1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
|
(*
Original Poly version:
Title: Operations on type structures.
Author: Dave Matthews, Cambridge University Computer Laboratory
Copyright Cambridge University 1985
ML translation and other changes:
Copyright (c) 2000
Cambridge University Technical Services Limited
Further development:
Copyright (c) 2000-9, 2012-2015 David C.J. Matthews
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
functor TYPE_TREE (
structure LEX : LEXSIG
structure STRUCTVALS : STRUCTVALSIG;
structure PRETTY : PRETTYSIG
structure CODETREE : CODETREESIG where type machineWord = Address.machineWord
structure EXPORTTREE: EXPORTTREESIG;
structure DEBUG: DEBUGSIG
structure UTILITIES :
sig
val mapTable: ('a * 'a -> bool) ->
{enter: 'a * 'b -> unit, lookup: 'a -> 'b option}
val splitString: string -> { first:string, second:string }
end;
structure MISC :
sig
exception InternalError of string;
val lookupDefault : ('a -> 'b option) -> ('a -> 'b option) -> 'a -> 'b option
end;
sharing LEX.Sharing = PRETTY.Sharing = EXPORTTREE.Sharing = STRUCTVALS.Sharing
= CODETREE.Sharing
) : TYPETREESIG =
(*****************************************************************************)
(* TYPETREE functor body *)
(*****************************************************************************)
struct
open MISC;
open PRETTY;
open STRUCTVALS;
open LEX;
open UTILITIES;
open CODETREE;
open EXPORTTREE
val badType : types = BadType;
(* added 16/4/96 SPF *)
fun sameTypeVar (TypeVar x, TypeVar y) = sameTv (x, y)
| sameTypeVar _ = false;
fun isTypeVar (TypeVar _) = true
| isTypeVar _ = false;
fun isFunctionType (FunctionType _) = true
| isFunctionType _ = false;
fun isEmpty EmptyType = true
| isEmpty _ = false;
fun isBadType BadType = true
| isBadType _ = false;
val emptyType = EmptyType;
fun typesTypeVar (TypeVar x) = x
| typesTypeVar _ = raise Match;
fun typesFunctionType (FunctionType x) = x
| typesFunctionType _ = raise Match;
(* This is really left over from an old definition. *)
fun tcEquivalent(TypeConstrs{identifier = TypeId {idKind = TypeFn(_, result), ...}, ...}) = result
| tcEquivalent _ = raise InternalError "tcEquivalent: Not a type function"
(* A type construction is the application of a type constructor to
a sequence of types to yield a type. A construction may have a nil
list if it is a single type identifier such as ``int''. *)
(* When a type constructor is encountered in the first pass this entry
is put in. Subsequently a type constructor entry will be assigned to
it so that the types can be checked. *)
(*************)
fun mkTypeVar (level, equality, nonunifiable, printable) =
TypeVar (makeTv {value=emptyType, level=level, equality=equality,
nonunifiable=nonunifiable, printable=printable});
fun mkTypeConstruction (name, typc, args, locations) =
TypeConstruction {name = name, constr = typc,
args = args, locations = locations}
local
(* Turn a tuple into a record of the form {1=.., 2=... }*)
fun maptoRecord ([], _) = []
| maptoRecord (H::T, i) =
{name=Int.toString i, typeof=H} :: maptoRecord (T,i+1)
in
fun mkProductType (typel: types list) =
let
val fields = maptoRecord (typel, 1)
in
LabelledType {recList = fields, fullList = FieldList(List.map #name fields, true)}
end
end
fun mkFunctionType (arg, result) =
FunctionType {arg = arg, result = result};
fun mkOverloadSet [constr] =
(* If there is just a single constructor in the set we make
a type construction from it. *)
mkTypeConstruction(tcName constr, constr, nil, [])
| mkOverloadSet constrs =
let
(* Make a type variable and point this at the overload set
so we can narrow down the overloading. *)
val var = mkTypeVar (generalisable, false, false, false)
val set = OverloadSet {typeset=constrs};
in
tvSetValue (typesTypeVar var, set);
var
end
fun mkLabelled (l, frozen) =
let
val final = FieldList(map #name l, frozen)
val lab =
LabelledType {recList = l,
fullList = if frozen then final else FlexibleList(ref final) }
in
if frozen
then lab
else
let
(* Use a type variable so that the record can be expanded.
This also provides a model (equality etc). for any fields that
are added later. *)
val var = mkTypeVar (generalisable, false, false, false)
val () =
if isTypeVar var
then tvSetValue (typesTypeVar var, lab)
else ();
in
var
end
end
(* Must remove leading zeros because the labels are compared by
string comparison. *)
fun mkLabelEntry (name, t) =
let
fun stripZeros s =
if size s <= 1 orelse String.str(String.sub(s, 0)) <> "0"
then s
else stripZeros (String.substring(s, 1, size s-1));
in
{name = stripZeros name, typeof = t}
end;
(* Functions to construct the run-time representations of type constructor values,
type values and value constructors. These are all tuples and centralising the
code here avoids having the offsets as integers at various places.
Monotype constructor and type values are almost the same except that
type values have the printer entry as the function whereas monotype
constructors have the print entry as a ref pointing to the function,
allowing addPrettyPrint to set a printer for the type. The entries
for polytypes are functions that take the type values as arguments
and return the corresponding values. *)
structure TypeValue =
struct
val equalityOffset = 0
and printerOffset = 1
and boxnessOffset = 2
and sizeOffset = 3
local
(* Values used to represent boxness. *)
val boxedRepNever = 0w1 (* Never boxed, always tagged e.g. bool *)
and boxedRepAlways = 0w2 (* Always boxed, never tagged e.g. function types *)
and boxedRepEither = 0w3 (* Either boxed or tagged e.g. (arbitrary precision) int *)
fun make n = mkConst(Address.toMachineWord n)
fun isCode n =
mkInlproc(
mkEval(rtsFunction RuntimeCalls.POLY_SYS_word_eq, [mkLoadArgument 0, make n]),
1, "test-box", [], 0)
in
val boxedNever = make boxedRepNever
and boxedAlways = make boxedRepAlways
and boxedEither = make boxedRepEither
(* Test for boxedness. This must be applied to the value extracted from
the "boxedness" field after applying to any base type arguments in
the case of a polytype constructor. *)
val isBoxedNever = isCode boxedRepNever
and isBoxedAlways = isCode boxedRepAlways
and isBoxedEither = isCode boxedRepEither
end
(* Sizes are always a single word. *)
val singleWord = mkConst(Address.toMachineWord 0w1)
fun extractEquality idCode = mkInd(equalityOffset, idCode)
and extractPrinter idCode = mkInd(printerOffset, idCode)
and extractBoxed idCode = mkInd(boxnessOffset, idCode)
and extractSize idCode = mkInd(sizeOffset, idCode)
fun createTypeValue{eqCode, printCode, boxedCode, sizeCode} =
mkTuple[eqCode, printCode, boxedCode, sizeCode]
end
(* Value constructors are represented by tuples, either pairs for nullary constructors
or triples for constructors with arguments. For nullary functions the "injection"
function is actually the value itself. If this is a polytype all the entries are
functions that take the type values for the base types as arguments. *)
structure ValueConstructor =
struct
val testerOffset = 0
val injectorOffset = 1
val projectorOffset = 2
fun extractTest constrCode = mkInd(testerOffset, constrCode)
and extractInjection constrCode = mkInd(injectorOffset, constrCode)
and extractProjection constrCode = mkInd(projectorOffset, constrCode)
fun createValueConstr{testMatch, injectValue, projectValue} = mkTuple[testMatch, injectValue, projectValue]
fun createNullaryConstr{ testMatch, constrValue } = mkTuple[testMatch, constrValue]
end
(* Eqtypes with built-in equality functions. The printer functions are all replaced in the basis. *)
local
open Address PRETTY RuntimeCalls TypeValue
fun defaultMonoTypePrinter _ = PrettyString "?"
fun defaultPolyTypePrinter _ _ = PrettyString "?"
fun eqAndPrintCode (eqCode, nArgs, boxed) =
let
val code =
if nArgs = 0
then createTypeValue{
eqCode=eqCode,
printCode=mkConst (toMachineWord (ref defaultMonoTypePrinter)),
boxedCode = boxed,
sizeCode = singleWord
}
else createTypeValue{
eqCode=mkInlproc(eqCode, nArgs, "eq-helper()", [], 0),
printCode=mkConst (toMachineWord (ref defaultPolyTypePrinter)),
boxedCode = mkInlproc(boxed, nArgs, "boxed-helper()", [], 0),
sizeCode = mkInlproc(singleWord, nArgs, "size-helper()", [], 0)
}
in
Global (genCode(code, [], 0) ())
end
fun makeConstr(name, eqFun, boxed) =
makeTypeConstructor (name,
makeFreeId(0, eqAndPrintCode(eqFun, 0, boxed), true, basisDescription name),
[DeclaredAt inBasis])
(* wordEq is used both for tagged words and for pointer equality *)
val wordEq = CODETREE.rtsFunction POLY_SYS_word_eq
(* Strings can be either tagged single characters or vectors whose first word is
the length. *)
local
val stringEquality =
mkInlproc(
mkCor( (* Either they're equal... *)
mkEval(wordEq, [mkLoadArgument 0, mkLoadArgument 1]),
(* ... or they're both long and ...*)
mkCand(
mkCand(
mkEval(rtsFunction POLY_SYS_not_bool,
[mkEval(rtsFunction POLY_SYS_is_short, [mkLoadArgument 0])]),
mkEval(rtsFunction POLY_SYS_not_bool,
[mkEval(rtsFunction POLY_SYS_is_short, [mkLoadArgument 1])])
),
(* ... their contents are equal. Because the first word contains the
length if we include this in the test we will have tested the length
as well and will stop immediately if the lengths are different. *)
mkEval(rtsFunction POLY_SYS_bytevec_eq,
[mkLoadArgument 0, CodeZero, mkLoadArgument 1, CodeZero,
mkEval(rtsFunction POLY_SYS_plus_word,
[
mkConst(toMachineWord wordSize),
(* Use argument 1 here rather than 0. We could use either but this works
better when we're using equality for pattern matching since it
gets the length of the constant string. It also works better
for the, to me, more natural ordering of variable=constant. *)
mkEval(rtsFunction POLY_SYS_string_length, [mkLoadArgument 1])
])
])
)
),
2, "stringEquality", [], 0)
in
val stringEquality = genCode(stringEquality, [], 0) ()
end
in
val intConstr = makeConstr("int", CODETREE.rtsFunction POLY_SYS_equala, boxedEither) (* Need arbitrary precision equality *)
val charConstr = makeConstr("char", wordEq, boxedNever) (* Always short *)
val stringConstr = makeConstr("string", stringEquality, boxedEither (* Single chars are unboxed. *))
val wordConstr = makeConstr("word", wordEq, boxedNever)
(* Ref is a datatype with a single constructor. The constructor is added in INITIALISE.
Equality is special for "'a ref", "'a array" and "'a Array2.array". They permit equality
even if the 'a is not an eqType. *)
val refConstr =
makeTypeConstructor
("ref",
makeFreeId(1, eqAndPrintCode(wordEq, 1, boxedAlways), true, basisDescription "ref"),
[DeclaredAt inBasis]);
val arrayConstr =
makeTypeConstructor
("array",
makeFreeId(1, eqAndPrintCode(wordEq, 1, boxedAlways), true, basisDescription "Array.array"),
[DeclaredAt inBasis]);
val array2Constr =
makeTypeConstructor
("array",
makeFreeId(1, eqAndPrintCode(wordEq, 1, boxedAlways), true, basisDescription "Array2.array"),
[DeclaredAt inBasis]);
val byteArrayConstr =
makeTypeConstructor
("byteArray",
makeFreeId(0, eqAndPrintCode(wordEq, 0, boxedAlways), true, basisDescription "byteArray"),
[DeclaredAt inBasis]);
(* Bool is a datatype. The constructors are added in INITIALISE. *)
val boolConstr =
makeTypeConstructor
("bool", makeFreeId(0, eqAndPrintCode(wordEq, 0, boxedNever), true, basisDescription "bool"),
[DeclaredAt inBasis]);
end
(* These polytypes allow equality even if the type argument is not an equality type. *)
fun isPointerEqType id =
sameTypeId (id, tcIdentifier refConstr) orelse
sameTypeId (id, tcIdentifier arrayConstr) orelse
sameTypeId (id, tcIdentifier array2Constr) orelse
sameTypeId (id, tcIdentifier byteArrayConstr)
(* Non-eqtypes *)
local
open Address PRETTY TypeValue
fun makeType(name, descr, boxed) =
let
fun defaultPrinter _ = PrettyString "?"
val code =
createTypeValue{
eqCode=CodeZero (* No equality. *),
printCode=mkConst (toMachineWord (ref defaultPrinter)),
boxedCode=boxed,
sizeCode=singleWord
}
in
makeTypeConstructor (
name, makeFreeId(0, Global (genCode(code, [], 0) ()), false, descr),
[DeclaredAt inBasis])
end
in
val realConstr = makeType("real", basisDescription "real", boxedAlways(* Currently*)); (* Not an eqtype in ML97. *)
val exnConstr = makeType("exn", basisDescription "exn", boxedAlways);
(* "undefConstr" is used as a place-holder during parsing for the actual type constructor.
