1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
(*
Title: Standard Basis Library: LargeInt and FixedInt structures
Copyright David C.J. Matthews 1999, 2016
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(* LargeInt is defined in INITIALISE. *)
signature INTEGER =
sig
eqtype int
val toLarge : int -> LargeInt.int
val fromLarge : LargeInt.int -> int
val toInt : int -> Int.int
val fromInt : Int.int -> int
val precision : Int.int option
val minInt : int option
val maxInt : int option
val ~ : int -> int
val * : (int * int) -> int
val div : (int * int) -> int
val mod : (int * int) -> int
val quot : (int * int) -> int
val rem : (int * int) -> int
val + : (int * int) -> int
val - : (int * int) -> int
val compare : (int * int) -> General.order
val > : (int * int) -> bool
val >= : (int * int) -> bool
val < : (int * int) -> bool
val <= : (int * int) -> bool
val abs : int -> int
val min : (int * int) -> int
val max : (int * int) -> int
val sign : int -> Int.int
val sameSign : (int * int) -> bool
val fmt : StringCvt.radix -> int -> string
val toString : int -> string
val fromString : string -> int option
val scan : StringCvt.radix -> (char, 'a) StringCvt.reader -> (int, 'a) StringCvt.reader
end;
structure LargeInt: INTEGER =
struct
(* Arbitrary precision int. *)
type int = LargeInt.int
fun toLarge i = i and fromLarge i = i
(* Whether int is short or long we can just cast it here. *)
val fromInt: Int.int -> int = RunCall.unsafeCast (* Just a cast. *)
(* If int is fixed precision we have to check that the value will fit. *)
fun toInt(i: int): Int.int =
if Bootstrap.intIsArbitraryPrecision orelse LibrarySupport.largeIntIsSmall i
then RunCall.unsafeCast i
else raise Overflow
val precision = NONE (* Arbitrary precision. *)
and minInt = NONE
and maxInt = NONE
val zero = fromInt 0 (* Avoids repeated use of fromInt. *)
fun abs (i: int): int = if i >= zero then i else ~ i
fun compare (i, j) =
if i < j then General.LESS
else if i > j then General.GREATER else General.EQUAL
fun min (i, j) = if i < j then i else j
and max (i, j) = if i > j then i else j
fun sign i : Int.int = if i = zero then 0 else if i < zero then ~1 else 1
fun sameSign(i, j) =
if i = zero then j = zero
else if i < zero then j < zero
else (* i > 0 *) j > zero
local
val fixedIntAsWord: FixedInt.int -> word = RunCall.unsafeCast
(* To reduce the need for arbitrary precision arithmetic we can try to
process values in groups. *)
(* Return the largest short value and the number of digits. *)
fun maxShort(n, radix, acc) =
if LibrarySupport.largeIntIsSmall(acc * radix)
then maxShort(n+1, radix, acc*radix)
else (acc, fixedIntAsWord n)
val (maxB, lenB) = maxShort(0, fromInt 2, fromInt 1)
and (maxO, lenO) = maxShort(0, fromInt 8, fromInt 1)
and (maxD, lenD) = maxShort(0, fromInt 10, fromInt 1)
and (maxH, lenH) = maxShort(0, fromInt 16, fromInt 1)
in
(* Local function *)
fun baseOf StringCvt.BIN = (2, maxB, lenB)
| baseOf StringCvt.OCT = (8, maxO, lenO)
| baseOf StringCvt.DEC = (10, maxD, lenD)
| baseOf StringCvt.HEX = (16, maxH, lenH)
end
local
open LibrarySupport
(* Int.toChars turned out to be a major allocation hot-spot in some Isabelle
examples. The old code created a list of the characters and then concatenated
them. This cost 3 words for each character before the actual string was
created. This version avoids that problem. This has also now been
modified to reduce the arbitrary precision arithmetic required when the
value is long. Instead of reducing it by the radix each time we take off
chunks of up to the maximum value that can be represented as a short precision
value. *)
fun toChar (digit: Int.int): char =
