1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
|
(*
Copyright (c) 2000
Cambridge University Technical Services Limited
Modified David C.J. Matthews 2008-9, 2013, 2015.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*
Title: Operations on global and local values.
Author: Dave Matthews, Cambridge University Computer Laboratory
Copyright Cambridge University 1986
*)
functor VALUE_OPS (
structure LEX : LEXSIG;
structure CODETREE : CODETREESIG
structure STRUCTVALS : STRUCTVALSIG;
structure TYPESTRUCT : TYPETREESIG
structure PRINTTABLE :
sig
type typeConstrs
type codetree
val addOverload: string * typeConstrs * codetree -> unit
val getOverload: string * typeConstrs * (unit->codetree) -> codetree
val getOverloads: string -> (typeConstrs * codetree) list
end;
structure UNIVERSALTABLE:
sig
type universal = Universal.universal
type univTable
val app: (string * universal -> unit) -> univTable -> unit
end;
structure DEBUG : DEBUGSIG
structure MISC :
sig
exception InternalError of string; (* compiler error *)
exception Conversion of string (* string to int conversion failure *)
val quickSort : ('a -> 'a -> bool) -> 'a list -> 'a list
end;
structure PRETTY : PRETTYSIG
structure ADDRESS : AddressSig
structure UTILITIES :
sig
val splitString: string -> { first:string,second:string }
end;
structure COPIER: COPIERSIG
structure TYPEIDCODE: TYPEIDCODESIG
structure DATATYPEREP: DATATYPEREPSIG
sharing STRUCTVALS.Sharing = TYPESTRUCT.Sharing = LEX.Sharing = PRETTY.Sharing
= COPIER.Sharing = CODETREE.Sharing = PRINTTABLE = ADDRESS = UNIVERSALTABLE = MISC
= TYPEIDCODE.Sharing = DATATYPEREP.Sharing
) : VALUEOPSSIG =
(*****************************************************************************)
(* VALUEOPS functor body *)
(*****************************************************************************)
struct
open MISC;
open PRETTY;
open LEX;
open CODETREE;
open TYPESTRUCT; (* Open this first because unitType is in STRUCTVALS as well. *)
open Universal; (* for tag etc. *)
open STRUCTVALS;
open PRINTTABLE;
open DEBUG;
open ADDRESS;
open RuntimeCalls; (* for POLY_SYS and EXC numbers *)
open UTILITIES;
open TYPEIDCODE
open COPIER
open DATATYPEREP
(* Functions to construct the values. *)
fun mkGconstr (name, typeof, code, nullary, constrs, location) =
makeValueConstr (name, typeof, nullary, constrs, Global code, location);
(* Global variable *)
fun mkGvar (name, typeOf, code, locations) : values =
Value{ name = name, typeOf = typeOf, access = Global code, class = ValBound,
locations = locations, references = NONE, instanceTypes=NONE };
(* Local variable - Generated by the second pass. *)
local
fun makeLocalV class (name, typeOf, locations) =
Value{ name = name, typeOf = typeOf, access = Local {addr = ref ~1 (* Must be set later *), level = ref baseLevel},
class = class, locations = locations, references = makeRef(),
instanceTypes=SOME(ref []) };
in
val mkValVar = makeLocalV ValBound
and mkPattVar = makeLocalV PattBound
end
(* Value in a local structure or a functor argument. May be simple value, exception
or constructor. *)
fun mkSelectedVar (Value { access = Formal addr, name, typeOf, class, locations, ...}, base, openLocs) =
(* If the argument is "formal" set the base to the base structure. *)
Value{name=name, typeOf=typeOf, class=class,
access=Selected{addr=addr, base=base},
locations=openLocs @ locations, references = NONE, instanceTypes=NONE}
| mkSelectedVar (Value { access = Global code, name, typeOf, class, locations, ...}, _, openLocs) =
(* Global: We need to add the location information. *)
Value{name=name, typeOf=typeOf, class=class, access=Global code,
locations=openLocs @ locations, references = NONE, instanceTypes=NONE}
| mkSelectedVar(selected, _, _) = selected (* Overloaded? *);
(* Construct a global exception. *)
fun mkGex (name, typeof, code, locations) =
Value{ name = name, typeOf = typeof, access = Global code,
class = Exception, locations = locations, references = NONE, instanceTypes=NONE }
(* Construct a local exception. *)
fun mkEx (name, typeof, locations) =
Value{ name = name, typeOf = typeof,
access = Local{addr = ref 0, level = ref baseLevel},
class = Exception, locations=locations, references = NONE, instanceTypes=NONE }
(* Locations in exception packets. In order to have a defined ordering of the fields,
when we put the location in an exception packet we use this datatype rather than
the "location" type. *)
(* *)
datatype RuntimeLocation =
NoLocation
| SomeLocation of
(* file: *) string *
(*startLine:*) int * (*startPosition:*) int *
(*endLine:*) int * (*endPosition:*) int
fun codeLocation({file="", startLine=0, startPosition=0, ...}) =
mkConst(toMachineWord NoLocation) (* No useful information *)
| codeLocation({file, startLine, startPosition, endLine, endPosition}) =
mkConst(toMachineWord(file, startLine, startPosition, endLine, endPosition))
(*****************************************************************************)
(* Look-up functions. *)
(* Look up a structure. *)
fun lookupStructure (kind, {lookupStruct:string -> structVals option},
name, errorMessage) =
let
val {first = prefix, second = suffix} = splitString name;
val strLookedUp =
if prefix = ""
then lookupStruct suffix
else case lookupStructure
("Structure", {lookupStruct=lookupStruct}, prefix, errorMessage) of
NONE => NONE (* Already reported *)
| SOME(str as Struct { signat, locations, ...}) =>
let (* Look up the first part in the structure environment. *)
val Signatures { tab, typeIdMap, firstBoundIndex, ... } = signat
