1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
|
(*
Copyright (c) 2009, 2013, 2015 David C. J. Matthews
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
functor TYPEIDCODE (
structure LEX : LEXSIG;
structure CODETREE : CODETREESIG
structure TYPETREE : TYPETREESIG
structure STRUCTVALS : STRUCTVALSIG
structure DEBUG: DEBUGSIG
structure PRETTY : PRETTYSIG
structure ADDRESS : AddressSig
sharing LEX.Sharing = STRUCTVALS.Sharing = PRETTY.Sharing = CODETREE.Sharing
= TYPETREE.Sharing = ADDRESS
) : TYPEIDCODESIG =
struct
open CODETREE PRETTY ADDRESS STRUCTVALS TYPETREE
open RuntimeCalls
(* This module deals with handling the run-time values that carry type
information. At the moment that's just the equality and print
operations but that will be extended.
There are different versions according to whether this is a
monomorphic constructor, a polymorphic constructor or a type.
Monomorphic and polymorphic constructor values are passed around
in the module system as run-time values for types and datatypes
whereas type values are passed in the core language as an extra
argument to polymorphic functions.
Both monomorphic and polymorphic constructors contain a reference
for the "printer" entry so that a pretty printer can be installed.
The functions in polymorphic datatypes have to be applied to type
values for the base types to construct a type value. Monomorphic
datatypes just need some transformation.
The effective types in each case are
PolyType : (T('a) -> <'a t, 'a t> -> bool) * (T('a) -> 'a t * int -> pretty) ref
MonoType : (<t * t> -> bool) * (t * int -> pretty) ref
Type: (<t * t> -> bool) * (t * int -> pretty)
where < > denotes multiple (poly-style) arguments rather than tuples.
*)
(* If this is true we are just using additional arguments for equality type
variables. If false we are using them for all type variables and every
polymorphic function is wrapped in a function that passes the type
information. *)
val justForEqualityTypes = true
val arg1 = mkLoadArgument 0 (* Used frequently. *)
val arg2 = mkLoadArgument 1
val InternalError = Misc.InternalError
val orb = Word8.orb
infix 7 orb;
val mutableFlags = F_words orb F_mutable
(* codeStruct and codeAccess are copied from ValueOps. *)
fun codeStruct (Struct{access, ...}, level) = codeAccess (access, level)
and codeAccess (Global code, _) = code
| codeAccess (Local{addr=ref locAddr, level=ref locLevel}, level) =
mkLoad (locAddr, level, locLevel)
| codeAccess (Selected{addr, base}, level) =
mkInd (addr, codeStruct (base, level))
| codeAccess _ = raise InternalError "No access"
(* Load an identifier. *)
fun codeId(TypeId{access, ...}, level) = codeAccess(access, level)
(* Pretty printer code. These produce code to apply the pretty printer functions. *)
fun codePrettyString(s: string) =
mkDatatype[mkConst(toMachineWord tagPrettyString), mkConst(toMachineWord s)]
and codePrettyBreak(n, m) =
mkDatatype[mkConst(toMachineWord tagPrettyBreak), mkConst(toMachineWord n), mkConst(toMachineWord m)]
and codePrettyBlock(n: int, t: bool, c: context list, args: codetree) =
mkDatatype[mkConst(toMachineWord tagPrettyBlock), mkConst(toMachineWord n),
mkConst(toMachineWord t), mkConst(toMachineWord c), args]
(* Turn a list of codetrees into a run-time list. *)
and codeList(c: codetree list, tail: codetree): codetree =
List.foldr (fn (hd, tl) => mkTuple[hd, tl]) tail c
(* Generate code to check that the depth is not less than the allowedDepth
and if it is to print "..." rather than the given code. *)
and checkDepth(depthCode: codetree, allowedDepth: int, codeOk, codeFail) =
mkIf(
mkEval(
rtsFunction POLY_SYS_int_lss,
[depthCode, mkConst(toMachineWord allowedDepth)]),
codeFail,
codeOk)
(* Subtract one from the current depth to produce the depth for sub-elements. *)
and decDepth depthCode =
mkEval(rtsFunction POLY_SYS_aminus, [depthCode, mkConst(toMachineWord 1)])
val codePrintDefault = mkProc(codePrettyString "?", 1, "print-default", [], 0)
structure TypeVarMap =
struct
(* Entries are either type var maps or "stoppers". *)
datatype typeVarMapEntry =
TypeVarFormEntry of (typeVarForm * (level->codetree)) list
| TypeConstrListEntry of typeConstrs list
type typeVarMap =
{
entryType: typeVarMapEntry, (* Either the type var map or a "stopper". *)
cache: (* Cache of new type values. *)
{typeOf: types, address: int, decCode: codeBinding} list ref,
mkAddr: int->int, (* Make new addresses at this level. *)
level: level (* Function nesting level. *)
} list
(* Default map. *)
fun defaultTypeVarMap (mkAddr, level) = [{entryType=TypeConstrListEntry[], cache=ref [], mkAddr=mkAddr, level=level}]
fun markTypeConstructors(typConstrs, mkAddr, level, tvs) =
{entryType = TypeConstrListEntry typConstrs, cache = ref [], mkAddr=mkAddr, level=level} :: tvs
fun getCachedTypeValues(({cache=ref cached, ...}) ::_): codeBinding list =
(* Extract the values from the list. The later values may refer to earlier
so the list must be reversed. *)
List.rev (List.map (fn{decCode, ...} => decCode) cached)
| getCachedTypeValues _ = raise Misc.InternalError "getCachedTypeValues"
(* Extend a type variable environment with a new map of type variables to load functions. *)
fun extendTypeVarMap (tvMap: (typeVarForm * (level->codetree)) list, mkAddr, level, typeVarMap) =
{entryType = TypeVarFormEntry tvMap, cache = ref [], mkAddr=mkAddr, level=level} :: typeVarMap
(* If we find the type var in the map return it as a type. This is used to
eliminate apparently generalisable type vars from the list. *)
fun mapTypeVars [] _ = NONE
| mapTypeVars ({entryType=TypeVarFormEntry typeVarMap, ...} :: rest) tyVar =
(
case List.find(fn(t, _) => sameTv(t, tyVar)) typeVarMap of
SOME (tv, _) => SOME(TypeVar tv)
| NONE => mapTypeVars rest tyVar
)
| mapTypeVars (_ :: rest) tyVar = mapTypeVars rest tyVar
(* Check to see if a type constructor is in the "stopper" set and return the level
if it is. *)
fun checkTypeConstructor(_, []) = ~1 (* Not there. *)
| checkTypeConstructor(tyCons, {entryType=TypeVarFormEntry _, ...} :: rest) =
checkTypeConstructor(tyCons, rest: typeVarMap)
| checkTypeConstructor(tyCons, {entryType=TypeConstrListEntry tConstrs, ...} :: rest) =
if List.exists(fn t => sameTypeId(tcIdentifier t, tcIdentifier tyCons)) tConstrs
then List.length rest + 1
else checkTypeConstructor(tyCons, rest)
local
open TypeValue
(* The printer and equality functions must be valid functions even when they
will never be called. We may have to construct dummy type values
by applying a polymorphic type constructor to them and if
they don't have the right form the optimiser will complain.