if digit < 10 then Char.chr(Char.ord(#"0") + digit)
else (* Hex *) Char.chr(Char.ord(#"A") + digit - 10)
in
fun fmt radix i =
let
val (base, maxShort, shortChars) = baseOf radix
val negative = i < zero
fun toChars(0, chars, continuation, pad) =
(* Finished the group. *)
if continuation = zero
then
(
(* Really finished. Allocate the string. *)
if negative
then
let
val res = allocString(chars+0w1)
in
RunCall.storeByte(res, wordSize, #"~");
(res, wordSize+0w1)
end
else (* Positive *) (allocString chars, wordSize)
)
else (* Finished this group but have at least one more group. *)
let
val (result, pos) = toCharGroup(continuation, chars + pad)
fun addZeros n =
if n = pad then ()
else (RunCall.storeByte(result, pos+n, #"0"); addZeros(n+0w1))
in
addZeros 0w0;
(result, pos+pad)
end
| toChars(i, chars, continuation, pad) =
(* More to do in this group. *)
let
(* TODO: We haven't defined Int.quot and Int.rem yet although they
would be faster since we know this is short. *)
val ch = toChar (i mod base)
(* Get the string. *)
val (result, pos) =
toChars(i div base, chars+0w1, continuation, pad-0w1)
in
RunCall.storeByte(result, pos, ch);
(result, pos+0w1)
end
(* Process a group of characters that will fit in a short
precision number. *)
and toCharGroup(i, chars) =
if LibrarySupport.largeIntIsSmall i
then toChars(toInt i, chars, zero, 0w0)
else
let
val (q, r) = quotRem(i, maxShort)
in
toChars(toInt r, chars, q, shortChars)
end
in
if i = zero
then "0" (* This is the only case where we print a leading zero. *)
else
let
val (result, _) = toCharGroup(abs i, 0w0)
in
RunCall.clearMutableBit result;
result
end
end
end
val toString = fmt StringCvt.DEC
fun scan radix getc src =
let
val (base, _, _) = baseOf radix
val baseAsLarge = fromInt base
val sixteen = fromInt 16
(* Read the digits, accumulating the result in acc. isOk is true
once we have read a valid digit. *)
fun read_digits src acc isOk =
case getc src of
NONE => if isOk then SOME(acc, src) else NONE
| SOME(ch, src') =>
if Char.ord ch >= Char.ord #"0"
andalso Char.ord ch < (Char.ord #"0" + base)
then read_digits src'
(acc*baseAsLarge + fromInt(Char.ord ch - Char.ord #"0")) true
else (* Invalid character - either end of number or bad no. *)
if isOk then SOME(acc, src) else NONE
fun read_hex_digits src acc isOk =
case getc src of
NONE => if isOk then SOME(acc, src) else NONE
| SOME(ch, src') =>
if Char.ord ch >= Char.ord #"0"
andalso Char.ord ch <= Char.ord #"9"
then read_hex_digits src'
(acc*sixteen + fromInt(Char.ord ch - Char.ord #"0")) true
else if Char.ord ch >= Char.ord #"A"
andalso Char.ord ch <= Char.ord #"F"
then read_hex_digits src'
(acc*sixteen + fromInt(Char.ord ch - Char.ord #"A" + 10)) true
else if Char.ord ch >= Char.ord #"a"
andalso Char.ord ch <= Char.ord #"f"
then read_hex_digits src'
(acc*sixteen + fromInt(Char.ord ch - Char.ord #"a" + 10)) true
else (* Invalid character - either end of number or bad no. *)
if isOk then SOME(acc, src) else NONE
(*
There is a special case with hex numbers. A hex number MAY begin
with 0x or 0X e.g. 0x1f0 but need not. So "0x " and "0xg" are
both valid and represent the value 0 with "x " and "xg" as the
continuations of the input.
*)
fun read_number src =
if base = 16
then (* Hex. *)
(
case getc src of
NONE => NONE
| SOME(ch, src') =>
if ch <> #"0"
then read_hex_digits src zero false
else
(
case getc src' of
NONE => SOME(zero, src') (* Accept the 0 *)
| SOME(ch, src'') =>
if ch = #"x" orelse ch = #"X"
then
(
(*
See if the characters after the 0x
form a valid hex number. If so return
that, if not return the 0 and treat
the rest of the string as starting
with the x.
