = #lookupSig env,
lookupFunct = #lookupFunct env,
enterVal = #enterVal newEnv,
enterType = #enterType newEnv,
enterFix = fn _ => (),
enterStruct = #enterStruct newEnv,
enterSig = #enterSig newEnv,
enterFunct = #enterFunct newEnv,
allValNames = fn () => (#allValNames newEnv () @ #allValNames env ())
};
(* Process the local declarations. *)
val () =
pass2Struct (decs, makeLocalTypeId, makeCurrentTypeCount, makeTypeIdEnv, Env localEnv, lex, lno, structPath);
(* This is the environment used for the body of the declaration.
Declarations are added both to the local environment and to
the surrounding scope. *)
(* Look-ups come from the local env *)
val bodyEnv =
{
lookupVal = #lookupVal localEnv,
lookupType = #lookupType localEnv,
lookupFix = #lookupFix localEnv,
lookupStruct = #lookupStruct localEnv,
lookupSig = #lookupSig localEnv,
lookupFunct = #lookupFunct localEnv,
enterVal =
fn pair =>
(
#enterVal newEnv pair;
#enterVal env pair
),
enterType =
fn pair =>
(
#enterType newEnv pair;
#enterType env pair
),
enterFix = #enterFix localEnv,
enterStruct =
fn pair =>
(
#enterStruct newEnv pair;
#enterStruct env pair
),
enterSig =
fn pair =>
(
#enterSig newEnv pair;
#enterSig env pair
),
enterFunct = #enterFunct localEnv,
allValNames = #allValNames localEnv
};
in
(* Now the body. *)
pass2Struct (body, makeLocalTypeId, makeCurrentTypeCount, makeTypeIdEnv, Env bodyEnv, lex, lno, structPath)
end; (* pass2Localdec *)
fun pass2Singleton (dec : parsetree, vars) : unit =
let (* Single declaration - may declare several names. *)
(* As well as entering the declarations we must keep a list
of the value and exception declarations. *)
val newEnv =
{
lookupVal = #lookupVal env,
lookupType = #lookupType env,
lookupFix = #lookupFix env,
lookupStruct = #lookupStruct env,
lookupSig = #lookupSig env,
lookupFunct = #lookupFunct env,
(* Must add the entries onto the end in case a declaration
with the same name is made. e.g.
local ... in val a=1; val a=2 end. *)
enterVal =
fn (pair as (_,v)) =>
(
#enterVal env pair;
vars := !vars @ [CoreValue v]
),
enterType =
fn (pair as (_,t)) =>
(
#enterType env pair;
vars := !vars @ [CoreType t]
),
enterFix =
fn pair =>
(
#enterFix env pair;
vars := !vars @ [CoreFix pair]
),
(* This will only be used if we do `open A' where A
contains sub-structures. *)
enterStruct =
fn (pair as (_,v)) =>
(
#enterStruct env pair;
vars := !vars @ [CoreStruct v]
),
enterSig = #enterSig env,
enterFunct = #enterFunct env,
allValNames = #allValNames env
};
(* Create a new type ID for each new datatype. Add the structure path to the
name. *)
fun makeId (eq, isdt, (args, EmptyType), { location, name, description }) =
makeLocalTypeId(List.length args, true, eq, isdt,
{ location = location, name = structPath ^ name, description = description })
| makeId (_, _, (typeVars, decType), { location, name, description }) =
makeTypeFunction(
{ location = location, name = structPath ^ name, description = description },
(typeVars, decType))
(* Process the body and discard the type. *)
val _ : types = pass2 (dec, makeId, Env newEnv, lex, fn _ => false);
in
()
end (* pass2Singleton *)
fun pass2Dec (str as StructureDec { bindings, typeIdsForDebug, ... }) =
pass2StructureDec (str, bindings, typeIdsForDebug)
| pass2Dec(Localdec {decs, body, ...}) =
pass2Localdec (decs, body)
| pass2Dec(CoreLang {dec, vars, ...}) =
pass2Singleton (dec, vars)
in
List.app pass2Dec strs (* Process all the top level entries. *)
end (* pass2Struct *)
fun pass2Structs ((strs, _): program, lex : lexan, Env globals : env) : unit =
let
(* Create a local environment to capture declarations.
We don't want to add them to the global environment at this point. *)
val newValEnv = UTILITIES.searchList()
and newTypeEnv = UTILITIES.searchList()
and newStrEnv = UTILITIES.searchList()
and newSigEnv = UTILITIES.searchList()
and newFuncEnv = UTILITIES.searchList()
val lookupVal =
lookupDefault (#lookup newValEnv) (#lookupVal globals)
and lookupType =
lookupDefault (#lookup newTypeEnv) (#lookupType globals)
and lookupStruct =
lookupDefault (#lookup newStrEnv) (#lookupStruct globals)
and lookupSig =
lookupDefault (#lookup newSigEnv) (#lookupSig globals)
and lookupFunct =
lookupDefault (#lookup newFuncEnv) (#lookupFunct globals)
fun allValNames () =
let
val v = ref []
val () = #apply newValEnv (fn (s, _) => v := s :: ! v)
in
!v @ #allValNames globals ()
end
val env =
{
lookupVal = lookupVal,
lookupType = lookupType,
lookupFix = #lookupFix globals,
lookupStruct = lookupStruct,
lookupSig = lookupSig,
lookupFunct = lookupFunct,
enterVal = #enter newValEnv,
enterType = #enter newTypeEnv,
enterFix = fn _ => (), (* ?? Already entered by the parser. *)
enterStruct = #enter newStrEnv,
enterSig = #enter newSigEnv,
enterFunct = #enter newFuncEnv,
allValNames = allValNames
};
(* Create the free identifiers. These are initially Bound but are replaced
by Free after the code has been executed and we have the values for the
printer and equality functions. They are only actually created in
strdecs but functor or signature topdecs in the same program could
refer to them. *)
local
val typeIds = ref []
in
fun topLevelId(arity, isVar, eq, isdt, description) =
let
val idNumber = topLevelIdNumber()
val newId =
(if isVar then makeBoundIdWithEqUpdate else makeBoundId)
(arity, Local{addr = ref ~1, level = ref baseLevel}, idNumber, eq, isdt, description)
in
typeIds := newId :: ! typeIds;
newId
end
and topLevelIdNumber() = List.length(!typeIds)
and makeTopLevelIdEnv() =
(* When we process a topdec we create a top-level ID environment which
matches any ID numbers we've already created in this "program" to the
actual ID. Generally this will be empty. *)
let
val typeVec = Vector.fromList(List.rev(!typeIds))
in
fn n => Vector.sub(typeVec, n)
end
end
(* We have to check that a type does not contain free variables and turn them into
unique monotypes if they exist. This is a bit messy. We have to allow subsequent
structure declarations to freeze the types (there's an example on p90 of the
Definition) but we can't functors to get access to unfrozen free variables because
that can break the type system. *)
fun checkValueForFreeTypeVariables(name: string, v: values) =
checkForFreeTypeVariables(name, valTypeOf v, lex, codeForUniqueId)
(* Find all the values in the structure. *)
fun checkStructSigForFreeTypeVariables(name: string, s: signatures) =
let
fun checkEntry(dName: string, dVal: universal, ()) =
if tagIs structVar dVal
then checkStructSigForFreeTypeVariables(name ^ dName ^ ".",
structSignat((tagProject structVar) dVal))
else if tagIs valueVar dVal
then checkValueForFreeTypeVariables(name ^ dName, (tagProject valueVar) dVal)
else ()
in
univFold(sigTab s, checkEntry, ())
end
fun checkVariables (newValEnv, newStrEnv) =
(
#apply newValEnv
(fn (s: string, v: values) => checkValueForFreeTypeVariables(s, v));
#apply newStrEnv (
fn (n: string, s: structVals) =>
checkStructSigForFreeTypeVariables(n^".", structSignat s))
)
fun pass2TopDec ([], envs) = List.app checkVariables envs
| pass2TopDec (StrDec(str, typeIds)::rest, envs) =
let
(* Remember the top-level Ids created in this strdec. *)
fun makeId(arity, isVar, eq, isdt, desc) =
let
val newId = topLevelId(arity, isVar, eq, isdt, desc)
in
typeIds := newId :: ! typeIds;
newId
end
in
(* strdec: structure or core-language topdec. *)
pass2Struct([str], makeId, topLevelIdNumber, makeTopLevelIdEnv, Env env, lex, location lex, "");
pass2TopDec(rest, if errorOccurred lex then [] else (newValEnv, newStrEnv) :: envs)
end
| pass2TopDec((topdec as FunctorDec (structList : functorBind list, lno)) :: rest, envs) =
let
val () = List.app checkVariables envs (* Check previous variables. *)
(* There is a restriction that the same name may not be bound twice.