If the type constructor is not found this may appear in an error message. *)
val undefConstr =
makeType("undefined", { location = inBasis, description = "Undefined", name = "undefined" }, boxedEither);
end
(* The unit type is equivalent to the empty record. *)
val unitConstr =
makeTypeConstructor ("unit",
makeTypeFunction({ location = inBasis, description = "unit", name = "unit" },
([], LabelledType {recList = [], fullList = FieldList([], true)})),
[DeclaredAt inBasis]);
(* Type identifiers bound to standard type constructors. *)
val unitType = mkTypeConstruction ("unit", unitConstr, [], []);
val intType = mkTypeConstruction ("int", intConstr, [], []);
val realType = mkTypeConstruction ("real", realConstr, [], []);
val charType = mkTypeConstruction ("char", charConstr, [], []);
val stringType = mkTypeConstruction ("string", stringConstr, [], []);
val boolType = mkTypeConstruction ("bool", boolConstr, [], []);
val exnType = mkTypeConstruction ("exn", exnConstr, [], []);
val wordType = mkTypeConstruction ("word", wordConstr, [], []);
fun isUndefined cons = sameTypeId (tcIdentifier cons, tcIdentifier undefConstr);
val isUndefinedTypeConstr = isUndefined
(* Test if a type is the undefined constructor. *)
fun isUndefinedType(TypeConstruction{constr, ...}) = isUndefined constr
| isUndefinedType _ = false
(* Similar to alphabetic ordering except that shorter labels come before longer ones.
This has the advantage that numerical labels are compared by their numerical order
i.e. 1 < 2 < 10 whereas alphabetic ordering puts "1" < "10" < "2". *)
fun compareLabels (a : string, b : string) : int =
if size a = size b
then if a = b then 0 else if a < b then ~1 else 1
else if size a < size b then ~1 else 1;
(* Sort using the label ordering.
A simple sort routine - particularly if the list is already sorted. *)
fun sortLabels [] = []
| sortLabels (s::rest) =
let
fun enter s _ [] = [s]
| enter s name (l as ( (h as {name=hname, ...}) :: t)) =
let
val comp = compareLabels (name, hname);
in
if comp <= 0 then s :: l else h :: enter s name t
end;
in
enter s (#name s) (sortLabels rest)
end
(* Chains down a list of type variables returning the type they are
bound to. As a side-effect it also points all the type variables
at this type to reduce the need for future chaining and to free
unused type variables. Normally a type variable points to at most
one other, which then points to "empty". However if we have unified
two type variables by pointing one at the other, there may be type
variables which pointed to the first and which cannot be found and
redirected at the second until they themselves are examined. *)
fun eventual (t as (TypeVar tv)) : types =
let
(* Note - don't change the level/copy information - the only type
variable with this correct is the one at the end of the list. *)
val oldVal = tvValue tv
val newVal = eventual oldVal; (* Search that *)
in
(* Update the type variable to point to the last in the chain.
We don't do this if the value hasn't changed. The reason for
that was that assignment to refs in the database in the old
persistent store system was very expensive and we wanted to avoid
unnecessary assignments. This special case could probably be removed. *)
if PolyML.pointerEq(oldVal, newVal)
then ()
else tvSetValue (tv, newVal); (* Put it on *)
case newVal of
EmptyType => t (* Not bound to anything - return the type variable *)
| LabelledType (r as { recList, fullList }) =>
if List.length recList = List.length(recordFields r)
then (* All the generic fields are present so we don't need to do anything. *)
if recordIsFrozen r then newVal else t
else (* We need to add fields from the generic. *)
let
(* Add any fields from the generic that aren't present in this instance. *)
fun createNewField name =
{ name = name,
(* The new type variable has to be created with the same properties
as if we had first generalised it from the generic and then
unified with this instance.
The level is inherited from the instance since the generic
will always have level = generalisable. Nonunifiable must be false. *)
typeof = mkTypeVar (tvLevel tv, tvEquality tv, false, tvPrintity tv)}
fun addToInstance([], []) = []
| addToInstance(generic :: geRest, []) = createNewField generic :: addToInstance(geRest, [])
| addToInstance([], instance) = instance
(* This case can occur if we are producing an error message because of
a type-incorrect program so we just ignore it. *)
| addToInstance(generic :: geRest, inst as instance :: iRest) =
let
val order = compareLabels (generic, #name instance);
in
if order = 0 (* Equal *)
then instance :: addToInstance(geRest, iRest)
else if order < 0 (* generic name < instance name *)
then createNewField generic :: addToInstance(geRest, inst)
else (* This is another case that can occur with type-incorrect code. *)
instance :: addToInstance(generic :: geRest, iRest)
end
val newList = addToInstance(recordFields r, recList)
val newRecord =
LabelledType {recList = newList, fullList = fullList}
in
tvSetValue(tv, newRecord);
if recordIsFrozen r then newRecord else t
end
| OverloadSet _ => t (* Return the set of types. *)
| _ => newVal (* Return the type it is bound to *)
end
| eventual t (* not a type variable *) = t;
(* Apply a function to every element of a type. *)
fun foldType f =
let
fun foldT typ v =
let
val t = eventual typ;
val res = f t v; (* Process this entry. *)
in
case t of
TypeVar tv => foldT (tvValue tv) res
| TypeConstruction {args, ...} => (* Then process the arguments. *)
List.foldr (fn (t, v) => foldT t v) res args
| FunctionType {arg, result} => foldT arg (foldT result res)
| LabelledType {recList,...} =>
List.foldr (fn ({ typeof, ... }, v) => foldT typeof v) res recList
| BadType => res
| EmptyType => res
| OverloadSet _ => res
end
in
foldT
end;
(* Checks to see whether a labelled record is in the form of
a product i.e. 1=, 2= We only need this for prettyprinting.
Zero-length records (i.e. unit) and singleton records are not
considered as tuples. *)
fun isProductType(LabelledType(r as {recList=recList as _::_::_, ...})) =
let
fun isRec [] _ = true
| isRec ({name, ...} :: l) n =
name = Int.toString n andalso isRec l (n+1)
in
recordIsFrozen r andalso isRec recList 1
end
| isProductType _ = false;
(* Test to see is a type constructor is in an overload set. *)
fun isInSet(tcons: typeConstrs, (H::T): typeConstrs list) =
sameTypeId (tcIdentifier tcons, tcIdentifier H) orelse isInSet(tcons, T)
| isInSet(_, []: typeConstrs list) = false
(* Returns the preferred overload if there is one. *)
fun preferredOverload typeset =
if isInSet(intConstr, typeset)
then SOME intConstr
else if isInSet(realConstr, typeset)
then SOME realConstr
else if isInSet(wordConstr, typeset)
then SOME wordConstr
else if isInSet(charConstr, typeset)
then SOME charConstr
else if isInSet(stringConstr, typeset)
then SOME stringConstr
else NONE
fun equalTypeIds(x, y) =
let
(* True if two types are equal. *)
fun equalTypes (TypeConstruction{constr=xVal, args=xArgs, ...},
TypeConstruction{constr=yVal, args=yArgs, ...}) =
equalTypeIds(tcIdentifier xVal, tcIdentifier yVal)
andalso equalTypeLists (xArgs, yArgs)
| equalTypes (FunctionType x, FunctionType y) =
equalTypes (#arg x, #arg y) andalso
equalTypes (#result x, #result y)
| equalTypes (LabelledType x, LabelledType y) =
recordIsFrozen x andalso recordIsFrozen y andalso
equalRecordLists (#recList x, #recList y)
| equalTypes (TypeVar x, TypeVar y) = sameTv (x, y)
| equalTypes (EmptyType, EmptyType) = true
| equalTypes _ = false
and equalTypeLists ([], []) = true
| equalTypeLists (x::xs, y::ys) =
equalTypes(x, y) andalso equalTypeLists (xs, ys)
| equalTypeLists _ = false
and equalRecordLists ([], []) = true
| equalRecordLists (x::xs, y::ys) =
#name x = #name y andalso
equalTypes(#typeof x, #typeof y) andalso equalRecordLists (xs, ys)
| equalRecordLists _ = false
in
case (x, y) of
(TypeId{idKind=TypeFn(_, xEquiv), ...}, TypeId{idKind=TypeFn(_, yEquiv), ...}) =>
equalTypes(xEquiv, yEquiv)
| _ => sameTypeId(x, y)
end
(* See if the types are the same. This is a bit of a fudge, but saves carrying
around a flag saying whether the structures were copied. This is only an
optimisation. If the values are different it will not go wrong. *)
val identical : types * types -> bool = PolyML.pointerEq
and identicalConstr : typeConstrs * typeConstrs -> bool = PolyML.pointerEq
and identicalList : 'a list * 'a list -> bool = PolyML.pointerEq
(* Copy a type, avoiding copying type structures unnecessarily.
Used to make new type variables for all distinct type variables when
generalising polymorphic functions, and to make new type stamps for
type constructors when generalising signatures. *)
fun copyType (at, copyTypeVar, copyTypeConstr) =
let
fun copyList [] = []
| copyList (l as (h :: t)) =
let
val h' = copyType (h, copyTypeVar, copyTypeConstr);
val t' = copyList t;
in
if identical (h', h) andalso identicalList (t', t)
then l
else h' :: t'
end (* copyList *);
fun copyRecordList [] = []
| copyRecordList (l as ({name, typeof} :: t)) =
let
val typeof' = copyType (typeof, copyTypeVar, copyTypeConstr);
val t' = copyRecordList t;
in
if identical (typeof', typeof) andalso identicalList (t', t)
then l
else {name=name, typeof=typeof'} :: t'
end (* copyList *);
val atyp = eventual at;
in
case atyp of
TypeVar _ => (* Unbound type variable, flexible record or overloading. *)
copyTypeVar atyp
| TypeConstruction {constr, args, locations, ...} =>
let
val copiedArgs = copyList args;
val copiedConstr = copyTypeConstr constr;
(* Use the name from the copied constructor. This will normally
be the same as the original EXCEPT in the case where we are
using copyType to generate copies of the value constructors of
replicated datatypes. *)
val copiedName = tcName copiedConstr
in
if identicalList (copiedArgs, args) andalso
identicalConstr (copiedConstr, constr)
then atyp
else (* Must copy it. *)
mkTypeConstruction (copiedName, copiedConstr, copiedArgs, locations)
end
| FunctionType {arg, result} =>
let
val copiedArg = copyType (arg, copyTypeVar, copyTypeConstr);
val copiedRes = copyType (result, copyTypeVar, copyTypeConstr);
in
if identical (copiedArg, arg) andalso
identical (copiedRes, result)
then atyp
else FunctionType {arg = copiedArg, result = copiedRes}
end
| LabelledType {recList, fullList} =>
(* Rigid labelled records only. Flexible ones are treated as type vars. *)
let
val copiedList = copyRecordList recList
in
if identicalList (copiedList, recList)
then atyp
else LabelledType {recList = copiedList, fullList = fullList}
end
| EmptyType =>
EmptyType
| BadType =>
BadType
| OverloadSet _ =>
raise InternalError "copyType: OverloadSet found"
end (* copyType *);
(* Copy a type constructor if it is Bound and in the required range. If this refers to a type
function copies that as well. Does not copy value constructors. *)
fun copyTypeConstrWithCache (tcon, typeMap, _, mungeName, cache) =
case tcIdentifier tcon of
TypeId{idKind = TypeFn(args, equiv), description, access, ...} =>
let
val copiedEquiv =
copyType(equiv, fn x => x,
fn tcon =>
copyTypeConstrWithCache (tcon, typeMap, fn x => x, mungeName, cache))
in
if identical (equiv, copiedEquiv)
then tcon (* Type is identical and we don't want to change the name. *)
else (* How do we find a type function? *)
makeTypeConstructor (mungeName(tcName tcon),
TypeId {
access = access, description = description, idKind = TypeFn(args, copiedEquiv)},
tcLocations tcon)
end
| id =>
(
case typeMap id of
NONE =>
(
(*print(concat[tcName tcon, " not copied\n"]);*)
tcon (* No change *)
)
| SOME newId =>
let
val name = #second(splitString (tcName tcon))
(* We must only match here if they're really the same. *)
fun cacheMatch tc =
equalTypeIds(tcIdentifier tc, newId)
andalso #second(splitString(tcName tc)) = name
in
case List.find cacheMatch cache of
SOME tc =>
(
(*print(concat[tcName tcon, " copied as ", tcName tc, "\n"]);*)
tc (* Use the entry from the cache. *)
)
| NONE =>
(* Either a hidden identifier or alternatively this can happen as part of
the matching process.
When matching a structure to a signature we first match up the type
constructors then copy the type of each value replacing bound type IDs
with the actual IDs as part of the checking process.
We will return SOME newId but we don't have a
cache so return NONE for List.find. *)
let
val newName = mungeName(tcName tcon)
in
(*print(concat[tcName tcon, " not cached\n"]);*)
makeTypeConstructor(newName, newId, tcLocations tcon)
end
end
)
(* Exported version. *)
fun copyTypeConstr (tcon, typeMap, copyTypeVar, mungeName) =
copyTypeConstrWithCache(tcon, typeMap, copyTypeVar, mungeName, [])
(* Compose typeID maps. If the first map returns a Bound id we apply the second otherwise
just return the result of the first. *)
fun composeMaps(m1, m2) n =
let
fun map2 (TypeId{idKind=Bound{ offset, ...}, ...}) = m2 offset
| map2 (id as TypeId{idKind=Free _, ...}) = id
| map2 (TypeId{idKind=TypeFn(args, equiv), access, description, ...}) =
let
fun copyId(TypeId{idKind=Free _, ...}) = NONE
| copyId id = SOME(map2 id)
(* If it's a type function e.g. this was a "where type" we have to apply the
map to any type identifiers in the type. *)
val copiedEquiv =
copyType(equiv, fn x => x,
fn tcon => copyTypeConstr (tcon, copyId, fn x => x, fn y => y))
in
TypeId{idKind = TypeFn(args, copiedEquiv), access=access, description=description}
end
in
map2(m1 n)
end
(* Basic procedure to print a type structure. *)
type printTypeEnv =
{ lookupType: string -> (typeConstrSet * (int->typeId) option) option,
lookupStruct: string -> (structVals * (int->typeId) option) option}
val emptyTypeEnv = { lookupType = fn _ => NONE, lookupStruct = fn _ => NONE }
(* Test whether two type constructors are the same after mapping.