If we're only using type values for equality type variables the default
print function will be used in polymorphic functions so must print "?". *)
val errorFunction2 = mkProc(CodeZero, 2, "errorCode2", [], 0)
val codeFn = mkProc(codePrettyString "fn", 1, "print-function", [], 0)
local
fun typeValForMonotype typConstr =
let
val codedId = codeId(tcIdentifier typConstr, baseLevel)
val printerRefAddress = extractPrinter codedId
val printFn = (* Create a function to load the printer ref and apply to the args. *)
mkProc(
mkEval(
mkEval(rtsFunction POLY_SYS_load_word, [printerRefAddress, CodeZero]),
[arg1]),
1, "print-" ^ tcName typConstr, [], 0)
in
createTypeValue{
eqCode=extractEquality codedId, printCode=printFn,
boxedCode=extractBoxed codedId, sizeCode=extractSize codedId}
end
in
(* A few common types. These are effectively always cached. *)
val intCode = typeValForMonotype intConstr
and boolCode = typeValForMonotype boolConstr
and stringCode = typeValForMonotype stringConstr
and charCode = typeValForMonotype charConstr
end
(* Code generate this now so we only get one entry. *)
val codeTuple =
mkTuple[
createTypeValue{ (* Unused type variable. *)
eqCode=errorFunction2, printCode=codePrintDefault, boxedCode=boxedEither, sizeCode=singleWord},
createTypeValue{ (* Function. *)
eqCode=errorFunction2, printCode=codeFn, boxedCode=boxedAlways, sizeCode=singleWord},
intCode, boolCode, stringCode, charCode
]
val code = genCode(codeTuple, [], 0)()
in
(* Default code used for a type variable that is not referenced but
needs to be provided to satisfy the type. *)
val defaultTypeCode = mkInd(0, code)
val functionCode = mkInd(1, code)
val cachedCode = [(intConstr, mkInd(2, code)), (boolConstr, mkInd(3, code)),
(stringConstr, mkInd(4, code)), (charConstr, mkInd(5, code))]
end
fun findCachedTypeCode(typeVarMap: typeVarMap, typ): ((level->codetree) * int) option =
let
(* Test if we have the same type as the cached type. *)
fun sameType (t1, t2) =
case (eventual t1, eventual t2) of
(TypeVar tv1, TypeVar tv2) =>
(
case (tvValue tv1, tvValue tv2) of
(EmptyType, EmptyType) => sameTv(tv1, tv2)
| _ => false
)
| (FunctionType{arg=arg1, result=result1}, FunctionType{arg=arg2, result=result2}) =>
sameType(arg1, arg2) andalso sameType(result1, result2)
| (LabelledType{recList=list1, ...}, LabelledType{recList=list2, ...}) =>
ListPair.allEq(
fn({name=n1, typeof=t1}, {name=n2, typeof=t2}) => n1 = n2 andalso sameType(t1, t2))
(list1, list2)
| (TypeConstruction{constr=c1, args=a1, ...}, TypeConstruction{constr=c2, args=a2, ...}) =>
sameTypeConstr(c1, c2) andalso ListPair.allEq sameType (a1, a2)
| _ => false
and sameTypeConstr(tc1, tc2) = sameTypeId(tcIdentifier tc1, tcIdentifier tc2)
fun findCodeFromCache([], _) = NONE
| findCodeFromCache(({cache=ref cache, level, ...} :: rest): typeVarMap, ty) =
(
case List.find(fn {typeOf, ...} => sameType(typeOf, ty)) cache of
NONE => findCodeFromCache(rest, ty)
| SOME{address, ...} => SOME(fn l => mkLoad(address, l, level), List.length rest +1)
)
in
case typ of
TypeVar tyVar =>
(
case tvValue tyVar of
EmptyType =>
let (* If it's a type var it is either in the type var list or we return the
default. It isn't in the cache. *)
fun findCodeFromTypeVar([], _) = ((fn _ => defaultTypeCode), 0)
(* Return default code for a missing type variable. This can occur
if we have unreferenced type variables that need to be supplied but
are treated as "don't care". *)
| findCodeFromTypeVar({entryType=TypeVarFormEntry typeVarMap, ...} :: rest, tyVar) =
(
case List.find(fn(t, _) => sameTv(t, tyVar)) typeVarMap of
SOME(_, codeFn) => (codeFn, List.length rest+1)
| NONE => findCodeFromTypeVar(rest, tyVar)
)
| findCodeFromTypeVar(_ :: rest, tyVar) = findCodeFromTypeVar(rest, tyVar)
in
SOME(findCodeFromTypeVar(typeVarMap, tyVar))
end
| OverloadSet _ =>
let
val constr = typeConstrFromOverload(typ, false)
in
findCachedTypeCode(typeVarMap, mkTypeConstruction(tcName constr, constr, [], []))
end
| ty => findCachedTypeCode(typeVarMap, ty)
)
| TypeConstruction { constr, args, ...} =>
let
fun sameTypeConstr(tc1, tc2) = sameTypeId(tcIdentifier tc1, tcIdentifier tc2)
in
if tcIsAbbreviation constr (* Type abbreviation *)
then findCachedTypeCode(typeVarMap, makeEquivalent (constr, args))
else if null args
then (* Check the permanently cached monotypes. *)
case List.find(fn (t, _) => sameTypeConstr(t, constr)) cachedCode of
SOME (_, c) => SOME ((fn _ => c), ~1)
| NONE => findCodeFromCache(typeVarMap, typ)
else findCodeFromCache(typeVarMap, typ)
end
| FunctionType _ => SOME(fn _ => functionCode, ~1) (* Every function has the same code. *)
| _ => findCodeFromCache(typeVarMap, typ)
end
end
open TypeVarMap
(* Find the earliest entry in the cache table where we can put this entry. *)
fun getMaxDepth (typeVarMap: typeVarMap) (ty: types, maxSoFar:int) : int =
case findCachedTypeCode(typeVarMap, ty) of
SOME (_, cacheDepth) => Int.max(cacheDepth, maxSoFar)
| NONE =>
let
in
case ty of
TypeVar tyVar =>
(
case tvValue tyVar of
OverloadSet _ => maxSoFar (* Overloads are all global. *)
| EmptyType => maxSoFar
| tyVal => getMaxDepth typeVarMap (tyVal, maxSoFar)
)
| TypeConstruction{constr, args, ...} =>
if tcIsAbbreviation constr (* May be an alias *)
then getMaxDepth typeVarMap (makeEquivalent (constr, args), maxSoFar)
else List.foldl (getMaxDepth typeVarMap)
(Int.max(maxSoFar, checkTypeConstructor(constr, typeVarMap))) args
| LabelledType {recList, ...} =>
List.foldl (fn ({typeof, ...}, m) =>
getMaxDepth typeVarMap (typeof, m)) maxSoFar recList
| _ => maxSoFar
end
(* Get the boxedness status for a type i.e. whether values of the type are always addresses,
always tagged integers or could be either. *)
fun boxednessForType(ty, level: level, getTypeValueForID, typeVarMap): codetree =
case findCachedTypeCode(typeVarMap, ty) of
SOME (code, _) => TypeValue.extractBoxed(code level)
| NONE =>
let
fun boxednessForConstruction(constr, args): codetree =
(* Get the boxedness for a datatype construction. *)
let
(* Get the boxedness functions for the argument types.
