1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
|
/*
Title: Arbitrary Precision Package.
Author: Dave Matthews, Cambridge University Computer Laboratory
Further modification Copyright 2010, 2012, 2015 David C. J. Matthews
Copyright (c) 2000
Cambridge University Technical Services Limited
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
Arbitrary precision package in C.
Integers are held in two formats in this system, long-form and short-form.
The two are distinquished by the integer tag bit, short-form having the tag
bit set and pointers to long-form being untagged.
The long-form integers use the standard Poly format for multi-word
objects, with the length count and flags in the word just before the object
pointed to. The sign of long-form integers is coded in one of the flag bits.
Short integers are signed quantities, and can be directly
manipulated by the relevant instructions, but if overflow occurs then the full
long versions of the operations will need to be called.
Long-form integers are held as vectors of bytes (i.e. unsigned char)
low-order byte first. It is assumed that a ``byte'' will hold an 8-bit
quantity and a ``long'' at least two ``bytes''. It is essential that unsigned
values are used.
Integers are always stored in the least possible number of words, and
will be shortened to the short-form when possible.
Thanks are due to D. Knuth for the long division algorithm.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#elif defined(_WIN32)
#include "winconfig.h"
#else
#error "No configuration file"
#endif
#ifdef HAVE_STDIO_H
#include <stdio.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef HAVE_ALLOCA_H
#include <alloca.h>
#endif
#ifdef HAVE_MALLOC_H
#include <malloc.h>
#endif
#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x)
#endif
#ifdef HAVE_GMP_H
#include <gmp.h>
#define USE_GMP 1
#endif
#include "globals.h"
#include "sys.h"
#include "run_time.h"
#include "arb.h"
#include "save_vec.h"
#include "processes.h"
#include "memmgr.h"
#include "rtsentry.h"
#include "profiling.h"
extern "C" {
POLYEXTERNALSYMBOL POLYUNSIGNED PolyAddArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2);
POLYEXTERNALSYMBOL POLYUNSIGNED PolySubtractArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2);
POLYEXTERNALSYMBOL POLYUNSIGNED PolyMultiplyArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2);
POLYEXTERNALSYMBOL POLYUNSIGNED PolyDivideArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2);
POLYEXTERNALSYMBOL POLYUNSIGNED PolyRemainderArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2);
POLYEXTERNALSYMBOL POLYUNSIGNED PolyQuotRemArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2, PolyWord arg3);
POLYEXTERNALSYMBOL POLYSIGNED PolyCompareArbitrary(PolyWord arg1, PolyWord arg2);
POLYEXTERNALSYMBOL POLYUNSIGNED PolyGCDArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2);
POLYEXTERNALSYMBOL POLYUNSIGNED PolyLCMArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2);
POLYEXTERNALSYMBOL POLYUNSIGNED PolyGetLowOrderAsLargeWord(PolyObject *threadId, PolyWord arg);
POLYEXTERNALSYMBOL POLYUNSIGNED PolyOrArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2);
POLYEXTERNALSYMBOL POLYUNSIGNED PolyAndArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2);
POLYEXTERNALSYMBOL POLYUNSIGNED PolyXorArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2);
}
static Handle add_longc(TaskData *taskData, Handle,Handle);
static Handle sub_longc(TaskData *taskData, Handle,Handle);
static Handle quot_rem_c(TaskData *taskData, Handle,Handle,Handle);
static Handle or_longc(TaskData *taskData, Handle,Handle);
static Handle and_longc(TaskData *taskData, Handle,Handle);
static Handle xor_longc(TaskData *taskData, Handle,Handle);
static Handle neg_longc(TaskData *taskData, Handle);
static Handle gcd_arbitrary(TaskData *taskData, Handle,Handle);
static Handle lcm_arbitrary(TaskData *taskData, Handle,Handle);
// Number of bits in a Poly word. N.B. This is not necessarily the same as SIZEOF_VOIDP.
#define BITS_PER_POLYWORD (SIZEOF_VOIDP*8)
#ifdef USE_GMP
#if (BITS_PER_POLYWORD > GMP_LIMB_BITS)
// We're assuming that every GMP limb occupies at least one word
#error "Size of GMP limb is less than makemaka Poly word"
#endif
#endif
#ifdef USE_GMP
#define DEREFLIMBHANDLE(_x) ((mp_limb_t *)DEREFHANDLE(_x))
// Returns the length of the argument with trailing zeros removed.
static mp_size_t numLimbs(PolyWord x)
{
mp_size_t lu = OBJECT_LENGTH(x)*sizeof(PolyWord)/sizeof(mp_limb_t);
mp_limb_t *u = (mp_limb_t *)x.AsObjPtr();
while (lu > 0 && u[lu-1] == 0) lu--;
return lu;
}
#else
// Returns the length of the argument with trailing zeros removed.
static POLYUNSIGNED get_length(PolyWord x)
{
byte *u = (byte *)x.AsObjPtr();
POLYUNSIGNED lu = OBJECT_LENGTH(x)*sizeof(PolyWord);
for( ; (lu > 0) && (u[lu-1] == 0); lu--)
{
/* do nothing */
}
return lu;
}
#endif
// Return a uintptr_t value i.e. unsigned 32-bits on 32-bit architecture and 64-bits on 64-bit architecture.
POLYUNSIGNED getPolyUnsigned(TaskData *taskData, PolyWord number)
{
if ( IS_INT(number) )
{
POLYSIGNED i = UNTAGGED(number);
if ( i < 0 ) raise_exception0(taskData, EXC_size );
return i;
}
else
{
if (OBJ_IS_NEGATIVE(GetLengthWord(number))) raise_exception0(taskData, EXC_size );
#ifdef USE_GMP
unsigned length = numLimbs(number);
if (length > 1) raise_exception0(taskData, EXC_size);
mp_limb_t first = *(mp_limb_t*)number.AsCodePtr();
#if (BITS_PER_POLYWORD < GMP_NUMB_BITS)
if (first > (mp_limb_t)1 << BITS_PER_POLYWORD)
raise_exception0(taskData, EXC_size);
#endif
return first;
#else
byte *ptr = number.AsCodePtr();
POLYUNSIGNED length = get_length(number);
if (length > sizeof(PolyWord) ) raise_exception0(taskData, EXC_size);
POLYSIGNED c = 0;
while ( length-- ) c = (c << 8) | ((byte *) ptr)[length];
return c;
#endif
}
}
#define MAX_INT_PLUS1 ((POLYUNSIGNED)0x80 << ( (sizeof(PolyWord)-1) *8))
// Return an intptr_t value i.e. signed 32-bits on 32-bit architecture and 64-bits on 64-bit architecture.