This is used to try to find the correct "path" to a type constructor
when printing. *)
fun eqTypeConstrs(xTypeCons, xMap, yTypeCons, yMap) =
let
fun id x = x
fun copyId (SOME mapTypeId) (TypeId{idKind=Bound{ offset, ...}, ...}) = SOME(mapTypeId offset)
| copyId _ _ = NONE
val mappedX = copyTypeConstr(xTypeCons, copyId xMap, id, id)
and mappedY = copyTypeConstr(yTypeCons, copyId yMap, id, id)
in
equalTypeIds(tcIdentifier mappedX, tcIdentifier mappedY)
end
(* prints a block of items *)
fun tDisp (t : types, depth : int, typeVarName : typeVarForm -> string, env: printTypeEnv,
sigMap: (int->typeId)option) : pretty =
let
(* prints a block of items *)
fun dispP (t : types, depth : int) : pretty =
let
(* prints a block of items *)
fun parenthesise depth t =
if depth <= 1
then PrettyString "..."
else
PrettyBlock (0, false, [],
[
PrettyString "(",
dispP (t, depth - 1),
PrettyString ")"
]);
(* prints a sequence of items *)
fun prettyList [] _ _: pretty list = []
| prettyList [H] depth separator =
let
val v = eventual H;
in
if separator = "*" andalso
(isFunctionType v orelse isProductType v)
then (* Must bracket the expression *) [parenthesise depth v]
else [dispP (v, depth)]
end
| prettyList (H :: T) depth separator =
if depth <= 0
then [PrettyString "..."]
else
let
val v = eventual H;
in
PrettyBlock (0, false, [],
[(if separator = "*" andalso
(isFunctionType v orelse isProductType v)
then (* Must bracket the expression *) parenthesise depth v
else dispP (v, depth)),
PrettyBreak (if separator = "," then 0 else 1, 0),
PrettyString separator
]) ::
PrettyBreak (1, 0) ::
prettyList T (depth - 1) separator
end;
val typ = eventual t; (* Find the real type structure *)
in
case typ of
TypeVar tyVar =>
let
val tyVal : types = tvValue tyVar;
in
case tyVal of
EmptyType => PrettyString (typeVarName tyVar)
| _ => dispP (tyVal, depth)
end
(* Type construction. *)
| TypeConstruction {args, name, constr=typeConstructor, ...} =>
let
val constrName = (* Use the type constructor name unless we're had an error. *)
if isUndefined typeConstructor then name else tcName typeConstructor
(* There are three possible cases: we may not find any type with the
name, we may look up the name and find the type or we may look up the
name and find a different type. *)
datatype isFound = NotFound | FoundMatch | FoundNotMatch
(* If we're printing a value that refers to a type constructor we
want to print the correct amount of any structure prefix for the
current context. *)
fun findType (_, []) = NotFound
| findType ({ lookupType, ... }, [typeName]) =
(
(* This must be the name of a type. *)
case lookupType typeName of
SOME (t, map) =>
if eqTypeConstrs(typeConstructor, sigMap, tsConstr t, map)
then FoundMatch else FoundNotMatch
| NONE => NotFound
)
| findType ({ lookupStruct, ... }, structName :: tail) =
(
(* This must be the name of a structure. Does it contain our type? *)
case lookupStruct structName of
SOME(Struct { signat, ...}, map) =>
let
val Signatures { tab, typeIdMap, ...} = signat
val Env { lookupType, lookupStruct, ...} = makeEnv tab
val newMap =
case map of
SOME map => composeMaps(typeIdMap, map)
| NONE => typeIdMap
fun subLookupType s =
case lookupType s of NONE => NONE | SOME t => SOME(t, SOME newMap)
fun subLookupStruct s =
case lookupStruct s of NONE => NONE | SOME t => SOME(t, SOME newMap)
in
findType({lookupType=subLookupType, lookupStruct=subLookupStruct}, tail)
end
| NONE => NotFound
)
(* See if we have this type in the current environment or in some structure in
the current environment. The name we have may be a full structure path. *)
fun nameToList ("", l) = (l, NotFound) (* Not there. *)
| nameToList (s, l) =
let
val { first, second } = splitString s
val currentList = second :: l
in
case findType(env, currentList) of
FoundMatch => (currentList, FoundMatch)
| FoundNotMatch =>
(
case nameToList(first, currentList) of
result as (_, FoundMatch) => result
| (l, _) => (l, FoundNotMatch)
)
| NotFound => nameToList(first, currentList)
end
(* Try the type constructor name first. This is usually accurate. If not
fall back to the type identifier. This may be needed in rarer cases. *)
val names =
case nameToList(constrName, []) of
(names, FoundMatch) => names (* Found the type constructor name. *)
| (names, f) =>
let
(* Try the type identifier name. *)
val TypeId { description = { name=idName, ...}, ...} =
case (sigMap, tcIdentifier typeConstructor) of
(SOME map, TypeId{idKind=Bound{offset, ...}, ...}) => map offset
| (_, id) => id
(* Only add "?" if we actually found a type with the required
name but it wasn't the right one. This allows us to print a
sensible result where the type has been shadowed but doesn't
affect situations such as where we create a unique type name
for a free type variable. *)
fun addQuery n =
case f of FoundNotMatch => "?" :: n | _ => n
in
if idName = "" then addQuery names
else
case nameToList(idName, []) of
(idNames, FoundMatch) => idNames
| (_, _) => addQuery names (* Print it as "?.t". This isn't ideal but will help in
situations where we have redefined "t". *)
end
val newName = String.concatWith "." names
(* Get the declaration position for the type constructor. *)
val constrContext =
if isUndefined typeConstructor then []
else
(
case List.find(fn DeclaredAt _ => true | _ => false) (tcLocations typeConstructor) of
SOME(DeclaredAt loc) => [ContextLocation loc]
| _ => []
)
val constructorEntry =
PrettyBlock(0, false, constrContext, [PrettyString newName(*constrName*)])
in
case args of
[] => constructorEntry
| args as hd :: tl =>
let
val argVal = eventual hd;
in
PrettyBlock (0, false, [],
[
(* If we have just a single argument and it's just a type constructor
or a construction we don't need to parenthesise it. *)
if null tl andalso not (isProductType argVal orelse isFunctionType argVal)
then dispP (argVal, depth - 1)
else if depth <= 1
then PrettyString "..."
else PrettyBlock(0, false, [],
[PrettyString "(", PrettyBreak (0, 0)]
@ prettyList args (depth - 1) ","
@ [PrettyBreak (0, 0), PrettyString ")"]
),
PrettyBreak(1, 0),
constructorEntry (* The constructor. *)
])
end
end
| FunctionType {arg, result} =>
if depth <= 0
then PrettyString "..."
else (* print out in infix notation *)
let
val evArg = eventual arg;
in
PrettyBlock (0, false, [],
[
(* If the argument is a function it must be printed as (a-> b)->.. *)
if isFunctionType evArg
then parenthesise depth evArg
else dispP (evArg, depth - 1),
PrettyBreak(1, 2),
PrettyString "->",
PrettyBreak (1, 2),
dispP (result, depth - 1)
])
end
| LabelledType (r as {recList, ...}) =>
if depth <= 0
then PrettyString "..."
else if isProductType typ
then (* Print as a product *)
PrettyBlock (0, false, [], (* Print them as t1 * t2 * t3 .... *)
prettyList (map (fn {typeof, ...} => typeof) recList) depth "*")
else (* Print as a record *)
let
(* The ordering on fields is designed to allow mixing of tuples and
records (e.g. #1). It puts shorter names before longer so that
#11 comes after #2 and before #100. For named records it does
not make for easy reading so we sort those alphabetically when
printing. *)
val sortedRecList =
Misc.quickSort(fn {name = a, ...} => fn {name = b, ...} => a <= b) recList
in
PrettyBlock (2, false, [],
PrettyString "{" ::
(let
fun pRec [] _ = []
| pRec ({name, typeof} :: T) depth =
if depth <= 0 then [PrettyString "..."]
else
[
PrettyBlock(0, false, [],
[
PrettyBlock(0, false, [],
[
PrettyString (name ^ ":"),
PrettyBreak(1, 0),
dispP(typeof, depth - 1)
] @
(if null T then [] else [PrettyBreak (0, 0), PrettyString ","])
)
]@
(if null T then [] else PrettyBreak (1, 0) :: pRec T (depth-1))
)
]
in
pRec sortedRecList (depth - 1)
end) @
[ PrettyString (if recordIsFrozen r then "}" else case recList of [] => "...}" | _ => ", ...}")]
)
end
| OverloadSet {typeset = []} => PrettyString "no type"
| OverloadSet {typeset = tconslist} =>
(* This typically arises when printing error messages in the second pass because
the third pass will select a single type e.g. int where possible. To
simplify the messages select a single type if possible. *)
(
case preferredOverload tconslist of
SOME tcons => dispP(mkTypeConstruction (tcName tcons, tcons,[], []), depth)
| NONE =>
(* Just print the type constructors separated by / *)
let
fun constrLocation tcons =
case List.find(fn DeclaredAt _ => true | _ => false) (tcLocations tcons) of
SOME(DeclaredAt loc) => [ContextLocation loc]
| _ => []
(* Type constructor with context. *)
fun tconsItem tcons =
PrettyBlock(0, false, constrLocation tcons, [PrettyString(tcName tcons)])
fun printTCcons [] = []
| printTCcons [tcons] = [tconsItem tcons]
| printTCcons (tcons::rest) =
tconsItem tcons :: PrettyBreak (0, 0) ::
PrettyString "/" :: printTCcons rest
in
PrettyBlock (0, false, [], printTCcons tconslist)
end
)
| EmptyType => PrettyString "no type"
| BadType => PrettyString "bad"
end (* dispP *)
in
dispP (t, depth)
end (* tDisp *);
(* Generate unique type-variable names. *)
fun varNameSequence () : typeVarForm -> string =
(* We need to ensure that every distinct type variable has a distinct name.
Each new type variable is given a name starting at "'a" and going on
through the alphabet. *)
let
datatype names = Names of {name: string, entry: typeVarForm}
val nameNum = ref ~1
val gNameList = ref [] (* List of names *)
in
(* If the type is already there return the name we have given it
otherwise make a new name and put it in the list. *)
fn var =>
case List.find (fn (Names {entry,...}) => sameTv (entry, var)) (!gNameList) of
NONE => (* Not on the list - make a new name *)
let
fun name num = (if num >= 26 then name (num div 26 - 1) else "")
^ String.str (Char.chr (num mod 26 + Char.ord #"a"))
val () = nameNum := !nameNum + 1
val n = (if tvEquality var then "''" else "'") ^ name(!nameNum)
(* Should explicit type variables be distinguished? *)
in
gNameList := Names{name=n, entry=var} :: !gNameList;
n
end
| SOME (Names {name,...}) => name
end (* varNameSequence *)
(* Create the type variables on the fly. *)
fun tcTypeVars tc =
List.tabulate(tcArity tc,
fn _ => makeTv{value=EmptyType, level=generalisable, nonunifiable=false,
equality=false, printable=false})
(* Print a type (as a block of items) *)
fun displayWithMap (t : types, depth : int, env, sigMap) =
tDisp (t, depth, varNameSequence (), env, sigMap)
and display (t : types, depth : int, env) =
tDisp (t, depth, varNameSequence (), env, NONE)
(* Print out zero, one or more type variables (unblocked) *)
fun printTypeVars([], _, _) = [] (* No type vars i.e. monotype *)
| printTypeVars([oneVar], depth, typeV) = (* Single type var. *)
[
tDisp (TypeVar oneVar, depth, typeV, emptyTypeEnv, NONE),
PrettyBreak (1, 0)
]
| printTypeVars(vars, depth, typeV) =
(* Must parenthesise them. *)
if depth <= 1 then [PrettyString "..."]
else
[
PrettyBlock(0, false, [],
PrettyString "(" ::
PrettyBreak(0, 0) ::
(let
fun pVars vars depth: pretty list =
if depth <= 0 then [PrettyString "..."]