As with other bindings functor bindings happen in parallel.
DCJM 6/1/00. *)
val sEnv = (* The new names. *)
noDuplicates
(fn (name, _, _) =>
errorNear(lex, true, fn n => displayTopDec(topdec, n), lno,
"Functor " ^ name ^ " has already been bound in this declaration")
);
val startTopLevelIDs = topLevelIdNumber()
and topLevelEnv = makeTopLevelIdEnv()
(* Put the new names into this environment. *)
fun pass2FunctorBind
({name,
arg = {name = argName, sigStruct = argSig, valRef = argVal},
body, valRef, resIds, line, matchToResult,
debugArgVals, debugArgStructs, debugArgTypeConstrs, ...}: functorBind) =
let
(* When we apply a functor we share type IDs with the argument if they
have an ID less than sigMinTypes for the result signature and treat
other IDs as generative. If we don't have an explicit result
signature or if we have a transparent signature the type IDs in the
result are those returned from the body. To keep the argument IDs
separate from newly created IDs we start creating local IDs with
offsets after the args. *)
val typeStamps = ref startTopLevelIDs;
val localStamps = ref []
val argumentSignature =
sigVal (argSig, startTopLevelIDs, topLevelEnv, Env env, lex, line)
val locations = [DeclaredAt line, SequenceNo (newBindingId lex)]
val resArg = makeLocalStruct (argName, argumentSignature, locations)
(* sigVal will have numbered the bound IDs to start at startTopLevelIDs. We
need to enter these bound IDs into the local environment but as Selected entries. *)
local
fun mkId(TypeId{idKind=Bound{ arity, eqType, isDatatype, offset, ...},
description={ location, name, description}, access = Formal addr, ...}) =
TypeId{idKind=Bound { arity = arity, offset = offset, eqType = eqType, isDatatype = isDatatype },
description =
{
location=location,
(* Add the structure name to the argument type IDs. *)
name=if argName = "" then name else argName^"."^name,
description=description
},
access = makeSelected(addr, resArg)}
| mkId _ = raise InternalError "mkId: Not Bound or not Formal"
in
(* argIDVector is part of the environment now. *)
val argIDVector = Vector.fromList(List.map mkId (sigBoundIds argumentSignature))
val () = typeStamps := !typeStamps + List.length(sigBoundIds argumentSignature)
end
val startBodyIDs = ! typeStamps; (* After the arguments. *)
local
(* We also have to apply the above map to the signature. Structures may not
have Formal entries for their type IDs so we must map them to the
Selected items. Actually, there's a nasty sort of circularity here;
we'd like the Selected entries to use structArg as the base but we
can't create it until we have its signature...which uses structArg. *)
val argSigWithSelected =
let
val Signatures { tab, name, locations, typeIdMap, ...} = argumentSignature
fun mapToSelected n =
if n < startTopLevelIDs then topLevelEnv n
else Vector.sub(argIDVector, n-startTopLevelIDs)
in
makeSignature(name, tab, startBodyIDs, locations,
composeMaps(typeIdMap, mapToSelected), [])
end
in
val argEnv = makeEnv (makeSignatureTable()); (* Local name space. *)
(* We may either have a single named structure in which case that is the argument or
effectively a sig...end block in which case we have to open a dummy structure. *)
val () =
if argName <> ""
then (* Named structure. *)
let
val structArg =
Struct { name = argName, signat = argSigWithSelected, access = structAccess resArg,
locations=structLocations resArg }
in
debugArgStructs := [structArg];
#enterStruct argEnv (argName, structArg)
end
else (* Open the dummy argument. Similar to "open" in treestruct. *)
COPIER.openSignature
(argSigWithSelected,
{
enterType =
fn (s,v) => (debugArgTypeConstrs := v :: ! debugArgTypeConstrs; #enterType argEnv (s, v)),
enterStruct =
fn (name, strVal) =>
let
val argStruct = makeSelectedStruct (strVal, resArg, [])
in
debugArgStructs := argStruct :: ! debugArgStructs;
#enterStruct argEnv (name, argStruct)
end,
enterVal =
fn (name, value) =>
let
val argVal = mkSelectedVar (value, resArg, [])
in
debugArgVals := argVal :: ! debugArgVals;
#enterVal argEnv (name, argVal)
end
},
"")
end
val () = argVal := SOME resArg
(* Now process the body of the functor using the environment of
the arguments to the functor and the global environment. *)
val envWithArgs =
{
lookupVal =
lookupDefault (#lookupVal argEnv) (#lookupVal env),
lookupType =
lookupDefault (#lookupType argEnv) (#lookupType env),
lookupFix = #lookupFix env,
lookupStruct =
lookupDefault (#lookupStruct argEnv) (#lookupStruct env),
lookupSig = #lookupSig env,
lookupFunct = #lookupFunct env,
enterVal = #enterVal env,
enterType = #enterType env,
enterFix = fn _ => (),
enterStruct = #enterStruct env,
enterSig = #enterSig env,
enterFunct = #enterFunct env,
allValNames = fn () => (#allValNames argEnv () @ #allValNames env ())
};
local
(* Create local IDs for any datatypes declared in the body or any generative
functor applications. *)
fun newTypeId(arity, isVar, eq, isdt, desc) =
let
val n = !typeStamps
val () = typeStamps := n + 1;
val newId =
(if isVar then makeBoundIdWithEqUpdate else makeBoundId)
(arity, Local{addr = ref ~1, level = ref baseLevel}, n, eq, isdt, desc)
in
localStamps := newId :: !localStamps;
newId
end
fun typeIdEnv () =
let
val localIds = Vector.fromList(List.rev(! localStamps))
in
fn n =>
if n < startTopLevelIDs
then topLevelEnv n
else if n < startBodyIDs
then Vector.sub(argIDVector, n-sigMinTypes argumentSignature)
else Vector.sub(localIds, n-startBodyIDs)
end
in
val resSig =
structValue(body, newTypeId, fn () => !typeStamps, typeIdEnv,
Env envWithArgs, lex, line, "")
val () =
if errorOccurred lex then ()
else checkStructSigForFreeTypeVariables(name^"().", resSig)
(* This counts as a reference. *)
val () = markValsAsExported resSig
end;
local
val startRunTimeOffsets = getNextRuntimeOffset resSig
fun convertId(n, id as TypeId{idKind=Bound { offset, isDatatype, arity, ...}, description, ...}) =
