1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
|
(*
Title: Standard Basis Library: Real Signature and structure.
Author: David Matthews
Copyright David Matthews 2000, 2005, 2008, 2016-17
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
structure Real: REAL =
struct
open IEEEReal
val fromLargeInt: LargeInt.int -> real = Real.rtsCallFastI_F "PolyFloatArbitraryPrecision"
val fromInt: int -> real =
(* We have to select the appropriate conversion. This will be
reduced down to the appropriate function but has to be
type-correct whether int is arbitrary precision or fixed
precision. Hence the "o Large/FixedInt.fromInt". *)
if Bootstrap.intIsArbitraryPrecision
then fromLargeInt o LargeInt.fromInt
else Real.fromFixedInt o FixedInt.fromInt
(* These are needed because we don't yet have conversion from string
to real. They are filtered out by the signature. *)
val zero = fromInt 0 and one = fromInt 1 and four = fromInt 4
local
val doReal : int*real->real = RunCall.rtsCallFull2 "PolyRealGeneral"
in
fun callReal n x = doReal(n, x)
end
local
val doReal : int*(real*real)->real = RunCall.rtsCallFull2 "PolyRealGeneral"
in
fun callRealReal n p = doReal(n, p)
end
local
val doReal : int*real->bool = RunCall.rtsCallFull2 "PolyRealGeneral"
in
fun callRealToBool n x = doReal(n, x)
end
local
val doReal : int*real->int = RunCall.rtsCallFull2 "PolyRealGeneral"
in
fun callRealToInt n x = doReal(n, x)
end
type real = real (* Pick up from globals. *)
structure Math: MATH =
struct
type real = real (* Pick up from globals. *)
val sqrt = Real.rtsCallFastF_F "PolyRealSqrt"
and sin = Real.rtsCallFastF_F "PolyRealSin"
and cos = Real.rtsCallFastF_F "PolyRealCos"
and atan = Real.rtsCallFastF_F "PolyRealArctan"
and exp = Real.rtsCallFastF_F "PolyRealExp"
and ln = Real.rtsCallFastF_F "PolyRealLog"
and tan = Real.rtsCallFastF_F "PolyRealTan"
and asin = Real.rtsCallFastF_F "PolyRealArcSin"
and acos = Real.rtsCallFastF_F "PolyRealArcCos"
and log10 = Real.rtsCallFastF_F "PolyRealLog10"
and sinh = Real.rtsCallFastF_F "PolyRealSinh"
and cosh = Real.rtsCallFastF_F "PolyRealCosh"
and tanh = Real.rtsCallFastF_F "PolyRealTanh"
(* These have not yet been done. *)
val atan2 = callRealReal 3
val pow = callRealReal 4
(* Derived values. *)
val e = exp one
val pi = four * atan one
end;
infix 4 == != ?=;
val op == = Real.==
val op != : real * real -> bool = not o op ==
val radix : int = callRealToInt 11 zero
val precision : int = callRealToInt 12 zero
val maxFinite : real = callReal 13 zero
val minNormalPos : real = callReal 14 zero
val posInf : real = one/zero;
val negInf : real = ~one/zero;
(* We only implement this sort of real. *)
fun toLarge (x: real) : (*LargeReal.*)real =x
fun fromLarge (_ : IEEEReal.rounding_mode) (x: (*LargeReal.*)real): real = x
local
open Real
in
(* NAN values fail any test including equality with themselves. *)
fun isNan x = x != x
(* NAN values do not match and infinities when multiplied by 0 produce NAN. *)
fun isFinite x = x * zero == zero
val signBit : real -> bool = callRealToBool 17
val copySign : (real * real) -> real = callRealReal 18
(* If we assume that all functions produce normalised results where
possible, the only subnormal values will be those smaller than
minNormalPos. *)
fun isNormal x = isFinite x andalso abs x >= minNormalPos
fun class x =
if isFinite x then if x == zero then ZERO
else if abs x >= minNormalPos then NORMAL
else SUBNORMAL
else if isNan x then NAN
else (* not finite and not Nan *) INF
fun sign x =
if isNan x then raise General.Domain
else if x == zero then 0 else if x < zero then ~1 else 1
end
fun sameSign (x, y) = signBit x = signBit y
fun unordered (x, y) = isNan x orelse isNan y
(* Returns the minimum. In the case where one is a NaN it returns the
other. In that case the comparison will be false. *)
fun min (a: real, b: real): real = if a < b orelse isNan b then a else b
(* Similarly for max. *)
fun max (a: real, b: real): real = if a > b orelse isNan b then a else b
fun checkFloat x =
if isFinite x then x
else if isNan x then raise General.Div else raise General.Overflow
val radixAsReal (* Not exported *) = fromInt radix
val epsilon (* Not exported *) = Math.pow(radixAsReal, fromInt (Int.-(1, precision)))
val minPos : real = minNormalPos*epsilon;
local
val toMantissa : real->real = callReal 24
and toExponent : real->int = callRealToInt 25
val doReal : int*(real*int)->real = RunCall.rtsCallFull2 "PolyRealGeneral"
fun fromManAndExp (ri: real*int): real = doReal(23, ri)
open Real
in
fun toManExp r =
if not (isFinite r) orelse r == zero
(* Nan, infinities and +/-0 all return r in the mantissa.