else if null vars then []
else
[
tDisp (TypeVar(hd vars), depth, typeV, emptyTypeEnv, NONE),
PrettyBreak (0, 0)
] @
(if null (tl vars) then []
else PrettyString "," :: PrettyBreak (1, 0) :: pVars (tl vars) (depth - 1)
)
in
pVars vars depth
end) @ [PrettyString ")"]
),
PrettyBreak (1, 0)
]
(* Version used in parsetree. *)
fun displayTypeVariables (vars : typeVarForm list, depth : int) =
printTypeVars (vars, depth, varNameSequence ())
(* Parse tree for types. This is used to represent types in the source. *)
datatype typeParsetree =
ParseTypeConstruction of
{ name: string, args: typeParsetree list,
location: location, nameLoc: location, argLoc: location,
(* foundConstructor is set to the constructor when it has been
looked up. This allows us to get the location where it was
declared if we export the parse-tree. *)
foundConstructor: typeConstrs ref }
| ParseTypeProduct of
{ fields: typeParsetree list, location: location }
| ParseTypeFunction of
{ argType: typeParsetree, resultType: typeParsetree, location: location }
| ParseTypeLabelled of
{ fields: ((string * location) * typeParsetree * location) list,
frozen: bool, location: location }
| ParseTypeId of { types: typeVarForm, location: location }
| ParseTypeBad (* Place holder for errors. *)
fun typeFromTypeParse(
ParseTypeConstruction{ args, name, location, foundConstructor = ref constr, ...}) =
let
val argTypes = List.map typeFromTypeParse args
in
TypeConstruction {name = name, constr = constr,
args = argTypes, locations = [DeclaredAt location]}
end
| typeFromTypeParse(ParseTypeProduct{ fields, ...}) =
mkProductType(List.map typeFromTypeParse fields)
| typeFromTypeParse(ParseTypeFunction{ argType, resultType, ...}) =
mkFunctionType(typeFromTypeParse argType, typeFromTypeParse resultType)
| typeFromTypeParse(ParseTypeLabelled{ fields, frozen, ...}) =
let
fun makeField((name, _), t, _) = mkLabelEntry(name, typeFromTypeParse t)
in
mkLabelled(sortLabels(List.map makeField fields), frozen)
end
| typeFromTypeParse(ParseTypeId{ types, ...}) = TypeVar types
| typeFromTypeParse(ParseTypeBad) = BadType
fun makeParseTypeConstruction((constrName, nameLoc), (args, argLoc), location) =
ParseTypeConstruction{
name = constrName, nameLoc = nameLoc, args = args, argLoc = argLoc,
location = location, foundConstructor = ref undefConstr }
fun makeParseTypeProduct(recList, location) =
ParseTypeProduct{ fields = recList, location = location }
fun makeParseTypeFunction(arg, result, location) =
ParseTypeFunction{ argType = arg, resultType = result, location = location }
fun makeParseTypeLabelled(recList, frozen, location) =
ParseTypeLabelled{ fields = recList, frozen = frozen, location = location }
fun makeParseTypeId(types, location) =
ParseTypeId{ types = types, location = location }
fun unitTree location = ParseTypeLabelled{ fields = [], frozen = true, location = location }
(* Build an export tree from the parse tree. *)
fun typeExportTree(navigation, p: typeParsetree) =
let
val typeof = typeFromTypeParse p
(* Common properties for navigation and printing. *)
val commonProps =
PTprint(fn d => display(typeof, d, emptyTypeEnv)) ::
PTtype typeof ::
exportNavigationProps navigation
fun asParent () = typeExportTree(navigation, p)
in
case p of
ParseTypeConstruction{ location, nameLoc, args, argLoc, ...} =>
let
(* If the constructor has been bound return the declaration location.
We have to attach the declaration location in the right place if
this is a polytype e.g. if we have "int list" here we will have
the location for "list" which is the second item not the first. *)
val (name, decLoc) =
case typeof of
TypeConstruction { constr, name, ...} =>
if isUndefined constr
then (name, [])
else (name, mapLocationProps(tcLocations constr))
| _ => ("", []) (* Error? *)
val navNameAndArgs =
(* Separate cases for nullary, unary and higher type constructions. *)
case args of
[] => decLoc (* Singleton e.g. int *)
| [oneArg] =>
let (* Single arg e.g. int list. *)
(* Navigate between the type constructor and the argument.
Since the arguments come before the constructor we go there first. *)
fun getArg () =
typeExportTree({parent=SOME asParent, previous=NONE, next=SOME getName}, oneArg)
and getName () =
getStringAsTree({parent=SOME asParent, previous=SOME getArg, next=NONE},
name, nameLoc, decLoc)
in
[PTfirstChild getArg]
end
| args =>
let (* Multiple arguments e.g. (int, string) pair *)
fun getArgs () =
(argLoc,
exportList(typeExportTree, SOME getArgs) args @
exportNavigationProps{parent=SOME asParent, previous=NONE, next=SOME getName})
and getName () =
getStringAsTree({parent=SOME asParent, previous=SOME getArgs, next=NONE},
name, nameLoc, decLoc)
in
[PTfirstChild getArgs]
end
in
(location, navNameAndArgs @ commonProps)
end
| ParseTypeProduct{ location, fields, ...} =>
(location, exportList(typeExportTree, SOME asParent) fields @ commonProps)
| ParseTypeFunction{ location, argType, resultType, ...} =>
(location, exportList(typeExportTree, SOME asParent) [argType, resultType] @ commonProps)
| ParseTypeLabelled{ location, fields, ...} =>
let
fun exportField(navigation, label as ((name, nameLoc), t, fullLoc)) =
let
(* The first position is the label, the second the type *)
fun asParent () = exportField (navigation, label)
fun getLab () =
getStringAsTree({parent=SOME asParent, next=SOME getType, previous=NONE},
name, nameLoc, [PTtype(typeFromTypeParse t)])
and getType () =
typeExportTree({parent=SOME asParent, previous=SOME getLab, next=NONE}, t)
in
(fullLoc, PTfirstChild getLab :: exportNavigationProps navigation)
end
in
(location, exportList(exportField, SOME asParent) fields @ commonProps)
end
| ParseTypeId{ location, ...} =>
(location, commonProps)
| ParseTypeBad =>
(nullLocation, commonProps)
end
fun displayTypeParse(types, depth, env) = display(typeFromTypeParse types, depth, env)
(* Associates type constructors from the environment with type identifiers
(NOT type variables) *)
fun assignTypes (tp : typeParsetree, lookupType : string * location -> typeConstrSet, lex : lexan) =
let
fun typeFromTypeParse(ParseTypeConstruction{ args, name, location, foundConstructor, ...}) =
let
(* Assign constructor, then the parameters. *)
val TypeConstrSet(constructor, _) = lookupType (name, location)
val () =
(* Check that it has the correct arity. *)
if not (isUndefined constructor)
then
let
val arity : int = tcArity constructor;
val num : int = length args;
in
if arity <> num
then (* Give an error message *)
errorMessage (lex, location,
String.concat["Type constructor (", tcName constructor,
") requires ", Int.toString arity, " type(s) not ",
Int.toString num])
else foundConstructor := constructor
end
else ()
val argTypes = List.map typeFromTypeParse args
in
TypeConstruction {name = name, constr = constructor,
args = argTypes, locations = [DeclaredAt location]}
end
| typeFromTypeParse(ParseTypeProduct{ fields, ...}) =
mkProductType(List.map typeFromTypeParse fields)
| typeFromTypeParse(ParseTypeFunction{ argType, resultType, ...}) =
mkFunctionType(typeFromTypeParse argType, typeFromTypeParse resultType)
| typeFromTypeParse(ParseTypeLabelled{ fields, frozen, ...}) =
let
fun makeField((name, _), t, _) = mkLabelEntry(name, typeFromTypeParse t)
in
mkLabelled(sortLabels(List.map makeField fields), frozen)
end
| typeFromTypeParse(ParseTypeId{ types, ...}) = TypeVar types
| typeFromTypeParse(ParseTypeBad) = BadType
in
typeFromTypeParse tp
end;
(* When we have finished processing a list of patterns we need to check
that the record is now frozen. *)
fun recordNotFrozen (TypeVar t) : bool = (* Follow the chain *) recordNotFrozen (tvValue t)
| recordNotFrozen (LabelledType r) = not(recordIsFrozen r)
| recordNotFrozen _ = false (* record or type alias *);
datatype generalMatch = Matched of {old: typeVarForm, new: types};
fun generaliseTypes (atyp : types, checkTv: typeVarForm->types option) =
let
val madeList = ref [] (* List of tyVars. *);
fun tvs atyp =
let
val tyVar = typesTypeVar atyp;
in
case List.find(fn Matched{old, ...} => sameTv (old, tyVar)) (!madeList) of
SOME(Matched{new, ...}) => new
| NONE =>
(
case checkTv tyVar of
SOME found => found
| NONE =>
let (* Not on the list - make a new name *)
(* Make a unifiable type variable even if the original
is nonunifiable. *)
val n : types =
mkTypeVar (generalisable, tvEquality tyVar, false, tvPrintity tyVar)
in
(* Set the new variable to have the same value as the
existing. That is only really needed if we have an
overload set. *)
tvSetValue (typesTypeVar n, tvValue tyVar);
madeList := Matched {old = tyVar, new = n} :: !madeList;
n
end
)
end
fun copyTypeVar (atyp as TypeVar tyVar) =
if tvLevel tyVar <> generalisable
then atyp (* Not generalisable. *)
else (* Unbound, overload set or flexible record *)
let
val newTv = tvs atyp
in
(* If we have a type variable pointing to a flexible record we have to
copy the type pointed at by the variable. *)
case tvValue tyVar of
valu as LabelledType _ =>
tvSetValue (typesTypeVar newTv, copyType (valu, copyTypeVar, fn t => t))
| _ => ();
newTv
end
| copyTypeVar atyp = atyp
val copied =
(* Only process type variables. Return type constructors unchanged. *)
copyType (atyp, copyTypeVar, fn t => t (*copyTCons*))
in
(copied, ! madeList)
end (* generaliseTypes *);
(* Exported wrapper for generaliseTypes. *)
fun generalise atyp =
let
val (t, newMatch) = generaliseTypes (atyp, fn _ => NONE)
fun makeResult(Matched{new, old}) =
{value=new, equality=tvEquality old, printity=tvPrintity old}
in
(t, List.map makeResult newMatch)
end;
(* Return the original polymorphic type variables. *)
fun getPolyTypeVars(atyp, map) =
let
val (_, newMatch) = generaliseTypes (atyp, map)
in
List.map (fn(Matched{old, ...}) => old) newMatch
end;
fun generaliseWithMap(atyp, map) =
let
val (t, newMatch) = generaliseTypes (atyp, map)
fun makeResult(Matched{new, old}) =
{value=new, equality=tvEquality old, printity=tvPrintity old}
in
(t, List.map makeResult newMatch)
end
(* Find the argument type which gives this result when the constructor
is applied. If we have, for example, a value of type int list and
we have discovered that this is a "::" node we have to work back by
comparing the type of "::" ('a * 'a list -> 'a list) to find the
argument of the constructor (int * int list) and hence how to print it.
(Actually "list" is treated specially). *)
fun constructorResult (FunctionType{arg, result=TypeConstruction{args, ...}}, typeArgs) =
let
val matches = ListPair.zip(List.map typesTypeVar args, typeArgs)
fun getArg tv =
case List.find(fn (atv, _) => sameTv(tv, atv)) matches of
SOME (_, ty) => SOME ty
| NONE => NONE
in
#1 (generaliseTypes(arg, getArg))
end
| constructorResult _ = raise InternalError "Not a function type"
(* If we have a type construction which is an alias for another type
we construct the alias by first instantiating all the type variables
and then copying the type. *)
fun makeEquivalent (atyp, args) =
case tcIdentifier atyp of
TypeId{idKind=TypeFn(typeArgs, typeResult), ...} =>
let
val matches = ListPair.zip(typeArgs, args)
fun getArg tv =
case List.find(fn (atv, _) => sameTv(tv, atv)) matches of
SOME (_, ty) => SOME ty
| NONE => NONE
in
#1 (generaliseTypes(typeResult, getArg))
end
| TypeId _ => raise InternalError "makeEquivalent: Not a type function"
(* Look for the occurrence of locally declared datatypes in the type of a value. *)
fun checkForEscapingDatatypes(ty: types, errorFn: string->unit) : unit =
let
fun checkTypes (typ: types) (ok: bool) : bool =
case typ of
TypeConstruction {constr, args, ...} =>
if tcIsAbbreviation constr
then (* May be an alias for a type that contains a local datatype. *)
foldType checkTypes (makeEquivalent (constr, args)) ok
else if ok
then
(
case tcIdentifier constr of
TypeId{access=Local{addr, ...}, ...} =>
if !addr < 0
then
(
errorFn("Type of expression contains local datatype (" ^ tcName constr
^") outside its definition.");
false
)
else true
| _ => true (* Could we have a "selected" entry with a local datatype? *)
)
else false
| _ => ok
in
foldType checkTypes ty true;
()
end
(* This 3-valued logic is used because in a few cases we may not be sure
if equality testing is allowed. If we have 2 mutually recursive datatypes
t = x of s | ... and s = z of t we would first examine "t", find that
it uses "s", look at "s", find that refers back to "t". To avoid
infinite recursion we return the result that equality "maybe"
allowed for "t" and hence for "s". However we may find that the
other constructors for "t" do not allow equality and so equality
will not be allowed for "s" either. *)
datatype tri = Yes (* 3-valued logic *)
| No
| Maybe;
(* Returns a flag saying if equality testing is allowed for values of
the given type. "equality" is used both to generate the code for
a specific call of equality e.g. (a, b, c) = f(x), and to generate
the equality operation for a type when it is declared. In the latter
case type variables may be parameters which will be filled in later e.g.
type 'a list = nil | op :: of ('a * 'a list). "search"
is a function which looks up constructors in mutually recursive type
declarations. "lookupTypeVar" deals with type variables. If they
represent parameters to a type declaration equality
checking will be allowed. If we are unifying this type to an equality
type variable they will be unified to new equality type variables.
Otherwise equality is not allowed. *)
fun equality (ty, search, lookupTypeVar) : tri =
let
(* Can't use foldT because it is not monotonic
(equality on ref 'a is allowed). *)
(* Returns Yes only if equality testing is allowed for all types
in the list. *)
fun eqForList ([], soFar) = soFar
| eqForList (x::xs, soFar) =
case equality (x, search, lookupTypeVar) of
No => No
| Maybe => eqForList (xs, Maybe)
| Yes => eqForList (xs, soFar);
in
case eventual ty of
TypeVar tyVar => (* The type variable may point to a flexible record or
an overload set or it may be the end of the chain.