This applies only to polytypes. *)
fun getArg ty : codetree =
let
val boxedFun = boxednessForType(ty, level, getTypeValueForID, typeVarMap)
open TypeValue
in
(* We need a type value here although only the boxedFun will be used. *)
createTypeValue{eqCode=CodeZero, printCode=CodeZero, boxedCode=boxedFun, sizeCode=singleWord}
end
val codeForId =
TypeValue.extractBoxed(getTypeValueForID(tcIdentifier constr, args, level))
in
(* Apply the function we obtained to any type arguments. *)
if null args then codeForId else mkEval(codeForId, map getArg args)
end
in
case ty of
TypeVar tyVar =>
(
case tvValue tyVar of
OverloadSet _ => boxednessForConstruction(typeConstrFromOverload(ty, false), [])
| EmptyType => raise InternalError "boxedness: should already have been handled"
| tyVal => boxednessForType(tyVal, level, getTypeValueForID, typeVarMap)
)
| TypeConstruction{constr, args, ...} =>
if tcIsAbbreviation constr (* May be an alias *)
then boxednessForType (makeEquivalent (constr, args), level, getTypeValueForID, typeVarMap)
else boxednessForConstruction(constr, args)
| LabelledType {recList=[{typeof=singleton, ...}], ...} =>
(* Unary tuples are optimised - no indirection. *)
boxednessForType(singleton, level, getTypeValueForID, typeVarMap)
| LabelledType _ => TypeValue.boxedAlways (* Tuple are currently always boxed. *)
(* Functions are handled in the cache case. *)
| _ => raise InternalError "boxednessForType: Unknown type"
end
(* Get the size for values of the type. A value N other than 1 means that every value of the
type is a pointer to a tuple of exactly N words. Zero is never used. *)
fun sizeForType(ty, level, getTypeValueForID, typeVarMap): codetree =
case findCachedTypeCode(typeVarMap, ty) of
SOME (code, _) => TypeValue.extractSize(code level)
| NONE =>
let
fun sizeForConstruction(constr, args): codetree =
(* Get the size for a datatype construction. *)
let
(* Get the size functions for the argument types.
This applies only to polytypes. *)
fun getArg ty : codetree =
let
val sizeFun = sizeForType(ty, level, getTypeValueForID, typeVarMap)
open TypeValue
in
(* We need a type value here although only the sizeFun will be used. *)
createTypeValue{eqCode=CodeZero, printCode=CodeZero, boxedCode=CodeZero, sizeCode=sizeFun}
end
val codeForId =
TypeValue.extractSize(getTypeValueForID(tcIdentifier constr, args, level))
in
(* Apply the function we obtained to any type arguments. *)
if null args then codeForId else mkEval(codeForId, map getArg args)
end
in
case ty of
TypeVar tyVar =>
(
case tvValue tyVar of
OverloadSet _ => sizeForConstruction(typeConstrFromOverload(ty, false), [])
| EmptyType => raise InternalError "size: should already have been handled"
| tyVal => sizeForType(tyVal, level, getTypeValueForID, typeVarMap)
)
| TypeConstruction{constr, args, ...} =>
if tcIsAbbreviation constr (* May be an alias *)
then sizeForType (makeEquivalent (constr, args), level, getTypeValueForID, typeVarMap)
else sizeForConstruction(constr, args)
| LabelledType {recList=[{typeof=singleton, ...}], ...} =>
(* Unary tuples are optimised - no indirection. *)
sizeForType(singleton, level, getTypeValueForID, typeVarMap)
| LabelledType{recList, ...} =>
let
val length = List.length recList
in
(* Set the length to the number of words that can be unpacked.