POLYSIGNED getPolySigned(TaskData *taskData, PolyWord number)
{
if ( IS_INT(number) )
{
return UNTAGGED(number);
}
else
{
int sign = OBJ_IS_NEGATIVE(GetLengthWord(number)) ? -1 : 0;
#ifdef USE_GMP
unsigned length = numLimbs(number);
if (length > 1) raise_exception0(taskData, EXC_size);
mp_limb_t c = *(mp_limb_t*)number.AsCodePtr();
#else
POLYUNSIGNED length = get_length(number);
POLYUNSIGNED c = 0;
byte *ptr = number.AsCodePtr();
if ( length > sizeof(PolyWord) ) raise_exception0(taskData, EXC_size );
while ( length-- )
{
c = (c << 8) | ptr[length];
}
#endif
if ( sign == 0 && c < MAX_INT_PLUS1) return (POLYSIGNED)c;
if ( sign != 0 && c <= MAX_INT_PLUS1) return -((POLYSIGNED)c);
raise_exception0(taskData, EXC_size );
/*NOTREACHED*/
return 0;
}
}
short get_C_short(TaskData *taskData, PolyWord number)
{
int i = (int)get_C_long(taskData, number);
if ( i <= 32767 && i >= -32768 ) return i;
raise_exception0(taskData, EXC_size );
/*NOTREACHED*/
return 0;
}
unsigned short get_C_ushort(TaskData *taskData, PolyWord number)
{
POLYUNSIGNED u = get_C_ulong(taskData, number );
if ( u <= 65535 ) return (short)u;
raise_exception0(taskData, EXC_size );
/*NOTREACHED*/
return 0;
}
#if (SIZEOF_LONG == SIZEOF_VOIDP)
unsigned get_C_unsigned(TaskData *taskData, PolyWord number)
{
return get_C_ulong(taskData, number);
}
int get_C_int(TaskData *taskData, PolyWord number)
{
return get_C_long(taskData, number);
}
#else
// Poly words are the same size as a pointer but that may
// not be the same as int or long.
unsigned get_C_unsigned(TaskData *taskData, PolyWord number)
{
POLYUNSIGNED res = get_C_ulong(taskData, number);
unsigned result = (unsigned)res;
if ((POLYUNSIGNED)result != res)
raise_exception0(taskData, EXC_size);
return result;
}
int get_C_int(TaskData *taskData, PolyWord number)
{
POLYSIGNED res = get_C_long(taskData, number);
int result = (int)res;
if ((POLYSIGNED)result != res)
raise_exception0(taskData, EXC_size);
return result;
}
#endif
static Handle get_long(Handle x, Handle extend, int *sign)
{
if (IS_INT(DEREFWORD(x)))
{
// Short form - put it in the temporary.
POLYSIGNED x_v = UNTAGGED(DEREFWORD(x));
if (x_v >= 0) *sign = 0;
else /* Negative */
{
*sign = -1;
x_v = -x_v;
}
#ifdef USE_GMP
mp_limb_t *u = DEREFLIMBHANDLE(extend);
*u = x_v;
#else
byte *u = DEREFBYTEHANDLE(extend);
/* Put into extend buffer, low order byte first. */
for (unsigned i = 0; i < sizeof(PolyWord); i++)
{
u[i] = x_v & 0xff;
x_v = x_v >> 8;
}
#endif
return extend;
}
else
{ /* Long-form - x is an address. */
*sign = OBJ_IS_NEGATIVE(GetLengthWord(DEREFWORD(x))) ? -1 : 0;
return x;
}
}
#ifndef USE_GMP
static Handle copy_long(TaskData *taskData, Handle x, POLYUNSIGNED lx)
{
Handle y = alloc_and_save(taskData, WORDS(lx), F_BYTE_OBJ|F_MUTABLE_BIT);
// copy the bytes
byte *v = DEREFBYTEHANDLE(y);
memcpy(v, DEREFBYTEHANDLE(x), lx);
return y;
}
#endif
/* make_canonical is used to force a result into its shortest form,
in the style of get_length, but also may convert its argument
from long to short integer */
static Handle make_canonical(TaskData *taskData, Handle x, int sign)
{
#ifdef USE_GMP
unsigned size = numLimbs(DEREFWORD(x));
if (size <= 1) // May be zero if the result is zero.
{
mp_limb_t r = *DEREFLIMBHANDLE(x);
if (r <= MAXTAGGED || (r == MAXTAGGED+1 && sign < 0))
{
if (sign < 0)
return taskData->saveVec.push(TAGGED(-(POLYSIGNED)r));
else
return taskData->saveVec.push(TAGGED(r));
}
}
// Throw away any unused words.
DEREFWORDHANDLE(x)->SetLengthWord(WORDS(size*sizeof(mp_limb_t)), F_BYTE_OBJ | (sign < 0 ? F_NEGATIVE_BIT: 0));
return x;
#else
/* get length in BYTES */
POLYUNSIGNED size = get_length(DEREFWORD(x));
// We can use the short representation if it will fit in a word.
if (size <= sizeof(PolyWord))
{
/* Convert the digits. */
byte *u = DEREFBYTEHANDLE(x);
POLYUNSIGNED r = 0;
for (unsigned i=0; i < sizeof(PolyWord); i++)
{
r |= ((POLYUNSIGNED)u[i]) << (8*i);
}
/* Check for MAXTAGGED+1 before subtraction
in case MAXTAGGED is 0x7fffffff */
if (r <= MAXTAGGED || (r == MAXTAGGED+1 && sign < 0))
{
if (sign < 0)
return taskData->saveVec.push(TAGGED(-(POLYSIGNED)r));
else
return taskData->saveVec.push(TAGGED(r));
}
}
/* The length word of the object is changed to reflect the new length.
This is safe because any words thrown away must be zero. */
DEREFWORDHANDLE(x)->SetLengthWord(WORDS(size), F_BYTE_OBJ | (sign < 0 ? F_NEGATIVE_BIT: 0));
return x;
#endif
}
Handle ArbitraryPrecionFromSigned(TaskData *taskData, POLYSIGNED val)
/* Called from routines in the run-time system to generate an arbitrary
precision integer from a word value. */
{
if (val <= MAXTAGGED && val >= -MAXTAGGED-1) /* No overflow */
return taskData->saveVec.push(TAGGED(val));
POLYUNSIGNED uval = val < 0 ? -val : val;
#ifdef USE_GMP
Handle y = alloc_and_save(taskData, WORDS(sizeof(mp_limb_t)), ((val < 0) ? F_NEGATIVE_BIT : 0)| F_BYTE_OBJ);
mp_limb_t *v = DEREFLIMBHANDLE(y);
*v = uval;
#else
Handle y = alloc_and_save(taskData, 1, ((val < 0) ? F_NEGATIVE_BIT : 0)| F_BYTE_OBJ);
byte *v = DEREFBYTEHANDLE(y);
for (POLYUNSIGNED i = 0; uval != 0; i++)
{
v[i] = (byte)(uval & 0xff);
uval >>= 8;
}
#endif
return y;
}
Handle ArbitraryPrecionFromUnsigned(TaskData *taskData, POLYUNSIGNED uval)
/* Called from routines in the run-time system to generate an arbitrary
precision integer from an unsigned value. */
{
if (uval <= MAXTAGGED) return taskData->saveVec.push(TAGGED(uval));
#ifdef USE_GMP
Handle y = alloc_and_save(taskData, WORDS(sizeof(mp_limb_t)), F_BYTE_OBJ);
mp_limb_t *v = DEREFLIMBHANDLE(y);
*v = uval;
#else
Handle y = alloc_and_save(taskData, 1, F_BYTE_OBJ);
byte *v = DEREFBYTEHANDLE(y);
for (POLYUNSIGNED i = 0; uval != 0; i++)
{
v[i] = (byte)(uval & 0xff);
uval >>= 8;
}
#endif
return y;
}
Handle Make_arbitrary_precision(TaskData *taskData, int val)
{
return ArbitraryPrecionFromSigned(taskData, val);
}
Handle Make_arbitrary_precision(TaskData *taskData, unsigned uval)
{
return ArbitraryPrecionFromUnsigned(taskData, uval);
}
Handle Make_arbitrary_precision(TaskData *taskData, long val)
{
return ArbitraryPrecionFromSigned(taskData, val);
}
Handle Make_arbitrary_precision(TaskData *taskData, unsigned long uval)
{
return ArbitraryPrecionFromUnsigned(taskData, uval);
}
#ifdef HAVE_LONG_LONG
#if SIZEOF_LONG_LONG <= SIZEOF_VOIDP
Handle Make_arbitrary_precision(TaskData *taskData, long long val)
{
return ArbitraryPrecionFromSigned(taskData, val);
}
Handle Make_arbitrary_precision(TaskData *taskData, unsigned long long uval)
{
return ArbitraryPrecionFromUnsigned(taskData, uval);
}
#else
// 32-bit implementation.
