1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
(*
Title: Standard Basis Library: Word and LargeWord Structure
Copyright David Matthews 1999, 2005, 2012, 2016
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*
This file contains definitions of both LargeWord and Word. SysWord is
defined to be LargeWord.
The only purpose of LargeWord is so that it can be used, as SysWord, to
hold the full machine word values for certain operating-system calls.
*)
(* This uses the global definition of type "word" made in the compiler.
That type has special status as the default for literals of the form
0wn in the absence of any other type information. *)
local
type largeword = LargeWord.word
and shortword = Word.word
(* Extract a word value from a character stream. *)
(* There's a complication here which is similar to that with 0x for
Int.scan. A word value may, optionally, be preceded by 0w or
for hex values 0wx, 0wX, 0x or 0X. Since this is optional it is
possible for the value after the 0w to be anything, not just a
valid number, in which case the result is the 0 and the continuation
is w... *)
fun scanWord radix getc src =
let
(* Some of this code duplicates code in Int.scan. It would
be better to avoid that if we could. The difficulty is that
Int.scan allows the number to begin with a sign and also
another 0x for hex values. *)
val base: LargeInt.int =
case radix of
StringCvt.BIN => 2
| StringCvt.OCT => 8
| StringCvt.DEC => 10
| StringCvt.HEX => 16
(* Read the digits, accumulating the result in acc. isOk is true
once we have read a valid digit. *)
fun read_digits src acc isOk =
case getc src of
NONE => if isOk then SOME(acc, src) else NONE
| SOME(ch, src') =>
if Char.ord ch >= Char.ord #"0"
andalso Char.ord ch < (Char.ord #"0" + LargeInt.toInt base)
then read_digits src'
(acc*base + LargeInt.fromInt(Char.ord ch - Char.ord #"0")) true
else (* Invalid character - either end of number or bad no. *)
if isOk then SOME(acc, src) else NONE
fun read_hex_digits src acc isOk =
case getc src of
NONE => if isOk then SOME(acc, src) else NONE
| SOME(ch, src') =>
if Char.ord ch >= Char.ord #"0"
andalso Char.ord ch <= Char.ord #"9"
then read_hex_digits src'
(acc*16 + LargeInt.fromInt(Char.ord ch - Char.ord #"0")) true
else if Char.ord ch >= Char.ord #"A"
andalso Char.ord ch <= Char.ord #"F"
then read_hex_digits src'
(acc*16 + LargeInt.fromInt(Char.ord ch - Char.ord #"A" + 10)) true
else if Char.ord ch >= Char.ord #"a"
andalso Char.ord ch <= Char.ord #"f"
then read_hex_digits src'
(acc*16 + LargeInt.fromInt(Char.ord ch - Char.ord #"a" + 10)) true
else (* Invalid character - either end of number or bad no. *)
if isOk then SOME(acc, src) else NONE
fun read_number src =
case radix of
StringCvt.HEX => read_hex_digits src 0 false
| _ => (* Binary, octal and decimal *) read_digits src 0 false
in
case getc src of
NONE => NONE
| SOME(#"0", src') =>
let (* May be the start of the number or may be 0w, 0x etc. *)
val after0 =
case getc src' of
NONE => NONE
| SOME(ch, src'') =>
if ch = #"w"
then if radix = StringCvt.HEX
then (* Is it 0wx, 0wX ? *)
(
case getc src'' of
NONE => NONE
| SOME(ch, src''') =>
if ch = #"x" orelse ch = #"X"
then read_number src''' (* Skip the 0wx *)
else read_number src'' (* Skip the 0w *)
)
else read_number src'' (* Skip the 0w *)
else if (ch = #"x" orelse ch = #"X") andalso radix = StringCvt.HEX
then read_number src''
else read_number src (* Include the 0 in the input *)
in
(* If the string *)
case after0 of
NONE => (* No valid number after it, return the zero .*)
SOME(0, src')
| res => res
end
| SOME(ch, src') =>
if Char.isSpace ch (* Skip white space. *)
then scanWord radix getc src' (* Recurse *)
else (* See if it's a valid digit. *)
read_number src
end (* scanWord *)
(* Conversion from arbitrary precision integer may involve extracting the low-order word
from a long-integer representation. *)
local