We include 0 to preserve its sign. *)
then {man=r, exp=0}
else {man=toMantissa r, exp=toExponent r}
fun fromManExp {man, exp} =
if not (isFinite man) orelse man == zero
(* Nan, infinities and +/-0 in the mantissa all return
their argument. *)
then man
else fromManAndExp(man, exp)
end
(* Convert to integer. Ideally this would do the rounding/truncation as part of the
conversion but it doesn't seem to be possible to detect overflow properly.
Instead we use the real rounding/truncation, convert to arbitrary
precision and then check for overflow if necessary. *)
local
(* The RTS function converts to at most a 64-bit value (even on
32-bits). That will convert all the bits of the mantissa
but if the exponent is large we may have to multiply by
some power of two. *)
val realToInt: real -> LargeInt.int = RunCall.rtsCallFull1 "PolyRealBoxedToLongInt"
in
val realFloor = Real.rtsCallFastF_F "PolyRealFloor"
and realCeil = Real.rtsCallFastF_F "PolyRealCeil"
and realTrunc = Real.rtsCallFastF_F "PolyRealTrunc"
and realRound = Real.rtsCallFastF_F "PolyRealRound"
fun toArbitrary x =
if isNan x then raise General.Domain
else if not (isFinite x) then raise General.Overflow
else
let
val { man, exp } = toManExp x
in
if exp <= precision
then realToInt x
else IntInf.<< (realToInt(fromManExp{man=man, exp=precision}), Word.fromInt(exp - precision))
end
fun floor x = toArbitrary(realFloor x)
(* Returns the largest integer <= x. *)
fun ceil x = toArbitrary(realCeil x)
(* Returns the smallest integer >= x. *)
fun trunc x = toArbitrary(realTrunc x)
(* Truncate towards zero. *)
fun round x = toArbitrary(realRound x)
(* Return the nearest integer, returning an even value if equidistant. *)
fun toLargeInt IEEEReal.TO_NEGINF r = floor r
| toLargeInt IEEEReal.TO_POSINF r = ceil r
| toLargeInt IEEEReal.TO_ZERO r = trunc r
| toLargeInt IEEEReal.TO_NEAREST r = round r
fun toInt mode x = LargeInt.toInt(toLargeInt mode x)
val floor = LargeInt.toInt o floor
and ceil = LargeInt.toInt o ceil
and trunc = LargeInt.toInt o trunc
and round = LargeInt.toInt o round
end;
local
val realConv: string->real = RunCall.rtsCallFull1 "PolyRealBoxedFromString"
val posNan = abs(zero / zero)
val negNan = ~posNan
in
fun fromDecimal { class = INF, sign=true, ...} = SOME negInf
| fromDecimal { class = INF, sign=false, ...} = SOME posInf
| fromDecimal { class = ZERO, sign=true, ...} = SOME (~ zero)
| fromDecimal { class = ZERO, sign=false, ...} = SOME zero
(* Generate signed Nans ignoring the digits and mantissa. There
was code here to set the mantissa but there's no reference to
that in the current version of the Basis library. *)
| fromDecimal { class = NAN, sign=true, ... } = SOME negNan
| fromDecimal { class = NAN, sign=false, ... } = SOME posNan
| fromDecimal { class = _ (* NORMAL or SUBNORMAL *), sign, digits, exp} =
(let
fun toChar x =
if x < 0 orelse x > 9 then raise General.Domain
else Char.chr (x + Char.ord #"0")
(* Turn the number into a string. *)
val str = "0." ^ String.implode(List.map toChar digits) ^"E" ^
Int.toString exp
(* Convert it to a real using the RTS conversion function.