Handle Make_arbitrary_precision(TaskData *taskData, long long val)
{
if (val <= (long long)(MAXTAGGED) && val >= -((long long)(MAXTAGGED))-1) /* No overflow */
return taskData->saveVec.push(TAGGED((POLYSIGNED)val));
// Recursive call to handle the high-order part
Handle hi = Make_arbitrary_precision(taskData, val >> (sizeof(int32_t) * 8));
// The low-order part is treated as UNsigned.
Handle lo = Make_arbitrary_precision(taskData, (uint32_t)val);
Handle twoTo16 = taskData->saveVec.push(TAGGED(65536));
Handle twoTo32 = mult_longc(taskData, twoTo16, twoTo16);
return add_longc(taskData, mult_longc(taskData, hi, twoTo32), lo);
}
Handle Make_arbitrary_precision(TaskData *taskData, unsigned long long uval)
{
if (uval <= (unsigned long long)(MAXTAGGED))
return taskData->saveVec.push(TAGGED((POLYUNSIGNED)uval));
// Recursive call to handle the high-order part
Handle hi = Make_arbitrary_precision(taskData, uval >> (sizeof(uint32_t) * 8));
Handle lo = Make_arbitrary_precision(taskData, (uint32_t)uval);
Handle twoTo16 = taskData->saveVec.push(TAGGED(65536));
Handle twoTo32 = mult_longc(taskData, twoTo16, twoTo16);
return add_longc(taskData, mult_longc(taskData, hi, twoTo32), lo);
}
#endif
#endif
#if defined(_WIN32)
// Creates an arbitrary precision number from two words.
// Used only in Windows for FILETIME and file-size.
Handle Make_arb_from_32bit_pair(TaskData *taskData, uint32_t hi, uint32_t lo)
{
Handle hHi = Make_arbitrary_precision(taskData, hi);
Handle hLo = Make_arbitrary_precision(taskData, lo);
Handle twoTo16 = taskData->saveVec.push(TAGGED(65536));
Handle twoTo32 = mult_longc(taskData, twoTo16, twoTo16);
return add_longc(taskData, mult_longc(taskData, hHi, twoTo32), hLo);
}
// Convert a Windows FILETIME into an arbitrary precision integer
Handle Make_arb_from_Filetime(TaskData *taskData, const FILETIME &ft)
{
return Make_arb_from_32bit_pair(taskData, ft.dwHighDateTime, ft.dwLowDateTime);
}
#endif
/* Returns hi*scale+lo as an arbitrary precision number. Currently used
for Unix time values where the time is returned as two words, a number
of seconds and a number of microseconds and we wish to return the
result as a number of microseconds. */
Handle Make_arb_from_pair_scaled(TaskData *taskData, unsigned hi, unsigned lo, unsigned scale)
{
/* We might be able to compute the number as a 64 bit quantity and
then convert it but this is probably more portable. It does risk
overflowing the save vector. */
Handle hHi = Make_arbitrary_precision(taskData, hi);
Handle hLo = Make_arbitrary_precision(taskData, lo);
Handle hScale = Make_arbitrary_precision(taskData, scale);
return add_longc(taskData, mult_longc(taskData, hHi, hScale), hLo);
}
Handle neg_longc(TaskData *taskData, Handle x)
{
if (IS_INT(DEREFWORD(x)))
{
POLYSIGNED s = UNTAGGED(DEREFWORD(x));
if (s != -MAXTAGGED-1) // If it won't overflow
return taskData->saveVec.push(TAGGED(-s));
}
// Either overflow or long argument - convert to long form.
#if USE_GMP
PolyWord x_extend[1+WORDS(sizeof(mp_limb_t))];
#else
PolyWord x_extend[2];
#endif
SaveVecEntry x_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(x_extend[1])));
Handle x_ehandle = &x_extend_addr;
int sign_x;
Handle long_x = get_long(x, x_ehandle, &sign_x);
#ifdef USE_GMP
POLYUNSIGNED lx = numLimbs(DEREFWORD(long_x))*sizeof(mp_limb_t);
#else
/* Get length of arg. */
POLYUNSIGNED lx = get_length(DEREFWORD(long_x));
#endif
Handle long_y = alloc_and_save(taskData, WORDS(lx), F_MUTABLE_BIT|F_BYTE_OBJ);
byte *v = DEREFBYTEHANDLE(long_y);
memcpy(v, DEREFBYTEHANDLE(long_x), lx);
#ifndef USE_GMP
// Make sure the last word is zero. We may have unused bytes there.
memset(v+lx, 0, WORDS(lx)*sizeof(PolyWord)-lx);
#endif
/* Return the value with the sign changed. */
return make_canonical(taskData, long_y, sign_x ^ -1);
} /* neg_longc */
#ifdef USE_GMP
static Handle add_unsigned_long(TaskData *taskData, Handle x, Handle y, int sign)
{
/* find the longer number */
mp_size_t lx = numLimbs(DEREFWORD(x));
mp_size_t ly = numLimbs(DEREFWORD(y));
mp_limb_t *u; /* limb-pointer for longer number */
mp_limb_t *v; /* limb-pointer for shorter number */
Handle z;
mp_size_t lu; /* length of u in limbs */
mp_size_t lv; /* length of v in limbs */
if (lx < ly)
{
// Get result vector. It must be 1 limb longer than u
// to have space for any carry.
z = alloc_and_save(taskData, WORDS((ly+1)*sizeof(mp_limb_t)), F_MUTABLE_BIT|F_BYTE_OBJ);
/* now safe to dereference pointers */
u = DEREFLIMBHANDLE(y); lu = ly;
v = DEREFLIMBHANDLE(x); lv = lx;
}
else
{
// Get result vector. It must be 1 limb longer than u
// to have space for any carry.