(* Either inherited from the argument or a new type ID. *)
makeBoundId (arity, Formal(n + startRunTimeOffsets), offset, isEquality id, isDatatype, description)
| convertId (_, id) = id (* Free or TypeFunction. *)
val localVector = Vector.fromList(List.rev(!localStamps))
val bodyVec = Vector.mapi convertId localVector
val Signatures { name, tab, typeIdMap, locations, ...} = resSig
(* These local IDs are included in the bound ID range for the result
signature. Since they were created in the functor new instances
will be generated when the functor is applied. *)
val newBoundIds = Vector.foldr (op ::) [] bodyVec
(* Record the ID map for code-generation. *)
val () =
resIds :=
Vector.foldri(fn (n, b, r) => { source=b, dest=Vector.sub(bodyVec, n)} :: r) [] localVector
fun resTypeMap n =
if n < startTopLevelIDs
then topLevelEnv n
else if n < startBodyIDs
then Vector.sub(argIDVector, n-sigMinTypes argumentSignature)
else Vector.sub(bodyVec, n-startBodyIDs)
in
val functorSig =
makeSignature(name, tab, startBodyIDs,
locations, composeMaps(typeIdMap, resTypeMap), newBoundIds)
val () = matchToResult := makeCopyActions functorSig @ makeMatchTypeIds newBoundIds
end
(* Now make a local functor variable and put it in the
name space. Because functors can only be declared at
the top level the only way it can be used is if we have
functor F(..) = ... functor G() = ..F.. with no semicolon
between them. They will then be taken as a single
declaration and F will be picked up as a local. *)
(* Set the size of the type map. *)
val locations = [DeclaredAt line, SequenceNo (newBindingId lex)]
val var = makeFunctor (name, resArg, functorSig, makeLocal (), locations)
in
#enter sEnv (name, var);
valRef := SOME var
end
in
(* Each element in the list is a functor binding. *)
List.app pass2FunctorBind structList;
(* Put them into the enclosing env. *)
#apply sEnv (#enterFunct env);
pass2TopDec(rest, [])
end (* FunctorDec *)
| pass2TopDec((topdec as SignatureDec (structList : sigBind list, lno)) :: rest, envs) =
let
val () = List.app checkVariables envs (* Check previous variables. *)
(* There is a restriction that the same name may not be bound twice.
As with other bindings functor bindings happen in parallel.
DCJM 6/1/00. *)
val sEnv = (* The new names. *)
noDuplicates
(fn (name, _, _) =>
errorNear (lex, true, fn n => displayTopDec(topdec, n), lno,
"Signature " ^ name ^ " has already been bound in this declaration")
);
val startTopLevelIDs = topLevelIdNumber()
and topLevelEnv = makeTopLevelIdEnv()
fun pass2SignatureBind ({name, sigStruct, line, sigRef, ...}) =
let (* Each element in the list is a signature binding. *)
val Signatures { tab, typeIdMap, firstBoundIndex, boundIds, ...} =
sigVal (sigStruct, startTopLevelIDs, topLevelEnv, Env env, lex, line)
val locations = [DeclaredAt line, SequenceNo (newBindingId lex)]
val namedSig = (* Put in the signature name. *)
makeSignature(name, tab, firstBoundIndex, locations, typeIdMap, boundIds)
in
sigRef := namedSig; (* Remember for pass4. *)
#enter sEnv (name, namedSig)
end
in
List.app pass2SignatureBind structList;
(* Put them into the enclosing env. *)
#apply sEnv (#enterSig env) ;
pass2TopDec(rest, [])
end
in
pass2TopDec(strs, []);
(* Mark any exported values as referenced. *)
#apply newValEnv
(fn (s: string, valu: values) =>
(
(* If we have exported the value we need to mark it as a
reference. But if the identifier has been rebound we
only want to mark the last reference. Looking the
identifier up will return only the last reference. *)
case #lookup newValEnv s of
SOME(Value { references=SOME{exportedRef, ...}, ...}) =>
exportedRef := true
| _ => ();
(* Since it's been exported the instance type is the most general type.
We can discard any other instance type info since it cannot be
more general. *)
case valu of
Value{ typeOf, instanceTypes=SOME instanceRef, ...} =>
instanceRef := [#1(generalise typeOf)]
| _ => ()
)
)
end (*pass2Structs *);
(* *
* Code-generation phase. *
* *)
(* Generate code from the expressions and arrange to return the results
so that "pass4" can find them. *)
fun gencodeStructs ((strs, _), lex) =
let
(* Before code-generation perform an extra pass through the tree to remove
unnecessary polymorphism. The type-checking computes a most general
type for a value, typically a function, but it is frequently used in
situations where a less general type would suffice. *)
local
fun leastGenStructDec(StructureDec { bindings, ... }) =
(* Declarations are independent so can be processed in order. *)
List.app (leastGenStructValue o #value) bindings
| leastGenStructDec(CoreLang{dec, ...}) = setLeastGeneralTypes(dec, lex)
| leastGenStructDec(Localdec{decs, body, ...}) =
(
(* Process the body in reverse order then the declaration in reverse. *)
List.foldr (fn (d, ()) => leastGenStructDec d) () body;
List.foldr (fn (d, ()) => leastGenStructDec d) () decs
)
and leastGenStructValue(StructureIdent _) = ()
| leastGenStructValue(StructDec {alist, ...}) =
(* Declarations in reverse order. *)
List.foldr (fn (d, ()) => leastGenStructDec d) () alist
| leastGenStructValue(FunctorAppl {arg, ...}) = leastGenStructValue arg
| leastGenStructValue(LetDec {decs, body, ...}) =
(
(* First the body then the declarations in reverse. *)
leastGenStructValue body;
List.foldr (fn (d, ()) => leastGenStructDec d) () decs
)
| leastGenStructValue(SigConstraint {str, ...}) = leastGenStructValue str
fun leastGenTopDec(StrDec(aStruct, _)) = leastGenStructDec aStruct
| leastGenTopDec(FunctorDec(fbinds, _)) = List.app(fn{body, ...} => leastGenStructValue body) fbinds
| leastGenTopDec(SignatureDec _) = ()
in
val () = (* These are independent so can be processed in order. *)
List.app leastGenTopDec strs
end
(* Apply a function which returns a pair of codelists to a list of structs.