val Env{lookupStruct, ...} = makeEnv tab
(* If we have a DeclaredAt location for the structure use this as the StructureAt.*)
val baseLoc =
case List.find (fn DeclaredAt _ => true | _ => false) locations of
SOME (DeclaredAt loc) => [StructureAt loc]
| _ => []
in
case lookupStruct suffix of
SOME (Struct {signat, access, name=structName, locations, ...}) =>
let
val Signatures { name=sigName, tab, typeIdMap = childMap, locations=sigLocs, ... } = signat
(* We need to apply the map from the parent structure to the child. *)
val copiedSig =
makeSignature(sigName, tab, firstBoundIndex, sigLocs, composeMaps(childMap, typeIdMap), [])
(* Convert Formal access to Selected and leave the others (Global?). *)
val newAccess =
case access of
Formal sel => makeSelected (sel, str)
| access => access
val newStruct =
Struct { name = structName, signat = copiedSig,
access = newAccess, locations = baseLoc @ locations}
in
SOME newStruct
end
| NONE => NONE
end
in
case strLookedUp of
SOME s => SOME s
| NONE =>
(* Not declared? *)
(errorMessage (kind ^ " (" ^ suffix ^ ") has not been declared" ^
(if prefix = "" then "" else " in structure " ^ prefix));
NONE)
end
fun mkEnv x = let val Env e = makeEnv x in e end
(* Look up a structure but ignore the access. This is used in sharing constraints
where we're only interested in the signature. *)
(* It's simpler to use the common code for this. *)
fun lookupStructureAsSignature (lookupStruct, name, errorMessage) =
lookupStructure("Structure", { lookupStruct = lookupStruct}, name, errorMessage)
(* Look up a value, possibly in a structure. If it is in
a structure we may have to apply a selection. *)
fun lookupValue (kind, {lookupVal,lookupStruct}, name, errorMessage) =
let
val {first = prefix, second = suffix} = splitString name;
val found =
if prefix = "" then lookupVal suffix
(* Look up the first part in the structure environment. *)
else case lookupStructure
("Structure", {lookupStruct=lookupStruct}, prefix, errorMessage) of
NONE => SOME undefinedValue
| SOME (baseStruct as Struct { signat, locations, ...}) =>
let
val Signatures { tab, typeIdMap, ...} = signat
(* If we have a DeclaredAt location for the structure use this as the StructureAt.*)
val baseLoc =
case List.find (fn DeclaredAt _ => true | _ => false) locations of
SOME (DeclaredAt loc) => [StructureAt loc]
| _ => []
in
case #lookupVal (mkEnv tab) suffix of
SOME (Value{ name, typeOf, access, class, locations, ... }) =>
let
fun copyId(TypeId{idKind=Bound{ offset, ...}, ...}) = SOME(typeIdMap offset)
| copyId _ = NONE
val copiedType =
copyType (typeOf, fn x => x,
fn tcon =>
copyTypeConstr (tcon, copyId, fn x => x, fn s => prefix^"."^s))
in
SOME(mkSelectedVar (
Value{ name=name, typeOf=copiedType, access=access, class=class, locations=locations,
references = NONE, instanceTypes=NONE },
baseStruct, baseLoc))
end
| NONE => NONE
end
in
case found of
SOME v => v
| NONE => (* Not declared? *)
(
errorMessage (kind ^ " (" ^ suffix ^ ") has not been declared" ^
(if prefix = "" then "" else " in structure " ^ prefix));
undefinedValue
)
end
fun lookupTyp ({lookupType,lookupStruct}, name, errorMessage) =
let
val {first = prefix, second = suffix} = splitString name;
val found =
if prefix = "" then lookupType suffix
else (* Look up the first part in the structure environment. *)
case lookupStructure
("Structure", {lookupStruct=lookupStruct}, prefix, errorMessage) of
NONE => SOME(TypeConstrSet(undefConstr, []))
| SOME (Struct { signat, ...}) =>
let
val Signatures { tab, typeIdMap, ...} = signat
in
case #lookupType (mkEnv tab) suffix of
SOME typeConstr => SOME(fullCopyDatatype(typeConstr, typeIdMap, prefix^"."))
| NONE => NONE
end
in
case found of
SOME v => v
| NONE => (* Not declared? *)
(
errorMessage ("Type constructor" ^ " (" ^ suffix ^ ") has not been declared" ^
(if prefix = "" then "" else " in structure " ^ prefix));
TypeConstrSet(undefConstr, [])
)
end
(* Printing. *)
(* This name space is used to help find type identifiers.
However, because the functions are passed through to the resulting environment
by INITIALISE we have to use the same type as the normal top-level environment. *)
type nameSpace =
{
lookupVal: string -> values option,
lookupType: string -> typeConstrSet option,
lookupFix: string -> fixStatus option,
lookupStruct: string -> structVals option,
lookupSig: string -> signatures option,
lookupFunct: string -> functors option,
enterVal: string * values -> unit,
enterType: string * typeConstrSet -> unit,
enterFix: string * fixStatus -> unit,
enterStruct: string * structVals -> unit,
enterSig: string * signatures -> unit,
enterFunct: string * functors -> unit,
allVal: unit -> (string*values) list,
allType: unit -> (string*typeConstrSet) list,
allFix: unit -> (string*fixStatus) list,
allStruct: unit -> (string*structVals) list,
allSig: unit -> (string*signatures) list,
allFunct: unit -> (string*functors) list
};
val nullEnvironment : nameSpace =
{
lookupVal = fn _ => NONE,
lookupType = fn _ => NONE,
lookupFix = fn _ => NONE,
lookupStruct = fn _ => NONE,
lookupSig = fn _ => NONE,
lookupFunct = fn _ => NONE,
enterVal = fn _ => (),
enterType = fn _ => (),
enterFix = fn _ => (),
enterStruct = fn _ => (),
enterSig = fn _ => (),
enterFunct = fn _ => (),
allVal = fn () => [],
allType = fn () => [],
allFix = fn () => [],
allStruct = fn () => [],
allSig = fn () => [],
allFunct = fn () => []
}
(* Print a value given its type. *)
fun printValueForType (value:machineWord, types, depth): pretty =
let
(* Constuct printer code applied to the argument and the depth.