z = alloc_and_save(taskData, WORDS((lx+1)*sizeof(mp_limb_t)), F_MUTABLE_BIT|F_BYTE_OBJ);
/* now safe to dereference pointers */
u = DEREFLIMBHANDLE(x); lu = lx;
v = DEREFLIMBHANDLE(y); lv = ly;
}
mp_limb_t *w = DEREFLIMBHANDLE(z);
// Do the addition.
mp_limb_t carry = 0;
if (lv != 0) carry = mpn_add_n(w, u, v, lv);
// Add the carry to the rest of the longer number.
if (lu != lv) carry = mpn_add_1(w+lv, u+lv, lu-lv, carry);
// Put the remaining carry in the final limb.
w[lu] = carry;
return make_canonical(taskData, z, sign);
}
#else
static Handle add_unsigned_long(TaskData *taskData, Handle x, Handle y, int sign)
{
byte *u; /* byte-pointer for longer number */
byte *v; /* byte-pointer for shorter number */
Handle z;
POLYUNSIGNED lu; /* length of u in bytes */
POLYUNSIGNED lv; /* length of v in bytes */
/* find the longer number */
POLYUNSIGNED lx = get_length(DEREFWORD(x));
POLYUNSIGNED ly = get_length(DEREFWORD(y));
/* Make ``u'' the longer. */
if (lx < ly)
{
// Get result vector. It must be 1 byte longer than u
// to have space for any carry.
z = alloc_and_save(taskData, WORDS(ly+1), F_MUTABLE_BIT|F_BYTE_OBJ);
/* now safe to dereference pointers */
u = DEREFBYTEHANDLE(y); lu = ly;
v = DEREFBYTEHANDLE(x); lv = lx;
}
else
{
// Get result vector. It must be 1 byte longer than u
// to have space for any carry, plus one byte for the sign.
z = alloc_and_save(taskData, WORDS(lx+2), F_MUTABLE_BIT|F_BYTE_OBJ);
/* now safe to dereference pointers */
u = DEREFBYTEHANDLE(x); lu = lx;
v = DEREFBYTEHANDLE(y); lv = ly;
}
/* do the actual addition */
byte *w = DEREFBYTEHANDLE(z);
unsigned carry = 0;
POLYUNSIGNED i = 0;
/* Do the additions */
for( ; i < lv; i++)
{
carry += u[i] + v[i];
w[i] = carry & 0xff;
carry >>= 8;
}
/* Add the carry to the rest of ``u''. */
for( ; i < lu; i++)
{
carry += u[i];
w[i] = carry & 0xff;
carry >>= 8;
}
/* Finally put the carry into the last byte */
w[i] = (byte)carry;
return make_canonical(taskData, z, sign);
} /* add_unsigned_long */
#endif
#ifdef USE_GMP
static Handle sub_unsigned_long(TaskData *taskData, Handle x, Handle y, int sign)
{
mp_limb_t *u; /* limb-pointer alias for larger number */
mp_limb_t *v; /* limb-pointer alias for smaller number */
mp_size_t lu; /* length of u in limbs */
mp_size_t lv; /* length of v in limbs */
Handle z;
/* get the larger argument into ``u'' */
/* This is necessary so that we can discard */
/* the borrow at the end of the subtraction */
mp_size_t lx = numLimbs(DEREFWORD(x));
mp_size_t ly = numLimbs(DEREFWORD(y));
// Find the larger number. Check the lengths first and if they're equal the values.
int res;
if (lx < ly) res = -1;
else if (lx > ly) res = 1;
else res = mpn_cmp(DEREFLIMBHANDLE(x), DEREFLIMBHANDLE(y), lx);
// If they're equal the result is zero.
if (res == 0) return taskData->saveVec.push(TAGGED(0)); /* They are equal */
if (res < 0)
{
sign ^= -1; /* swap sign of result */
z = alloc_and_save(taskData, WORDS(ly*sizeof(mp_limb_t)), F_MUTABLE_BIT|F_BYTE_OBJ);
/* now safe to dereference pointers */
u = DEREFLIMBHANDLE(y); lu = ly;
v = DEREFLIMBHANDLE(x); lv = lx;
}
else
{
z = alloc_and_save(taskData, WORDS(lx*sizeof(mp_limb_t)), F_MUTABLE_BIT|F_BYTE_OBJ);
/* now safe to dereference pointers */
u = DEREFLIMBHANDLE(x); lu = lx;
v = DEREFLIMBHANDLE(y); lv = ly;
}
mp_limb_t *w = DEREFLIMBHANDLE(z);
// Do the subtraction.
mp_limb_t borrow = 0;
if (lv != 0) borrow = mpn_sub_n(w, u, v, lv);
// Subtract the borrow from the rest of the longer number.
if (lu != lv) borrow = mpn_sub_1(w+lv, u+lv, lu-lv, borrow);
return make_canonical(taskData, z, sign);
}
#else
static Handle sub_unsigned_long(TaskData *taskData, Handle x, Handle y, int sign)
{
byte *u; /* byte-pointer alias for larger number */
byte *v; /* byte-pointer alias for smaller number */
POLYUNSIGNED lu; /* length of u in bytes */
POLYUNSIGNED lv; /* length of v in bytes */
Handle z;
/* get the larger argument into ``u'' */
/* This is necessary so that we can discard */
/* the borrow at the end of the subtraction */
POLYUNSIGNED lx = get_length(DEREFWORD(x));
POLYUNSIGNED ly = get_length(DEREFWORD(y));
if (lx < ly)
{
sign ^= -1; /* swap sign of result SPF 21/1/94 */
z = alloc_and_save(taskData, WORDS(ly+1), F_MUTABLE_BIT|F_BYTE_OBJ);
/* now safe to dereference pointers */
u = DEREFBYTEHANDLE(y); lu = ly;
v = DEREFBYTEHANDLE(x); lv = lx;
}
else if (ly < lx)
{
z = alloc_and_save(taskData, WORDS(lx+1), F_MUTABLE_BIT|F_BYTE_OBJ);
/* now safe to dereference pointers */
u = DEREFBYTEHANDLE(x); lu = lx;
v = DEREFBYTEHANDLE(y); lv = ly;
}
else /* lx == ly */
{ /* Must look at the numbers to decide which is bigger. */
POLYUNSIGNED i = lx;
while (i > 0 && DEREFBYTEHANDLE(x)[i-1] == DEREFBYTEHANDLE(y)[i-1]) i--;
if (i == 0) return taskData->saveVec.push(TAGGED(0)); /* They are equal */
if (DEREFBYTEHANDLE(x)[i-1] < DEREFBYTEHANDLE(y)[i-1])
{
sign ^= -1; /* swap sign of result SPF 21/1/94 */
z = alloc_and_save(taskData, WORDS(ly+1), F_MUTABLE_BIT|F_BYTE_OBJ);
/* now safe to dereference pointers */
u = DEREFBYTEHANDLE(y); lu = ly;
v = DEREFBYTEHANDLE(x); lv = lx;
}
else
{
z = alloc_and_save(taskData, WORDS(lx+1), F_MUTABLE_BIT|F_BYTE_OBJ);
/* now safe to dereference pointers */
u = DEREFBYTEHANDLE(x); lu = lx;
v = DEREFBYTEHANDLE(y); lv = ly;
}
}
byte *w = DEREFBYTEHANDLE(z);
