File: PolyPerf.cpp

package info (click to toggle)
polyml 5.7.1-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid
  • size: 40,616 kB
  • sloc: cpp: 44,142; ansic: 26,963; sh: 22,002; asm: 13,486; makefile: 602; exp: 525; python: 253; awk: 91
file content (707 lines) | stat: -rw-r--r-- 27,105 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
/*
    Title:  PolyPerf.cpp

    Copyright (c) 2011 David C.J. Matthews

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.
    
    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.
    
    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

*/

#include <windows.h>
#include <winperf.h>
#include <stdlib.h>
#include <malloc.h>
#include <psapi.h>
#include <stdio.h>
#include <string.h>
#include <stddef.h>

#include "../polystatistics.h"

// Statistics currently provided.  These are copied from statistics.cpp
// although the statistics returned may not match.
enum {
    PSC_THREADS = 0,                // Total number of threads
    PSC_THREADS_IN_ML,              // Threads running ML code
    PSC_THREADS_WAIT_IO,            // Threads waiting for IO
    PSC_THREADS_WAIT_MUTEX,         // Threads waiting for a mutex
    PSC_THREADS_WAIT_CONDVAR,       // Threads waiting for a condition var
    PSC_THREADS_WAIT_SIGNAL,        // Special case - signal handling thread
    PSC_GC_FULLGC,                  // Number of full garbage collections
    PSC_GC_PARTIALGC,               // Number of partial GCs
    N_PS_COUNTERS
};

enum {
    PSS_TOTAL_HEAP = 0,                 // Total size of the local heap
    PSS_AFTER_LAST_GC,              // Space free after last GC
    PSS_AFTER_LAST_FULLGC,          // Space free after the last full GC
    PSS_ALLOCATION,                 // Size of allocation space
    PSS_ALLOCATION_FREE,            // Space available in allocation area
    N_PS_SIZES
};

enum {
    PST_NONGC_UTIME = 0,
    PST_NONGC_STIME,
    PST_GC_UTIME,
    PST_GC_STIME,
    N_PS_TIMES
};

#define N_PS_USER   8

/*
This DLL is a plug-in for Windows performance monitoring.  The whole
interface is extremely messy and seems to have remained unchanged
from NT 3.5.  The localised string names displayed in the performance
monitor are held in the registry and need to be set up before this
DLL can be loaded.  Wix v3 supports the strings directly and this
replaces the old method of using lodctr with .ini and .h files.
The DLL is loaded by the performance monitor.  In XP that seems to
be part of the management console application mmc.exe and perfmon.exe
seems to be just a stub.
*/

extern "C" {
    /* These are the functions exported from the DLL.  The names here appear in the
       HKLM\SYSTEM\CurrentControlSet\Services\PolyML\Performance registry key.
       This DLL is loaded by mmc.exe and these functions are called to begin and
       end monitoring and to extract the current performance values from the
       shared memory. */
    __declspec(dllexport) PM_OPEN_PROC OpenPolyPerfMon;
    __declspec(dllexport) PM_CLOSE_PROC ClosePolyPerfMon;
    __declspec(dllexport) PM_COLLECT_PROC CollectPolyPerfMon;
};

// Export the functions without any decoration.
#ifndef _WIN64
#pragma comment(linker, "/export:OpenPolyPerfMon=_OpenPolyPerfMon@4")
#pragma comment(linker, "/export:ClosePolyPerfMon=_ClosePolyPerfMon@0")
#pragma comment(linker, "/export:CollectPolyPerfMon=_CollectPolyPerfMon@16")
#endif

class PolyProcess {
public:
    ~PolyProcess();
    static PolyProcess* CreateProcessEntry(DWORD pID);

    PolyProcess();

    unsigned char *sharedMem; // Pointer to shared memory
    DWORD processID; // Process ID
    WCHAR *processName; // Unicode name
};