If there are more than 4 items it's probably not worth packing
them into other tuples so set this to one. *)
if length <= 4 (*!maxPacking*)
then mkConst(toMachineWord length)
else TypeValue.singleWord
end
(* Functions are handled in the cache case. *)
| _ => raise InternalError "sizeForType: Unknown type"
end
fun printerForType(ty, baseLevel, argTypes: typeVarMap) =
let
fun printCode(typ, level: level) =
(
case typ of
typ as TypeVar tyVar =>
(
case tvValue tyVar of
EmptyType =>
(
case findCachedTypeCode(argTypes, typ) of
SOME (code, _) => TypeValue.extractPrinter(code level)
| NONE => raise InternalError "printerForType: should already have been handled"
)
| OverloadSet _ =>
let
val constr = typeConstrFromOverload(typ, false)
in
printCode(mkTypeConstruction(tcName constr, constr, [], []), level)
end
| _ => (* Just a bound type variable. *) printCode(tvValue tyVar, level)
)
| TypeConstruction { constr=typConstr, args, name, ...} =>
if tcIsAbbreviation typConstr (* Handle type abbreviations directly *)
then printCode(makeEquivalent (typConstr, args), level)
else
let
val nLevel = newLevel level
(* Get the type Id and put in code to extract the printer ref. *)
val codedId = codeId(tcIdentifier typConstr, nLevel)
open TypeValue
val printerRefAddress = extractPrinter codedId
(* We need a type value here. The printer field will be used to
print the type argument and the boxedness and size fields may
be needed to extract the argument from the constructed value. *)
fun makePrinterId t =
let
fun codeForId(typeId, _, l) = codeId(typeId, l)
in
createTypeValue
{eqCode=CodeZero, printCode=printCode(t, nLevel),
boxedCode=boxednessForType(t, nLevel, codeForId, argTypes),
sizeCode=sizeForType(t, nLevel, codeForId, argTypes)}
end
val argList = map makePrinterId args
in
case args of
[] => (* Create a function that, when called, will extract the function from
the reference and apply it the pair of the value and the depth. *)
mkProc(
mkEval(
mkEval(rtsFunction POLY_SYS_load_word, [printerRefAddress, CodeZero]),
[arg1]),
1, "print-"^name, getClosure nLevel, 0)
| _ => (* Construct a function, that when called, will extract the
function from the reference and apply it first to the
base printer functions and then to the pair of the value and depth. *)
mkProc(
mkEval(
mkEval(
mkEval(rtsFunction POLY_SYS_load_word, [printerRefAddress, CodeZero]),
argList),
[arg1]),
1, "print-"^name, getClosure nLevel, 0)
end
| LabelledType { recList=[], ...} =>
(* Empty tuple: This is the unit value. *) mkProc(codePrettyString "()", 1, "print-labelled", [], 0)
| LabelledType {recList=[{name, typeof}], ...} =>
let (* Optimised unary record *)
val localLevel = newLevel level
val entryCode = mkEval(printCode(typeof, localLevel), [arg1])
val printItem =
codeList([codePrettyString(name^" ="), codePrettyBreak(1, 0), entryCode, codePrettyString "}"], CodeZero)
in
mkProc(
codePrettyBlock(1, false, [],
mkTuple[codePrettyString "{", printItem]),
1, "print-labelled", getClosure localLevel, 0)
end
| LabelledType (r as { recList, ...}) =>
let
(* See if this has fields numbered 1=, 2= etc. N.B. If it has only one field
we need to print 1= since we don't have singleton tuples. *)
fun isRec([], _) = true
| isRec({name, ...} :: l, n) = name = Int.toString n andalso isRec(l, n+1)
val isTuple = recordIsFrozen r andalso isRec(recList, 1) andalso List.length recList >= 2
val localLevel = newLevel level
val valToPrint = mkInd(0, arg1) and depthCode = mkInd(1, arg1)
val fields = List.tabulate(List.length recList, fn n => n)
val items = ListPair.zipEq(recList, fields)
(* The ordering on fields is designed to allow mixing of tuples and
records (e.g. #1). It puts shorter names before longer so that
#11 comes after #2 and before #100. For named records it does
not make for easy reading so we sort those alphabetically when
printing. *)
val printItems =
if isTuple then items
else Misc.quickSort(fn ({name = a, ...}, _) => fn ({name = b, ...}, _) => a <= b) items
fun asRecord([], _) = raise Empty (* Shouldn't happen. *)
| asRecord([({name, typeof, ...}, offset)], _) =
let
val entryCode =
(* Last field: no separator. *)
mkEval(printCode(typeof, localLevel),
[mkTuple[mkInd(offset, valToPrint), decDepth depthCode]])
val (start, terminator) =
if isTuple then ([], ")")
else ([codePrettyString(name^" ="), codePrettyBreak(1, 0)], "}")
in
codeList(start @ [entryCode, codePrettyString terminator], CodeZero)
end
| asRecord(({name, typeof, ...}, offset) :: fields, depth) =
let
val (start, terminator) =
if isTuple then ([], ")")
else ([codePrettyString(name^" ="), codePrettyBreak(1, 0)], "}")
in
checkDepth(depthCode, depth,
codeList(
start @
[
mkEval(
printCode(typeof, localLevel),
[mkTuple[mkInd(offset, valToPrint), decDepth depthCode]]),
codePrettyString ",",
codePrettyBreak (1, 0)
],
asRecord(fields, depth+1)),
codeList([codePrettyString ("..." ^ terminator)], CodeZero)
)
end
in
mkProc(
codePrettyBlock(1, false, [],
mkTuple[codePrettyString (if isTuple then "(" else "{"), asRecord(printItems, 0)]),
1, "print-labelled", getClosure localLevel, 0)
end
| FunctionType _ => mkProc(codePrettyString "fn", 1, "print-function", [], 0)
| _ => mkProc(codePrettyString "<empty>", 1, "print-empty", [], 0)
)
in
printCode(ty, baseLevel)
end
and makeEq(ty, level: level, getTypeValueForID, typeVarMap): codetree =
let
fun equalityForConstruction(constr, args): codetree =
(* Generate an equality function for a datatype construction. *)
let
(* Get argument types parameters for polytypes. There's a special case
here for type vars, essentially the type arguments to the datatype, to avoid taking
apart the type value record and then building it again. *)
fun getArg ty =
if (case ty of TypeVar tyVar =>
(case tvValue tyVar of EmptyType => true | _ => false) | _ => false)
then
(
case findCachedTypeCode(typeVarMap, ty) of
SOME (code, _) => code level
| NONE => raise InternalError "getArg"
)
else
let
val eqFun = makeEq(ty, level, getTypeValueForID, typeVarMap)
open TypeValue
in
(* We need a type value here. The equality function will be used to compare
the argument type and the boxedness and size parameters may be needed for
the constructors. *)
createTypeValue{eqCode=eqFun, printCode=CodeZero,
boxedCode=boxednessForType(ty, level, getTypeValueForID, typeVarMap),
sizeCode=sizeForType(ty, level, getTypeValueForID, typeVarMap)}
end
val resFun =
let
val iden = tcIdentifier constr
in
(* Special case: If this is ref, Array.array or Array2.array we must use
pointer equality and not attempt to create equality functions for
the argument. It may not be an equality type. *)
if isPointerEqType iden
then rtsFunction POLY_SYS_word_eq
else
let
open TypeValue
val codeForId =
extractEquality(getTypeValueForID(tcIdentifier constr, args, level))
in
(* Apply the function we obtained to any type arguments. *)
if null args
then codeForId
else mkEval(codeForId, map getArg args)
end
end
in
resFun
end
in
case ty of
TypeVar tyVar =>
(
case tvValue tyVar of
OverloadSet _ =>
(* This seems to occur if there are what amount to indirect references to literals. *)
equalityForConstruction(typeConstrFromOverload(ty, false), [])
| EmptyType =>
(
case findCachedTypeCode(typeVarMap, ty) of
SOME (code, _) => TypeValue.extractEquality(code level)
| NONE => raise InternalError "makeEq: should already have been handled"
)
| tyVal => makeEq(tyVal, level, getTypeValueForID, typeVarMap)
)
| TypeConstruction{constr, args, ...} =>
if tcIsAbbreviation constr (* May be an alias *)
then makeEq (makeEquivalent (constr, args), level, getTypeValueForID, typeVarMap)
else equalityForConstruction(constr, args)
| LabelledType {recList=[{typeof=singleton, ...}], ...} =>
(* Unary tuples are optimised - no indirection. *)
makeEq(singleton, level, getTypeValueForID, typeVarMap)
| LabelledType {recList, ...} =>
(* Combine the entries.