If this is a labelled record we have to make sure that
any fields we add also admit equality.
lookupTypeVar makes the type variable an equality type
so that any new fields are checked for equality but
we also have to call "equality" to check the existing
fields. *)
if tvEquality tyVar then Yes
else
(
case tvValue tyVar of
lab as LabelledType _ =>
(
case lookupTypeVar tyVar of
No => No
| _ => equality (lab, search, lookupTypeVar)
)
| _ => lookupTypeVar tyVar
)
| FunctionType {...} => No (* No equality on function types! *)
| TypeConstruction {constr, args, ...} =>
if isUndefined constr
then No
else if tcIsAbbreviation constr
then (* May be an alias for a type that allows equality. *)
equality (makeEquivalent (constr, args), search, lookupTypeVar)
(* ref - Equality is permitted on refs of all types *)
(* The Definition of Standard ML says that ref is the ONLY type
constructor which is treated in this way. The standard basis
library says that other mutable types such as array should
also work this way. *)
else if isPointerEqType(tcIdentifier constr)
then Yes
(* Others apart from ref and real *)
else if tcEquality constr (* Equality allowed. *)
then eqForList (args, Yes) (* Must be allowed for all the args *)
else
let (* Not an alias. - Look it up. *)
val s = search (tcIdentifier constr);
in
if s = No then No else eqForList (args, s)
end (* TypeConstruction *)
| LabelledType {recList, ...} => (* Record equality if all subtypes are (ignore frozen!) *)
(* TODO: Avoid copying the list? *)
eqForList (map (fn{typeof, ...}=>typeof) recList, Yes)
| OverloadSet _ =>
(* This should not happen because all overload sets should be pointed
to by type variables and so should be handled in the TypeVar case. *)
raise InternalError "equality - Overloadset found"
| BadType => No
| EmptyType => No (* shouldn't occur *)
end
(* When a datatype is declared we test to see if equality is allowed. The
types are mutually recursive so value constructors of one type may
take arguments involving values of any of the others. *)
fun computeDatatypeEqualities(types: typeConstrSet list, boundIdEq) =
let
datatype state =
Processed of tri (* Already processed or processing. *)
| NotSeen of typeConstrSet list (* Value is list of constrs. *);
(* This table tells us, for each type constructor, whether it definitely
admits equality, definitely does not or whether we have yet to look
at it. *)
fun isProcessed (Processed _) = true | isProcessed _ = false;
fun stateProcessed (Processed x) = x | stateProcessed _ = raise Match;
fun stateNotSeen (NotSeen x) = x | stateNotSeen _ = raise Match;
val {enter:typeId * state -> unit,lookup} = mapTable sameTypeId;
(* Look at each of the constructors in the list. Equality testing is
only allowed if it is allowed for each of the alternatives. *)
fun constrEq _ [] soFar = soFar (* end of list - all o.k. *)
| constrEq constructor (h :: t) soFar =
(* The constructor may be a constant e.g.
datatype 'a list = nil | ... or a function e.g.
datatype 'a list = ... cons of 'a * 'a list. *)
if not (isFunctionType (valTypeOf h)) (* Constant *)
then constrEq constructor t soFar (* Go on to the next. *)
else
let
(* Function - look at the argument type. *)
(* Equality is allowed for any type-variable. The only type variables
allowed are parameters to the datatype so if we have a type variable
then equality is allowed for this datatype. *)
val eq =
equality (#arg (typesFunctionType (valTypeOf h)),
genEquality, fn _ => Yes);
in
if eq = No
then (* Not allowed. *) No
else (* O.k. - go on to the next. *)
constrEq constructor t (if eq = Maybe then Maybe else soFar)
end (* constrEq *)
(* This procedure checks to see if equality is allowed for this datatype. *)
and genEquality constructorId =
let
(* Look it up to see if we have already done it. It may fail because
we may have constructors that do not admit equality. *)
val thisState =
case (lookup constructorId, constructorId) of
(SOME inList, _) => inList
| (NONE, TypeId{idKind = Bound{offset, ...}, ...}) =>
Processed(if boundIdEq offset then Yes else No)
| _ => Processed No
in
if isProcessed thisState
then stateProcessed thisState (* Have either done it already or are currently doing it. *)
else (* notSeen - look at it now. *)
let
(* Equality is allowed for this datatype only if all of them admit it.
There are various other alternatives but this is what the standard says.
If the "name" is rigid (free) we must not grant equality if it is not
already there although that is not an error. *)
(* Set the state to "Maybe". This prevents infinite recursion. *)
val () = enter (constructorId, Processed Maybe);
val eq =
List.foldl
(fn (cons, t) =>
if t = No
then No
else constrEq cons (tsConstructors cons) t)
Yes
(stateNotSeen thisState);
in
(* Set the state we have found if it is "yes" or "no". If it is
maybe we have a recursive reference which appears to admit
equality, but may not. E.g. if we have
datatype t = A of s | B of int->int and s = C of t
if we start processing "t" we will go on to "s" and do that
before returning to "t". It is only later we find that "t" does
not admit equality. If we get "Maybe" as the final result when
all the recursion has been unwound we can set the result to
"yes", but any intermediate "Maybe"s have to be done again. *)
enter (constructorId, if eq = Maybe then thisState else Processed eq);
eq
end
end (* genEquality *);
in
(* If we have an eqtype we set it to true, otherwise we set all of them
to "notSeen" with the constructor as value. *)
List.app
(fn dec as TypeConstrSet(decCons, _) =>
let (* If we have two datatypes which share we may already have
one in the table. We have to link them together. *)
val tclist =
case lookup (tcIdentifier decCons) of
NONE => [dec]
| SOME l =>
let
val others = stateNotSeen l
val newList = dec :: others;
in
(* If any of these are already equality types (i.e. share with an eqtype)
then they all must be. *)
if tcEquality decCons orelse tcEquality (tsConstr(hd others))
then List.app (fn d => tcSetEquality (tsConstr d, true)) newList
else ();
newList
end
in
enter (tcIdentifier decCons, NotSeen tclist)
end) types;
(* Apply genEquality to each element of the list. *)
List.app
(fn TypeConstrSet(constructor, _) =>
let
val constructorId = tcIdentifier constructor;
val eqForCons = genEquality constructorId;
in
(* If the result is "Maybe" it involves a recursive reference, but
the rest of the type allows equality. The type admits equality. *)
if eqForCons = No
then () (* Equality not allowed *)
else
( (* Turn on equality. *)
enter (constructorId, Processed Yes);
tcSetEquality (constructor, true)
)
end) types
end (* computeDatatypeEqualities *);
datatype matchResult =
SimpleError of types * types * string
| TypeConstructorError of types * types * typeConstrs * typeConstrs
(* Type matching algorithm for both unification and signature matching. *)
(* The mapping has now been moved out of here. Instead when signature matching the
target signature is copied before this is called which means that this
process is now symmetric. There may be some redundant tests left in here. *)
fun unifyTypes(Atype : types, Btype : types) : matchResult option =
let
(* Get the result in here. This isn't very ML-like but it greatly
simplifies converting the code. *)
val matchResult: matchResult option ref = ref NONE
fun matchError error = (* Only report one error. *)
case matchResult of ref (SOME _) => () | r => r := SOME error
fun cantMatch(alpha, beta, text) = matchError(SimpleError(alpha, beta, text))
fun match (Atype : types, Btype : types) : unit =
let (* Check two records/tuples and return the combined type. *)
fun unifyRecords (rA as {recList=typAlist, fullList = gA},
rB as {recList=typBlist, fullList = gB},
typA : types, typB : types) : types =
let
val typAFrozen = recordIsFrozen rA
and typBFrozen = recordIsFrozen rB
fun matchLabelled ([], []) = []
(* Something left in bList - this is fine if typeA is not frozen.
e.g. (a: s, b: t) will match (a: s, ...) but not just (a:s). *)
| matchLabelled ([], bList as {name=bName, ...} :: _) =
(
if typAFrozen
then cantMatch (typA, typB, "(Field " ^ bName ^ " missing)")
else ();
bList (* return the remainder of the list *)
)
| matchLabelled (aList as {name=aName, ...} :: _, []) = (* Something left in bList *)
(
if typBFrozen
then cantMatch (typA, typB, "(Field " ^ aName ^ " missing)")
else ();
aList (* the rest of aList *)
)
| matchLabelled (aList as ((aVal as {name=aName,typeof=aType})::aRest),
bList as ((bVal as {name=bName,typeof=bType})::bRest)) =
(* both not nil - look at the names. *)
let
val order = compareLabels (aName, bName);
in
if order = 0 (* equal *)
then (* same name - must be unifiable types *)
( (* The result is (either) one of these with the rest of the list. *)
match (aType, bType);
aVal :: matchLabelled (aRest, bRest)
)
else if order < 0 (* aName < bName *)
then (* The entries in each list are in order so this means that this
entry is not in bList. If the typeB is frozen this is an error. *)
if typBFrozen (* Continue with the entry removed. *)
then (cantMatch (typA, typB, "(Field " ^ aName ^ " missing)"); aList)
else aVal :: matchLabelled (aRest, bList)
else (* aName > bName *)
if typAFrozen
then (cantMatch (typA, typB, "(Field " ^ bName ^ " missing)"); bList)
else bVal :: matchLabelled (aList, bRest)
end (* not nil *);
(* Return the combined list. Only actually used if both are flexible. *)
val result =
if typAFrozen andalso typBFrozen andalso List.length typAlist <> List.length typBlist
then (* Don't attempt to unify the fields if we have the wrong number of items.
If we've added or removed an item from a tuple e.g. a function with
multiple arguments, it's more useful to know this than to get unification
errors on fields that don't match. *)
(cantMatch (typA, typB, "(Different number of fields)"); [])
else matchLabelled (typAlist, typBlist)
fun lastFlex(FlexibleList(ref(r as FlexibleList _))) = lastFlex r
| lastFlex(FlexibleList r) = SOME r
| lastFlex(FieldList _) = NONE
in
if typAFrozen
then (if typBFrozen then () else valOf(lastFlex gB) := gA; typA)
else if typBFrozen
then (valOf(lastFlex gA) := gB; typB)
else
let
(* We may have these linked already in which case we shouldn't do anything. *)
val lastA = valOf(lastFlex gA) and lastB = valOf(lastFlex gB)
in
if lastA = lastB
then ()
else
let
val genericFields = FieldList(map #name result, false)
in
(* If these are both flexible we have link all the generics together
so that if we freeze any one of them they all get frozen. *)
lastA := genericFields;
lastB := FlexibleList lastA
end;
LabelledType {recList = result, fullList = gA}
end
end (* unifyRecords *);
(* Sets a type variable to a value. - Checks that the type variable
we are assigning does not occur in the expression we are about to
assign to it. Such cases can occur if we have infinitely-typed
expressions such as fun a. a::a where a has type 'a list list ...
Also propagates the level information of the type variable.
Now also deals with flexible records. *)
fun assign (var, t) =
let
(* Mapped over the type to be assigned. *)
(* Returns "false" if it is safe to make the assignment. Sorts out
imperative type variables and propagates level information.
N.B. It does not propagate equality status. The reason is that
if we are unifying ''a with '_b ref, the '_b does NOT become
an equality type var. In all other cases it would. *)
fun occursCheckFails _ true = true
| occursCheckFails ty false =
let
val t = eventual ty
in
case t of
TypeVar tvar =>
let
(* The level is the minimum of the two, and if we are unifying with
an equality type variable we must make this into one. *)
val minLev = Int.min (tvLevel var, tvLevel tvar);
in
if tvLevel tvar <> minLev
then
(* If it is nonunifiable we cannot make its level larger. *)
if tvNonUnifiable tvar
then cantMatch (Atype, Btype, "(Type variable is free in surrounding scope)")
else
let
(* Must make a new type var with the right properties *)
(* This type variable may be a flexible record, in which
case we have to save the record and put it on the new
type variable. foldType will apply checkForLoops to the
record. *)
val newTv = mkTypeVar (minLev, tvEquality tvar, false, tvPrintity tvar)
in
tvSetValue (typesTypeVar newTv, tvValue tvar);
tvSetValue (tvar, newTv)
end
else ();
sameTv (tvar, var) (* Safe if vars are different. *)
end
| TypeConstruction {args, constr, ...} =>
(* If this is a type abbreviation we have to expand this before processing
any arguments. We mustn't process arguments that are not actually used. *)
if tcIsAbbreviation constr
then occursCheckFails(makeEquivalent (constr, args)) false
else List.foldr (fn (t, v) => occursCheckFails t v) false args
| FunctionType {arg, result} =>
occursCheckFails arg false orelse occursCheckFails result false
| LabelledType {recList,...} =>
List.foldr (fn ({ typeof, ... }, v) => occursCheckFails typeof v) false recList
| _ => false
end
val varVal = tvValue var (* Current value of the variable to be set. *)
local
(* We need to process any type abbreviations before applying the occurs check.