This now threads the debugging environment through the functions so
the name is no longer really appropriate. DCJM 23/2/01. *)
fun mapPair
(_: 'a * debuggerStatus -> {code: codeBinding list, debug: debuggerStatus})
[] debug =
{
code = [],
debug = debug
}
| mapPair f (h::t) debug =
let
(* Process the list in order. In the case of a declaration sequence
later entries in the list may refer to earlier ones. *)
val this = f (h, debug);
val rest = mapPair f t (#debug this);
in (* Return the combined code. *)
{
code = #code this @ #code rest,
debug = #debug rest
}
end;
fun applyMatchActions (code : codetree, actions, sourceIds, mkAddr, level) =
let
(* Generate a new structure which will match the given signature.
A structure is represented by a vector of entries, and its
signature is a map which gives the offset in the vector of
each value. When we match a signature the candidate structure
will in general not have its entries in the same positions as
the target. We have to construct a new structure from it with
the entries in the correct positions. In most cases the optimiser
will simplify this code considerably so there is no harm in using
a general mechanism. Nevertheless, we check for the case when
we are building a structure which is a direct copy of the original
and use the original code if possible. *)
fun matchSubStructure (code: codetree, actions: structureMatch): codetree * bool =
let
val decs = multipleUses (code, fn () => mkAddr 1, level)
(* First sort by the address in the destination vector. This previously
used Misc.quickSort but that results in a lot of memory allocation for
the partially sorted lists. Since we should have exactly N items
the range checking in "update" and the "valOf" provide additional
checking that all the items are present. *)
val a = Array.array(List.length actions, NONE)
val () = List.app(fn (i, action) => Array.update(a, i, SOME action)) actions
val sortedActions = Array.foldri (fn (n, a, l) => (n, valOf a) :: l) [] a
fun applyAction ((destAddr, StructureMatch { sourceStructure, contentsMatch }), (otherCode, allSame)) =
let
val access = structAccess sourceStructure;
(* Since these have come from a signature we might expect all
the entries to be "formal". However if the structure is
global the entries in the signature may be global, and if
the structure is in a "struct .. end" it may be local. *)
val (code, equalDest) =
case access of
Formal sourceAddr => (mkInd (sourceAddr, #load decs level), sourceAddr=destAddr)
| _ => (codeStruct (sourceStructure, level), false)
val (resCode, isSame) = matchSubStructure (code, contentsMatch: structureMatch)
in
(resCode::otherCode, allSame andalso equalDest andalso isSame)
end
| applyAction
((destAddr, ValueMatch { sourceValue as Value{typeOf=sourceTypeOf, name, ...}, coercion, targetType }),
(otherCode, allSame)) =
let
(* Set up a new type variable environment in case this needs to create type
values to match a polymorphic source value to a monomorphic context. *)
val typeVarMap = TypeVarMap.defaultTypeVarMap(mkAddr, level)
(* If the entry is from a signature select from the code. Apply any coercion from
constructors to values. *)
fun loadCode localLevel =
case sourceValue of
Value{access=Formal svAddr, ...} =>
(
case coercion of
NoCoercion => mkInd (svAddr, #load decs localLevel)
| ExceptionToValue =>
let
fun loadEx l = mkInd (svAddr, #load decs l)
in
case getFnArgType sourceTypeOf of
NONE => mkTuple [loadEx localLevel, mkStr name,
CodeZero, codeLocation nullLocation]
| SOME _ =>
let
val nLevel = newLevel level
in
mkProc
(mkTuple[loadEx nLevel, mkStr name,
mkLoadArgument 0, codeLocation nullLocation],
1, "", getClosure nLevel, 0)
end
end
| ConstructorToValue =>
(* Extract the injection function/nullary value. *)
ValueConstructor.extractInjection(mkInd (svAddr, #load decs localLevel))
)
| _ =>
(
case coercion of
NoCoercion =>
codeVal (sourceValue, localLevel, typeVarMap, [], lex, location nullLex)
| ExceptionToValue =>
codeExFunction(sourceValue, localLevel, typeVarMap, [], lex, location nullLex)
| ConstructorToValue =>
mkInd(1, codeVal (sourceValue, localLevel, typeVarMap, [], lex, location nullLex))
)
local
val (copiedCandidate, sourceVars) = generalise sourceTypeOf
val sourceVars =
List.filter (fn {equality, ...} => not justForEqualityTypes orelse equality) sourceVars
val () =
case unifyTypes(copiedCandidate, targetType) of
NONE => ()
| SOME report => (print(name ^ ":\n"); PolyML.print report; raise InternalError "unifyTypes failed in pass 3")
val filterTypeVars = List.filter (fn tv => not justForEqualityTypes orelse tvEquality tv)
val destVars = filterTypeVars (getPolyTypeVars(targetType, fn _ => NONE))
(* If we have the same polymorphic variables in the source
and destination we don't need to apply a coercion.