Change any Conversion exceptions into Domain. *)
val result = realConv str handle RunCall.Conversion _ => raise General.Domain
in
if sign then SOME (~result) else SOME result
end
handle General.Domain => NONE
)
end
local
val dtoa: real*int*int -> string*int*int = RunCall.rtsCallFull3 "PolyRealBoxedToString"
open StringCvt
fun addZeros n =
if n <= 0 then "" else "0" ^ addZeros (n-1)
fun fixFmt ndigs r =
if isNan r then "nan"
else if not (isFinite r)
then if r < zero then "~inf" else "inf"
else
let
(* Try to get ndigs past the decimal point. *)
val (str, exp, sign) = dtoa(r, 3, ndigs)
val strLen = String.size str
(* If the exponents is negative or zero we need to put a zero
before the decimal point. If the exponent is positive and
less than the number of digits we can take that
many characters off, otherwise we have to pad with zeros. *)
val numb =
if exp <= 0
then (* Exponent is zero or negative - all significant digits are
after the decimal point. Put in any zeros before
the significant digits, then the significant digits
and then any trailing zeros. *)
if ndigs = 0 then "0"
else "0." ^ addZeros(~exp) ^ str ^ addZeros(ndigs-strLen+exp)
else if strLen <= exp
then (* Exponent is not less than the length of the string -
all significant digits are before the decimal point. Add
any extra zeros before the decimal point then zeros after it. *)
str ^ addZeros(exp-strLen) ^
(if ndigs = 0 then "" else "." ^ addZeros ndigs)
else (* Significant digits straddle the decimal point - insert the
decimal point and add any trailing zeros. *)
String.substring(str, 0, exp) ^ "." ^
String.substring(str, exp, strLen-exp) ^
addZeros(ndigs-strLen+exp)
in
if sign <> 0 then "~" ^ numb else numb
end
fun sciFmt ndigs r =
if isNan r then "nan"
else if not (isFinite r)
then if r < zero then "~inf" else "inf"
else
let
(* Try to get ndigs+1 digits. 1 before the decimal point and ndigs after. *)
val (str, exp, sign) = dtoa(r, 2, ndigs+1)
val strLen = String.size str
fun addZeros n =
if n <= 0 then "" else "0" ^ addZeros (n-1)
val numb =
if strLen = 0
then "0" ^ (if ndigs = 0 then "" else "." ^ addZeros ndigs) ^ "E0"
else
(if strLen = 1
then str ^ (if ndigs = 0 then "" else "." ^ addZeros ndigs)
else String.substring(str, 0, 1) ^ "." ^
String.substring(str, 1, strLen-1) ^ addZeros (ndigs-strLen+1)
) ^ "E" ^ Int.toString (exp-1)
in
if sign <> 0 then "~" ^ numb else numb
end
fun genFmt ndigs r =
if isNan r then "nan"
else if not (isFinite r)
then if r < zero then "~inf" else "inf"
else
let
(* Try to get ndigs digits. *)
val (str, exp, sign) = dtoa(r, 2, ndigs)
val strLen = String.size str
val numb =
(* Have to use scientific notation if exp > ndigs. Also use it
if the exponent is small (TODO: adjust this) *)
if exp > ndigs orelse exp < ~5
then (* Scientific format *)
(if strLen = 1 then str
else String.substring(str, 0, 1) ^ "." ^
String.substring(str, 1, strLen-1)
) ^ "E" ^ Int.toString (exp-1)
else (* Fixed format (N.B. no trailing zeros are added after the
decimal point apart from one if necessary) *)
if exp <= 0
then (* Exponent is zero or negative - all significant digits are
after the decimal point. Put in any zeros before
the significant digits, then the significant digits
and then any trailing zeros. *)
"0." ^ addZeros(~exp) ^ str
else if strLen <= exp
then (* Exponent is not less than the length of the string -
all significant digits are before the decimal point. Add
any extra zeros before the decimal point. Insert .0 at the
end to make it a valid real number. *)
str ^ addZeros(exp-strLen) ^ ".0"
else (* Significant digits straddle the decimal point - insert the
decimal point. *)
String.substring(str, 0, exp) ^ "." ^
String.substring(str, exp, strLen-exp)