fun eq(a,b) = #1 a = #1 b andalso #2 a = #2 b ... *)
let
(* Have to turn this into a new function. *)
val nLevel = newLevel level
fun combineEntries ([], _) = CodeTrue
| combineEntries ({typeof, ...} :: t, n) =
let
val compareElements =
makeEq(typeof, nLevel, getTypeValueForID, typeVarMap)
in
mkCand(
mkEval(compareElements, [mkInd(n, arg1), mkInd(n, arg2)]),
combineEntries (t, n+1))
end
val tupleCode = combineEntries(recList, 0)
in
mkProc(tupleCode, 2, "eq{...}(2)", getClosure nLevel, 0)
end
| _ => raise InternalError "Equality for function"
end
(* Create equality functions for a set of possibly mutually recursive datatypes. *)
fun equalityForDatatypes(typeDataList, eqAddresses, baseEqLevel, typeVarMap): (int * codetree) list =
let
val typesAndAddresses = ListPair.zipEq(typeDataList, eqAddresses)
fun equalityForDatatype(({typeConstr=TypeConstrSet(tyConstr, vConstrs), eqStatus, (*boxedCode, sizeCode,*) ...}, addr),
otherFns) =
if eqStatus
then
let
val nTypeVars = tcArity tyConstr
val argTypes =
List.tabulate(tcArity tyConstr,
fn _ => makeTv{value=EmptyType, level=generalisable, nonunifiable=false,
equality=false, printable=false})
val baseEqLevelP1 = newLevel baseEqLevel
(* Argument type variables. *)
val (localArgList, argTypeMap) =
case argTypes of
[] => ([], typeVarMap)
| _ =>
let
(* Add the polymorphic variables after the ordinary ones. *)
(* Create functions to load these if they are used in the map. They may be non-local!!! *)
val args = List.tabulate(nTypeVars, fn addr => fn l => mkLoadParam(addr+2, l, baseEqLevelP1))
(* Put the outer args in the map *)
val varToArgMap = ListPair.zipEq(argTypes, args)
(* Load the local args to return. *)
val localArgList = List.tabulate (nTypeVars, fn addr => mkLoadParam(addr+2, baseEqLevelP1, baseEqLevelP1))
val addrs = ref 0 (* Make local declarations for any type values. *)
fun mkAddr n = !addrs before (addrs := !addrs + n)
in
(localArgList, extendTypeVarMap(varToArgMap, mkAddr, baseEqLevelP1, typeVarMap))
end
(* If this is a reference to a datatype we're currently generating
load that address otherwise fall back to the default. *)
fun getEqFnForID(typeId, _, l) =
(*
if sameTypeId(typeId, tcIdentifier tyConstr) andalso null argTypes
then (* Directly recursive. *)
TypeValue.createTypeValue{eqCode=mkLoadRecursive(l-baseLevel-1), printCode=CodeZero,
boxedCode=boxedCode, sizeCode=sizeCode}
else
*)
case List.find(fn({typeConstr=tc, ...}, _) => sameTypeId(tcIdentifier(tsConstr tc), typeId)) typesAndAddresses of
SOME({boxedCode, sizeCode, ...}, addr) => (* Mutually recursive. *)
TypeValue.createTypeValue{eqCode=mkLoad(addr, l, baseEqLevel), printCode=CodeZero,
boxedCode=boxedCode, sizeCode=sizeCode}
| NONE => codeId(typeId, l)
(* Filter out the EnumForm constructors. They arise
in situations such as datatype t = A of int*int | B | C
i.e. where we have only one non-nullary constructor
and it is a tuple. In this case we can deal with all
the nullary constructors simply by testing whether
the two arguments are the same. We don't have to
discriminate the individual cases. *)
fun processConstrs [] =
(* The last of the alternatives is false *) CodeZero
| processConstrs (Value{class, access, typeOf, ...} :: rest) =
let
fun addPolymorphism c =
if nTypeVars = 0 orelse justForEqualityTypes then c else mkEval(c, localArgList)
val base = codeAccess(access, baseEqLevelP1)
open ValueConstructor
fun matches arg = mkEval(addPolymorphism(extractTest base), [arg])
in
case class of
Constructor{nullary=true, ...} =>
let
(* Nullary constructors are represented either by short constants or
by constant tuples depending on the rest of the datatype. If this
is a short constant the pointer equality is sufficient.
This appears to increase the code size but the test should be
optimised away because it is applied to a constant. (The
"injection function" of a nullary constructor is the
constant that represents the value). We have to test
the tags if it is not short because we can't guarantee
that the constant tuple hasn't been duplicated. *)
val isShort =
mkEval(rtsFunction POLY_SYS_is_short, [addPolymorphism(extractInjection base)])
in
mkIf(mkIf(isShort, CodeFalse, matches arg1), matches arg2, processConstrs rest)
end
| _ => (* We have to unwrap the value. *)
let
(* Get the constructor argument given the result type. We might
actually be able to take the argument type off directly but
there's some uncertainty about whether we use the same type
variables for the constructors as for the datatype. (This only
applies for polytypes). *)
val resType = constructorResult(typeOf, List.map TypeVar argTypes)
(* Code to extract the value. *)
fun destruct argNo =
mkEval(addPolymorphism(extractProjection(codeAccess(access, baseEqLevelP1))),
[mkLoadParam(argNo, baseEqLevelP1, baseEqLevelP1)])
(* Test whether the values match. *)
val eqValue =
mkEval(
makeEq(resType, baseEqLevelP1, getEqFnForID, argTypeMap),
[destruct 0, destruct 1])
in
(* We have equality if both values match
this constructor and the values within
the constructor match. *)
mkIf(matches arg1, mkCand(matches arg2, eqValue), processConstrs rest)
end
end
(* We previously only tested for bit-wise (pointer) equality if we had
at least one "enum" constructor in which case the test would eliminate
all the enum constructors. I've now extended this to all cases where
there is more than one constructor. The idea is to speed up equality
between identical data structures. *)
val eqCode = mkCor(mkTestptreq(arg1, arg2), processConstrs vConstrs)
in
if null argTypes
then (addr, mkProc(eqCode, 2, "eq-" ^ tcName tyConstr ^ "(2)", getClosure baseEqLevelP1, 0)) :: otherFns
else (* Polymorphic. Add an extra inline functions. *)
let
val nArgs = List.length argTypes
val nLevel = newLevel baseEqLevel
val nnLevel = newLevel nLevel
(* Call the second function with the values to be compared and the base types. *)
val polyArgs = List.tabulate(nArgs, fn i => mkLoadParam(i, nnLevel, nLevel))
in
(addr,
mkInlproc(
mkInlproc(
mkEval(mkLoad(addr+1, nnLevel, baseEqLevel), [arg1, arg2] @ polyArgs), 2, "eq-" ^ tcName tyConstr ^ "(2)",
getClosure nnLevel, 0),
nArgs, "eq-" ^ tcName tyConstr ^ "(2)(P)", getClosure nLevel, 0)) ::
(addr+1,
mkProc(mkEnv(getCachedTypeValues argTypeMap, eqCode), 2+nTypeVars,
"eq-" ^ tcName tyConstr ^ "()", getClosure baseEqLevelP1, 0)) ::
otherFns
end
end
else (* Not an equality type. This will not be called but it still needs to
be a function to ensure it's valid inside mkMutualDecs. *)
(addr, mkProc(CodeZero, 2, "no-eq", [], 0)) :: otherFns
in
List.foldl equalityForDatatype [] typesAndAddresses
end
(* Create a printer function for a datatype when the datatype is declared.