Code-generate and evaluate it. *)
(* If this is polymorphic apply it to a dummy set of instance types.
This may happen if we have val it = NONE at the top level.
The equality attributes of the type variables must match so that
this works correctly with justForEqualityTypes set. *)
val addrs = ref 0 (* Make local declarations for any type values. *)
local
fun mkAddr n = !addrs before (addrs := !addrs + n)
in
val typeVarMap = TypeVarMap.defaultTypeVarMap(mkAddr, baseLevel)
end
val dummyTypes =
List.map(fn tv => {value=TYPESTRUCT.unitType, equality=tvEquality tv, printity=false})
(getPolyTypeVars(types, fn _ => NONE))
val polyCode = applyToInstance(dummyTypes, baseLevel, typeVarMap, fn _ => mkConst value)
val printerCode =
mkEval(
printerForType(types, baseLevel, typeVarMap),
[mkTuple[polyCode, mkConst(toMachineWord depth)]])
val pretty =
RunCall.unsafeCast(
valOf(evalue(genCode(CODETREE.mkEnv(TypeVarMap.getCachedTypeValues typeVarMap, printerCode), [], !addrs)())))
in
pretty
end
(* These are used to display the declarations made. *)
fun displayFixStatus(FixStatus(name, f)): pretty =
let
open PRETTY
val status =
case f of
Nonfix => PrettyString "nonfix"
| Infix prec =>
PrettyBlock(0, false, [],
[ PrettyString "infix", PrettyBreak (1, 0), PrettyString (Int.toString prec) ])
| InfixR prec =>
PrettyBlock(0, false, [],
[ PrettyString "infixr", PrettyBreak (1, 0), PrettyString (Int.toString prec) ])
in
PrettyBlock (0, false, [],
[status, PrettyBreak (1, 0), PrettyString name])
end
(* Returns the declaration location as the location for the context. *)
fun getLocation locations =
case List.find(fn DeclaredAt _ => true | _ => false) locations of
SOME(DeclaredAt loc) => [ContextLocation loc]
| _ => []
(* Displays value as a block, with no external formatting. This is used at the
top level but it can be applied to values extracted with #lookup globalNameSpace.
That can include constructors and overloaded functions. *)
fun displayValues (Value{name, typeOf, class, access, locations, ...}, depth, nameSpace, sigMap): pretty =
let
(* Create the "val X =" part. *)
fun valPart (valOrCons, isColon) =
let
val (space, equOrColon) = if isColon then (0, ":") else (1, "=")
in
PrettyBlock (0, false, [],
[
PrettyString valOrCons,
PrettyBreak (1, 0),
PrettyBlock(0, false, getLocation locations, [PrettyString name]),
PrettyBreak (space, 0),
PrettyString equOrColon
]
)
end
val typeEnv = (* Environment to check for type constructors. *)
{ lookupType = #lookupType nameSpace, lookupStruct = #lookupStruct nameSpace}
in
if depth <= 0
then PrettyString "..."
else case class of
ValBound =>
let
(* In nearly all cases if we have Global code we will have a constant.
There was one case where "!" was actually a Lambda that hadn't been
code-generated. *)
val value =
case access of Global code => evalue code | _ => NONE
val start =
case value of
SOME v =>
[
valPart("val", false),
PrettyBreak (1, 0),
printValueForType (v, typeOf, depth),
PrettyString ":"
]
| _ => [ valPart("val", true) ]
in
PrettyBlock (3, false, [],
start @ [ PrettyBreak (1, 0), displayWithMap (typeOf, depth, typeEnv, sigMap) ])
end
| Exception => (* exceptions *)
PrettyBlock (0, false, [],
PrettyBlock (0, false, [],
[
PrettyString "exception",
PrettyBreak (1, 0),
PrettyBlock(0, false, getLocation locations, [PrettyString name])
]
)
::
(
case getFnArgType typeOf of
NONE => []
| SOME excType =>
[ PrettyBreak (1, 1), PrettyString "of", PrettyBreak (1, 3), displayWithMap (excType, depth, typeEnv, sigMap) ]
)
)
| Constructor _ => (* This can only occur with #lookupVal *)
PrettyBlock (3, false, [],
[ valPart("constructor", true), PrettyBreak (1, 0), displayWithMap (typeOf, depth, typeEnv, sigMap) ])
| PattBound => (* Can this ever occur? *)
PrettyBlock (3, false, [],
[ valPart("val", true), PrettyBreak (1, 0), displayWithMap (typeOf, depth, typeEnv, sigMap) ])
end
(* Print global values. This is passed through the bootstrap and used in the debugger. *)
fun printValues (Value{typeOf, class, access, ...}, depth) =
case (class, access) of
(ValBound, Global code) => printValueForType (valOf(evalue code), typeOf, depth)
| _ => PrettyString "" (* Probably shouldn't occur. *)
(* Prints "sig ... end" as a block, with no external formatting *)
fun displaySig (Signatures{tab, typeIdMap, ...}, depth : int, _ : int,
{ lookupType, lookupStruct, ...}, sigMap: (int-> typeId) option) : pretty =
let
(* Construct an environment for the types. *)
val Env { lookupType = strType, lookupStruct = strStr, ...} = makeEnv tab
(* Construct a map for types. *)
val innerMap =
case sigMap of
NONE => SOME typeIdMap
| SOME outerMap => SOME(composeMaps(typeIdMap, outerMap))
val compositeEnv =
{
lookupType =
fn s => case strType s of NONE => lookupType s | SOME t => SOME (t, innerMap),
lookupStruct =
fn s => case strStr s of NONE => lookupStruct s | SOME s => SOME (s, innerMap)
}
val typeEnv: printTypeEnv =
{ lookupType = #lookupType compositeEnv, lookupStruct = #lookupStruct compositeEnv }
fun displaySpec (_, value) : pretty list =
if (tagIs signatureVar value)
then (* Not legal ML97 *)
[ PrettyBreak(1,2), displaySignatures (tagProject signatureVar value, depth - 1, compositeEnv)]
else if (tagIs structVar value)
then
[ PrettyBreak(1,2), displayStructures (tagProject structVar value, depth - 1, compositeEnv, innerMap)]
else if (tagIs typeConstrVar value)
then
[ PrettyBreak(1,2), displayTypeConstrsWithMap (tagProject typeConstrVar value, depth, typeEnv, innerMap) ]
else if (tagIs valueVar value)
then
let
(* Only print variables. Constructors are printed with their type. *)
val value = tagProject valueVar value;
in
case value of
Value{class = Constructor _, ...} => []
| _ =>
[ PrettyBreak(1,2),
(* We lookup the infix status and any exception in the global environment
only. Infix status isn't a property of a structure and it's too
much trouble to look up exceptions in the structure. *)
displayValues (value, depth, compositeEnv, innerMap)
]
end
else if (tagIs fixVar value)
then (* Not legal ML97 *)
[ PrettyBreak(1,2), displayFixStatus (tagProject fixVar value) ]
else []
(* end displaySpec *)
in
PrettyBlock (0, true, [],
PrettyString "sig" ::
(
(
if depth <= 1 (* If the depth is 1 each of the calls to displaySpec will
print "..." so we replace them all by a single "..." here. *)
then [PrettyBreak (1, 0), PrettyString "..."]