unsigned borrow = 1; /* Becomes 0 if there is a borrow */
POLYUNSIGNED i = 0;
/* Do the subtractions */
for( ; i < lv; i++)
{
borrow += 255 + u[i] - v[i];
w[i] = borrow & 0xff;
borrow >>= 8;
}
/* Add the borrow into the rest of ``u''. */
for( ; i < lu; i++)
{
borrow += 255 + u[i];
w[i] = borrow & 0xff;
borrow >>= 8;
}
return make_canonical(taskData, z, sign);
} /* sub_unsigned_long */
#endif
Handle add_longc(TaskData *taskData, Handle y, Handle x)
{
if (IS_INT(DEREFWORD(x)) && IS_INT(DEREFWORD(y)))
{ /* Both short */
/* The easiest way to do the addition is simply *x-1+*y, but that
makes it more difficult to check for overflow. */
POLYSIGNED t = UNTAGGED(DEREFWORD(x)) + UNTAGGED(DEREFWORD(y));
if (t <= MAXTAGGED && t >= -MAXTAGGED-1) /* No overflow */
{
return taskData->saveVec.push(TAGGED(t));
}
}
#if USE_GMP
PolyWord x_extend[1+WORDS(sizeof(mp_limb_t))];
PolyWord y_extend[1+WORDS(sizeof(mp_limb_t))];
#else
PolyWord x_extend[2], y_extend[2];
#endif
SaveVecEntry x_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(x_extend[1])));
Handle x_ehandle = &x_extend_addr;
SaveVecEntry y_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(y_extend[1])));
Handle y_ehandle = &y_extend_addr;
/* Either overflow or long arguments - convert to long form */
int sign_x, sign_y;
Handle long_x = get_long(x, x_ehandle, &sign_x);
Handle long_y = get_long(y, y_ehandle, &sign_y);
/* Work out whether to add or subtract */
if ((sign_y ^ sign_x) >= 0) /* signs the same? */
/* sign(x) * (abs(x) + abs(y)) */
return add_unsigned_long(taskData, long_x, long_y, sign_x);
else
/* sign(x) * (abs(x) - abs(y)) */
return sub_unsigned_long(taskData, long_x, long_y, sign_x);
} /* add_longc */
Handle sub_longc(TaskData *taskData, Handle y, Handle x)
{
if (IS_INT(DEREFWORD(x)) &&
IS_INT(DEREFWORD(y))) /* Both short */
{
/* The easiest way to do the subtraction is simply *x-*y+1, but that
makes it more difficult to check for overflow. */
POLYSIGNED t = UNTAGGED(DEREFWORD(x)) - UNTAGGED(DEREFWORD(y));
if (t <= MAXTAGGED && t >= -MAXTAGGED-1) /* No overflow */
return taskData->saveVec.push(TAGGED(t));
}
#if USE_GMP
PolyWord x_extend[1+WORDS(sizeof(mp_limb_t))];
PolyWord y_extend[1+WORDS(sizeof(mp_limb_t))];
#else
PolyWord x_extend[2], y_extend[2];
#endif
SaveVecEntry x_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(x_extend[1])));
Handle x_ehandle = &x_extend_addr;
SaveVecEntry y_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(y_extend[1])));
Handle y_ehandle = &y_extend_addr;
/* Either overflow or long arguments. */
int sign_x, sign_y;
Handle long_x = get_long(x, x_ehandle, &sign_x); /* Convert to long form */
Handle long_y = get_long(y, y_ehandle, &sign_y);
/* If the signs are different add the two values. */
if ((sign_y ^ sign_x) < 0) /* signs differ */
{ /* sign(x) * (abs(x) + abs(y)) */
return add_unsigned_long(taskData, long_x, long_y, sign_x);
}
else
{ /* sign(x) * (abs(x) - abs(y)) */
return sub_unsigned_long(taskData, long_x, long_y, sign_x);
}
} /* sub_longc */
Handle mult_longc(TaskData *taskData, Handle y, Handle x)
{
#if USE_GMP
PolyWord x_extend[1+WORDS(sizeof(mp_limb_t))];
PolyWord y_extend[1+WORDS(sizeof(mp_limb_t))];
#else
PolyWord x_extend[2], y_extend[2];
#endif
SaveVecEntry x_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(x_extend[1])));
Handle x_ehandle = &x_extend_addr;
SaveVecEntry y_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(y_extend[1])));
Handle y_ehandle = &y_extend_addr;
/* Either overflow or long arguments. */
int sign_x, sign_y;
Handle long_x = get_long(x, x_ehandle, &sign_x); /* Convert to long form */
Handle long_y = get_long(y, y_ehandle, &sign_y);
#if USE_GMP
mp_size_t lx = numLimbs(DEREFWORD(long_x));
mp_size_t ly = numLimbs(DEREFWORD(long_y));
// Check for zero args.
if (lx == 0 || ly == 0) return taskData->saveVec.push(TAGGED(0));
Handle z = alloc_and_save(taskData, WORDS((lx+ly)*sizeof(mp_limb_t)), F_MUTABLE_BIT|F_BYTE_OBJ);
mp_limb_t *w = DEREFLIMBHANDLE(z);
mp_limb_t *u = DEREFLIMBHANDLE(long_x), *v = DEREFLIMBHANDLE(long_y);
// The first argument must be the longer.
if (lx < ly) mpn_mul(w, v, ly, u, lx);
else mpn_mul(w, u, lx, v, ly);
return make_canonical(taskData, z, sign_x ^ sign_y);
#else
/* Get lengths of args. */
POLYUNSIGNED lx = get_length(DEREFWORD(long_x));
POLYUNSIGNED ly = get_length(DEREFWORD(long_y));
// Check for zero args.
if (lx == 0 || ly == 0) return taskData->saveVec.push(TAGGED(0));
/* Get space for result */
Handle long_z = alloc_and_save(taskData, WORDS(lx+ly+1), F_MUTABLE_BIT|F_BYTE_OBJ);
/* Can now load the actual addresses because they will not change now. */
byte *u = DEREFBYTEHANDLE(long_x);
byte *v = DEREFBYTEHANDLE(long_y);
byte *w = DEREFBYTEHANDLE(long_z);
for(POLYUNSIGNED i = 0; i < lx; i++)
{
POLYUNSIGNED j;
long r = 0; /* Set the carry to zero */
for(j = 0; j < ly; j++)
{
/* Compute the product. */
r += u[i] * v[j];
/* Now add in to the result. */
r += w[i+j];
w[i+j] = r & 0xff;
r >>= 8;
}
/* Put in any carry. */
w[i+j] = (byte)r;
}
return make_canonical(taskData, long_z, sign_x ^ sign_y);
#endif
} /* mult_long */
#ifndef USE_GMP
static void div_unsigned_long(byte *u, byte *v, byte *remres, byte *divres, POLYUNSIGNED lu, POLYUNSIGNED lv)
// Unsigned division. This is the main divide and remainder routine.