We don't have to treat mutually recursive datatypes specially because
this is called after the type IDs have been created. *)
fun printerForDatatype(TypeConstrSet(typeCons as TypeConstrs{name, ...}, vConstrs), level, typeVarMap) =
let
val argCode = mkInd(0, arg1)
and depthCode = mkInd(1, arg1)
val nLevel = newLevel level
val constrArity = tcArity typeCons
val argTypes =
List.tabulate(constrArity,
fn _ => makeTv{value=EmptyType, level=generalisable, nonunifiable=false,
equality=false, printable=false})
val (localArgList, innerLevel, newTypeVarMap) =
case constrArity of
0 => ([], nLevel, typeVarMap)
| _ =>
let
val nnLevel = newLevel nLevel
fun mkTcArgMap (argTypes, level, oldLevel) =
let
val nArgs = List.length argTypes
val argAddrs = List.tabulate(nArgs, fn n => n)
val args = List.map(fn addr => fn l => mkLoadParam(addr, l, oldLevel)) argAddrs
in
(ListPair.zipEq(argTypes, args), List.map (fn addr => mkLoadParam(addr, level, oldLevel)) argAddrs)
end
val (varToArgMap, localArgList) = mkTcArgMap(argTypes, nnLevel, nLevel)
val addrs = ref 1 (* Make local declarations for any type values. *)
fun mkAddr n = !addrs before (addrs := !addrs + n)
in
(localArgList, nnLevel, extendTypeVarMap(varToArgMap, mkAddr, nLevel, typeVarMap))
end
(* If we have an expression as the argument we parenthesise it unless it is
a simple string, a tuple, a record or a list. *)
(* fun parenthesise p =
let
val test =
case p of
PrettyBlock(_, _, _, items) =>
(
case items of
PrettyString first :: tl =>
not(null tl) andalso
first <> "(" andalso first <> "{" andalso first <> "["
| _ => false
)
| _ => false
in
if test
then PrettyBlock(3, true, [], [ PrettyString "(", PrettyBreak(0, 0), p, PrettyBreak(0, 0), PrettyString ")" ])
else p
end
*)
local
fun callIo function args =
mkEval (rtsFunction function, args)
fun eqStr (arg, str) =
callIo POLY_SYS_word_eq [arg, mkConst(toMachineWord str)]
fun isNotNull arg =
callIo POLY_SYS_not_bool [callIo POLY_SYS_is_short [arg]]
fun testTag(arg, tagV) =
(* Test the tag in the first word of the datatype. *)
mkTagTest(mkInd(0, arg), tagV, maxPrettyTag)
fun listHd x = mkVarField(0, x)
and listTl x = mkVarField(1, x)
in
val parenCode =
mkProc(
mkIf(
testTag(mkLoadArgument 0, tagPrettyBlock),
(* then *)
mkEnv(
[mkDec(0, mkVarField(4, mkLoadArgument 0))], (* items *)
mkIf
(
(* not(null items) andalso not(null(tl items)) andalso
not (isPrettyString(hd items) andalso bracket) *)
mkCand(
isNotNull(mkLoadLocal 0),
mkCand(
isNotNull (listTl(mkLoadLocal 0)),
callIo POLY_SYS_not_bool
[
mkCand(testTag(listHd(mkLoadLocal 0), tagPrettyString),
mkEnv(
[mkDec(1, mkVarField(1, listHd(mkLoadLocal 0)))],
mkCor(eqStr(mkLoadLocal 1, "("), mkCor(eqStr(mkLoadLocal 1, "{"), eqStr(mkLoadLocal 1, "[")))
)
)
]
)
),
(* then: Parenthesise the argument. *)
codePrettyBlock(
3, true, [],
mkDatatype [
codePrettyString "(",
mkDatatype [
codePrettyBreak(0, 0),
mkDatatype [
mkLoadArgument 0,
mkDatatype [
codePrettyBreak(0, 0),
mkDatatype [codePrettyString ")", CodeZero ]
]
]
]
]
),
(* else *) mkLoadArgument 0
)
),
(* else *) mkLoadArgument 0
),
1, "parenthesise", [], 2)
end
fun printerForConstructors
(Value{name, typeOf, access, class = Constructor{nullary, ...}, locations, ...} :: rest) =
let
(* The "value" for a value constructor is a tuple containing
the test code, the injection and the projection functions. *)
val constructorCode = codeAccess(access, innerLevel)
(* If this is a polytype the fields in the constructor tuple are functions that first
have to be applied to the type arguments to yield the actual injection/test/projection
functions. For monotypes the fields contain the injection/test/projection
functions directly. *)
fun addPolymorphism c =
if constrArity = 0 orelse justForEqualityTypes then c else mkEval(c, localArgList)
open ValueConstructor
val locProps = (* Get the declaration location. *)
List.foldl(fn (DeclaredAt loc, _) => [ContextLocation loc] | (_, l) => l) [] locations
val nameCode =
codePrettyBlock(0, false, locProps, codeList([codePrettyString name], CodeZero))
val printCode =
if nullary
then (* Just the name *) nameCode
else
let
val typeOfArg = constructorResult(typeOf, List.map TypeVar argTypes)
val getValue = mkEval(addPolymorphism(extractProjection constructorCode), [argCode])
in
codePrettyBlock(1, false, [],
codeList(
[
(* Put it in a block with the declaration location. *)
nameCode,
codePrettyBreak (1, 0),
(* Print the argument and parenthesise it if necessary. *)
mkEval(parenCode,
[
mkEval(
printerForType(typeOfArg, innerLevel, newTypeVarMap),
[mkTuple[getValue, decDepth depthCode]]
)]
)
], CodeZero))
end
in
(* If this was the last or only constructor we don't need to test. *)
checkDepth(depthCode, 1,
if null rest
then printCode
else
let
val testValue = mkEval(addPolymorphism(extractTest constructorCode), [argCode])
in
mkIf(testValue, printCode, printerForConstructors rest)
end,
codePrettyString "...")