else
let
val declist = ref nil : (string * universal) list ref
fun addToList nv = declist := nv :: !declist
(* For the moment order them by name. We may change this to
order primarily by kind and secondarily by name. *)
fun order (s1: string, _) (s2: string, _) = s1 > s2
in
(* Put all the entries into a list. *)
UNIVERSALTABLE.app addToList tab;
(* Sort the list and print it. *)
List.foldl
(fn (a, l) => displaySpec a @ l)
[] (quickSort order (!declist))
end
)
@ [PrettyBreak (1, 0), PrettyString "end"]
)
)
end (* displaySig *)
(* Print: signature S = sig .... end *)
and displaySignatures (str as Signatures{locations, name, ...}, depth : int, nameSpace) : pretty =
if depth <= 0 then PrettyString "..."
else
PrettyBlock(0, false, [],
[
PrettyBlock(0, false, [],
[
PrettyString "signature",
PrettyBreak(1, 0),
PrettyBlock(0, false, getLocation locations, [PrettyString name]),
PrettyBreak(1, 0),
PrettyString "="
]
),
PrettyBreak (1, 2),
displaySig (str, depth, 1, nameSpace, NONE)
])
(* print structure in a block (no external spacing) *)
and displayStructures (Struct{name, locations, signat, ...}, depth, nameSpace, sigMap): pretty =
if depth <= 0 then PrettyString "..."
else
PrettyBlock (0, false, [],
[
PrettyBlock(0, false, [],
[
PrettyString "structure",
PrettyBreak(1, 0),
PrettyBlock(0, false, getLocation locations, [PrettyString name]),
PrettyBreak(0, 0),
PrettyString ":"
]
),
PrettyBreak(1, 2),
displayNamedSig(signat, depth - 1, 1, nameSpace, sigMap)
])
(* Internal function for printing structures and functors. If a signature has a
name print the name rather than the contents. *)
and displayNamedSig(sign as Signatures{name = "", ...}, depth, space, nameSpace, sigMap) =
displaySig (sign, depth, space, nameSpace, sigMap)
| displayNamedSig(Signatures{name, ...}, _, _, _, _) = PrettyString name
fun displayFunctors (Functor{ name, locations, arg, result, ...}, depth, nameSpace) =
if depth <= 0 then PrettyString "..."
else
let
val arg as
Struct { name = argName, signat as Signatures { tab = argTab, ... }, ...} = arg
val argEntries =
(if argName <> ""
then [ PrettyBlock(0, false, [], [PrettyString argName, PrettyBreak(0, 0), PrettyString ":"]), PrettyBreak(1, 2) ]
else []) @
[
displayNamedSig (signat, depth - 1, 0, nameSpace, NONE),
PrettyBreak(0, 0),
PrettyString "):",
PrettyBreak(1, 0)
]
(* Include the argument structure name in the type environment. *)
val argEnv =
if argName = ""
then
let
val Env { lookupType=lt, lookupStruct=ls, ...} = makeEnv argTab
in
{
lookupType =
fn s => case lt s of NONE => #lookupType nameSpace s | SOME t => SOME(t, NONE),
lookupStruct =
fn s => case ls s of NONE => #lookupStruct nameSpace s | SOME s => SOME(s, NONE)
}
end
else
{
lookupType = #lookupType nameSpace,
lookupStruct =
fn s => if s = argName then SOME(arg, NONE) else #lookupStruct nameSpace s
}
in
PrettyBlock (0, false, [],
[
PrettyBlock(0, false, [],
[
PrettyBlock(0, false, [],
[
PrettyString "functor",
PrettyBreak(1, 0),
PrettyBlock(0, false, getLocation locations, [PrettyString name]),
PrettyBreak(1, 0),
PrettyString "("
]),
PrettyBreak(0, 2),
PrettyBlock(0, false, [], argEntries)
]),
PrettyBreak(0, 2),
displayNamedSig (result, depth - 1, 1, argEnv, NONE)
]
)
end
(* Exported version. *)
val displayValues = fn (value, depth, nameSpace) => displayValues (value, depth, nameSpace, NONE)
and displayStructures = fn (str, depth, nameSpace) => displayStructures (str, depth, nameSpace, NONE)
(* Code-generation. *)
(* Code-generate the values. *)
fun codeStruct (Struct{access, ...}, level) =
(* Global structures have no code value. Instead the
values are held in the values of the signature. *)
codeAccess (access, level)
and codeAccess (Global code, _) = code
| codeAccess (Local{addr=ref locAddr, level=ref locLevel}, level) =
mkLoad (locAddr, level, locLevel) (* Argument or local *)
| codeAccess (Selected{addr, base}, level) = (* Select from a structure. *)
mkInd (addr, codeStruct (base, level))
| codeAccess _ = raise InternalError "No access"
(*****************************************************************************)
(* datatype access functions *)
(*****************************************************************************)
(* Get the appropriate instance of an overloaded function. If the
overloading has not resolved to a single type it finds the preferred
type if possible (i.e. int for most overloadings, but possibly real,
word, string or char for conversion functions.) *)
fun getOverloadInstance(name, instance, isConv): codetree*string =
let
val constr = typeConstrFromOverload(instance, isConv)
in
(getOverload(name, constr, fn _ => raise InternalError "getOverloadInstance: Missing"), tcName constr)
end
(* This is only used in addPrettyPrint. There's no point in
producing a lot of detailed information. *)
fun checkPPType (instanceType, matchType, fnName, lex, location, moreInfo) =
case unifyTypes (instanceType, matchType) of
NONE => ()
| SOME error =>
let
open DEBUG
val parameters = LEX.debugParams lex
val errorDepth = getParameter errorDepthTag parameters
in
reportError lex
{
location = location,
hard = true,
message =
PrettyBlock(0, true, [],
[
PrettyString ("Argument for " ^ fnName),
PrettyBreak (1, 3),
PrettyBlock(0, false, [],
[
PrettyString "Required type:",
PrettyBreak (1, 0),
display (matchType, errorDepth, emptyTypeEnv)
]),
PrettyBreak (1, 3),
PrettyBlock(0, false, [],
[
PrettyString "Argument type:",