N.B. We may have the same number of polymorphic variables
but still have to apply it if we have, for example,
fun f x => x matching val f: 'a list -> 'a list. *)
fun equalEntry({value=source, ...}, destTv) =
case eventual source of
TypeVar sourceTv => sameTv(sourceTv, destTv)
| _ => false
in
val (polyCode, justCopy) =
if ListPair.allEq equalEntry (sourceVars, destVars)
then
(loadCode(level) (* Nothing to do. *),
(* We're just copying if this is the same address. *)
case sourceValue of
Value{access=Formal sourceAddr, ...} => destAddr=sourceAddr
| _ => false)
else if null destVars (* Destination is monomorphic. *)
then (applyToInstance(sourceVars, level, typeVarMap, loadCode), false)
else
let
open TypeVarMap
val destPolymorphism = List.length destVars
val localLevel = newLevel level
val argAddrs =
List.tabulate(destPolymorphism, fn n => fn l => mkLoadParam(n, l, localLevel))
val argMap = ListPair.zipEq(destVars, argAddrs)
val addrs = ref 0
fun mkAddrs n = ! addrs before (addrs := !addrs+n)
val newTypeVarMap = extendTypeVarMap(argMap, mkAddrs, localLevel, typeVarMap)
(* Apply the source to the parameters provided by the destination. In almost
all cases we will be removing polymorphism here but it is possible to
add polymorphism through type definitions of the form type 'a t = int. *)
val application =
applyToInstance(sourceVars, localLevel, newTypeVarMap, loadCode)
in
(mkProc(
mkEnv(getCachedTypeValues newTypeVarMap, application),
destPolymorphism, name ^ "(P)", getClosure localLevel, !addrs), false)
end
end
in
(mkEnv(TypeVarMap.getCachedTypeValues typeVarMap, polyCode) :: otherCode,
(* We can use the original structure if nothing else has changed, the offset in
the destination structure is the same as the offset in the source and
we don't have any coercion. *)
allSame andalso justCopy andalso (case coercion of NoCoercion => true | _ => false))
end
| applyAction ((_, TypeIdMatch { sourceIdNo, isEquality }), (otherCode, _)) =
(* Get the corresponding source ID. *)
(codeAccess(sourceIds(sourceIdNo, isEquality), level) :: otherCode, false)
val (codeList, isAllEq) = List.foldr applyAction ([], true) sortedActions
in
if isAllEq then (code, true) else (mkEnv (#dec decs, mkTuple codeList), false)
end
in
#1 (matchSubStructure (code, actions))
end (* applyMatchActions *)
(* If we are declaring a structure with an opaque signature we need to create
the run-time IDs for newly generated IDs. *)
fun loadOpaqueIds (opaqueIds, mkAddr, level) =
let
fun decId { dest, source } =
let
val { addr=idAddr, level=idLevel } = vaLocal(idAccess dest)
val addr = mkAddr 1;
val () = idAddr := addr and () = idLevel := level;
val idCode = codeGenerativeId(source, isEquality dest, mkAddr, level)
in
mkDec(addr, idCode)
end
in
List.map decId opaqueIds
end
(* Code-generate a structure value. *)
fun structureCode (str, strName, debugEnv, mkAddr, level: level):
{ code: codeBinding list, load: codetree } =
case str of
FunctorAppl {arg, valRef = ref functs, argIds=ref argIds, resIds=ref resIds,
matchToArgument=ref matchToArgument, ...} =>
let
val {code = argCodeSource, load = argLoadSource, ...} =
structureCode (arg, strName, debugEnv, mkAddr, level)
(* Match the actual argument to the required arguments. *)
fun getMatchedId(n, isEq) =
case #source(List.nth (argIds, n)) of
id as TypeId{idKind=TypeFn _, ...} => (* Have to generate a function here. *)
Global(codeGenerativeId(id, isEq, mkAddr, level))
| id => idAccess id
val argCode = applyMatchActions(argLoadSource, matchToArgument, getMatchedId, mkAddr, level)
(* To produce the generative type IDs we need to save the result vector returned by the
functor application and then generate the new type IDs from the IDs in it. To make valid
source IDs we have to turn the Formal entries in the signature into Selected entries. *)
val resAddr = mkAddr 1
local
val dummyResStruct = makeLocalStruct("", undefinedSignature, []) (* Dummy structure. *)
val resl = vaLocal (structAccess dummyResStruct);
val () = #addr resl := resAddr;
val () = #level resl := level
fun mkSelected {
source = TypeId{idKind, access = Formal addr, description}, dest } =
{ source = TypeId{idKind=idKind, access = makeSelected(addr, dummyResStruct), description = description },
dest = dest }
| mkSelected _ = raise InternalError "makeSelected: Not Bound or not Formal"
val resultIds = List.map mkSelected resIds
in
val loadIds = loadOpaqueIds(resultIds, mkAddr, level)
end
val functorCode =
case functs of
SOME(Functor{access=functorAccess, ...}) => codeAccess (functorAccess, level)
| NONE => raise InternalError "FunctorAppl: undefined"
in
(* Evaluate the functor. *)
{
code =
argCodeSource @
(mkDec(resAddr, mkEval (functorCode, [argCode])) ::
loadIds),
load = mkLoadLocal resAddr
}
end
| StructureIdent {valRef = ref v, ...} => { code = [], load = codeStruct (valOf v, level) }
| LetDec {decs, body = localStr, ...} =>
let (* let strdec in strexp end *)
(* Generate the declarations but throw away the loads. *)
val typeVarMap = TypeVarMap.defaultTypeVarMap(mkAddr, level)
(* TODO: Get the debug environment correct here. *)
fun processBody(decs, _, debugEnv, _, _, _) = (decs, debugEnv)
val (code, debug) =
codeStrdecs(strName, decs, debugEnv, mkAddr, level, typeVarMap, [], processBody)
val {code = bodyCode, load = bodyLoad } =
structureCode (localStr, strName, debug, mkAddr, level)
in
{
code = TypeVarMap.getCachedTypeValues typeVarMap @ code @ bodyCode,
load = bodyLoad
}
end
| StructDec {alist, matchToResult=ref matchToResult, ...} =>
let
val typeVarMap = TypeVarMap.defaultTypeVarMap(mkAddr, level)
fun processBody(decs, _, debugEnv, _, _, _) = (decs: codeBinding list, debugEnv)
val (coded, _(*debugEnv*)) = codeStrdecs(strName, alist, debugEnv, mkAddr, level, typeVarMap, [], processBody)
(* We match to the dummy signature here. If there is a signature outside
we will match again. This results in double copying but that should
all be sorted out by the optimiser. *)
val loads = List.rev(List.foldl(fn (s, l) => codeLoadStrdecs(s, level) @ l) [] alist)
in
(* The result is a block containing the declarations and
code to load the results. *)
{
code = TypeVarMap.getCachedTypeValues typeVarMap @ coded,
load = applyMatchActions (mkTuple loads, matchToResult, fn _ => raise Subscript, mkAddr, level)
}
end
| SigConstraint { str, opaqueIds=ref opaqueIds, matchToConstraint = ref matchToConstraint,... } =>
let
val {code = strCode, load = strLoad, ...} = structureCode (str, strName, debugEnv, mkAddr, level)
val tempDecs = multipleUses (strLoad, fn () => mkAddr 1, level);
val ids = loadOpaqueIds(opaqueIds, mkAddr, level)
in
{
code = strCode @ #dec tempDecs @ ids,
load = applyMatchActions (#load tempDecs level, matchToConstraint, fn _ => raise Subscript, mkAddr, level)
}
end
(* structureCode *)
(* We need to generate code for the declaration and then code to load
the results into a tuple. *)
and codeStrdecs (strName, [], debugEnv, mkAddr, level, typeVarMap, leadingDecs, processBody) =
processBody(leadingDecs: codeBinding list, strName, debugEnv, mkAddr, level, typeVarMap) (* Do the continuation. *)
| codeStrdecs (strName, (StructureDec { bindings = structList, typeIdsForDebug = ref debugIds, ... }) :: sTail,
debugEnv, mkAddr, level, _(*typeVarMap*), leadingDecs, processBody) =
let
fun codeStructureBind ({name, value, valRef, ...}: structBind, debug) =
let
val structureVal = valOf(! valRef)
val sName = strName ^ name ^ "."