end
| printerForConstructors _ = raise InternalError ("No constructors:"^name)
val printerCode = printerForConstructors vConstrs
in
(* Wrap this in the functions for the base types. *)
if constrArity = 0
then mkProc(printerCode, 1, "print-"^name, getClosure innerLevel, 0)
else mkProc(mkEnv(getCachedTypeValues newTypeVarMap,
mkProc(printerCode, 1, "print-"^name, getClosure innerLevel, 0)),
constrArity, "print"^name^"()", getClosure nLevel, 0)
end
(* Opaque matching and functor application create new type IDs using an existing
type as implementation. The equality function is inherited whether the type
was specified as an eqtype or not. The print function is no longer inherited.
Instead a new reference is installed with a default print function. This hides
the implementation. *)
(* If this is a type function we're going to generate a new ref anyway so we
don't need to copy it. *)
fun codeGenerativeId(TypeId{idKind=TypeFn([], resType), ...}, isEq, mkAddr, level) =
let (* Monotype abbreviation. *)
(* Create a new type value cache. *)
val typeVarMap = defaultTypeVarMap(mkAddr, level)
open TypeValue
val eqCode =
if not isEq then CodeZero
else (* We need a function that takes two arguments rather than a single pair. *)
makeEq(resType, level, fn (typeId, _, l) => codeId(typeId, l), typeVarMap)
val boxedCode =
boxednessForType(resType, level, fn (typeId, _, l) => codeId(typeId, l), typeVarMap)
val sizeCode =
sizeForType(resType, level, fn (typeId, _, l) => codeId(typeId, l), typeVarMap)
in
mkEnv(
TypeVarMap.getCachedTypeValues typeVarMap,
createTypeValue {
eqCode = eqCode, boxedCode = boxedCode, sizeCode = sizeCode,
printCode =
mkEval
(rtsFunction POLY_SYS_alloc_store,
[mkConst (toMachineWord 1), mkConst (toMachineWord mutableFlags),
codePrintDefault])
})
end
| codeGenerativeId(TypeId{idKind=TypeFn(argTypes, resType), ...}, isEq, mkAddr, level) =
let (* Polytype abbreviation: All the entries in the tuple are functions that must
be applied to the base type values when the type constructor is used. *)
(* Create a new type value cache. *)
val typeVarMap = defaultTypeVarMap(mkAddr, level)
val nArgs = List.length argTypes
fun createCode(makeCode, name) =
let
val nLevel = newLevel level
val addrs = ref 0
fun mkAddr n = !addrs before (addrs := !addrs + n)
local
val args =
List.tabulate(nArgs, fn addr => fn l => mkLoadParam(addr, l, nLevel))
in
val typeEnv = ListPair.zipEq(argTypes, args)
end
val argTypeMap = extendTypeVarMap(typeEnv, mkAddr, nLevel, typeVarMap)
val innerFnCode = makeCode(nLevel, argTypeMap)
in
mkProc(mkEnv(getCachedTypeValues argTypeMap, innerFnCode), nArgs, name, getClosure nLevel, !addrs)
end
open TypeValue
(* Create a print function.*)
val printCode = createCode(fn _ => codePrintDefault, "print-helper()")
and eqCode =
if not isEq then CodeZero
else createCode(fn(nLevel, argTypeMap) =>
makeEq(resType, nLevel, fn (typeId, _, l) => codeId(typeId, l), argTypeMap), "equality()")
and boxedCode =
createCode(fn(nLevel, argTypeMap) =>
boxednessForType(resType, nLevel, fn (typeId, _, l) => codeId(typeId, l), argTypeMap), "boxedness()")
and sizeCode =
createCode(fn(nLevel, argTypeMap) =>
sizeForType(resType, nLevel, fn (typeId, _, l) => codeId(typeId, l), argTypeMap), "size()")
in
mkEnv(
TypeVarMap.getCachedTypeValues typeVarMap,
createTypeValue {
eqCode = eqCode, boxedCode = boxedCode,
printCode =
mkEval
(rtsFunction POLY_SYS_alloc_store,
[mkConst (toMachineWord 1), mkConst (toMachineWord mutableFlags),
printCode]),
sizeCode = sizeCode
})
end
| codeGenerativeId(sourceId, _, mkAddr, level: level) =
let (* Datatype. This is the same for monotype and polytypes except for the print fn. *)
open TypeValue
val { dec, load } = multipleUses (codeId(sourceId, level), fn () => mkAddr 1, level)
val loadLocal = load level
val arity =
case sourceId of
TypeId{idKind=Bound{arity, ...},...} => arity
| TypeId{idKind=Free{arity, ...},...} => arity
| TypeId{idKind=TypeFn _,...} => raise InternalError "Already checked"
val printFn =
if arity = 0 then codePrintDefault
else mkProc(codePrintDefault, arity, "print-helper()", [], 0)
val printCode =
mkEval
(rtsFunction POLY_SYS_alloc_store,
[mkConst (toMachineWord 1), mkConst (toMachineWord mutableFlags), printFn ]
)
in
mkEnv(
dec,
createTypeValue {
eqCode = extractEquality loadLocal, printCode = printCode,
boxedCode = extractBoxed loadLocal, sizeCode = extractSize loadLocal
}
)
end
(* Create the equality and type functions for a set of mutually recursive datatypes. *)
fun createDatatypeFunctions(
typeDatalist: {typeConstr: typeConstrSet, eqStatus: bool, boxedCode: codetree, sizeCode: codetree } list,
mkAddr, level, typeVarMap, makePrintFunction) =
let
(* Each entry has an equality function and a ref to a print function.