in
if sign <> 0 then "~" ^ numb else numb
end
fun strToDigitList str =
let
fun getDigs i l =
if i < 0 then l
else getDigs (i-1)
((Char.ord(String.sub(str, i)) - Char.ord #"0") :: l)
in
getDigs (String.size str - 1) []
end
in
fun toDecimal r =
let
val sign = signBit r
val kind = class r
in
case kind of
ZERO => { class = ZERO, sign = sign, digits=[], exp = 0 }
| INF => { class = INF, sign = sign, digits=[], exp = 0 }
| NAN => { class = NAN, sign = sign, digits=[], exp = 0 }
| _ => (* NORMAL/SUBNORMAL *)
let
val (str, exp, sign) = dtoa(r, 0, 0)
val digits = strToDigitList str
in
{ class = kind, sign = sign <> 0, digits = digits, exp = exp }
end
end
(* Note: The definition says, reasonably, that negative values
for the number of digits raises Size. The tests also check
for a very large value for the number of digits and seem to
expect Size to be raised in that case. Note that the exception
is raised when fmt spec is evaluated and before it is applied
to an actual real argument.
In all cases, even EXACT format, this should produce "nan" for a NaN
and ignore the sign bit. *)
fun fmt (SCI NONE) = sciFmt 6
| fmt (SCI (SOME d) ) =
if d < 0 orelse d > 200 then raise General.Size
else sciFmt d
| fmt (FIX NONE) = fixFmt 6
| fmt (FIX (SOME d) ) =
if d < 0 orelse d > 200 then raise General.Size
else fixFmt d
| fmt (GEN NONE) = genFmt 12
| fmt (GEN (SOME d) ) =
if d < 1 orelse d > 200 then raise General.Size
else genFmt d
| fmt EXACT = (fn r => if isNan r then "nan" else IEEEReal.toString(toDecimal r))
val toString = fmt (GEN NONE)
end
fun scan getc src =
let
(* Return a list of digits. *)
fun getdigits inp src =
case getc src of
NONE => (List.rev inp, src)
| SOME(ch, src') =>
if ch >= #"0" andalso ch <= #"9"
then getdigits ((Char.ord ch - Char.ord #"0") :: inp) src'
else (List.rev inp, src)
(* Read an unsigned integer. Returns NONE if no digits have been read. *)
fun getNumber sign digits acc src =
case getc src of
NONE => if digits = 0 then NONE else SOME(if sign then ~acc else acc, src)
| SOME(ch, src') =>
if ch >= #"0" andalso ch <= #"9"
then getNumber sign (digits+1) (acc*10 + Char.ord ch - Char.ord #"0") src'
else if digits = 0 then NONE else SOME(if sign then ~acc else acc, src')
(* Return the signed exponent. *)
fun getExponent src =
case getc src of
NONE => NONE
| SOME(ch, src') =>
if ch = #"+"
then getNumber false 0 0 src'
else if ch = #"-" orelse ch = #"~"
then getNumber true 0 0 src'
else getNumber false 0 0 src
fun read_number sign src =
case getc src of
NONE => NONE
| SOME(ch, _) =>
if not (ch >= #"0" andalso ch <= #"9" orelse ch = #".")
then NONE (* Bad *)
else (* Digits or decimal. *)
let
(* Get the digits before the decimal point (if any) *)
val (intPart, srcAfterDigs) = getdigits [] src
(* Get the digits after the decimal point (if any).
If there is a decimal point we only accept it if
there is at least one digit after it. *)
val (decimals, srcAfterMant) =
case getc srcAfterDigs of
NONE => ([], srcAfterDigs)
| SOME (#".", srcAfterDP) =>
( (* Check that the next character is a digit. *)
case getc srcAfterDP of
NONE => ([], srcAfterDigs)
| SOME(ch, _) =>
if ch >= #"0" andalso ch <= #"9"
then getdigits [] srcAfterDP
else ([], srcAfterDigs)
)
| SOME (_, _) => ([], srcAfterDigs)
(* The exponent is optional. If it doesn't form a valid
exponent we return zero as the value and the
continuation is the beginning of the "exponent". *)
val (exponent, srcAfterExp) =
case getc srcAfterMant of
NONE => (0, srcAfterMant)
| SOME (ch, src'''') =>
if ch = #"e" orelse ch = #"E"
then
(
case getExponent src'''' of
NONE => (0, srcAfterMant)
| SOME x => x
)
else (0, srcAfterMant)
(* Generate a decimal representation ready for conversion.