// This is the structure of the decoded statistics.  These values
// are set from the ASN1 coding.
// The types of the fields must match the types set in the registry
// by the installer (PolyML.wxs).  For counters that is numberOfItems32
// and for sizes they have to be DWORDs.  The information we display
// for sizes is always a ratio of two sizes (i.e. % full) so we
// have to scale the values consistently to get them to fit.
// Since we also provide type information in the PERF_COUNTER_DEFINITION
// structure it's possible we may be able to override that but it's
// not clear.
typedef struct {
    PERF_COUNTER_BLOCK header;
    // Statistics decoded
    UINT32 psCounters[N_PS_COUNTERS];       // numberOfItems32
#define SIZEOF_COUNTER  (sizeof(UINT32))
    DWORD psSizes[N_PS_SIZES];              // rawFraction/rawBase (i.e. 32-bits)
#define SIZEOF_SIZE     (sizeof(DWORD))
    FILETIME psTimers[N_PS_TIMES];          // timer100Ns
#define SIZEOF_TIME     (sizeof(FILETIME))
    UINT32 psUser[N_PS_USER];               // numberOfItems32
#define SIZEOF_USER     (sizeof(UINT32))
} statistics;

PolyProcess::PolyProcess()
{
    sharedMem = NULL;
    processName = NULL;
}

PolyProcess::~PolyProcess()
{
    if (sharedMem)
        ::UnmapViewOfFile(sharedMem);
    free(processName);
}

// Try to open the shared memory and if it succeeds create an entry for
// this process.
PolyProcess *PolyProcess::CreateProcessEntry(DWORD pId)
{
    char shmName[MAX_PATH];
    sprintf(shmName, POLY_STATS_NAME "%lu", pId);
    HANDLE hRemMemory = OpenFileMapping(FILE_MAP_READ, FALSE, shmName);
    if (hRemMemory == NULL)
        return NULL; // Probably not a Poly/ML process

    unsigned char *sMem = (unsigned char*)MapViewOfFile(hRemMemory, FILE_MAP_READ, 0, 0, 0);
    CloseHandle(hRemMemory); // We don't need this whether it succeeded or not
    if (sMem == NULL)
        return NULL;
    if (*sMem != POLY_STATS_C_STATISTICS)
    {
        UnmapViewOfFile(sMem);
        return NULL;
    }
    // Looks good.
    PolyProcess *result = new PolyProcess;
    result->processID = pId;
    result->sharedMem = sMem;

    // Find the name of the process.
    HANDLE hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE, pId);
    if (hProcess != NULL)
    {
        HMODULE hMod;
        DWORD cbNeeded;
        if (EnumProcessModules(hProcess, &hMod, sizeof(hMod),  &cbNeeded))
        {
            WCHAR processName[MAX_PATH];
            size_t len = 0;
            processName[0] = 0;
            if (GetModuleBaseNameW(hProcess, hMod, processName, sizeof(processName)/sizeof(WCHAR)) != 0)
            {
                // Remove any ".exe" or similar at the end
                len = wcslen(processName);
                if (len > 4 && processName[len-4] == '.')
                    len -= 4;
                processName[len] = 0;
            }
            // Add the process Id in the name
            _snwprintf(processName+len, MAX_PATH-len, L" (%lu)", pId);
            // Copy it into the heap
            result->processName = _wcsdup(processName);
        }
        CloseHandle(hProcess);
    }

    return result;
}

class ASN1Parse {
public:
    ASN1Parse (statistics *s, unsigned char *p): stats(s), ptr(p) {}
    void asn1Decode();
    unsigned getLength();
    INT64 parseInt(unsigned length);
    UINT32 parseUnsigned(unsigned length);
    DWORD parseSize(unsigned length);
    void parseAStatistic(int subTag, unsigned statlen);
    void parseTime(FILETIME *ft, unsigned length);

    statistics *stats;
    unsigned char *ptr;
};