PrettyBreak (1, 0),
display (instanceType, errorDepth, emptyTypeEnv)
]),
PrettyBreak (1, 3),
unifyTypesErrorReport(lex, emptyTypeEnv, emptyTypeEnv, "unify") error
]),
context = SOME (moreInfo ())
}
end;
(* This is applied to the instance variables if it is polymorphic and bound by
a val or fun binding or is a datatype constructor. *)
fun applyToInstanceType(polyVars, ValBound, level, typeVarMap, code) =
applyToInstance(polyVars, level, typeVarMap, code)
| applyToInstanceType(polyVars, Constructor _, level, typeVarMap, code) =
applyToInstance(if justForEqualityTypes then [] else polyVars, level, typeVarMap, code)
| applyToInstanceType(_, PattBound, level, _, code) = code level
| applyToInstanceType(_, Exception, level, _, code) = code level
val arg1 = mkLoadArgument 0 (* saves a lot of garbage *)
fun addStatus typ = {value=typ, equality=false, printity=false}
(* Code-generate an identifier matched to a value. N.B. If the value is a
constructor it returns the pair or triple representing the functions on the
constructor. *)
fun codeVal (Value{access = Global code, class, ...}, level: level, typeVarMap, instance, _, _) =
applyToInstanceType(instance, class, level, typeVarMap, fn _ => code)
| codeVal (Value{access = Local{addr=ref locAddr, level=ref locLevel}, class, ...},
level, typeVarMap, instance, _, _) =
let
fun loadVar level = mkLoad (locAddr, level, locLevel) (* Argument or local *)
in
applyToInstanceType(instance, class, level, typeVarMap, loadVar)
end
| codeVal (Value{access = Selected{addr, base}, class, ...}, level: level, typeVarMap, instance, _, _) =
(* Select from a structure. *)
applyToInstanceType(instance, class, level, typeVarMap, fn level => mkInd (addr, codeStruct (base, level)))
| codeVal (Value{access = Formal _, ...}, _, _, _, _, _) =
raise InternalError "codeVal - Formal"
| codeVal (Value{access = Overloaded Print, ...}, _, _, [], lex, _) =
(* If this appears in a structure return a null printer function.
It has to have the polymorphic form with an extra lambda outside. *)
let
(* We should have a single entry for the type. *)
open DEBUG
(* The parameter is the reference used to control the print depth
when the value is actually printed. *)
val prettyOut = getPrintOutput (LEX.debugParams lex)
in
mkProc(
mkProc(
CODETREE.mkEnv
(
[
mkNullDec
(mkEval(
mkConst(toMachineWord prettyOut),
[ mkConst(toMachineWord(PrettyString "?")) ])
)
],
arg1 (* Returns its argument. *)
),
1, "print()", [], 0),
1, "print(P)", [], 0)
end
| codeVal (Value{access = Overloaded Print, ...}, level: level, typeVarMap, [{value=argType, ...}], lex, _) =
let
(* We should have a single entry for the type. *)
open DEBUG
(* The parameter is the reference used to control the print depth
when the value is actually printed. *)
val printDepthFun = getParameter printDepthFunTag (LEX.debugParams lex)
and prettyOut = getPrintOutput (LEX.debugParams lex)
val nLevel = newLevel level
in
(* Construct a function that gets the print code, prints it out and returns
its argument. *)
mkProc(
CODETREE.mkEnv
(
[
mkNullDec (
mkEval(
mkConst(toMachineWord prettyOut),
[
mkEval(
printerForType(argType, nLevel, typeVarMap),
[
mkTuple[arg1,
mkEval(mkConst(toMachineWord printDepthFun), [CodeZero])]
])
])
)
],
arg1 (* Returns its argument. *)
),
1, "print()", getClosure nLevel, 0)
end
| codeVal (Value{access = Overloaded Print, ...}, _, _, _, _, _) =
raise InternalError "Overloaded Print - wrong instance type"
| codeVal (Value{access = Overloaded MakeString, ...}, _, _, [], _, _) =
(* If this appears in a structure produce a default version. *)
mkInlproc(
mkProc(mkConst(toMachineWord "?"), 1, "makestring()", [], 0),
1, "makestring(P)", [], 0)
| codeVal (Value{access = Overloaded MakeString, ...}, level: level, typeVarMap, [{value=argType, ...}], _, _) =
let
val nLevel = newLevel level
in
(* Construct a function that gets the print code and prints it out using "uglyPrint". *)
mkProc(
mkEval(
mkConst(toMachineWord uglyPrint),
[
mkEval(
printerForType(argType, nLevel, typeVarMap),
[
mkTuple[arg1, mkConst(toMachineWord 10000)]
])
]),
1, "makestring()", getClosure nLevel, 0)
end
| codeVal (Value{access = Overloaded MakeString, ...}, _, _, _, _, _) =
raise InternalError "Overloaded MakeString - wrong instance type"
| codeVal (Value{access = Overloaded GetPretty, ...}, level, typeVarMap, [], _, _) =
let
val nLevel = newLevel level
in
(* If this appears in a structure return a default function. *)
mkProc(printerForType(badType, nLevel, typeVarMap), 1, "getPretty", getClosure nLevel, 0)
end
| codeVal (Value{access = Overloaded GetPretty, ...}, level: level, typeVarMap, [{value=argType, ...}], _, _) =
(* Get the pretty code for the specified argument. *)
printerForType(argType, level, typeVarMap)
| codeVal (Value{access = Overloaded GetPretty, ...}, _, _, _, _, _) =
raise InternalError "Overloaded GetPretty - wrong instance type"
| codeVal (Value{access = Overloaded AddPretty, ...}, _, _, [], _, _) =
(* If this appears in a structure create a function that raises an exception if run. *)
mkProc(
mkConst (toMachineWord
(fn _ => raise Fail "addPrettyPrint: The argument type was not a simple type construction")),
1, "AddPretty(P)", [], 0)
| codeVal (Value{access = Overloaded AddPretty, ...}, level: level, _, [{value=installType, ...}, {value=argPrints, ...}], lex, loc) =
let
(* "instance" should be (int-> 'a -> 'b -> pretty) -> unit.