The type we're assigning could boil down to the same type variable we're
trying to assign. This doesn't breach the occurs check. *)
fun followVarsAndTypeFunctions t =
case eventual t of
ev as TypeConstruction{constr, args, ...} =>
if tcIsAbbreviation constr
then followVarsAndTypeFunctions(makeEquivalent (constr, args))
else ev
| ev => ev
in
val finalType = followVarsAndTypeFunctions t
end
(* We may actually have the same type variable after any type abbreviations
have been followed. *)
val reallyTheSame =
case finalType of
TypeVar tv => sameTv (tv, var)
| _ => false
in (* start of "assign" *)
case varVal of
LabelledType _ =>
(* Flexible record. Check that the records are compatible. *)
match (varVal, t)
| OverloadSet _ =>
(* OverloadSet. Check that the sets match. This is only in the
case where t is something other than an overload set since
we remove the overload set from a variable when unifying two
sets. *)
match (varVal, t)
| _ => ();
if reallyTheSame
then () (* Don't apply the occurs check or check for non-unifiable. *)
(* If this type variable was put in explicitly then it can't be
assigned to something else. (We have already checked for the
type variables being the same). *)
else if tvNonUnifiable var
then cantMatch (Atype, Btype, "(Cannot unify with explicit type variable)")
else if occursCheckFails finalType false
then cantMatch (Atype, Btype, "(Type variable to be unified occurs in type)")
else let (* Occurs check succeeded. *)
fun canMkEqTv (tvar : typeVarForm) : tri =
(* Turn it into an equality type var. *)
if tvEquality tvar then Yes
(* If it is nonunifiable we cannot make it into an equality type var. *)
else if tvNonUnifiable tvar then No
else (* Must make a new type var with the right properties *)
let (* This type variable may be a flexible record or an overload set,
in which case we have to save the record and put it on the
new type variable.
We have to do both because we have to ensure that the existing
fields in the flexible record admit equality and ALSO that any
additional fields we may add by unification with other records
also admit equality. *)
val newTv = mkTypeVar (tvLevel tvar, true, false, tvPrintity tvar)
val oldValue = tvValue tvar
in
tvSetValue (tvar, newTv);
(* If this is an overloaded type we must remove any types that
don't admit equality. *)
case oldValue of
OverloadSet{typeset} =>
let
(* Remove any types which do not admit equality. *)
fun filter [] = []
| filter (h::t) =
if tcEquality h then h :: filter t else filter t
in
case filter typeset of
[] => No
| [constr] =>
( (* Turn a singleton into a type construction. *)
tvSetValue (typesTypeVar newTv,
mkTypeConstruction(tcName constr, constr, nil, []));
Yes
)
| newset =>
(
tvSetValue (typesTypeVar newTv, OverloadSet{typeset=newset});
Yes
)
end
| _ => (* Labelled record or unbound variable. *)
(
tvSetValue (typesTypeVar newTv, oldValue);
Yes
)
end;
in
(* If we are unifying a type with an equality type variable
we must ensure that equality is allowed for that type. This
will turn most type variables into equality type vars. *)
if tvEquality var andalso equality (t, fn _ => No, canMkEqTv) = No
then cantMatch (Atype, Btype, "(Requires equality type)")
(* TODO: This can result in an unhelpful message if var is bound
to a flexible record since there is no indication in the
printed type that the flexible record is an equality type.
It would be improved if we set the value to be EmptyType.
At least then the type variable would be printed which would
be an equality type.
--- Adding the "Requires equality type" should improve things. *)
else ();
(* Propagate the "printity" status. This is probably not complete
but doesn't matter too much since this is a Poly extension. *)
if tvPrintity var
then
let
fun makePrintity(TypeVar tv) _ =
(
if tvPrintity tv then ()
else case tvValue tv of
(* If it's an overload set we don't need to do anything. This will
eventually be a monotype. *)
OverloadSet _ => ()
| oldValue =>
let (* Labelled record or unbound variable. *)
val newTv = mkTypeVar (tvLevel tv, tvEquality tv, tvNonUnifiable tv, true)
in
tvSetValue(tv, newTv);
(* Put this on the chain if it's a labelled record. *)
tvSetValue (typesTypeVar newTv, oldValue)
end
)
| makePrintity _ _ = ()
in
foldType makePrintity t ()
end
else ();
(* Actually make the assignment. It doesn't matter if var is
a labelled record, because t will be either a fixed record
or a combination of the fields of var and t. Likewise if
var was previously an overload set this may replace the set
by a single type construction. *)
(* If we have had an error don't make the assignment. At the very least
it could prevent us producing useful error information and it could
also result in unnecessary consequential errors. *)
case !matchResult of
NONE => tvSetValue (var, t)
| SOME _ => ()
end
end (* assign *);
(* First find see if typeA and typeB are unified to anything
already, and get the end of a list of "flexibles". *)
val tA = eventual Atype
and tB = eventual Btype
in (* start of "match" *)
if isUndefinedType tA orelse isUndefinedType tB
then () (* If either of these was an undefined type constructor don't try to match.
TODO: There are further tests below for this which are now redundant. *)
else
case (tA, tB) of
(BadType, _) => () (* If either is an error don't try to match *)
| (_, BadType) => ()
| (TypeVar typeAVar, TypeVar typeBVar) =>
(* Unbound type variable, flexible record or overload set. *)
let
(* Even if this is a one-way match we can allow type variables
in the typeA to be instantiated to anything in the typeB. *)
val typeAVal = tvValue typeAVar;
(* We have two unbound type variables or flex. records. *)
in
if sameTv (typeAVar, typeBVar) (* same type variable? *)
then ()
else (* no - assign one to the other *)
if tvNonUnifiable typeAVar
(* If we have a nonunifiable type variable we want to assign
the typeB to it. If the typeB is nonunifiable as well we
will get an error message. *)
then assign (typeBVar, tA)
else
let
(* If they are both flexible records we first set the typeB
to the union of the records, and then set the typeA to
that. In that way we propagate properties such as
equality and level between the two variables. *)
val typBVal = tvValue typeBVar
in
case (typeAVal, typBVal) of
(LabelledType recA, LabelledType recB) =>
(
(* Turn these back into simple type variables to save
checking the combined record against the originals
when we make the assignment.
(Would be safe but redundant). *)
tvSetValue (typeBVar, emptyType);
tvSetValue (typeAVar, emptyType);
assign (typeBVar,
unifyRecords (recA, recB, typeAVal, typBVal));
assign (typeAVar, tB)
)
| (OverloadSet{typeset=setA}, OverloadSet{typeset=setB}) =>
let
(* The lists aren't ordered so we just have to go
through by hand. *)
fun intersect(_, []) = []
| intersect(a, H::T) =
if isInSet(H, a) then H::intersect(a, T) else intersect(a, T)
val newSet = intersect(setA, setB)
in
case newSet of
[] => cantMatch (Atype, Btype, "(Incompatible overloadings)")
| _ =>
(
tvSetValue (typeBVar, emptyType);
tvSetValue (typeAVar, emptyType);
(* I've changed this from OverloadSet{typeset=newset}
to use mkOverloadSet. The main reason was that it
fixed a bug which resulted from a violation of the
assumption that "equality" would not be passed an
overload set except when pointed to by a type variable.
It also removed the need for a separate test for
singleton sets since mkOverloadSet deals with them.
DCJM 1/9/00. *)
assign (typeBVar, mkOverloadSet newSet);
assign (typeAVar, tB)
)
end
| (EmptyType, _) => (* A is not a record or an overload set. *)
assign (typeAVar, tB)
| (_, EmptyType) => (* A is a record but B isn't *)
assign (typeBVar, tA) (* typeB is ordinary type var. *)
| _ => (* Bad combination of labelled record and overload set *)
cantMatch (Atype, Btype, "(Incompatible types)")
end
end
| (TypeVar typeAVar, _) =>
(* typeB is not a type variable so set typeA to typeB.*)
(* Be careful if this is a non-unifiable type variable being matched to
the special case of the identity type-construction. *)
(
if tvNonUnifiable typeAVar orelse (case tvValue typeAVar of OverloadSet _ => true | _ => false)
then
(
case tB of
TypeConstruction {constr, args, ...} =>
if isUndefined constr orelse not (tcIsAbbreviation constr)
then
(
case tB of
TypeConstruction {constr, args, ...} =>
if isUndefined constr orelse not (tcIsAbbreviation constr)
then assign (typeAVar, tB)
else match(tA, eventual (makeEquivalent (constr, args)))
| _ => assign (typeAVar, tB)
)
else match(tA, eventual (makeEquivalent (constr, args)))
| _ => assign (typeAVar, tB)
)
else assign (typeAVar, tB)
)
| (_, TypeVar typeBVar) => (* and typeA is not *)
(
(* We have to check for the special case of the identity type-construction. *)
if tvNonUnifiable typeBVar orelse (case tvValue typeBVar of OverloadSet _ => true | _ => false)
then
(
case tA of
TypeConstruction {constr, args, ...} =>
if isUndefined constr orelse not (tcIsAbbreviation constr)
then
(
case tB of
TypeVar tv =>
(* This will fail if we are matching a signature because the
typeB will be non-unifiable. *)
assign (tv, tA) (* set typeB to typeA *)
| typB => match (tA, typB)
)
else match(eventual (makeEquivalent (constr, args)), tB)
| _ =>
(
case tB of
TypeVar tv =>
(* This will fail if we are matching a signature because the
typeB will be non-unifiable. *)
assign (tv, tA) (* set typeB to typeA *)
| typB => match (tA, typB)
)
)
else
(
case tB of
TypeVar tv =>
(* This will fail if we are matching a signature because the
typeB will be non-unifiable. *)
assign (tv, tA) (* set typeB to typeA *)
| typB => match (tA, typB)
)
)
| (TypeConstruction({constr = tACons, args=tAargs, ...}),
TypeConstruction ({constr = tBCons, args=tBargs, ...})) =>
(
(* We may have a number of possibilities here.
a) If tA is an alias we simply expand it out and recurse (even
if tB is the same alias). e.g. if we have string t where
type 'a t = int*'a we expand string t into int*string and
try to unify that.
b) map it and see if the result is an alias. -- NOW REMOVED
c) If tB is a type construction and it is an alias we expand
that e.g. unifying "int list" and "int t" where type
'a t = 'a list (particularly common in signature/structure
matching.)
d) Finally we try to unify the stamps and the arguments. *)
if isUndefined tACons orelse isUndefined tBCons
then () (* If we've had an undefined type constructor don't try to check further. *)
else if tcIsAbbreviation tACons
(* Candidate is an alias - expand it. *)
then match (makeEquivalent (tACons, tAargs), tB)
else if tcIsAbbreviation tBCons
then match (tA, makeEquivalent (tBCons, tBargs))
else if tcIsAbbreviation tBCons (* If the typeB is an alias it must be expanded. *)
then match (tA, makeEquivalent (tBCons, tBargs))
else if sameTypeId (tcIdentifier tACons, tcIdentifier tBCons)
then
let (* Same type constructor - do the arguments match? *)
fun matchLists [] [] = ()
| matchLists (a::al) (b::bl) =
(
match (a, b);
matchLists al bl
)
| matchLists _ _ = (* This should only happen as a result of
a different error. *)
cantMatch (Atype, Btype, "(Different numbers of arguments)")
in
matchLists tAargs tBargs
end
(* When we have different type constructors, especially two with the same name,
we try to produce more information. *)
else matchError(TypeConstructorError(tA, tB, tACons, tBCons))
)
| (OverloadSet {typeset}, TypeConstruction {constr=tBCons, args=tBargs, ...}) =>
(* The candidate is an overloaded type and the target is a type
construction. *)
(
if not (isUndefined tBCons orelse not (tcIsAbbreviation tBCons))
then match (tA, makeEquivalent (tBCons, tBargs))
else if isUndefined tBCons
then ()
else if tcIsAbbreviation tBCons
then match (tA, makeEquivalent (tBCons, tBargs))
else (* See if the target type is among those in the overload set. *)
if null tBargs (* Must be a nullary type constructor. *)
andalso isInSet(tBCons, typeset)
then () (* ok. *)
(* Overload sets arise primarily with literals such as "1" and it's
most likely that the error is a mismatch between int and another
type rather than that the user assumed that the literal was
overloaded on a type it actually wasn't. *)
else
case preferredOverload typeset of
NONE => cantMatch (tA, tB, "(Different type constructors)")
| SOME prefType =>
matchError(
TypeConstructorError(
mkTypeConstruction (tcName prefType, prefType,[], []),
tB, prefType, tBCons))
)
| (TypeConstruction {constr=tACons, args=tAargs, ...}, OverloadSet {typeset}) =>
(
if not (isUndefined tACons orelse not (tcIsAbbreviation tACons))
then match (makeEquivalent (tACons, tAargs), tB)
(* We should never find an overload set as the target for a signature
match but it is perfectly possible for tB to be an overload set
when unifying two types. *)
else if null tAargs andalso isInSet(tACons, typeset)
then () (* ok. *)
else
case preferredOverload typeset of
NONE => cantMatch (tA, tB, "(Different type constructors)")
| SOME prefType =>
matchError(
TypeConstructorError(
tA, mkTypeConstruction (tcName prefType, prefType,[], []),
tACons, prefType))
)
| (OverloadSet _ , OverloadSet _) => raise InternalError "Unification: OverloadSet/OverloadSet"
(* (OverloadSet , OverloadSet) should not occur because that should be
handled in the (TypeVar, TypeVar) case. *)
| (TypeConstruction({constr = tACons, args=tAargs, ...}), _) =>
if not (isUndefined tACons orelse not (tcIsAbbreviation tACons))
(* Candidate is an alias - expand it. *)
then match (makeEquivalent (tACons, tAargs), tB)
else (* typB not a construction (but typeA is) *)
cantMatch (tA, tB, "(Incompatible types)")
| (_, TypeConstruction {constr=tBCons, args=tBargs, ...}) => (* and typeA is not. *)
(* May have a type equivalence e.g. "string t" matches int*string if type
'a t = int * 'a . Alternatively we may be matching a structure to a signature
where the signature says "type t" and the structure contains "type
t = int->int" (say). We need to set the type in the signature to int->int. *)
if not (isUndefined tBCons orelse not (tcIsAbbreviation tBCons))
then match (tA, makeEquivalent (tBCons, tBargs))
else if isUndefined tBCons
then ()
else if tcIsAbbreviation tBCons
then match (tA, makeEquivalent (tBCons, tBargs))
else cantMatch (tB, tA, "(Incompatible types)")
| (FunctionType {arg=typAarg, result=typAres, ...},
FunctionType {arg=typBarg, result=typBres, ...}) =>
( (* must be unifiable functions *)
(* In principle it doesn't matter whether we unify arguments or
results first but it could affect the error messages. Is this
the best way to do it? *)
match (typAarg, typBarg);
match (typAres, typBres)
)
| (EmptyType, EmptyType) => ()
(* This occurs only with exceptions - empty means no argument *)
| (LabelledType recA, LabelledType recB) =>
(* Unify the records, but discard the result because at least one of the
records is frozen. *)
(unifyRecords (recA, recB, tA, tB); ())
| _ => cantMatch (tA, tB, "(Incompatible types)")
end (* match *)
in
match (Atype, Btype);
! matchResult
end; (* unifyTypes *)
(* Turn a result from matchTypes into a pretty structure so that it
can be included in a message. *)
fun unifyTypesErrorReport (_, alphaTypeEnv, betaTypeEnv, what) =
let
fun reportError(SimpleError(alpha: types, beta: types, reason)) =
(* This previously used a single type variable sequence for
both types. It may be that this is needed to make
sensible error messages. *)
PrettyBlock(3, false, [],
[
PrettyString ("Can't " ^ what (* "match" if a signature, "unify" if core lang. *)),
PrettyBreak (1, 0),
display (alpha, 1000 (* As deep as necessary *), alphaTypeEnv),
PrettyBreak (1, 0),
PrettyString "to",
PrettyBreak (1, 0),
display (beta, 1000 (* As deep as necessary *), betaTypeEnv),
PrettyBreak (1, 0),
PrettyString reason
])
| reportError(TypeConstructorError(alpha: types, beta: types, alphaCons, betaCons)) =
let
fun expandedTypeConstr(ty, tyEnv, tyCons) =
let
fun lastPart name = #second(splitString name)
(* Print the type which includes the type constructor name with as
much additional information as we can. *)
fun printWithDesc{ location, name, description } =
PrettyBlock(3, false, [],
[ display (ty, 1000, tyEnv) ]
@ (if lastPart name = lastPart(tcName tyCons) then []
else
[
PrettyBreak(1, 0),
PrettyString "=",
PrettyBreak(1, 0),
PrettyBlock(0, false, [ContextLocation location], [PrettyString name])
]
)
@ (if description = "" then []
else
[
PrettyBreak(1, 0),
PrettyBlock(0, false, [ContextLocation location],
[PrettyString ("(*" ^ description ^ "*)")])
]
)
)
in
case tcIdentifier tyCons of
TypeId { description, ...} => printWithDesc description
end
in
PrettyBlock(3, false, [],
[
PrettyString ("Can't " ^ what (* "match" if a signature, "unify" if core lang. *)),
PrettyBreak (1, 0),
expandedTypeConstr(alpha, alphaTypeEnv, alphaCons),
PrettyBreak (1, 0),
PrettyString (if what = "unify" then "with" else "to"),
PrettyBreak (1, 0),
expandedTypeConstr(beta, betaTypeEnv, betaCons),
PrettyBreak (1, 0),
PrettyString "(Different type constructors)"
])
end
in
reportError
end
(* Given a function type returns the first argument if the
function takes a tuple otherwise returns the only argument.