// Decode the ASN1 encoding.  If the decoding fails we just leave the
// values as zero rather than returning any error.
void ASN1Parse::asn1Decode()
{
    unsigned char ch = *ptr++;
    if (ch != POLY_STATS_C_STATISTICS) return;
    unsigned overallLength = getLength();
    unsigned char *endOfData = ptr+overallLength;
    while (ptr < endOfData)
    {
        // Decode a statistic
        unsigned tag = *ptr++;
        unsigned statLen = getLength();
        switch (tag)
        {
        case POLY_STATS_C_COUNTERSTAT:
            parseAStatistic(POLY_STATS_C_COUNTER_VALUE, statLen);
            break;
        case POLY_STATS_C_SIZESTAT:
            parseAStatistic(POLY_STATS_C_BYTE_COUNT, statLen);
            break;
        case POLY_STATS_C_TIMESTAT:
            parseAStatistic(POLY_STATS_C_TIME, statLen);
            break;
        case POLY_STATS_C_USERSTAT:
            parseAStatistic(POLY_STATS_C_COUNTER_VALUE, statLen);
            break; 
        default: ptr += statLen; // Skip it; it's not known
        }
    }
}

// Return the length of the next item
unsigned ASN1Parse::getLength()
{
    unsigned ch = *ptr++;
    if (ch & 0x80)
    {
        int lengthOfLength = ch & 0x7f;
        unsigned length = 0;
        // Ignore "indefinite length", it's not used here.
        while (lengthOfLength--)
        {
            ch = *ptr++;
            length = (length << 8) | ch;
        }
        return length;
    }
    else return ch;
}

// General case for integer.
INT64 ASN1Parse::parseInt(unsigned length)
{
    if (length == 0) return 0;
    INT64 result = *ptr & 0x80 ? -1 : 0;
    while (length--) result = (result << 8) | *ptr++;
    return result;
}

UINT32 ASN1Parse::parseUnsigned(unsigned length)
{
    INT64 value = parseInt(length);
    if (value < 0) return 0; // Can't display negative nos
    return (UINT32)value;
}

DWORD ASN1Parse::parseSize(unsigned length)
{
    INT64 value = parseInt(length);
    if (value < 0) return 0; // Can't display negative nos
    return (DWORD)(value / 1024); // Return kilobytes
}

void ASN1Parse::parseTime(FILETIME *ft, unsigned length)
{
    unsigned char *end = ptr+length;
    UINT32 seconds = 0, useconds = 0;
    while (ptr < end)
    {
        unsigned char tag = *ptr++;
        unsigned elemLen = getLength();
        switch (tag)
        {
        case POLY_STATS_C_SECONDS:
            seconds = parseUnsigned(elemLen);
            break;
        case POLY_STATS_C_MICROSECS:
            useconds = parseUnsigned(elemLen);
            break;
        default: ptr += elemLen;
        }
    }
    ULARGE_INTEGER li;
    li.QuadPart = (ULONGLONG)seconds * 10000000 + (ULONGLONG)useconds * 10;
    ft->dwHighDateTime = li.HighPart;
    ft->dwLowDateTime = li.LowPart;
}

void ASN1Parse::parseAStatistic(int subTag, unsigned statLen)
{
    unsigned char *endOfStat = ptr+statLen;
    unsigned tagId = 0;
    while (ptr < endOfStat)
    {
        unsigned char tag = *ptr++;
        unsigned elemLen = getLength();
        switch (tag)
        {
        case POLY_STATS_C_IDENTIFIER:
            // The identifier of the statistic
            // We rely on the fact that the Id occurs before the value.
            tagId = parseUnsigned(elemLen);
            break;