We need to get the 'a and 'b. This function installs a
pretty printer against the type which matches 'b.
The type 'a is related to type of 'b as follows:
If 'b is a monotype t then 'a is ignored.
If 'b is a unary type constructor 'c t then 'a must have
type 'c * int -> pretty.
If 'b is a binary or higher type constructor e.g. ('c, 'd, 'e) t
then 'a must be a tuple of functions of the form
('c * int -> pretty, 'd * int -> pretty, 'e * int -> pretty).
When the installed function is called it will be passed the
appropriate argument functions which it can call to print the
argument types. *)
val pretty = mkTypeVar (generalisable, false, false, false); (* Temporary hack. *)
(* Find the last type constructor in the chain. We have to install
this against the last in the chain because type constructors in
different modules may be at different points in the chain. *)
(* This does mean that it's not possible to install a
pretty printer for a type constructor rather than a datatype. *)
fun followTypes (TypeConstruction{constr, args, ...}) =
if not (tcIsAbbreviation constr)
then SOME(tcIdentifier constr, constr, List.length args)
else followTypes (makeEquivalent (constr, args))
| followTypes (TypeVar tv) =
(
case tvValue tv of
EmptyType => NONE (* Unbound type variable *)
| t => followTypes t
)
| followTypes _ = NONE;
val constrId = followTypes installType
val () =
case constrId of
NONE => ()
| SOME (_, constr, arity) =>
let
(* Check that the function tuple matches the arguments of the type
we're installing for. *)
(* Each entry should be a function of type 'a * int -> pretty *)
fun mkFn arg = mkFunctionType(mkProductType[arg, TYPESTRUCT.intType], pretty)
(* Create non-unifiable type vars to ensure this is properly polymorphic. *)
val typeVars = List.tabulate(arity, fn _ => mkTypeVar (0, false, true, false))
val tupleType =
case typeVars of
[] => (* No arg so must have unit. *)
unitType
| [arg] => mkFn arg (* Just a single function. *)
| args => mkProductType(List.map mkFn args)
val addPPType = mkFunctionType(argPrints, mkFunctionType(installType, pretty))
val testType = mkFunctionType(tupleType,
mkFunctionType(
mkTypeConstruction(tcName constr, constr, typeVars, [DeclaredAt loc]),
pretty))
in
checkPPType(addPPType, testType, "addPrettyPrint", lex, loc,
fn () =>
PrettyString "addPrettyPrint element functions must have type 'a * int -> pretty, 'b * int -> pretty, ... with one function for each type parameter")
end;
(* Only report the error when the function is run. Because addPrettyPrint is
contained in the PolyML structure we may compile a reference to a polymorphic
version of this for the structure record. It's replaced in the final structure
by this version. *)
in
case constrId of
SOME (typeId, _, arity) =>
let
(* We need to transform the user-supplied function into the form required for
the reference. The user function has type int -> 'b -> 'a -> pretty
where 'b is either "don't care" if this is a monotype, the print function
for the base type if it takes a single type argument or a tuple of base type
functions if it takes more than one. The reference expects to contain a
function of type 'a * int -> pretty for a monotype or a function of the
form <'b1, 'b2...> -> 'a * int -> pretty if this is polytype where
<...> represents poly-style multiple arguments. *)
val printFunction =
case arity of
0 =>
mkProc(
mkEval(
mkEval(
mkEval(
mkLoadClosure 0 (* The user-supplied fn *),
[mkInd(1, arg1)] (* The depth *)),
[CodeZero] (* Ignored args. *)),
[mkInd(0, arg1)] (* Value to print *)),
1, "addPP-1", [arg1](* The user-supplied fn *), 0)
| arity =>
let
open TypeValue
val args =
if arity = 1
then [extractPrinter(mkLoadClosure 1)]
else [mkTuple(List.tabulate(arity, fn n => extractPrinter(mkLoadClosure(n+1))))]
in
mkProc(
mkProc(
mkEval(
mkEval(
mkEval(
mkLoadClosure 0 (* The user-supplied fn *),
[mkInd(1, arg1)] (* The depth *)),
args (* Base fns. *)),
[mkInd(0, arg1)] (* Value to print *)),
1, "addPP-2", mkLoadClosure 0 :: List.tabulate(arity, mkLoadArgument), 0),
arity, "addPP-1", [arg1], 0)
end
val nLevel = newLevel level
in
(* Generate a function that will set the "print" ref for the type to
the argument function. *)
mkProc(
mkEval(
rtsFunction POLY_SYS_assign_word,
[TypeValue.extractPrinter(
codeAccess(idAccess typeId, nLevel)), CodeZero, printFunction]
), 1, "addPP", getClosure nLevel, 0)
end
| NONE =>
mkConst (toMachineWord