val {code = strCode, load = strLoad, ...} = structureCode (value, sName, debug, mkAddr, level)
val addr = mkAddr 1
val var = vaLocal (structAccess structureVal)
val () = #addr var := addr;
val () = #level var := level;
val (debugDecs, newDebug) = makeStructDebugEntries([structureVal], debugEnv, level, lex, mkAddr)
in (* Get the code and save the result in the variable. *)
{
code = strCode @ [mkDec (addr, strLoad)] @ debugDecs : codeBinding list,
debug = newDebug
}
end
val { code: codeBinding list, debug = strDebug } = (* Code-generate each declaration. *)
mapPair codeStructureBind structList debugEnv
val (debugIdDecs, idDebug) = makeTypeIdDebugEntries(debugIds, strDebug, level, lex, mkAddr)
(* A structure binding may introduce new type IDs either directly or by way of
opaque signatures or functor application. Ideally we'd add these using something like
markTypeConstructors but for now just start a new environment. *)
(* TODO: Check this. It looks as though TypeVarMap.getCachedTypeValues newTypeVarMap
always returns the empty list. *)
val newTypeVarMap = TypeVarMap.defaultTypeVarMap(mkAddr, level)
val (codeRest, debugRest) =
codeStrdecs (strName, sTail, idDebug, mkAddr, level, newTypeVarMap, [], processBody)
in
(leadingDecs @ code @ debugIdDecs @ TypeVarMap.getCachedTypeValues newTypeVarMap @ codeRest, debugRest)
end
| codeStrdecs (strName, (Localdec {decs, body, ...}) :: sTail,
debugEnv, mkAddr, level, typeVarMap, leadingDecs, processBody) =
let
fun processTail(previousDecs, newStrName, newDebugEnv, newMkAddr, newLevel, newTypeVarMap) =
let
(* TODO: Get the debug environment right here. *)
in
codeStrdecs (newStrName, sTail, newDebugEnv, newMkAddr, newLevel, newTypeVarMap,
previousDecs, processBody)
end
fun processBody(previousDecs, newStrName, newDebugEnv, newMkAddr, newLevel, newTypeVarMap) =
let
(* TODO: Get the debug environment right here. *)
in
codeStrdecs (newStrName, body, newDebugEnv, newMkAddr, newLevel, newTypeVarMap,
previousDecs, processTail)
end
in
(* Process the declarations then the body and then the tail. *)
codeStrdecs (strName, decs, debugEnv, mkAddr, level, typeVarMap, leadingDecs, processBody)
end
| codeStrdecs (strName, (CoreLang {dec, ...}) :: sTail,
debugEnv, mkAddr, level, typeVarMap, leadingDecs, processBody) =
let
fun processTail(newCode, newDebugEnv, newTypeVarMap) =
codeStrdecs (strName, sTail, newDebugEnv, mkAddr, level, newTypeVarMap,
newCode, processBody)
val (code, debug) =
gencode (dec, lex, debugEnv, level, mkAddr, typeVarMap, strName, processTail)
in
(leadingDecs @ code, debug)
end
(* end codeStrdecs *)
(* Generate a list of load instructions to build the result tuple. *)
and codeLoadStrdecs(StructureDec { bindings, ... }, _) =
let
fun loadStructureBind ({valRef = ref v, ...}, loads) =
let
val { addr=ref addr, ...} = vaLocal (structAccess(valOf v))
in
mkLoadLocal addr :: loads
end
in
(* Code-generate each declaration. *)
List.foldl loadStructureBind [] bindings
end
| codeLoadStrdecs(Localdec {body, ...}, level) =
List.foldl (fn(s, l) => codeLoadStrdecs(s, level) @ l) [] body
| codeLoadStrdecs(CoreLang {vars=ref vars, ...}, level) =
let
(* Load each variable, exception and type ID (i.e. equality & print function)
that has been declared.
Since value declarations may be mutually recursive we have
to code-generate the declarations first then return the values. *)
val typeVarMap = TypeVarMap.defaultTypeVarMap(fn _ => raise InternalError "typeVarMap", level)
fun loadVals (CoreValue v, rest) = codeVal (v, level, typeVarMap, [], nullLex, location nullLex) :: rest
| loadVals (CoreStruct s, rest) = codeStruct (s, level) :: rest
| loadVals (CoreType (TypeConstrSet(_, tcConstructors)), rest) =
(* Type IDs are handled separately but we need to load the value constructors if
this is a datatype. This is really only because of datatype replication where
we need to be able to get the value constructors from the datatype. *)
List.rev(List.map( fn v => codeVal (v, level, typeVarMap, [], nullLex, location nullLex)) tcConstructors)
@ rest
| loadVals (_, rest) = rest
in
List.foldl loadVals [] vars
end
fun codeTopdecs (StrDec(str, _), debugEnv, mkAddr) =
let
open TypeVarMap
val level = baseLevel
val typeVarMap = TypeVarMap.defaultTypeVarMap(mkAddr, level)
val (code, debug) =
codeStrdecs("", [str], debugEnv, mkAddr, level, typeVarMap, [],
fn(decs, _, debugEnv, _, _, _) => (decs, debugEnv))
in
{ code = TypeVarMap.getCachedTypeValues typeVarMap @ code, debug = debug }
end
| codeTopdecs (FunctorDec (structList : functorBind list, _), debugEnv, mkOuterAddr) =
let
fun codeFunctorBind ({name, arg = {valRef=argValRef, ...}, body, valRef, resIds=ref resIds,
matchToResult=ref matchToResult, debugArgVals, debugArgStructs, debugArgTypeConstrs, ...}: functorBind, debugEnv) =
let
val argVal = valOf(! argValRef)
local (* Separate context for each functor binding. *)
val address = ref 1
in
fun mkAddr n = !address before (address := ! address+n)
val level = newLevel baseLevel (* Inside the functor *)
end
val arg = vaLocal (structAccess argVal)
(* Create a local binding for the argument. This allows the new variable to be a local. *)
val localAddr = mkAddr 1
val () = #addr arg := localAddr
val () = #level arg := level
val func = valOf(!valRef)
local
(* These are the entries for the functor arguments. *)
val (typeIdDebugDecs, typeIdDebugEnv) =
makeTypeIdDebugEntries(sigBoundIds (structSignat argVal), debugEnv, level, lex, mkAddr)
val (structDebugDecs, structDebugEnv) =
makeStructDebugEntries(! debugArgStructs, typeIdDebugEnv, level, lex, mkAddr)
val typeVarMap = TypeVarMap.defaultTypeVarMap(mkAddr, level) (* ???Check??? *)
val (valDebugDecs, valDebugEnv) =
makeValDebugEntries(! debugArgVals, structDebugEnv, level, lex, mkAddr, typeVarMap)
val (typeDebugDecs, typeDebugEnv) =
makeTypeConstrDebugEntries(! debugArgTypeConstrs, valDebugEnv, level, lex, mkAddr)
in
val fBindDebugDecs = typeIdDebugDecs @ structDebugDecs @ valDebugDecs @ typeDebugDecs
val fBindDebugEnv = typeDebugEnv
end
(* Process the body and make a function out of it. *)
local
val {code = strCode, load = strLoad, ...} =
structureCode (body, name ^ "().", fBindDebugEnv, mkAddr, level)
fun getIds(n, isEq) =
case #source(List.nth(resIds, n)) of
id as TypeId{idKind=TypeFn _, ...} => (* Have to generate a function here. *)
Global(codeGenerativeId(id, isEq, mkAddr, level))
| id => idAccess id
val matchedCode = applyMatchActions(strLoad, matchToResult, getIds, mkAddr, level)
in
val functorCode = (* The function that implements the functor. *)
(if getParameter inlineFunctorsTag (debugParams lex) then mkMacroProc else mkProc)
(mkEnv(mkDec(localAddr, mkLoadArgument 0) :: (fBindDebugDecs @ strCode), matchedCode),
1, name, getClosure level, mkAddr 0)
end
(* Set the address of this variable. Because functors can only
be declared at the top level the only way it can be used is
if we have
functor F(..) = ... functor G() = ..F..