        case POLY_STATS_C_COUNTER_VALUE:
            if (subTag = POLY_STATS_C_COUNTER_VALUE)
            {
                UINT32 cValue = parseUnsigned(elemLen);
                // A counter value occurs in these statistics
                switch (tagId)
                {
                case POLY_STATS_ID_THREADS:
                    stats->psCounters[PSC_THREADS] = cValue; break;
                case POLY_STATS_ID_THREADS_IN_ML:
                    stats->psCounters[PSC_THREADS_IN_ML] = cValue; break;
                case POLY_STATS_ID_THREADS_WAIT_IO:
                    stats->psCounters[PSC_THREADS_WAIT_IO] = cValue; break;
                case POLY_STATS_ID_THREADS_WAIT_MUTEX:
                    stats->psCounters[PSC_THREADS_WAIT_MUTEX] = cValue; break;
                case POLY_STATS_ID_THREADS_WAIT_CONDVAR:
                    stats->psCounters[PSC_THREADS_WAIT_CONDVAR] = cValue; break;
                case POLY_STATS_ID_THREADS_WAIT_SIGNAL:
                    stats->psCounters[PSC_THREADS_WAIT_SIGNAL] = cValue; break;
                case POLY_STATS_ID_GC_FULLGC:
                    stats->psCounters[PSC_GC_FULLGC] = cValue; break;
                case POLY_STATS_ID_GC_PARTIALGC:
                    stats->psCounters[PSC_GC_PARTIALGC] = cValue; break;
                case POLY_STATS_ID_USER0:
                    stats->psUser[0] = cValue; break;
                case POLY_STATS_ID_USER1:
                    stats->psUser[1] = cValue; break;
                case POLY_STATS_ID_USER2:
                    stats->psUser[2] = cValue; break;
                case POLY_STATS_ID_USER3:
                    stats->psUser[3] = cValue; break;
                case POLY_STATS_ID_USER4:
                    stats->psUser[4] = cValue; break;
                case POLY_STATS_ID_USER5:
                    stats->psUser[5] = cValue; break;
                case POLY_STATS_ID_USER6:
                    stats->psUser[6] = cValue; break;
                case POLY_STATS_ID_USER7:
                    stats->psUser[7] = cValue; break;
                // Anything else is an unknown tag; skip
                }
            }
            else ptr += elemLen; // Skip it - not expected here
            break;

        case POLY_STATS_C_BYTE_COUNT:
            if (subTag == POLY_STATS_C_BYTE_COUNT)
            {
                DWORD cValue = parseSize(elemLen);
                switch (tagId)
                {
                case POLY_STATS_ID_TOTAL_HEAP:
                    stats->psSizes[PSS_TOTAL_HEAP] = cValue; break;
                case POLY_STATS_ID_AFTER_LAST_GC:
                    stats->psSizes[PSS_AFTER_LAST_GC] = cValue; break;
                case POLY_STATS_ID_AFTER_LAST_FULLGC:
                    stats->psSizes[PSS_AFTER_LAST_FULLGC] = cValue; break;
                case POLY_STATS_ID_ALLOCATION:
                    stats->psSizes[PSS_ALLOCATION] = cValue; break;
                case POLY_STATS_ID_ALLOCATION_FREE:
                    stats->psSizes[PSS_ALLOCATION_FREE] = cValue; break;
                }
            }
            else ptr += elemLen; // Skip it - not expected here
            break;

        case POLY_STATS_C_TIME:
            if (subTag == POLY_STATS_C_TIME)
            {
                FILETIME ft = { 0, 0};
                parseTime(&ft, elemLen);
                switch (tagId)
                {
                case POLY_STATS_ID_NONGC_UTIME:
                    stats->psTimers[PST_NONGC_UTIME] = ft; break;
                case POLY_STATS_ID_NONGC_STIME:
                    stats->psTimers[PST_NONGC_STIME] = ft; break;
                case POLY_STATS_ID_GC_UTIME:
                    stats->psTimers[PST_GC_UTIME] = ft; break;
                case POLY_STATS_ID_GC_STIME:
                    stats->psTimers[PST_GC_STIME] = ft; break;
                }
            }
            else ptr += elemLen;
            break;

        default: ptr += elemLen; // Unknown - skip
        }
    }
}

// Pointer to table of processes with the Poly/ML run-time
static PolyProcess **polyProcesses;
static DWORD numProcesses;