val getLowOrderWord: LargeInt.int -> LargeWord.word =
RunCall.rtsCallFull1 "PolyGetLowOrderAsLargeWord"
val isShortInt: LargeInt.int -> bool = RunCall.isShort
in
fun wordFromLargeInt (i: LargeInt.int): word =
if isShortInt i
then RunCall.unsafeCast i
else Word.fromLargeWord(getLowOrderWord i)
and largeWordFromLargeInt (i: LargeInt.int): LargeWord.word =
if isShortInt i
then Word.toLargeX(RunCall.unsafeCast i)
else getLowOrderWord i
end
(* We have to use the full conversion if int is arbitrary precision. If int is
fixed precision this will be optimised away. *)
fun wordFromInt(i: int): word =
if Bootstrap.intIsArbitraryPrecision
then wordFromLargeInt(LargeInt.fromInt i)
else RunCall.unsafeCast i
(* The maximum word is the largest tagged value. The maximum large-word is
the largest value that will fit in a machine word. *)
local
fun power2' n 0 : LargeInt.int = n
| power2' n i = power2' (2*n) (i-1)
val power2 = power2' 1
val bitsInWord: int = (RunCall.unsafeCast LibrarySupport.wordSize) * 8
in
val wordSize = bitsInWord - 1 (* 31 or 63 bits *)
val maxWordP1: LargeInt.int = power2 wordSize (* One more than the maximum word *)
val maxWord: LargeInt.int = maxWordP1 - 1
val largeWordSize = bitsInWord
val maxLargeWord = power2 largeWordSize - 1
val largeWordTopBit: LargeInt.int = maxWordP1 (* The top bit of a large word *)
val maxWordAsWord = wordFromLargeInt maxWord
end
in
structure Word :> WORD where type word = shortword =
struct
(* Word.word is represented using the short (tagged) integer format.
It is, though, unsigned so large word values are represented in the
same form as negative integers. *)
type word = word
val fromInt = wordFromInt
and wordSize = wordSize
and fromLargeInt = wordFromLargeInt
(* Conversion to signed integer is simple. *)
val toIntX: word->int = RunCall.unsafeCast
and toLargeIntX: word -> LargeInt.int = RunCall.unsafeCast
(* Conversion to unsigned integer has to treat values with the sign bit
set specially. *)
fun toLargeInt x =
let
val signed = toLargeIntX x
in
if signed < 0 then maxWordP1 + signed else signed
end
fun toInt x = LargeInt.toInt(toLargeInt x)
fun scan radix getc src =
case scanWord radix getc src of
NONE => NONE
| SOME(res, src') =>
if res > maxWord then raise General.Overflow
else SOME(fromLargeInt res, src')
(* TODO: Implement this directly? *)
val fromString = StringCvt.scanString (scan StringCvt.HEX)
infix >> << ~>>
(* We can format the result using the large integer format function. *)
fun fmt radix i = LargeInt.fmt radix (toLargeInt i)
val toString = fmt StringCvt.HEX
fun compare (i, j) =
if i < j then General.LESS
else if i > j then General.GREATER else General.EQUAL
fun min (i, j) = if i < j then i else j
and max (i, j) = if i > j then i else j
open Word (* Include all the initial definitions. *)
fun notb x = xorb(maxWordAsWord, x)
end (* Word *)
(* LargeWord.word values have one more bit of precision than Word,word values and
are always "boxed" i.e. held in a one word piece of memory with the "byte" bit set. *)
structure LargeWord:> WORD where type word = largeword =
struct
open LargeWord (* Add in the built-ins. *)
type word = largeword
val wordSize = largeWordSize
(* As this is LargeWord we don't need to do anything here. *)
fun toLargeWord x = x
and toLargeWordX x = x
and fromLargeWord x = x
val toLarge = toLargeWord and toLargeX = toLargeWordX and fromLarge = fromLargeWord
val fromLargeInt = largeWordFromLargeInt
local
val shortToWord: LargeInt.int -> largeword = Word.toLargeWordX o RunCall.unsafeCast
val longToInt: largeword -> LargeInt.int = RunCall.unsafeCast o Word.fromLargeWord
val zero: largeword = shortToWord 0
infix << orb andb
local
open Int
in
val topBitAsLargeWord: largeword =
(* The top bit *) shortToWord 1 << Word.fromInt(largeWordSize - 1)
end
fun topBitClear (x: largeword) : bool = (x andb topBitAsLargeWord) = zero
in
fun toLargeInt x =
let
val asInt: LargeInt.int = longToInt x