// remres must be at least lu+1 bytes long
// divres must be at least lu-lv+1 bytes long but can be zero if not required
{
POLYUNSIGNED i,j;
long r;
/* Find out how far to shift v to get a 1 in the top bit. */
int bits = 0;
for(r = v[lv-1]; r < 128; r <<= 1) bits++; /* 128 ??? */
/* Shift u that amount into res. We have allowed enough room for
overflow. */
r = 0;
for (i = 0; i < lu; i++)
{
r |= u[i] << bits; /*``Or in'' the new bits after shifting*/
remres[i] = r & 0xff; /* Put into the destination. */
r >>= 8; /* and shift down the carry. */
}
remres[i] = (byte)r; /* Put in the carry */
/* And v that amount. It has already been copied. */
if ( bits )
{
r = 0;
for (i = 0; i < lv; i++)
{ r |= v[i] << bits; v[i] = r & 0xff; r >>= 8; }
/* No carry */
}
for(j = lu; j >= lv; j--)
{
/* j iterates over the higher digits of the dividend until we are left
with a number which is less than the divisor. This is the remainder. */
long quotient, dividend, r;
dividend = remres[j]*256 + remres[j-1];
quotient = (remres[j] == v[lv-1]) ? 255 : dividend/(long)v[lv-1];
if (lv != 1)
{
while ((long)v[lv-2]*quotient >
(dividend - quotient*(long)v[lv-1])*256 + (long)remres[j-2])
{
quotient--;
}
}
/* The quotient is at most 1 too large */
/* Subtract the product of this with ``v'' from ``res''. */
r = 1; /* Initial borrow */
for(i = 0; i < lv; i++)
{
r += 255 + remres[j-lv+i] - quotient * v[i];
remres[j-lv+i] = r & 0xff;
r >>= 8;
}
r += remres[j]; /* Borrow from leading digit. */
/* If we are left with a borrow when the subtraction is complete the
quotient must have been too big. We add ``v'' to the dividend and
subtract 1 from the quotient. */
if (r == 0 /* would be 1 if there were no borrow */)
{
quotient --;
r = 0;
for (i = 0; i < lv; i++)
{
r += v[i] + remres[j-lv+i];
remres[j-lv+i] = r & 0xff;
r >>= 8;
}
}
/* Place the next digit of quotient in result */
if (divres) divres[j-lv] = (byte)quotient;
}
/* Likewise the remainder. */
if (bits)
{
r = 0;
j = lv;
while (j > 0)
{
j--;
r |= remres[j];
remres[j] = (r >> bits) & 0xff;
r = (r & 0xff) << 8;
}
}
} /* div_unsigned_long */
#endif
// Common code for div and mod. Returns handles to the results.
static void quotRem(TaskData *taskData, Handle y, Handle x, Handle &remHandle, Handle &divHandle)
{
if (IS_INT(DEREFWORD(x)) &&
IS_INT(DEREFWORD(y))) /* Both short */
{
POLYSIGNED xs = UNTAGGED(DEREFWORD(x));
POLYSIGNED ys = UNTAGGED(DEREFWORD(y));
/* Raise exceptions if dividing by zero. */
if (ys == 0)
raise_exception0(taskData, EXC_divide);
/* Only possible overflow is minint div -1 */
if (xs != -MAXTAGGED-1 || ys != -1) {
divHandle = taskData->saveVec.push(TAGGED(xs / ys));
remHandle = taskData->saveVec.push(TAGGED(xs % ys));
return;
}
}
#if USE_GMP
PolyWord x_extend[1+WORDS(sizeof(mp_limb_t))];
PolyWord y_extend[1+WORDS(sizeof(mp_limb_t))];
#else
PolyWord x_extend[2], y_extend[2];
#endif
SaveVecEntry x_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(x_extend[1])));
Handle x_ehandle = &x_extend_addr;
SaveVecEntry y_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(y_extend[1])));
Handle y_ehandle = &y_extend_addr;
int sign_x, sign_y;
Handle long_x = get_long(x, x_ehandle, &sign_x);
Handle long_y = get_long(y, y_ehandle, &sign_y);
#ifdef USE_GMP
/* Get lengths of args. */
mp_size_t lx = numLimbs(DEREFWORD(long_x));
mp_size_t ly = numLimbs(DEREFWORD(long_y));
// If length of v is zero raise divideerror.
if (ly == 0) raise_exception0(taskData, EXC_divide);
if (lx < ly) {
divHandle = taskData->saveVec.push(TAGGED(0));
remHandle = x; /* When x < y remainder is x. */
return;
}
Handle remRes = alloc_and_save(taskData, WORDS(ly*sizeof(mp_limb_t)), F_MUTABLE_BIT|F_BYTE_OBJ);
Handle divRes = alloc_and_save(taskData, WORDS((lx-ly+1)*sizeof(mp_limb_t)), F_MUTABLE_BIT|F_BYTE_OBJ);
mp_limb_t *u = DEREFLIMBHANDLE(long_x), *v = DEREFLIMBHANDLE(long_y);
mp_limb_t *quotient = DEREFLIMBHANDLE(divRes);
mp_limb_t *remainder = DEREFLIMBHANDLE(remRes);
// Do the division.
mpn_tdiv_qr(quotient, remainder, 0, u, lx, v, ly);
// Return the results.
remHandle = make_canonical(taskData, remRes, sign_x /* Same sign as dividend */);
divHandle = make_canonical(taskData, divRes, sign_x ^ sign_y);
#else
/* Get lengths of args. */
POLYUNSIGNED lx = get_length(DEREFWORD(long_x));
POLYUNSIGNED ly = get_length(DEREFWORD(long_y));
/* If length of y is zero raise divideerror */
if (ly == 0) raise_exception0(taskData, EXC_divide);
// If the length of divisor is less than the dividend the quotient is zero.
if (lx < ly) {
divHandle = taskData->saveVec.push(TAGGED(0));
remHandle = x; /* When x < y remainder is x. */
return;
}
/* copy in case it needs shifting */
long_y = copy_long(taskData, long_y, ly);
Handle divRes = alloc_and_save(taskData, WORDS(lx-ly+1), F_MUTABLE_BIT|F_BYTE_OBJ);
Handle remRes = alloc_and_save(taskData, WORDS(lx+1), F_MUTABLE_BIT|F_BYTE_OBJ);
div_unsigned_long
(DEREFBYTEHANDLE(long_x),
DEREFBYTEHANDLE(long_y),
DEREFBYTEHANDLE(remRes), DEREFBYTEHANDLE(divRes),
lx, ly);
/* Clear the rest */
for(POLYUNSIGNED i=ly; i < lx+1; i++)
{
DEREFBYTEHANDLE(remRes)[i] = 0;
}
remHandle = make_canonical(taskData, remRes, sign_x /* Same sign as dividend */ );
divHandle = make_canonical(taskData, divRes, sign_x ^ sign_y);
#endif
}
// This returns x divided by y. This always rounds towards zero so
// corresponds to Int.quot in ML not Int.div.