with no semicolon between them. They will then be taken as
a single declaration and F will be picked up as a local. *)
val addr = mkOuterAddr 1
val Functor { access, ...} = func
val var = vaLocal access
val () = #addr var := addr;
val () = #level var := baseLevel(* Top level *);
in
{
code = [mkDec (addr, functorCode)],
debug = debugEnv
}
end
in
mapPair codeFunctorBind structList debugEnv
end
| codeTopdecs(SignatureDec _, debugEnv, _) = { code = [], debug = debugEnv }
and loadTopdecs (StrDec(str, ref typeIds)) =
let
val level = baseLevel
val load = codeLoadStrdecs(str, level)
(* Load all the IDs created in this topdec even if they're not directly referenced. *)
fun loadIds id = codeId(id, level)
in
load @ List.rev(List.map loadIds typeIds)
end
| loadTopdecs (FunctorDec (structList, _)) =
let
fun loadFunctorBind ({valRef, ...}) =
let
val Functor{access, ...} = valOf(! valRef)
val {addr = ref addr, ...} = vaLocal access
in
mkLoadLocal addr
end
in
List.rev(List.map loadFunctorBind structList)
end
| loadTopdecs(SignatureDec _) = []
local (* Separate context for each top level item. *)
val address = ref 0
in
fun mkAddr n = !address before (address := ! address+n)
end
val coded = (* Process top level list. *)
mapPair (fn (str, debug) => codeTopdecs (str, debug, mkAddr))
strs initialDebuggerStatus
val loaded = List.foldl (fn (s, l) => loadTopdecs s @ l) [] strs
in
(* The result is code for a vector containing the results of the
declarations which pass4 can use to pull out the values after
the code has been run. *)
(mkEnv (#code coded, mkTuple(List.rev loaded)), mkAddr 0)
end (* gencodeStructs *);
(* Once the code has been executed the declarations must be added to
the global scope. The type and infix status environments have already
been processed so they can be dumped into the global environment
unchanged. The values and exceptions, however, have to be picked out
the compiled code. Note: The value constructors are actually produced
at the same time as their types but are dumped out by enterGlobals. *)
(* This previously only processed declarations which required some code-generation and
evaluation (structures, values and functors). It now includes types, signatures and
fixity so that all declarations can be printed in the order of declaration. DCJM 6/6/02. *)
fun pass4Structs (results, (strs: topdec list, _)) =
let
fun extractStruct(str, mapTypeIds, args as (addr, { fixes, values, structures, signatures, functors, types } )) =
case str of
StructureDec { bindings, ... } =>
let
fun extractStructureBind ({name, valRef, line, ...}: structBind, (addr, structures)) =
let
val structCode = mkInd (addr, results)
(* We need to replace type IDs with their Global versions. *)
local
val Struct{signat=Signatures { name, locations, typeIdMap, tab, ...}, ...} = valOf(!valRef)
in
val resultSig =
makeSignature(name, tab, 0, locations, composeMaps(typeIdMap, mapTypeIds), [])
end
in
(* Make a global structure. *)
(addr + 1, (name, makeGlobalStruct (name, resultSig, structCode, [DeclaredAt line])) :: structures)
end
val (newAddr, newstructures) = List.foldl extractStructureBind (addr, structures) bindings
in
(newAddr, { structures=newstructures, functors=functors, signatures=signatures,
fixes=fixes, values=values, types=types })
end
| Localdec {body, ...} =>
List.foldl (fn(s, a) => extractStruct(s, mapTypeIds, a))args body
(* Value, exception or type declaration at the top level. *)
| CoreLang {vars=ref vars, ...} =>
let (* Enter the values and exceptions. *)
(* Copy the types to replace the type IDs with the versions with Global access. *)
fun replaceTypes t =
let
fun copyId(TypeId{idKind=Bound{ offset, ...}, ...}) = SOME(mapTypeIds offset)
| copyId _ = NONE
fun replaceTypeConstrs tcon = copyTypeConstr (tcon, copyId, fn x => x, fn s => s)
in
copyType(t, fn tv=>tv, replaceTypeConstrs)
end
fun makeDecs (CoreValue(Value{class, name, typeOf, locations, access, ...}),
(addr, { fixes, values, structures, signatures, functors, types } )) =
let
(* Extract the value from the result vector except if we have a type-dependent
function e.g. PolyML.print where we must use the type-dependent version. *)
val newAccess =
case access of
Overloaded _ => access
| _ => Global(mkInd (addr, results))
(* Replace the typeIDs. *)
val newVal =
Value{class=class, name=name, typeOf=replaceTypes typeOf, access=newAccess,
locations=locations, references = NONE, instanceTypes=NONE}
in
(addr+1, { fixes=fixes, values=(name, newVal) :: values, structures=structures,
signatures=signatures, functors=functors, types=types } )
end
| makeDecs (CoreStruct dec, (addr, {fixes, values, structures, signatures, functors, types})) =
(* If we open a structure we've created in the same "program" we may have a non-global
substructure. We have to process any structures and also map any type IDs. *)
let
local
val Signatures { name, locations, typeIdMap, tab, ...} = structSignat dec
in
val resultSig =
makeSignature(name, tab, 0, locations, composeMaps(typeIdMap, mapTypeIds), [])
end
val strName = structName dec
val newStruct =
Struct { name = strName, signat = resultSig,
access = Global(mkInd (addr, results)), locations = structLocations dec }
in
(addr+1, { fixes=fixes, values=values, structures=(strName, newStruct) :: structures,
signatures=signatures, functors=functors, types=types } )
end
| makeDecs (CoreFix pair, (addr, {fixes, values, structures, signatures, functors, types})) =
(addr, { fixes=pair :: fixes, values=values, structures=structures,
signatures=signatures, functors=functors, types=types } )
| makeDecs (CoreType (TypeConstrSet(tc, constrs)),
(addr, {fixes, values, structures, signatures, functors, types})) =
let
fun loadConstr(Value{class, name, typeOf, locations, ...}, (addr, others)) =
let
val newAccess = Global(mkInd (addr, results))
(* Don't bother replacing the type ID here. fullCopyDatatype will do it. *)
val newConstr =
Value{class=class, name=name, typeOf=typeOf, access=newAccess,