open LargeInt (* <, + and - are all LargeInt ops. *)
in
(if asInt < 0 then maxWordP1 + asInt else asInt) +
(if topBitClear x then 0 else largeWordTopBit)
end
and toLargeIntX x =
let
val asInt: LargeInt.int = longToInt x
open LargeInt
in
(if asInt < 0 then maxWordP1 + asInt else asInt) -
(if topBitClear x then 0 else largeWordTopBit)
end
val zero = zero
val maxLargeWordAsLargeWord = fromLargeInt maxLargeWord
end
fun ~ x = zero - x
fun notb x = xorb(maxLargeWordAsLargeWord, x)
(* If int is fixed precision an int is the same size as a word and will always fit within a
large-word value. *)
fun fromInt(i: int): word =
if Bootstrap.intIsArbitraryPrecision
then fromLargeInt(LargeInt.fromInt i)
else Word.toLargeWord(Word.fromInt i)
and toInt(w: word): int =
if Bootstrap.intIsArbitraryPrecision
then LargeInt.toInt(toLargeInt w)
else Word.toInt(Word.fromLargeWord w)
and toIntX(w: word): int =
if Bootstrap.intIsArbitraryPrecision
then LargeInt.toInt(toLargeIntX w)
else Word.toIntX(Word.fromLargeWord w)
fun scan radix getc src =
case scanWord radix getc src of
NONE => NONE
| SOME(res, src') =>
if LargeInt.>(res, maxLargeWord) then raise General.Overflow
else SOME(fromLargeInt res, src')
val fromString = StringCvt.scanString (scan StringCvt.HEX)
fun compare (i, j) =
if i < j then General.LESS
else if i > j then General.GREATER else General.EQUAL
fun min (i, j) = if i < j then i else j
and max (i, j) = if i > j then i else j
(* We can format the result using the large integer format function.
Large unsigned values may be outside the short integer range. *)
fun fmt radix i = LargeInt.fmt radix (toLargeInt i)
val toString = fmt StringCvt.HEX
end;
end;
local
(* Install the pretty printer for Word.word *)
fun prettyWord _ _ x =
PolyML.PrettyString("0wx" ^ Word.toString x)
and prettyLarge _ _ x =
PolyML.PrettyString("0wx" ^ LargeWord.toString x)
in
val () = PolyML.addPrettyPrinter prettyWord
val () = PolyML.addPrettyPrinter prettyLarge
end;
(* Converter to word values. These must be installed outside the structure
because they depend on the type identifiers. *)
local
(* The string may be either 0wnnn or 0wxXXX *)
fun getRadix s =
if String.size s > 2 andalso String.sub(s, 2) = #"x"
then StringCvt.HEX else StringCvt.DEC
fun convWord s =
let
val radix = getRadix s
in
case StringCvt.scanString (Word.scan radix) s of
NONE => raise RunCall.Conversion "Invalid word constant"
| SOME res => res
end
and convLarge s =
let
val radix = getRadix s
in
case StringCvt.scanString (LargeWord.scan radix) s of
NONE => raise RunCall.Conversion "Invalid word constant"
| SOME res => res
end
in
(* Install this as a conversion function for word literals.
Unlike other overloaded functions there's no need to
ensure that overloaded conversion functions are installed
at the top-level. The compiler has type "word" built in
and will use this conversion function for literals of the
form 0w... in preference to any other (e.g. for Word8.word)
if unification does not give an explicit type.
However, because LargeWord.word is abstract we have to
install the convertor outside the structure. *)
val () = RunCall.addOverload convWord "convWord"
val () = RunCall.addOverload convLarge "convWord"
end;
structure SysWord = LargeWord;
(* Add the overloaded operators. Do this outside the structure so
that we can capture the inline code. We've already done this for
word (=Word.word) in the prelude. *)
val () = RunCall.addOverload LargeWord.~ "~";
val () = RunCall.addOverload LargeWord.+ "+";
val () = RunCall.addOverload LargeWord.- "-";
val () = RunCall.addOverload LargeWord.* "*";
val () = RunCall.addOverload LargeWord.div "div";
val () = RunCall.addOverload LargeWord.mod "mod";
val () = RunCall.addOverload LargeWord.< "<";
val () = RunCall.addOverload LargeWord.> ">";
val () = RunCall.addOverload LargeWord.<= "<=";
val () = RunCall.addOverload LargeWord.>= ">=";
|