Extended to include the case where the argument is not a function
in order to work properly for overloaded literals. *)
fun firstArg(FunctionType{arg=
LabelledType { recList = {typeof, ...} ::_, ...}, ...}) =
eventual typeof
| firstArg(FunctionType{arg, ...}) = eventual arg
| firstArg t = t
(* Returns an instance of an overloaded function using the supplied
list of type constructors for the overloading. *)
fun generaliseOverload(t, constrs, isConverter) =
let
(* Returns the result type of a function. *)
fun getResult(FunctionType{result, ...}) = eventual result
| getResult _ = raise InternalError "getResult - not a function";
val arg = if isConverter then getResult t else firstArg t
in
case arg of
TypeVar tv =>
let
(* The argument should be a type variable, possibly set to
an empty overload set. This should be replaced by
the current overload set in the copied function type. *)
val newSet = mkOverloadSet constrs
val (t, _) = generaliseTypes(t, fn old => if sameTv(old, tv) then SOME newSet else NONE)
in
(t, [newSet])
end
| _ => raise InternalError "generaliseOverload - arg is not a type var"
end
(* Prints out a type constructor e.g. type 'a fred = 'a * 'a
or datatype 'a joe = bill of 'a list | mary of 'a * int or
simply type 'a abs if the type is abstract. *)
fun displayTypeConstrsWithMap (
TypeConstrSet(
TypeConstrs{identifier=TypeId{idKind=TypeFn(args, result), ...}, name, ...}, []), depth, typeEnv, sigMap) =
(* Type function *)
if depth <= 0
then PrettyString "..."
else
let
val typeV = varNameSequence () (* Local sequence for this binding. *)
in
PrettyBlock (3, false, [],
PrettyString "type" ::
PrettyBreak (1, 0) ::
printTypeVars (args, depth, typeV) @
[
PrettyString (#second(splitString name)),
PrettyBreak(1, 0),
PrettyString "=",
PrettyBreak(1, 0),
tDisp(result, depth-1, typeV, typeEnv, sigMap)
]
)
end
| displayTypeConstrsWithMap (TypeConstrSet(tCons, [] (* No constructors *)), depth, _, _) =
(* Abstract type or type in a signature. *)
if depth <= 0
then PrettyString "..."
else PrettyBlock (3, false, [],
PrettyString (
if tcEquality tCons then "eqtype" else "type") ::
PrettyBreak (1, 0) ::
printTypeVars (tcTypeVars tCons, depth, varNameSequence ()) @
[PrettyString (#second(splitString(tcName tCons)))]
)
| displayTypeConstrsWithMap (TypeConstrSet(tCons as TypeConstrs{name, locations, ...}, tcConstructors), depth, typeEnv, sigMap) =
(* It has constructors - datatype declaration *)
if depth <= 0
then PrettyString "..."
else
let
val typeV = varNameSequence ()
(* Construct a ('a, 'b, 'c) tyCons construction for the result types
of each of the constructors. *)
val typeVars = tcTypeVars tCons
val typeResult = mkTypeConstruction(name, tCons, map TypeVar typeVars, locations)
(* Print a single constructor (blocked) *)
fun pValConstr (first, name, typeOf, depth) =
let
val (t, _) = generalise typeOf
val firstBreak = PrettyBreak (1, if first then 2 else 0)
in
case t of
FunctionType { arg, result} =>
let
(* Constructor with an argument. The constructor "type" is the argument.
We have to unify the result type of the function with the
('a, 'b, 'c) tyCons type so that we get the correct type variables
in the argument. We just print the argument of the function. *)
val _ = unifyTypes(result, typeResult)
in
[
firstBreak,
PrettyBlock (0, false, [],
PrettyBlock (0, false, [],
(if first then PrettyBreak (0, 2)
else PrettyBlock (0, false, [], [PrettyString "|", PrettyBreak(1, 2)])
) ::
(if depth <= 0 then [PrettyString "..."]
else [ PrettyString name, PrettyBreak (1, 4), PrettyString "of"])
) ::
(if depth > 0
then
[
PrettyBreak (1, 4),
(* print the type as a single block of output *)
tDisp (arg, depth - 1, typeV, typeEnv, sigMap)
]
else [])
)
]
end
| _ =>
[
firstBreak,
PrettyBlock (0, false, [],
[if first then PrettyBreak (0, 2)
else PrettyBlock (0, false, [], [PrettyString "|", PrettyBreak(1, 2)]),
PrettyString (if depth <= 0 then "..." else name)]
)
]
end
(* Print a sequence of constructors (unblocked) *)
fun pValConstrRest ([], _ ): pretty list = []
| pValConstrRest (H :: T, depth): pretty list =
if depth < 0 then []
else pValConstr (false, valName H, valTypeOf H, depth) @
pValConstrRest (T, depth - 1)
fun pValConstrList ([], _ ) = PrettyString "" (* shouldn't occur *)
| pValConstrList (H :: T, depth) =
PrettyBlock (2, true, [],
pValConstr (true, valName H, valTypeOf H, depth) @
pValConstrRest (T, depth - 1)
)
in
PrettyBlock(0, false, [],
[
PrettyBlock(0, false, [],
PrettyString "datatype" ::
PrettyBreak (1, 2) ::
printTypeVars (typeVars, depth, typeV) @
[ PrettyString(#second(splitString(tcName tCons))), PrettyBreak(1, 0), PrettyString "=" ]
),
pValConstrList (tcConstructors, depth - 1)
]
)
end (* displayTypeConstrsWithMap *)
fun displayTypeConstrs (tCons : typeConstrSet, depth : int, typeEnv) : pretty =
displayTypeConstrsWithMap(tCons, depth, typeEnv, NONE)
(* Return a type constructor from an overload. If there are
several (i.e. the overloading has not resolved to a single type)
it returns the "best". This is called in the third pass so it
should never be called if there is not at least one type that
is possible. *)
fun typeConstrFromOverload(f, _) =
let
fun prefType(TypeVar tvar) =
( (* If we still have an overload set that's because it has
not reduced to a single type. In ML 97 we default to
int, real, word, char or string in that order. This
works correctly for overloading literals so long as
the literal conversion functions are correctly installed. *)
case tvValue tvar of
OverloadSet{typeset} =>
let
(* If we accept this type we have to freeze the
overloading to this type.
I'm not happy about doing this here but it
seems the easiest solution. *)
fun freezeType tcons =
(
tvSetValue(tvar,
mkTypeConstruction(tcName tcons, tcons, [], []));
tcons
)
in
case preferredOverload typeset of
SOME tycons => freezeType tycons
| NONE => raise InternalError "typeConstrFromOverload: No matching type"
end
| _ => raise InternalError "typeConstrFromOverload: No matching type" (* Unbound or flexible record. *)
)
| prefType(TypeConstruction{constr, args, ...}) =
if not (tcIsAbbreviation constr)
then constr (* Generally args will be nil in this case but
in the special case of looking for an equality
function for 'a ref or 'a array it may not be. *)
else prefType (makeEquivalent (constr, args))
| prefType _ = raise InternalError "typeConstrFromOverload: No matching type"
in
prefType(firstArg(eventual f))
end;
(* Return the result type of a function. Also used to test if the value is
a function type. *)
fun getFnArgType t =
case eventual t of
FunctionType {arg, ... } => SOME arg
| _ => NONE
(* Assigns type variables to variables with generalisation permitted
if their level is at least that of the current level.
In ML90 mode this produced an error message for any top-level
free imperative type variables. We don't do that in ML97 because
it is possible that another declaration may "freeze" the type variable
before the composite expression reaches the top level. *)
fun allowGeneralisation (t, level, nonExpansive, lex, location, moreInfo, typeEnv) =
let
fun giveError(s1: string, s2: string) =
let
(* Use a single sequence. *)
val vars : typeVarForm -> string = varNameSequence ();
open DEBUG
val parameters = debugParams lex
val errorDepth = getParameter errorDepthTag parameters
in
reportError lex
{
hard = true,
location = location,
message =
PrettyBlock (3, false, [],
[
PrettyString s1,
PrettyBreak (1, 0),
tDisp (t, errorDepth, vars, typeEnv, NONE),
PrettyBreak (1, 0),
PrettyString s2
]
),
context = SOME(moreInfo ())
}
end
local
open DEBUG
val parameters = debugParams lex
in
val checkOverloadFlex = getParameter narrowOverloadFlexRecordTag parameters
end
fun general t (genArgs as (showError, nonExpansive)) =
case eventual t of
TypeVar tvar =>
let
val argSet =
if tvLevel tvar >= level andalso tvLevel tvar <> generalisable
andalso (case tvValue tvar of OverloadSet _ => false | _ => true)
then
let
(* Make a new generisable type variable, except that type
variables in an expansive context cannot be generalised.
We also don't generalise if this is an overload set.
The reason for that is that it allows us to get overloading
information from the surrounding context.
e.g. let fun f x y = x+y in f 2.0 end. An alternative
would be take the default type (in this case int).