We don't bother to strip off leading or trailing zeros. *)
val decimalRep = {class=NORMAL, sign=sign,
digits=List.@(intPart, decimals),
exp=exponent + List.length intPart}
in
case fromDecimal decimalRep of
SOME r => SOME(r, srcAfterExp)
| NONE => NONE
end
in
case getc src of
NONE => NONE
| SOME(ch, src') =>
if Char.isSpace ch (* Skip white space. *)
then scan getc src' (* Recurse *)
else if ch = #"+" (* Remove the + sign *)
then read_number false src'
else if ch = #"-" orelse ch = #"~"
then read_number true src'
else (* See if it's a valid digit. *)
read_number false src
end
val fromString = StringCvt.scanString scan
(* Converter to real values. This replaces the basic conversion
function for reals installed in the bootstrap process.
For more information see convInt in Int. *)
local
fun convReal (s: string) : real =
let
(* Set the rounding mode to TO_NEAREST whatever the current
rounding mode. Otherwise the result of compiling a piece of
code with a literal constant could depend on what the rounding
mode was set to. *)
val oldRounding = IEEEReal.getRoundingMode() handle Fail _ => IEEEReal.TO_NEAREST
val () = IEEEReal.setRoundingMode IEEEReal.TO_NEAREST handle Fail _ => ()
val scanResult = StringCvt.scanString scan s
val () = IEEEReal.setRoundingMode oldRounding handle Fail _ => ()
in
case scanResult of
NONE => raise RunCall.Conversion "Invalid real constant"
| SOME res => res
end
in
(* Install this as a conversion function for real literals. *)
val (): unit = RunCall.addOverload convReal "convReal"
end
open Real (* Get the other definitions. *)
fun compare (r1, r2) =
if r1 == r2 then General.EQUAL
else if r1 < r2 then General.LESS
else if r1 > r2 then General.GREATER
else raise Unordered
fun compareReal (r1, r2) =
if r1 == r2 then EQUAL
else if r1 < r2 then LESS
else if r1 > r2 then GREATER
else UNORDERED
(* Question: The definition says "bitwise equal, ignoring signs on zeros".
If we assume that all numbers are normalised, is that the same as "equal"?*)
fun op ?= (x, y) =
isNan x orelse isNan y orelse x == y
(* Although these may be built in in some architectures it's
probably not worth treating them specially at the moment. *)
fun *+ (x: real, y: real, z: real): real = x*y+z
and *- (x: real, y: real, z: real): real = x*y-z
fun rem (x, y) =
if not (isFinite y) andalso not (isNan y) then x
else x - realTrunc(x / y)*y
(* Split a real into whole and fractional parts. The fractional part must have
the same sign as the number even if it is zero. *)
fun split r =
let
val whole = realTrunc r
val frac = r - whole
in
{ whole = whole,
frac =
if not (isFinite r)
then if isNan r then r else (* Infinity *) if r < zero then ~zero else zero
else if frac == zero then if signBit r then ~zero else zero
else frac }
end
(* Get the fractional part of a real. *)
fun realMod r = #frac(split r)
(* nextAfter: This was previously implemented in ML but, at the very least,
needed to work with rounding to something other than TO_NEAREST. This should
be implemented as a fast call but we don't currently support fast calls for
real * real -> real. *)
val nextAfter = callRealReal 26
end;
structure Math = Real.Math;
structure LargeReal: REAL = Real;
(* Values available unqualified at the top-level. *)
val real : int -> real = Real.fromInt
val trunc : real -> int = Real.trunc
val floor : real -> int = Real.floor
val ceil : real -> int = Real.ceil
val round : real -> int =Real.round;
(* Install print function. *)
local
fun print_real _ _ (r: real) =
PolyML.PrettyString(Real.fmt (StringCvt.GEN(SOME 10)) r)
in
val () = PolyML.addPrettyPrinter print_real;
end;
|