// Open: Find the current ML instances.
DWORD APIENTRY OpenPolyPerfMon(LPWSTR lpInstanceNames)
{
    // Get the list of all process IDs.  Because we don't know
    // how many there are we increase the buffer size until the
    // size returned is less than the buffer size.
    DWORD buffItems = 10, numItems;
    DWORD *processIds = NULL;
    while (true) {
        processIds = (DWORD*)malloc(buffItems * sizeof(DWORD));
        if (processIds == NULL)
            return ERROR_NOT_ENOUGH_MEMORY;
        DWORD bytesNeeded;
        if (! EnumProcesses(processIds, buffItems * sizeof(DWORD), &bytesNeeded))
            return GetLastError();
        if (bytesNeeded < buffItems * sizeof(DWORD))
        {
            numItems = bytesNeeded / sizeof(DWORD);
            break;
        }
        buffItems = buffItems * 2;
        free(processIds);
    }
    // How many of these processes provide the Poly/ML shared memory?
    // Make an array big enough for all processes to simplify allocation.
    polyProcesses = (PolyProcess **)malloc(numItems * sizeof(PolyProcess*));
    if (polyProcesses == NULL)
    {
        free(processIds);
        free(polyProcesses);
        return ERROR_NOT_ENOUGH_MEMORY;
    }

    for (DWORD dw = 0; dw < numItems; dw++)
    {
        // See if this is a Poly/ML process
        PolyProcess *pProc = PolyProcess::CreateProcessEntry(processIds[dw]);
        if (pProc != NULL) // We can use this
            polyProcesses[numProcesses++] = pProc;
    }

    free(processIds);
    return ERROR_SUCCESS;
}

// Delete the entries.
DWORD APIENTRY ClosePolyPerfMon(void)
{
    if (polyProcesses != NULL)
    {
        for (DWORD dw = 0; dw < numProcesses; dw++)
            delete(polyProcesses[dw]);
        free(polyProcesses);
    }
    polyProcesses = NULL;
    numProcesses = 0;

    return ERROR_SUCCESS;
}

static LPVOID allocBuffSpace(LPVOID * &lppData, LPDWORD &lpcbTotalBytes, DWORD &dwBytesAvailable, DWORD size)
{
    if (dwBytesAvailable < size) return NULL;
    LPVOID pResult = *lppData;
    *lppData = (LPVOID)((char*)pResult + size);
    memset(pResult, 0, size);
    *lpcbTotalBytes += size;
    dwBytesAvailable -= size;
    return pResult;
}

// This is the entry that actually does the work.
DWORD APIENTRY CollectPolyPerfMon(
   /* IN     */LPWSTR lpRequest,
   /* lpRequest is either "Global" (all counters) or a list of counter numbers to return.
      These are the indexes into counter table in the Perflib\009 registry entry. */
   /* IN OUT */LPVOID* lppData,
   /* IN OUT */LPDWORD lpcbTotalBytes,
   /* OUT    */LPDWORD lpNumObjectTypes)
{
    DWORD dwBytesAvailable = *lpcbTotalBytes;
    LPVOID lpDataStart = *lppData;
    *lpcbTotalBytes = 0;        // Bytes written
    *lpNumObjectTypes = 0;      // Object types written
    // For the moment we ignore the lpRequest argument and return all the counters.

    // First find out where our strings are in the list.  This depends on
    // the strings installed by other applications/services so will vary
    // from machine to machine.  The installer will have added keys under
    // our "service".  If these can't be read then there's nothing we can do.