The print functions for each type needs to indirect through the refs
when printing other types so that if a pretty printer is later
installed for one of the types the others will use the new pretty
printer. That means that the code has to be produced in stages. *)
(* Create the equality functions. Because mutual decs can only be functions we
can't create the typeIDs themselves as mutual declarations. *)
local
(* If this is polymorphic make two addresses, one for the returned equality function and
one for the inner function. *)
fun makeEqAddr{typeConstr=TypeConstrSet(tyConstr, _), ...} =
mkAddr(if tcArity tyConstr = 0 then 1 else 2)
in
val eqAddresses = List.map makeEqAddr typeDatalist (* Make addresses for the equalities. *)
end
val equalityFunctions =
mkMutualDecs(equalityForDatatypes(typeDatalist, eqAddresses, level, typeVarMap))
(* Create the typeId values and set their addresses. The print function is
initially set as zero. *)
local
fun makeTypeId({typeConstr, boxedCode, sizeCode, ...}, eqAddr) =
let
val var = vaLocal(idAccess(tcIdentifier(tsConstr typeConstr)))
val newAddr = mkAddr 1
open TypeValue
val idCode =
createTypeValue
{
eqCode=mkLoadLocal eqAddr,
printCode=
mkEval
(rtsFunction POLY_SYS_alloc_store,
[mkConst (toMachineWord 1), mkConst (toMachineWord mutableFlags),
CodeZero (* Temporary - replaced by setPrinter. *)]
),
boxedCode = boxedCode,
sizeCode = sizeCode
}
in
#addr var := newAddr;
#level var:= level;
mkDec(newAddr, idCode)
end
in
val typeIdCode = ListPair.map makeTypeId (typeDatalist, eqAddresses)
end
(* Create the print functions and set the printer code for each typeId. *)
local
fun setPrinter{typeConstr as TypeConstrSet(tCons as TypeConstrs{identifier, ...}, _), ...} =
let
val arity = tcArity tCons
val printCode =
if makePrintFunction
then printerForDatatype(typeConstr, level, typeVarMap)
else if arity = 0
then codePrintDefault
else mkProc(codePrintDefault, arity, "print-printdefault", [], 0)
in
mkNullDec(
mkEval(
rtsFunction POLY_SYS_assign_word,
[TypeValue.extractPrinter(codeId(identifier, level)),
CodeZero, printCode]
))
end
in
val printerCode = List.map setPrinter typeDatalist
end
in
equalityFunctions :: typeIdCode @ printerCode
end
(* Exported function. Returns a function from an ML pair of values to bool.
N.B. This differs from the functions in the typeID which take a Poly pair. *)
fun equalityForType(ty: types, level: level, typeVarMap: typeVarMap): codetree =
let
val nLevel = newLevel level
(* The final result function must take a single argument. *)
val resultCode =
makeEq(ty, nLevel, fn (typeId, _, l) => codeId(typeId, l), typeVarMap)
in
(* We need to wrap this up in a new inline function. *)
mkInlproc(mkEval(resultCode, [mkInd(0, arg1), mkInd(1, arg1)]),
1, "equality", getClosure nLevel, 0)
end
(* This code is used when the type checker has to construct a unique monotype
because a type variable has escaped to the top level.
The equality code always returns true and the printer prints "?". *)
fun codeForUniqueId() =
let
open TypeValue
val alwaysTrue = mkProc(CodeTrue, 2, "codeForUniqueId-equal", [], 0)
val printCode =
mkEval(
rtsFunction POLY_SYS_alloc_store,
[ mkConst (toMachineWord 1), mkConst (toMachineWord mutableFlags), codePrintDefault])
in
createTypeValue{
eqCode = alwaysTrue, printCode = printCode,
boxedCode = boxedEither, sizeCode = singleWord }
end
val noEquality = mkProc(CodeFalse, 2, "noEquality", [], 0)
(* Since we don't have a way of writing a "printity" type variable there are cases
when the printer will have to fall back to this. e.g. if we have a polymorphic
printing function as a functor argument. *)
val noPrinter = codePrintDefault
(* If this is a polymorphic value apply it to the type instance. *)
fun applyToInstance'([], level, _, code) = code level (* Monomorphic. *)
| applyToInstance'(sourceTypes, level, polyVarMap, code) =
let
(* If we need either the equality or print function we generate a new
entry and ignore anything in the cache. *)
fun makePolyParameter {value=t, equality, printity} =
if equality orelse printity
then
let
open TypeValue
fun getTypeValueForID(typeId, _, l) = codeId(typeId, l)
val eqCode =
if equality
then makeEq(t, level, fn (typeId, _, l) => codeId(typeId, l), polyVarMap)
else noEquality
val boxedCode = boxednessForType(t, level, getTypeValueForID, polyVarMap)
val printCode =
if printity then printerForType(t, level, polyVarMap) else noPrinter
val sizeCode = sizeForType(t, level, getTypeValueForID, polyVarMap)
in
createTypeValue{
eqCode=eqCode, printCode=printCode,
boxedCode=boxedCode, sizeCode=sizeCode}
end
else (* If we don't require the equality or print function we can use the cache. *)
case findCachedTypeCode(polyVarMap, t) of
SOME (code, _) => code level
| NONE =>
let
val maxCache = getMaxDepth polyVarMap (t, 1)
val cacheEntry = List.nth(polyVarMap, List.length polyVarMap - maxCache)
val { cache, mkAddr, level=decLevel, ...} = cacheEntry
local
open TypeValue
val boxedCode =
boxednessForType(t, decLevel, fn (typeId, _, l) => codeId(typeId, l), polyVarMap)
val sizeCode =
sizeForType(t, decLevel, fn (typeId, _, l) => codeId(typeId, l), polyVarMap)
in
val typeValue =
createTypeValue{
eqCode=noEquality, printCode=noPrinter,
boxedCode=boxedCode, sizeCode=sizeCode}
end
(* Make a new entry and put it in the cache. *)
val decAddr = mkAddr 1
val () = cache := {decCode = mkDec(decAddr, typeValue), typeOf = t, address = decAddr } :: !cache
in
mkLoad(decAddr, level, decLevel)
end
in
mkEval(code level, List.map makePolyParameter sourceTypes)
end
(* For now limit this to equality types. *)
fun applyToInstance(sourceTypes, level, polyVarMap, code) =
applyToInstance'(
List.filter(fn {equality, ...} => not justForEqualityTypes orelse equality) sourceTypes,
level, polyVarMap, code)
structure Sharing =
struct
type typeId = typeId
type codetree = codetree
type types = types
type typeConstrs= typeConstrs
type typeConstrSet=typeConstrSet
type typeVarForm=typeVarForm
type typeVarMap = typeVarMap
type codeBinding = codeBinding
type level = level
end
end;
|