(fn _ => raise Fail "addPrettyPrint: The argument type was not a simple type construction"))
end
| codeVal (Value{access = Overloaded AddPretty, ...}, _, _, _, _, _) =
raise InternalError "Overloaded AddPretty - wrong instance type"
| codeVal (Value{access = Overloaded GetLocation, ...}, _, _, _, _, _) =
(* This can't be used a value: It must be called immediately. *)
let
fun getLoc() =
raise Fail "The special function PolyML.sourceLocation cannot be used as a value"
in
mkConst (toMachineWord getLoc)
end
| codeVal (value as Value{access = Overloaded _, ...}, level: level, typeVarMap, instance, lex, lineno) =
let
val nLevel = newLevel level
in
(* AddOverload, Equal, NotEqual, TypeDep *)
mkProc(applyFunction (value, arg1, nLevel, typeVarMap, instance, lex, lineno), 1, "", getClosure nLevel, 0)
end
(* Some of these have a more efficient way of calling them as functions. *)
and applyFunction (value as Value{class=Exception, ...}, argument, level, typeVarMap, instance, lex, lineno) =
let
(* If we are applying it as a function we cannot be after the
exception id, we must be constructing an exception packet. *)
(* Get the exception id, put it in the packet with the exception name
the argument and, currently, an empty location as the exception location. *)
val exIden = codeVal (value, level, typeVarMap, instance, lex, lineno);
in
mkTuple (exIden :: mkStr (valName value) :: argument :: [mkConst(toMachineWord NoLocation)])
end
| applyFunction(value as Value{class=Constructor _, ...},
argument, level, typeVarMap, argVars, lex, lineno) =
let
(* If this is a value constructor we need to get the construction
function and use that. *)
fun getConstr level =
ValueConstructor.extractInjection(codeVal (value, level, typeVarMap, [], lex, lineno))
val polyConstr =
applyToInstance(if justForEqualityTypes then [] else argVars, level, typeVarMap, getConstr)
in
(* Don't apply this "early". It might be the ref constructor and that
must not be applied until run-time. The optimiser should take care
of any other cases. *)
mkEval (polyConstr, [argument])
end
| applyFunction (value as Value{access = Overloaded oper, name = valName, ...},
argument, level, typeVarMap, instance, lex, lineno) =
(
case oper of
Equal => (* Get the equality function for the type. *)
let
(* We should have a single entry for the type. *)
val argType =
case instance of
[{value, ...}] => value
| _ => raise InternalError "Overload Equal"
(* The instance type is a function so we have to get the first argument. *)
val code = equalityForType(argType, level, typeVarMap)
in
mkEval (code, [argument])
end
| NotEqual =>
let
(* We should have a single entry for the type. *)
val argType =
case instance of
[{value, ...}] => value
| _ => raise InternalError "Overload NotEqual"
(* Use the "=" function to provide inequality as well as equality. *)
val code = equalityForType(argType, level, typeVarMap)
val isEqual = mkEval (code, [argument])
in
mkNot isEqual
end
| TypeDep =>
let
val argType =
case instance of
[{value, ...}] => value
| _ => raise InternalError "Overload TypeDep"
val (code, _) = getOverloadInstance(valName, argType, false)
in
mkEval (code, [argument])
end
| AddOverload =>
(* AddOverload is only intended for use by writers of library modules.
It only does limited checking and should be regarded as "unsafe". *)
let
fun rmvars (TypeVar tv) = rmvars(tvValue tv)
| rmvars t = t
(* instance should be ('a->'b) -> string -> unit. For overloadings
on most functions (e.g. abs and +) we are looking for the 'a, which
may be a pair, but in the case of conversion functions we want the 'b. *)
val (resultType, argType) =
case instance of
[{value=alpha, ...}, {value=beta, ...}] => (rmvars alpha, rmvars beta)
| _ => (badType, badType)
fun followTypes(TypeConstruction{constr as TypeConstrs {identifier = TypeId{idKind = Free _, ...},...}, ...}) = constr
| followTypes(TypeConstruction{constr as TypeConstrs {identifier = TypeId{idKind = TypeFn _, ...},...}, args, ...}) =
followTypes (makeEquivalent (constr, args))
| followTypes(TypeConstruction{constr = TypeConstrs {identifier = TypeId{idKind = Bound _, ...},...}, ...}) =
raise Fail "Cannot install an overload within a structure or functor"
| followTypes _ = raise Fail "Invalid type (not a type construction) (addOverload)"
fun addOverloading (argCode: codetree) (name: string) =
let
val typeToUse =
if size name > 4 andalso
String.substring(name, 0, 4) = "conv"
(* For conversion functions it's the result type we're interested in.