    HKEY hkPerform;
    LONG err;

    err = RegOpenKeyEx(HKEY_LOCAL_MACHINE,
            "SYSTEM\\CurrentControlSet\\Services\\PolyML\\Performance", 0,
            KEY_READ, &hkPerform);
    if (err != ERROR_SUCCESS)
        return err;

    DWORD dwType, dwSize, dwFirstCounter, dwFirstHelp;

    dwSize = sizeof(dwFirstCounter);
    err = RegQueryValueEx(hkPerform, "First Counter", 0, &dwType, (LPBYTE)&dwFirstCounter, &dwSize);
    if (err != ERROR_SUCCESS)
    {
        RegCloseKey(hkPerform);
        return err;
    }

    dwSize = sizeof(dwFirstHelp);
    err = RegQueryValueEx(hkPerform, "First Help", 0, &dwType, (LPBYTE)&dwFirstHelp, &dwSize);
    if (err != ERROR_SUCCESS)
    {
        RegCloseKey(hkPerform);
        return err;
    }
    RegCloseKey(hkPerform);

    // The actual strings are inserted by the installer.  See PolyML.wxs.
    unsigned stringCount = 0;

    // Object header.  Just one object.
    PERF_OBJECT_TYPE *pObjectType = 
        (PERF_OBJECT_TYPE*)allocBuffSpace(lppData, lpcbTotalBytes, dwBytesAvailable, sizeof(PERF_OBJECT_TYPE));
    if (pObjectType == NULL) return ERROR_MORE_DATA;
    pObjectType->HeaderLength = sizeof(PERF_OBJECT_TYPE);
    pObjectType->ObjectNameTitleIndex = dwFirstCounter + stringCount*2; // First string is the name of the object
    pObjectType->ObjectHelpTitleIndex = dwFirstHelp + (stringCount++)*2;
    pObjectType->DetailLevel = PERF_DETAIL_NOVICE;
    pObjectType->NumCounters = 0;
    pObjectType->DefaultCounter = -1;
    pObjectType->NumInstances = numProcesses;

    // Counter block for each counter.
    // First the numbers
    PERF_COUNTER_DEFINITION *pCounters =
        (PERF_COUNTER_DEFINITION*)allocBuffSpace(lppData, lpcbTotalBytes, dwBytesAvailable,
            sizeof(PERF_COUNTER_DEFINITION) * N_PS_COUNTERS);
    if (pCounters == NULL) return ERROR_MORE_DATA;
    for (unsigned i = 0; i < N_PS_COUNTERS; i++)
    {
        pCounters[i].ByteLength = sizeof(PERF_COUNTER_DEFINITION);
        pCounters[i].CounterNameTitleIndex = dwFirstCounter + stringCount*2;
        pCounters[i].CounterHelpTitleIndex = dwFirstHelp + (stringCount++)*2;
        pCounters[i].DetailLevel = PERF_DETAIL_NOVICE;
        pCounters[i].CounterType = PERF_COUNTER_RAWCOUNT;
        pCounters[i].CounterSize = SIZEOF_COUNTER;
        pCounters[i].CounterOffset = offsetof(statistics, psCounters)+i*SIZEOF_COUNTER;
        pObjectType->NumCounters++;
    }