*)
case read_hex_digits src'' zero false of
NONE => SOME(zero, src') (* Accept the 0 *)
| res => res
)
else (* Start from the 0. *)
read_hex_digits src zero false
)
)
else (* Binary, octal and decimal *) read_digits src zero false
in
case getc src of
NONE => NONE
| SOME(ch, src') =>
if Char.isSpace ch (* Skip white space. *)
then scan radix getc src' (* Recurse *)
else if ch = #"+" (* Remove the + sign *)
then read_number src'
else if ch = #"-" orelse ch = #"~"
then
(
case read_number src' of
NONE => NONE
| SOME(i, r) => SOME(~i, r)
)
else (* See if it's a valid digit. *)
read_number src
end
(* TODO: Implement this directly? *)
val fromString = StringCvt.scanString (scan StringCvt.DEC)
(* Converter to LargeInt values. *)
local
(* The string may be either decimal or hex. *)
fun convInt s =
let
val radix =
if String.size s >= 3 andalso String.substring(s, 0, 2) = "0x"
orelse String.size s >= 4 andalso String.substring(s, 0, 3) = "~0x"
then StringCvt.HEX else StringCvt.DEC
in
case StringCvt.scanString (scan radix) s of
NONE => raise RunCall.Conversion "Invalid integer constant"
| SOME res => res
end
in
(* Add a conversion function. *)
val () = RunCall.addOverload convInt "convInt"
end
open LargeInt (* Everything else. *)
end;
structure FixedInt: INTEGER =
struct
(* This is now a fixed precision int. Currently it is the same as the short
form of an arbitrary precision int i.e. 31 bits on 32-bit machines and
63 bits on 63-bits. *)
type int = FixedInt.int (* Defined in the basis *)
(* Whether int is fixed or arbitrary precision we can just cast it here. *)
val toInt: int -> Int.int = RunCall.unsafeCast (* Just a cast. *)
(* If int is arbitrary precision we have to check that the value will fit. *)
fun fromInt(i: Int.int): int =
if LibrarySupport.isShortInt i
then RunCall.unsafeCast i
else raise Overflow
(* Conversion from fixed int to large is just a cast. It will always fit. *)
val toLarge: int -> LargeInt.int = RunCall.unsafeCast
(* When converting from arbitrary precision we have to check. *)
fun fromLarge(i: LargeInt.int): int =
if LibrarySupport.largeIntIsSmall i
then RunCall.unsafeCast i
else raise Overflow
local
fun power2' n 0 : LargeInt.int = n
| power2' n i = power2' (2*n) (i-1)
val power2 = power2' 1
val bitsInWord: int = (RunCall.unsafeCast LibrarySupport.wordSize) * 8
val wordSize = bitsInWord - 1 (* 31 or 63 bits *)
val maxIntP1 = power2(wordSize-1)
in
val precision = SOME(toInt wordSize)
val maxInt = SOME(fromLarge(maxIntP1-1))
val smallestInt = fromLarge(~ maxIntP1)
val minInt = SOME smallestInt
end
fun scan radix rdr src =
case LargeInt.scan radix rdr src of
NONE => NONE
| SOME(i, c) => SOME(fromLarge i, c)
(* Converter to int values. This replaces the basic conversion
function for ints installed in the bootstrap process. In
particular this converter can handle hexadecimal. *)
local
fun convInt s =
let
val radix =
if String.size s >= 3 andalso String.substring(s, 0, 2) = "0x"
orelse String.size s >= 4 andalso String.substring(s, 0, 3) = "~0x"
then StringCvt.HEX else StringCvt.DEC
in
case StringCvt.scanString (scan radix) s of
NONE => raise RunCall.Conversion "Invalid integer constant"
| SOME res => res
end
in
val () = RunCall.addOverload convInt "convInt"
end
(* Can now open FixedInt. *)
open FixedInt
(* TODO: We should implement div and mod as built-ins because then they
can access the remainder and quotient directly.
Also, division by a power of two can be implemented as an
arithmetic shift because this rounds towards negative infinity
which is what we want. *)
fun compare (i, j) =
if i < j then General.LESS
else if i > j then General.GREATER else General.EQUAL
(*fun abs i = if i >= 0 then i else ~ i*)
fun min (i, j) = if i < j then i else j
and max (i, j) = if i > j then i else j
fun sign i = if i = 0 then 0 else if i < 0 then ~1 else 1
(* It might be possible to do something clever by xor-ing the
words together when both values are short. *)
fun sameSign(i, j) =
if i = 0 then j = 0
else if i < 0 then j < 0
else (* i > 0 *) j > 0
fun fmt r n = LargeInt.fmt r (toLarge n)
val fromString = StringCvt.scanString (scan StringCvt.DEC)
and toString = LargeInt.toString o toLarge
(* These are overloaded functions and are treated specially. *)
(* val ~ : int->int = ~
and op * : int*int->int = op *
and op + : int*int->int = op +
and op - : int*int->int = op -
val op < : int*int->bool = op <
and op > : int*int->bool = op >
and op <= : int*int->bool = op <=
and op >= : int*int->bool = op >=*)
end;
val () = RunCall.addOverload FixedInt.div "div"
and () = RunCall.addOverload FixedInt.mod "mod";
(* Add extra overloadings for arbitrary precision. *)
val () = RunCall.addOverload LargeInt.abs "abs"
and () = RunCall.addOverload LargeInt.div "div"
and () = RunCall.addOverload LargeInt.mod "mod";
local
(* Install the pretty printer for int *)
fun prettyFixed _ _ x = PolyML.PrettyString(FixedInt.toString x)
fun prettyLarge _ _ x = PolyML.PrettyString(LargeInt.toString x)
in
val () = PolyML.addPrettyPrinter prettyFixed
and () = PolyML.addPrettyPrinter prettyLarge
end;
(* For the moment use arbitrary precision here. *)
structure Position = LargeInt;
(* The actual Int structure is defined depending on what int is. *)
|