locations=locations, references = NONE, instanceTypes=NONE}
in
(addr+1, others @ [newConstr])
end
val (nextAddr, newConstrs) = List.foldl loadConstr (addr, []) constrs
val copiedTC = fullCopyDatatype(TypeConstrSet(tc, newConstrs), mapTypeIds, "")
val newName = #second(splitString(tcName tc))
in
(nextAddr, { fixes=fixes, values=values, structures=structures,
signatures=signatures, functors=functors, types=(newName, copiedTC) :: types } )
end
in
List.foldl makeDecs args vars
end
fun extractTopDec(str, (addr, env as { fixes, values, structures, signatures, functors, types }, nIds, mapPrevTypIds)) =
case str of
StrDec(str, ref typeIds) =>
let
(* Create new Free IDs for top-level IDs. *)
fun loadId(TypeId{idKind=Bound{eqType, arity, ...}, description, ...}, (n, ids)) =
let
val newId = makeFreeId(arity, Global(mkInd(n, results)), pling eqType, description)
in
(n+1, newId :: ids)
end
| loadId _ = raise InternalError "Not Bound"
(* Construct the IDs and reverse the list so the first ID is first*)
val (newAddr, mappedIds) = List.foldl loadId (addr, []) typeIds
val idMap = Vector.fromList mappedIds
fun mapTypeIds n =
if n < nIds then mapPrevTypIds n else Vector.sub(idMap, n-nIds)
val (resAddr, resEnv) = extractStruct (str, mapTypeIds, (newAddr, env))
in
(resAddr, resEnv, nIds + Vector.length idMap, mapTypeIds)
end
| FunctorDec (structList : functorBind list, _) =>
let
(* Get the functor values. *)
fun extractFunctorBind ({name, valRef, ...}: functorBind, (addr, funcs)) =
let
val code = mkInd (addr, results)
val func = valOf(!valRef)
(* We need to convert any references to typeIDs created in strdecs in the
same "program". *)
(* The result signature shares with the argument so we only copy IDs less than
the min for the argument signature. *)
val Functor {result=fnResult, name=functorName, locations=functorLocations,
arg=fnArg as Struct{name = fnArgName, signat=fnArgSig, ...}, ...} = func
local
val Signatures { name, tab, typeIdMap, boundIds, firstBoundIndex, locations, ... } = fnArgSig
fun newMap n =
if n < firstBoundIndex
then mapPrevTypIds n
else List.nth(boundIds, n-firstBoundIndex)
in
val functorArgSig =
makeSignature(name, tab, firstBoundIndex, locations, composeMaps(typeIdMap, newMap), boundIds)
val copiedArg =
Struct{name=fnArgName, signat=functorArgSig,
access=structAccess fnArg, locations=structLocations fnArg}
end
local
val Signatures { name, tab, typeIdMap, boundIds, firstBoundIndex, locations, ... } = fnResult
val Signatures { boundIds=argBoundIds, firstBoundIndex=argMinTypes, ...} = functorArgSig
fun newMap n =
if n >= firstBoundIndex
then List.nth(boundIds, n-firstBoundIndex)
else if n >= argMinTypes
then case List.nth(argBoundIds, n-argMinTypes) of
(* Add the argument structure name onto the name of type IDs in the argument. *)
TypeId{ access, idKind, description={location, name, description}} =>
TypeId { access=access, idKind=idKind,
description=
{
location=location, description=description,
name=if fnArgName = "" then name else fnArgName^"."^name
}
}
else mapPrevTypIds n
in
val functorSigResult =
makeSignature(name, tab, firstBoundIndex, locations, composeMaps(typeIdMap, newMap), boundIds)
end
val funcTree =
makeFunctor(functorName, copiedArg, functorSigResult, makeGlobal code, functorLocations)
in
(addr + 1, (name, funcTree) :: funcs)
end
val (newAddr, newfunctors ) = List.foldl extractFunctorBind (addr, functors) structList
in
(newAddr, { functors=newfunctors, fixes=fixes, values=values,
signatures=signatures, structures=structures, types=types }, nIds, mapPrevTypIds)
end
| SignatureDec (structList : sigBind list, _) =>
let
(* We need to convert any references to typeIDs created in strdecs in the same "program". *)
fun copySignature fnSig =
let
val Signatures { name, tab, typeIdMap, firstBoundIndex, boundIds, locations, ... } = fnSig
fun mapIDs n =
if n < firstBoundIndex
then mapPrevTypIds n
else List.nth(boundIds, n-firstBoundIndex)
in
makeSignature(name, tab, firstBoundIndex, locations, composeMaps(typeIdMap, mapIDs), boundIds)
end
val newSigs = List.map (fn ({sigRef=ref s, name, ...}: sigBind) => (name, copySignature s)) structList
in
(addr, { fixes=fixes, values=values, structures=structures,
signatures=newSigs @ signatures, functors=functors, types=types }, nIds, mapPrevTypIds)
end
val empty = { fixes=[], values=[], structures=[], functors=[], types=[], signatures=[] }
val (_, result, _, _) = List.foldl extractTopDec (0, empty, 0, fn _ => raise Subscript) strs;
(* The entries in "result" are in reverse order of declaration and may contain duplicates.
We need to reverse and filter the lists so that we end up with the lists in order
and with duplicates removed. *)
fun revFilter result [] = result
| revFilter result ((nameValue as (name, _)) ::rest) =
let
(* Remove any entries further down the list if they have the same name. *)
val filtered = List.filter (fn (n,_) => name <> n) rest
in
revFilter (nameValue :: result) filtered
end
in
{ fixes=revFilter [] (#fixes result), values=revFilter [] (#values result), structures=revFilter [] (#structures result),
functors=revFilter [] (#functors result), types=revFilter [] (#types result), signatures=revFilter [] (#signatures result) }
end (* pass4Structs *)
structure Sharing =
struct
type structDec = structDec
type structValue = structValue
type structVals = structVals
type types = types
type parsetree = parsetree
type lexan = lexan
type pretty = pretty
type values = values
type typeConstrSet = typeConstrSet
type codetree = codetree
type signatures = signatures
type functors = functors
type env = env
type sigBind = sigBind
and functorBind = functorBind
and structBind = structBind
type machineWord = machineWord
type fixStatus = fixStatus
type topdec = topdec
type program = program
type typeParsetree = typeParsetree
type formalArgStruct= formalArgStruct
type ptProperties = ptProperties
type structSigBind = structSigBind
type typeVarForm = typeVarForm
type sigs = sigs
end
end;
|