    // The sizes are dealt with specially.  We need to divide the values and express
    // them as percentages.  Each displayed value is followed by a base value.
    PERF_COUNTER_DEFINITION *pSizes =
        (PERF_COUNTER_DEFINITION*)allocBuffSpace(lppData, lpcbTotalBytes, dwBytesAvailable,
            sizeof(PERF_COUNTER_DEFINITION) * 6);
    if (pSizes == NULL) return ERROR_MORE_DATA;
    // First - Heap usage after last GC
    pSizes[0].ByteLength = sizeof(PERF_COUNTER_DEFINITION);
    pSizes[0].CounterNameTitleIndex = dwFirstCounter + stringCount*2;
    pSizes[0].CounterHelpTitleIndex = dwFirstHelp + (stringCount++)*2;
    pSizes[0].DetailLevel = PERF_DETAIL_NOVICE;
    pSizes[0].CounterType = PERF_RAW_FRACTION;
    pSizes[0].CounterSize = SIZEOF_SIZE;
    pSizes[0].CounterOffset =
        offsetof(statistics, psSizes)+PSS_AFTER_LAST_GC*SIZEOF_SIZE;
    pObjectType->NumCounters++;
    pSizes[1].ByteLength = sizeof(PERF_COUNTER_DEFINITION);
    pSizes[1].CounterNameTitleIndex = dwFirstCounter + stringCount*2;
    pSizes[1].CounterHelpTitleIndex = dwFirstHelp + (stringCount++)*2;
    pSizes[1].DetailLevel = PERF_DETAIL_NOVICE;
    pSizes[1].CounterType = PERF_RAW_BASE;
    pSizes[1].CounterSize = SIZEOF_SIZE;
    pSizes[1].CounterOffset =
        offsetof(statistics, psSizes)+PSS_TOTAL_HEAP*SIZEOF_SIZE;
    pObjectType->NumCounters++;
    // Second - Heap usage after last full GC
    pSizes[2].ByteLength = sizeof(PERF_COUNTER_DEFINITION);
    pSizes[2].CounterNameTitleIndex = dwFirstCounter + stringCount*2;
    pSizes[2].CounterHelpTitleIndex = dwFirstHelp + (stringCount++)*2;
    pSizes[2].DetailLevel = PERF_DETAIL_NOVICE;
    pSizes[2].CounterType = PERF_RAW_FRACTION;
    pSizes[2].CounterSize = SIZEOF_SIZE;
    pSizes[2].CounterOffset =
        offsetof(statistics, psSizes)+PSS_AFTER_LAST_FULLGC*SIZEOF_SIZE;
    pObjectType->NumCounters++;
    pSizes[3].ByteLength = sizeof(PERF_COUNTER_DEFINITION);
    pSizes[3].CounterNameTitleIndex = dwFirstCounter + stringCount*2;
    pSizes[3].CounterHelpTitleIndex = dwFirstHelp + (stringCount++)*2;
    pSizes[3].DetailLevel = PERF_DETAIL_NOVICE;
    pSizes[3].CounterType = PERF_RAW_BASE;
    pSizes[3].CounterSize = SIZEOF_SIZE;
    pSizes[3].CounterOffset =
        offsetof(statistics, psSizes)+PSS_TOTAL_HEAP*SIZEOF_SIZE;
    pObjectType->NumCounters++;
    // Third - Unreserved space in allocation area
    pSizes[4].ByteLength = sizeof(PERF_COUNTER_DEFINITION);
    pSizes[4].CounterNameTitleIndex = dwFirstCounter + stringCount*2;
    pSizes[4].CounterHelpTitleIndex = dwFirstHelp + (stringCount++)*2;
    pSizes[4].DetailLevel = PERF_DETAIL_NOVICE;
    pSizes[4].CounterType = PERF_RAW_FRACTION;
    pSizes[4].CounterSize = SIZEOF_SIZE;
    pSizes[4].CounterOffset =
        offsetof(statistics, psSizes)+PSS_ALLOCATION_FREE*SIZEOF_SIZE;
    pObjectType->NumCounters++;
    pSizes[5].ByteLength = sizeof(PERF_COUNTER_DEFINITION);
    pSizes[5].CounterNameTitleIndex = dwFirstCounter + stringCount*2;
    pSizes[5].CounterHelpTitleIndex = dwFirstHelp + (stringCount++)*2;
    pSizes[5].DetailLevel = PERF_DETAIL_NOVICE;
    pSizes[5].CounterType = PERF_RAW_BASE;
    pSizes[5].CounterSize = SIZEOF_SIZE;
    pSizes[5].CounterOffset =
        offsetof(statistics, psSizes)+PSS_ALLOCATION*SIZEOF_SIZE;
    pObjectType->NumCounters++;