Handle div_longc(TaskData *taskData, Handle y, Handle x)
{
Handle remHandle, divHandle;
quotRem(taskData, y, x, remHandle, divHandle);
return divHandle;
}
Handle rem_longc(TaskData *taskData, Handle y, Handle x)
{
Handle remHandle, divHandle;
quotRem(taskData, y, x, remHandle, divHandle);
return remHandle;
}
// Return quot and rem as a pair.
Handle quot_rem_c(TaskData *taskData, Handle result, Handle y, Handle x)
{
// The result handle will almost certainly point into the stack.
// This should now be safe within the GC.
Handle remHandle, divHandle;
quotRem(taskData, y, x, remHandle, divHandle);
DEREFHANDLE(result)->Set(0, DEREFWORDHANDLE(divHandle));
DEREFHANDLE(result)->Set(1, DEREFWORDHANDLE(remHandle));
return taskData->saveVec.push(TAGGED(0));
}
#if defined(_WIN32)
// Return a FILETIME from an arbitrary precision number. On both 32-bit and 64-bit Windows
// this is a pair of 32-bit values.
void getFileTimeFromArb(TaskData *taskData, Handle numHandle, PFILETIME ft)
{
Handle twoTo16 = taskData->saveVec.push(TAGGED(65536));
Handle twoTo32 = mult_longc(taskData, twoTo16, twoTo16);
Handle highPart, lowPart;
quotRem(taskData, twoTo32, numHandle, lowPart, highPart);
ft->dwLowDateTime = get_C_unsigned(taskData, lowPart->Word());
ft->dwHighDateTime = get_C_unsigned(taskData, highPart->Word());
}
#endif
/* compare_unsigned is passed LONG integers only */
static int compare_unsigned(PolyWord x, PolyWord y)
{
#ifdef USE_GMP
mp_size_t lx = numLimbs(x);
mp_size_t ly = numLimbs(y);
if (lx != ly) /* u > v if u longer than v */
{
return (lx > ly ? 1 : -1);
}
return mpn_cmp((mp_limb_t *)x.AsCodePtr(), (mp_limb_t *)y.AsCodePtr(), lx);
#else
/* First look at the lengths */
POLYUNSIGNED lx = get_length(x);
POLYUNSIGNED ly = get_length(y);
if (lx != ly) /* u > v if u longer than v */
{
return (lx > ly ? 1 : -1);
}
// Same length - look at the values. */
byte *u = x.AsCodePtr();
byte *v = y.AsCodePtr();
POLYUNSIGNED i = lx;
while (i > 0)
{
i--;
if (u[i] != v[i])
{
return u[i] > v[i] ? 1 : -1;
}
}
/* Must be equal */
return 0;
#endif
}
int compareLong(PolyWord y, PolyWord x)
{
// Test if the values are bitwise equal. If either is short
// this is the only case where the values could be equal.
if (x == y) // Equal
return 0;
if (x.IsTagged())
{
// x is short.
if (y.IsTagged()) {
// Both short. We've already tested for equality.
if (x.UnTagged() < y.UnTagged())
return -1; // Less
else return 1; // Greater
}
// y is not short. Just test the sign. If it's negative
// it must be less than any short value and if it's positive
// it must be greater.
if (OBJ_IS_NEGATIVE(GetLengthWord(y)))
return 1; // x is greater
else return -1; // x is less
}
// x is not short
if (y.IsTagged())
{
// y is short. Just test the sign of x
if (OBJ_IS_NEGATIVE(GetLengthWord(x)))
return -1; // x is less
else return 1; // x is greater
}
// Must both be long. We may be able to determine the result based purely on the sign bits.
if (! OBJ_IS_NEGATIVE(GetLengthWord(x))) /* x is positive */
{
if (! OBJ_IS_NEGATIVE(GetLengthWord(y))) /* y also positive */
{
return compare_unsigned(x, y);
}
else /* y negative so x > y */
{
return 1;
}
}
else
{ /* x is negative */
if (OBJ_IS_NEGATIVE(GetLengthWord(y))) /* y also negative */
{
return compare_unsigned(y, x);
}
else /* y positive so x < y */
{
return -1;
}
}
} /* compareLong */
/* logical_long. General purpose function for binary logical operations. */
static Handle logical_long(TaskData *taskData, Handle x, Handle y, int signX, int signY,
unsigned(*op)(unsigned, unsigned))
{
byte *u; /* byte-pointer for longer number */
byte *v; /* byte-pointer for shorter number */
Handle z;
int sign, signU, signV;
POLYUNSIGNED lu; /* length of u in bytes */
POLYUNSIGNED lv; /* length of v in bytes */
{ /* find the longer number */
#ifdef USE_GMP
POLYUNSIGNED lx = numLimbs(DEREFWORD(x)) * sizeof(mp_limb_t);
POLYUNSIGNED ly = numLimbs(DEREFWORD(y)) * sizeof(mp_limb_t);
#else
POLYUNSIGNED lx = get_length(DEREFWORD(x));
POLYUNSIGNED ly = get_length(DEREFWORD(y));
#endif
/* Make ``u'' the longer. */
if (lx < ly)
{
// Get result vector. There can't be any carry at the end so
// we just need to make this as large as the larger number.