For everything else it's the argument type. This will be a pair
for functions such as "+" and a single argument for "abs". *)
then resultType
else case argType of
LabelledType{recList=[{typeof, ...}, _], ...} => rmvars typeof
| argType => argType
val tcons = followTypes typeToUse
in
addOverload(name, tcons, argCode)
end
(* This function is used if we can't get the codetree at
compile time. *)
fun addOverloadGeneral (arg: machineWord) =
addOverloading(mkConst arg)
in
(* This is messy but necessary for efficiency. If we simply treat
addOverload as a function we would be able to pick up the
additional overloading as a pointer to a function. Most overloads
are small functions or wrapped calls to RTS functions and so
we need to get the inline code for them. *)
(* evalue raises an exception if "argument" is not a constant,
or more usefully, a global value containing a constant and
possibly a piece of codetree to inline. *)
case evalue(argument) of
SOME _ => mkConst (toMachineWord (addOverloading argument))
| NONE => mkEval (mkConst (toMachineWord addOverloadGeneral), [argument])
end
| GetLocation => (* Return the current location. *) mkConst(toMachineWord lineno)
| _ => (* Print, MakeString, InstallPP *)
(* Just call as functions. *) (* not early *)
mkEval (codeVal (value, level, typeVarMap, instance, lex, lineno), [argument])
) (* overloaded *)
| applyFunction (value, argument, level, typeVarMap, instance, lex, lineno) =
mkEval (codeVal (value, level, typeVarMap, instance, lex, lineno), [argument])
(* end applyFunction *)
(* If the exception is being used as a value we want an exception packet
or a function to make a packet. If it is a nullary constructor make
an exception packet now, otherwise generate a function to construct
an exception packet. *)
fun codeExFunction (value, level, typeVarMap, instance, lex, lineno) =
case getFnArgType(valTypeOf value) of (* N.B. Not "instance" *)
NONE => applyFunction (value, CodeZero, level, typeVarMap, List.map addStatus instance, lex, lineno)
| SOME _ =>
let
val nLevel = newLevel level
in
mkProc
(applyFunction (value, arg1, nLevel, typeVarMap, List.map addStatus instance, lex, lineno),
1, "", getClosure nLevel, 0)
end
(* Operations to compile code from the representation of a constructor. *)
(* Code to test whether a value matches a constructor.
This must be applied to any polymorphic variables in the instance but the
result is always bool so we don't create a new function if the result is
also polymorphic.
It is just possible to have a resulting polytype here
(N.B. that's different from having a parametric type) if we have a val binding.
e.g. val SOME x = SOME nil. In that case we can choose an arbitrary type
for the test and have to parameterise the result. *)
fun makeGuard (value as Value{class=Constructor _, ...}, argVars, testing, level, typeVarMap) =
let
fun tester level =
ValueConstructor.extractTest(codeVal (value, level, typeVarMap, [], nullLex, location nullLex))
val testCode =
applyToInstance(if justForEqualityTypes then [] else List.map addStatus argVars,
level, typeVarMap, tester)
in
mkEval(testCode, [testing])
end
| makeGuard (value as Value{class=Exception, ...}, _, testing, level, typeVarMap) =
(* Should only be an exception. Get the value of the exception identifier
and compare with the identifier in the exception packet. *)
mkTestptreq
(mkInd (0, testing),
codeVal (value, level, typeVarMap, [], nullLex, location nullLex))
| makeGuard _ = raise InternalError "makeGuard"
(* Code to invert a constructor. i.e. return the value originally used as the argument.
Apply to any polymorphic variables and construct a result. *)
fun makeInverse(value as Value{class=Constructor{nullary=false, ...}, ...},
argVars, arg, level, typeVarMap): codetree =
let
fun getInverse level =
ValueConstructor.extractProjection(codeVal (value, level, typeVarMap, [], nullLex, location nullLex))
val loadCode =
applyToInstance(if justForEqualityTypes then [] else List.map addStatus argVars,
level, typeVarMap, getInverse)
in
mkEval(loadCode, [arg])
end
| makeInverse(Value{class=Constructor{nullary=true, ...}, ...}, _, _, _, _): codetree =
(* makeInverse is called even on nullary constructors. Return zero to keep the
optimiser happy. *) CodeZero
| makeInverse (Value{class=Exception, ...}, _, arg, _, _) =
(* Exceptions. - Get the parameter from third word *)
(* We have to use a VarField here even though this field is present in
every exception. The format of the value that is returned depends
on the exception id. *)
mkVarField (2,arg)
| makeInverse _ = raise InternalError "makeInverse"
(* Work out the polymorphism and the mapping between the formal
type variables and the actual types. Because flexible records
may introduce extra polymorphism we can only do this once we've
frozen them. e.g. fun f x = #1 x + #2 x may be monomorphic or
polymorphic depending on what it's subsequently applied to. *)
(* Using unification here isn't ideal. We have to put the equality attribute
back on to abstypes in case the unification requires it. There may be other
situations where things don't work properly. *)
fun getPolymorphism (Value{ typeOf, access, name, ...}, expType, typeVarMap) =
let
val (t, polyVars) =
case access of
Overloaded TypeDep =>
let
val (t, polyVars) =
generaliseOverload(typeOf, List.map #1 (getOverloads name), false)
in
(t, List.map (fn t => {value=t, equality=false, printity=false}) polyVars)
end
| _ => generaliseWithMap(typeOf, TypeVarMap.mapTypeVars typeVarMap)
(* Ignore the result. There are circumstances in which we can get a
unification error as the result of failing to find a fixed record type
where the possible records we could find have non-unifiable types.
See Tests/Fail/Test072.ML *)
val _ = unifyTypes(t, expType)
in
polyVars
end
(* Convert a literal constant. We can only do this once any overloading
has been resolved. *)
fun getLiteralValue(converter, literal, instance, error): machineWord option =
let
val (conv, name) =
getOverloadInstance(valName converter, instance, true)
in
SOME(RunCall.unsafeCast(valOf(evalue conv)) literal)
handle Match => NONE (* Overload error *)
| Conversion s =>
(
error("Conversion exception ("^s^") raised while converting " ^
literal ^ " to " ^ name);
NONE
)
| Overflow =>
(
error ("Overflow exception raised while converting " ^
literal ^ " to " ^ name);
NONE
)
| Thread.Thread.Interrupt => raise Thread.Thread.Interrupt
| _ =>
(
error ("Exception raised while converting " ^
literal ^ " to " ^ name);
NONE
)
end
(* Types that can be shared. *)
structure Sharing =
struct
type lexan = lexan
type codetree = codetree
type types = types
type values = values
type structVals = structVals
type functors = functors
type valAccess = valAccess
type typeConstrs = typeConstrs
type typeConstrSet = typeConstrSet
type signatures = signatures
type fixStatus = fixStatus
type univTable = univTable
type pretty = pretty
type locationProp = locationProp
type typeId = typeId
type typeVarForm = typeVarForm
type typeVarMap = typeVarMap
type level = level
type machineWord = machineWord
end
end (* body of VALUEOPS *);
|