    // Then the times
    PERF_COUNTER_DEFINITION *pTimes =
        (PERF_COUNTER_DEFINITION*)allocBuffSpace(lppData, lpcbTotalBytes, dwBytesAvailable,
            sizeof(PERF_COUNTER_DEFINITION) * N_PS_TIMES);
    if (pTimes == NULL) return ERROR_MORE_DATA;
    for (unsigned k = 0; k < N_PS_TIMES; k++)
    {
        pTimes[k].ByteLength = sizeof(PERF_COUNTER_DEFINITION);
        pTimes[k].CounterNameTitleIndex = dwFirstCounter + stringCount*2;
        pTimes[k].CounterHelpTitleIndex = dwFirstHelp + (stringCount++)*2;
        pTimes[k].DetailLevel = PERF_DETAIL_NOVICE;
        pTimes[k].CounterType = PERF_100NSEC_TIMER;
        pTimes[k].CounterSize = SIZEOF_TIME;
        pTimes[k].CounterOffset = offsetof(statistics, psTimers)+k*SIZEOF_TIME;
        pObjectType->NumCounters++;
    }

    // Finally the user counters
    PERF_COUNTER_DEFINITION *pUsers =
        (PERF_COUNTER_DEFINITION*)allocBuffSpace(lppData, lpcbTotalBytes, dwBytesAvailable,
            sizeof(PERF_COUNTER_DEFINITION) * N_PS_USER);
    if (pUsers == NULL) return ERROR_MORE_DATA;
    for (unsigned l = 0; l < N_PS_USER; l++)
    {
        pUsers[l].ByteLength = sizeof(PERF_COUNTER_DEFINITION);
        pUsers[l].CounterNameTitleIndex = dwFirstCounter + stringCount*2;
        pUsers[l].CounterHelpTitleIndex = dwFirstHelp + (stringCount++)*2;
        pUsers[l].DetailLevel = PERF_DETAIL_NOVICE;
        pUsers[l].CounterType = PERF_COUNTER_RAWCOUNT;
        pUsers[l].CounterSize = SIZEOF_USER;
        pUsers[l].CounterOffset = offsetof(statistics, psUser)+l*SIZEOF_USER;
        pObjectType->NumCounters++;
    }

    pObjectType->DefinitionLength = *lpcbTotalBytes; // End of definitions; start of instance data

    // Instance data - One entry for each process.  Includes the instance name (i.e. the process)
    // and the counter data.
    for (DWORD dw = 0; dw < numProcesses; dw++)
    {
        PERF_INSTANCE_DEFINITION *pInst =
            (PERF_INSTANCE_DEFINITION*)allocBuffSpace(lppData, lpcbTotalBytes, dwBytesAvailable, sizeof(PERF_INSTANCE_DEFINITION));
        if (pInst == NULL) return ERROR_MORE_DATA;
        PolyProcess *pProc = polyProcesses[dw];
        pInst->UniqueID = PERF_NO_UNIQUE_ID; // Better to show the name
        pInst->NameOffset = sizeof(PERF_INSTANCE_DEFINITION); // Name follows
        DWORD len = (DWORD)wcslen(pProc->processName);
        DWORD byteLength = (len+1)*sizeof(WCHAR); // Length including terminators
        pInst->NameLength = byteLength;
        byteLength = (byteLength + 7) / 8 * 8; // Must be rounded up to an eight-byte boundary.
        pInst->ByteLength = byteLength + sizeof(PERF_INSTANCE_DEFINITION);
        WCHAR *pName = (WCHAR*)allocBuffSpace(lppData, lpcbTotalBytes, dwBytesAvailable, byteLength);
        wcscpy(pName, pProc->processName);

        // Now the statistics including a PERF_COUNTER_BLOCK
        DWORD statSize = (sizeof(statistics) + 7) / 8 * 8;
        statistics *pStats  =
            (statistics*)allocBuffSpace(lppData, lpcbTotalBytes, dwBytesAvailable, statSize);
        if (pStats == NULL) return ERROR_MORE_DATA;

        pStats->header.ByteLength = sizeof(PERF_COUNTER_BLOCK)+statSize;
        ASN1Parse decode(pStats, pProc->sharedMem);
        decode.asn1Decode();
    }

    pObjectType->TotalByteLength = *lpcbTotalBytes;
    *lpNumObjectTypes = 1; // Single object
    return ERROR_SUCCESS;
}