DCJM 1/9/00. *)
val nonCopiable = not nonExpansive
val newLevel =
if nonCopiable then level-1 else generalisable (* copiable *);
val isOk =
(* If the type variable has top-level scope then we have
a free type variable. We only want to generate this
message once even if we have multiple type variables.*)
(* If the type variable is non-unifiable and the expression is
expansive then we have an error since this will have to
be a monotype. *)
if tvNonUnifiable tvar andalso nonCopiable andalso showError
then
(
giveError("Type", "includes a free type variable");
false
)
else showError;
val newVal =
mkTypeVar
(newLevel, tvEquality tvar,
if nonCopiable then (tvNonUnifiable tvar) else false,
tvPrintity tvar)
in
(* If an explicit type variable is going out of scope we can
generalise it, except if it is nonunifiable. *)
(* It may be a flexible record so we have to transfer the
record to the new variable. *)
tvSetValue (typesTypeVar newVal, tvValue tvar);
tvSetValue (tvar, newVal);
(isOk, nonExpansive)
end
else genArgs
in
(* If we are using the "narrow" context for overloading and
flexible records we should apply this here. Otherwise it is
dealt with in the next pass when we have the full program context. *)
case (checkOverloadFlex, tvValue tvar) of
(true, LabelledType _) => giveError("Type", "is an unresolved flexible record")
| (true, OverloadSet {typeset, ...}) =>
( (* Set this to the "preferred" type. Typically this is "int" but for overloaded literals
(e.g. 0w0) it could be something else. *)
case preferredOverload typeset of
SOME tycons =>
tvSetValue(tvar,
mkTypeConstruction(tcName tycons, tycons, [], []))
| NONE => raise InternalError "general: No matching type"
)
| _ => ();
general (tvValue tvar) argSet (* Process any flexible record. *)
end
| TypeConstruction {args, constr, ...} =>
(* There is a pathological case here. If we have a type equivalence
which contains type variables that do not occur on the RHS
(e.g. type 'a t = int) then we generalise over them even with an
expansive expression. This is because the semantics treats type
abbreviations as type functions and so any type variables that
are eliminated by the function application do not appear in the
"type" that the semantics applies to the expression. *)
if tcIsAbbreviation constr
then
let
val (r1, _) = general(makeEquivalent (constr, args)) genArgs
(* Process any arguments that have not been processed in the equivalent. *)
val (r2, _) = List.foldr (fn (t, v) => general t v) (r1, true) args
in
(r2, nonExpansive)
end
else List.foldr (fn (t, v) => general t v) genArgs args
| FunctionType {arg, result} => general arg (general result genArgs)
| LabelledType {recList,...} =>
List.foldr (fn ({ typeof, ... }, v) => general typeof v) genArgs recList
| _ => genArgs
in
general t (true, nonExpansive);
()
end (* end allowGeneralisation *);
(* Check for free type variables at the top level. Added for ML97. This replaces the
test in allowGeneralisation above and is applied to all top-level
values including those in structures and functors. *)
(* I've changed this from giving an error message, which prevented the
code from evaluating, to giving a warning and setting the type
variables to unique type variables. That allows, for example,
fun f x = raise x; f Subscript; to work. DCJM 8/3/01. *)
fun checkForFreeTypeVariables(valName: string, ty: types, lex: lexan, printAndEqCode) : unit =
let
(* Generate new names for the type constructors. *)
val count = ref 0
fun genName num =
(if num >= 26 then genName (num div 26 - 1) else "")
^ String.str (Char.chr (num mod 26 + Char.ord #"a"));
fun checkTypes (TypeVar tvar) () =
if isEmpty(tvValue tvar) andalso tvLevel tvar = 1
then (* The type variable is unbound (specifically, not
an overload set) and it is not generic i.e. it
must have come from an expansive expression. *)
let
val name = "_" ^ genName(!count)
val _ = count := !count + 1;
val declLoc = location lex (* Not correct but OK for the moment. *)
val declDescription =
{ location = declLoc, name = name, description = "Constructed from a free type variable." }
val tCons =
makeTypeConstructor (name,
makeFreeId(0, Global(printAndEqCode()), tvEquality tvar, declDescription),
[DeclaredAt declLoc]);
val newVal = mkTypeConstruction(name, tCons, [], [])
in
warningMessage(lex, location lex,
concat["The type of (", valName,
") contains a free type variable. Setting it to a unique monotype."]);
tvSetValue (tvar, newVal)
end
else ()
| checkTypes _ () = ()
in
foldType checkTypes ty ();
()
end
(* Returns true if a type constructor permits equality. *)
fun permitsEquality constr =
if tcIsAbbreviation constr
then typePermitsEquality(
mkTypeConstruction (tcName constr, constr, List.map TypeVar (tcTypeVars constr), []))
else tcEquality constr
and typePermitsEquality ty = equality (ty, fn _ => No, fn _ => Yes) <> No
(* See if a type abbreviation or "where type" has the form type t = s or
type 'a t = 'a s etc and so is simply giving a new name to the type
constructor. If it is it then checks that the type constructor used
(s in this example) is just a simple type name. *)
fun typeNameRebinding(typeArgs, typeResult): typeId option =
let
fun eqTypeVar(TypeVar ta, tb) = sameTv (ta, tb)
| eqTypeVar _ = false
in
case typeResult of
TypeConstruction {constr, args, ... } =>
if not (ListPair.allEq eqTypeVar(args, typeArgs))
then NONE
else
(
case tcIdentifier constr of
TypeId{idKind=TypeFn _, ...} => NONE
| tId => SOME tId
)
| _ => NONE
end
(* Returns the number of the entry in the list. Used to find out the
location of fields in a labelled record for expressions and pattern
matching. Assumes that the label appears in the list somewhere. *)
fun entryNumber (label, LabelledType{recList, ...}) =
let (* Count up the list. *)
fun entry ({name, ...}::l) n =
if name = label then n else entry l (n + 1)
| entry [] _ = raise Match
in
entry recList 0
end
| entryNumber (label, TypeVar tvar) =
entryNumber (label, tvValue tvar)
| entryNumber (label, TypeConstruction{constr, ...}) = (* Type alias *)
entryNumber (label, tcEquivalent constr)
| entryNumber _ =
raise InternalError "entryNumber - not a record"
(* Size of a labelled record. *)
fun recordWidth (LabelledType{recList, ...}) =
length recList
| recordWidth (TypeVar tvar) =
recordWidth (tvValue tvar)
| recordWidth (TypeConstruction{constr, ...}) = (* Type alias *)
recordWidth (tcEquivalent constr)
| recordWidth _ =
raise InternalError "entryNumber - not a record"
fun recordFieldMap f (LabelledType{recList, ...}) = List.map (f o (fn {typeof, ...} => typeof)) recList
| recordFieldMap f (TypeVar tvar) = recordFieldMap f (tvValue tvar)
| recordFieldMap f (TypeConstruction{constr, ...}) = recordFieldMap f (tcEquivalent constr)
| recordFieldMap _ _ = raise InternalError "entryNumber - not a record"
(* Unify two type variables which would otherwise be non-unifiable.
Used when we have found a local type variable with the same name
as a global one. *)
fun linkTypeVars (a, b) =
let
val ta = typesTypeVar (eventual(TypeVar a)); (* Must both be type vars. *)
val tb = typesTypeVar (eventual(TypeVar b));
in (* Set the one with the higher level to point to the one with the
lower, so that the effective level is the lower. *)
if (tvLevel ta) > (tvLevel tb)
then tvSetValue (ta, TypeVar b)
else tvSetValue (tb, TypeVar a)
end;
(* Set its level by setting it to a new type variable. *)
fun setTvarLevel (typ, level) =
let
val tv = typesTypeVar (eventual(TypeVar typ)); (* Must be type var. *)
in
tvSetValue (tv, mkTypeVar (level, tvEquality tv, true, tvPrintity tv))
end;
(* Construct the least general type from a list of types. This is used after
type checking to try to remove polymorphism from local values. It takes
the list of actual uses of the value, usually a function, and removes
any unnecessary polymorphism. This is particularly the case if the
function involves a flexible record, where the unspecified fields are
treated as polymorphic, but where the function is actually applied
to a records which are monomorphic. *)
fun leastGeneral [] = EmptyType (* Never used? *)
(* Don't use this at the moment - see the comment on TypeVar below.
Also the comment on TypeConstruction for local datatypes. *)
(* | leastGeneral [oneType] = oneType *)(* Just one - this is it. *)
| leastGeneral(firstType::otherTypes): types =
let
fun canonical (typ as TypeVar tyVar) =
(
case tvValue tyVar of
EmptyType => typ
| OverloadSet _ =>
let
val constr = typeConstrFromOverload(typ, false)
in
mkTypeConstruction(tcName constr, constr, [], [])
end
| t => canonical t
)
| canonical (typ as TypeConstruction { constr, args, ...}) =
if tcIsAbbreviation constr (* Handle type abbreviations directly *)
then canonical(makeEquivalent (constr, args))
else typ
| canonical typ = typ
(* Take the head of the each argument list and extract the least general.
Then process the tail. It's an error if each element of the list
does not contain the same number of items. *)
fun leastArgs ([]::_) = []
| leastArgs (args as _::_) =
leastGeneral(List.map hd args) :: leastArgs (List.map tl args)
| leastArgs _ = raise Empty
in
case canonical firstType of
(*typ as *)TypeVar _(*tv*) =>
let
(*fun sameTypeVar(TypeVar tv1) = sameTv(tv, tv1) | sameTypeVar _ = false*)
in
(* If they are all the same type variable return that otherwise return
a new generalisable type variable. They may all be equal if we always
apply this function to a value whose type is a polymorphic type in the
function that contains all these uses. *)
(* Temporarily, at least, create a new type var in this case. If we have a polymorphic
function that is only used inside another polymorphic function but isn't declared
inside it, if we use the caller's type variable here the call won't be recognised
as polymorphic. *)
(*if List.all sameTypeVar otherTypes then typ else*) mkTypeVar(generalisable, false, false, false)
end
| TypeConstruction{ constr, args, name, locations, ...} =>
(
(* There is a potential problem if the datatype is local including if it was
constructed in a functor. Almost always it will have been declared after
the polymorphic function but if it happens not to have been we could set
a polymorphic function to a type that doesn't exist yet. To avoid this
we don't allow a local datatype here and instead fall back to the
polymorphic case. *)
case tcIdentifier constr of
thisConstrId as TypeId{access=Global _, ...} =>
let
val argLength = List.length args
(* This matches if it is an application of the same type constructor. *)
fun getTypeConstrs(TypeConstruction{constr, args, ...}) =
if sameTypeId(thisConstrId, tcIdentifier constr) andalso
List.length args = argLength
then SOME args else NONE
| getTypeConstrs _ = NONE
val allArgs = List.mapPartial (getTypeConstrs o canonical) otherTypes
in
if List.length allArgs = List.length otherTypes
then TypeConstruction{constr=constr, name=name, locations=locations,
args = leastArgs(args :: allArgs)}
else (* At least one of these wasn't the same type constructor. *)
mkTypeVar(generalisable, false, false, false)
end
| _ => mkTypeVar(generalisable, false, false, false)
)
| FunctionType{ arg, result } =>
let
fun getFuns(FunctionType{arg, result}) = SOME(arg, result)
| getFuns _ = NONE
val argResults = List.mapPartial (getFuns o canonical) otherTypes
in
if List.length argResults = List.length otherTypes
then
let
val (args, results) = ListPair.unzip argResults
in
FunctionType{arg=leastGeneral(arg::args), result = leastGeneral(result::results)}
end
else (* At least one of these wasn't a function. *)
mkTypeVar(generalisable, false, false, false)
end
| LabelledType (r as {recList=firstRec, fullList}) =>
if recordIsFrozen r
then
let
(* This matches if all the field names are the same. Extract the types. *)
fun nameMatch({name=name1: string, ...}, {name=name2, ...}) = name1 = name2
fun getRecords(LabelledType{recList, ...}) =
if ListPair.allEq nameMatch (firstRec, recList)
then SOME(List.map #typeof recList) else NONE
| getRecords _ = NONE
val argResults = List.mapPartial (getRecords o canonical) otherTypes
in
if List.length argResults = List.length otherTypes
then
let
(* Use the names from the first record (they all are the same) to
build a new record. *)
val argTypes = leastArgs(List.map #typeof firstRec :: argResults)
fun recreateRecord({name, ...}, types) = {name=name, typeof=types}
val newList = ListPair.map recreateRecord(firstRec, argTypes)
in
LabelledType{recList=newList, fullList=fullList }
end
else (* At least one of these wasn't a record. *)
mkTypeVar(generalisable, false, false, false)
end
else (* At this stage the record should be frozen if the program is
correct but if it isn't we could have a flexible record which
we report elsewhere. *)
mkTypeVar(generalisable, false, false, false)
| _ => (* May arise if there's been an error. *) mkTypeVar(generalisable, false, false, false)
end
(* Test if this is floating point i.e. the "real" type. We could include
abbreviations of real as well but it's probably not worth it. *)
fun isFloatingPt t =
case eventual t of
TypeConstruction{args=[], constr, ...} =>
sameTypeId (tcIdentifier constr, tcIdentifier realConstr)
| OverloadSet {typeset, ...} =>
(
case preferredOverload typeset of
SOME t => sameTypeId (tcIdentifier t, tcIdentifier realConstr)
| NONE => false
)
| _ => false
fun checkDiscard(t: types, lex: lexan): string option =
let
open DEBUG
val checkLevel = getParameter reportDiscardedValuesTag (debugParams lex)
fun isUnit(LabelledType{recList=[], ...}) = true (* Unit is actually an empty record *)
| isUnit(TypeConstruction{
constr as TypeConstrs{identifier=TypeId{idKind=TypeFn _, ...}, ...},
args, ...}) =
isUnit(makeEquivalent(constr, args))
| isUnit(TypeVar _) = true (* Allow unbound type vars *)
| isUnit _ = false
fun isAFunction(FunctionType _) = true
| isAFunction(TypeConstruction{
constr as TypeConstrs{identifier=TypeId{idKind=TypeFn _, ...}, ...},
args, ...}) =
isAFunction(makeEquivalent(constr, args))
| isAFunction _ = false
in
case checkLevel of
1 => if isAFunction (eventual t) then SOME "A function value is being discarded." else NONE
| 2 => if isUnit (eventual t) then NONE else SOME "A non unit value is being discarded."
| _ => NONE
end
structure Sharing =
struct
type types = types
and values = values
and typeId = typeId
and structVals = structVals
and typeConstrs= typeConstrs
and typeConstrSet=typeConstrSet
and typeParsetree = typeParsetree
and locationProp = locationProp
and pretty = pretty
and lexan = lexan
and ptProperties = ptProperties
and typeVarForm = typeVarForm
and codetree = codetree
and matchResult = matchResult
and generalMatch = generalMatch
end
end (* TYPETREE *);
|