z = alloc_and_save(taskData, WORDS(ly), F_MUTABLE_BIT|F_BYTE_OBJ);
/* now safe to dereference pointers */
u = DEREFBYTEHANDLE(y); lu = ly;
v = DEREFBYTEHANDLE(x); lv = lx;
signU = signY; signV = signX;
}
else
{
/* Get result vector. */
z = alloc_and_save(taskData, WORDS(lx+1), F_MUTABLE_BIT|F_BYTE_OBJ);
/* now safe to dereference pointers */
u = DEREFBYTEHANDLE(x); lu = lx;
v = DEREFBYTEHANDLE(y); lv = ly;
signU = signX; signV = signY;
}
}
sign = (*op)(signU, signV); /* -1 if negative, 0 if positive. */
{ /* do the actual operations */
byte *w = DEREFBYTEHANDLE(z);
int borrowU = 1, borrowV = 1, borrowW = 1;
POLYUNSIGNED i = 0;
/* Do the operations. */
for( ; i < lv; i++)
{
int wI;
/* Have to convert negative values to twos complement. */
if (signU) borrowU += 255 - u[i];
else borrowU = u[i];
if (signV) borrowV += 255 - v[i];
else borrowV = v[i];
wI = (*op)(borrowU, borrowV) & 255;
if (sign)
{
/* Have to convert the result back to twos complement. */
borrowW += 255 - wI;
w[i] = borrowW & 255;
borrowW >>= 8;
}
else w[i] = wI;
borrowU >>= 8;
borrowV >>= 8;
}
/* At this point the borrow of V should be zero. */
ASSERT(signV == 0 || borrowV == 0);
/* Continue with ``u''. */
for( ; i < lu; i++)
{
int wI;
if (signU) borrowU += 255 - u[i];
else borrowU = u[i];
if (signV) borrowV = 255; else borrowV = 0;
wI = (*op)(borrowU, borrowV) & 255;
if (sign)
{
/* Have to convert the result back to twos complement. */
borrowW += 255 - wI;
w[i] = borrowW & 255;
borrowW >>= 8;
}
else w[i] = wI;
borrowU >>= 8;
borrowV >>= 8;
}
/* We should now no longer have any borrows. */
ASSERT(signU == 0 || borrowU == 0);
ASSERT(sign == 0 || borrowW == 0);
}
return make_canonical(taskData, z, sign);
} /* logical_long */
static unsigned doAnd(unsigned i, unsigned j)
{
return i & j;
}
static unsigned doOr(unsigned i, unsigned j)
{
return i | j;
}
static unsigned doXor(unsigned i, unsigned j)
{
return i ^ j;
}
Handle and_longc(TaskData *taskData, Handle y, Handle x)
{
if (IS_INT(DEREFWORD(x)) &&
IS_INT(DEREFWORD(y))) /* Both short */
{
/* There's no problem with overflow so we can just AND together
the values. */
POLYSIGNED t = UNTAGGED(DEREFWORD(x)) & UNTAGGED(DEREFWORD(y));
return taskData->saveVec.push(TAGGED(t));
}
#if USE_GMP
PolyWord x_extend[1+WORDS(sizeof(mp_limb_t))];
PolyWord y_extend[1+WORDS(sizeof(mp_limb_t))];
#else
PolyWord x_extend[2], y_extend[2];
#endif
SaveVecEntry x_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(x_extend[1])));
Handle x_ehandle = &x_extend_addr;
SaveVecEntry y_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(y_extend[1])));
Handle y_ehandle = &y_extend_addr;
// Convert to long form.
int sign_x, sign_y;
Handle long_x = get_long(x, x_ehandle, &sign_x);
Handle long_y = get_long(y, y_ehandle, &sign_y);
return logical_long(taskData, long_x, long_y, sign_x, sign_y, doAnd);
}
Handle or_longc(TaskData *taskData, Handle y, Handle x)
{
if (IS_INT(DEREFWORD(x)) &&
IS_INT(DEREFWORD(y))) /* Both short */
{
/* There's no problem with overflow so we can just OR together
the values. */
POLYSIGNED t = UNTAGGED(DEREFWORD(x)) | UNTAGGED(DEREFWORD(y));
return taskData->saveVec.push(TAGGED(t));
}
#if USE_GMP
PolyWord x_extend[1+WORDS(sizeof(mp_limb_t))];
PolyWord y_extend[1+WORDS(sizeof(mp_limb_t))];
#else
PolyWord x_extend[2], y_extend[2];
#endif
SaveVecEntry x_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(x_extend[1])));
Handle x_ehandle = &x_extend_addr;
SaveVecEntry y_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(y_extend[1])));
Handle y_ehandle = &y_extend_addr;
// Convert to long form.
int sign_x, sign_y;
Handle long_x = get_long(x, x_ehandle, &sign_x);
Handle long_y = get_long(y, y_ehandle, &sign_y);
return logical_long(taskData, long_x, long_y, sign_x, sign_y, doOr);
}
Handle xor_longc(TaskData *taskData, Handle y, Handle x)
{
if (IS_INT(DEREFWORD(x)) &&
IS_INT(DEREFWORD(y))) /* Both short */
{
/* There's no problem with overflow so we can just XOR together
the values. */
POLYSIGNED t = UNTAGGED(DEREFWORD(x)) ^ UNTAGGED(DEREFWORD(y));
return taskData->saveVec.push(TAGGED(t));
}
#if USE_GMP
PolyWord x_extend[1+WORDS(sizeof(mp_limb_t))];
PolyWord y_extend[1+WORDS(sizeof(mp_limb_t))];
#else
PolyWord x_extend[2], y_extend[2];
#endif
SaveVecEntry x_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(x_extend[1])));
Handle x_ehandle = &x_extend_addr;
SaveVecEntry y_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(y_extend[1])));
Handle y_ehandle = &y_extend_addr;
// Convert to long form.
int sign_x, sign_y;
Handle long_x = get_long(x, x_ehandle, &sign_x);
Handle long_y = get_long(y, y_ehandle, &sign_y);
return logical_long(taskData, long_x, long_y, sign_x, sign_y, doXor);
}
// Convert a long precision value to floating point
double get_arbitrary_precision_as_real(PolyWord x)
{
if (IS_INT(x)) {
POLYSIGNED t = UNTAGGED(x);
return (double)t;
}
double acc = 0;
#if USE_GMP
mp_limb_t *u = (mp_limb_t *)(x.AsObjPtr());
mp_size_t lx = numLimbs(x);
for ( ; lx > 0; lx--) {
int ll = sizeof(mp_limb_t);
for ( ; ll > 0 ; ll-- ) {
acc = acc * 256;
}
acc = acc + (double)u[lx-1];
}
#else
byte *u = (byte *)(x.AsObjPtr());
POLYUNSIGNED lx = OBJECT_LENGTH(x)*sizeof(PolyWord);
for( ; lx > 0; lx--) {
acc = acc * 256 + (double)u[lx-1];
}
#endif
if (OBJ_IS_NEGATIVE(GetLengthWord(x)))
return -acc;
else return acc;
}
/* Arbitrary precision GCD function. This is really included to make
use of GMP's GCD function that selects an algorithm based on the
length of the arguments. */
#ifdef USE_GMP
Handle gcd_arbitrary(TaskData *taskData, Handle x, Handle y)
{
/* mpn_gcd requires that each argument is odd and its first argument must be
no longer than its second. This requires shifting before the call and after
the result has been returned. This code is modelled roughly on the high level
mpz_gcd call in GMP. */
PolyWord x_extend[1+WORDS(sizeof(mp_limb_t))];
PolyWord y_extend[1+WORDS(sizeof(mp_limb_t))];
SaveVecEntry x_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(x_extend[1])));
Handle x_ehandle = &x_extend_addr;
SaveVecEntry y_extend_addr = SaveVecEntry(PolyWord::FromStackAddr(&(y_extend[1])));
Handle y_ehandle = &y_extend_addr;
int sign_x, sign_y; // Signs are ignored - the result is always positive.
Handle long_x = get_long(x, x_ehandle, &sign_x);
Handle long_y = get_long(y, y_ehandle, &sign_y);
mp_size_t lx = numLimbs(DEREFWORD(long_x));
mp_size_t ly = numLimbs(DEREFWORD(long_y));
// Test for zero length and therefore zero argument
if (lx == 0)
{
// GCD(0,y) = abs(y)
if (sign_y)
return neg_longc(taskData, y);
else return y;
}
if (ly == 0)
{
// GCD(x,0 = abs(x)
if (sign_x)
return neg_longc(taskData, x);
else return x;
}
// If one of the arguments is a single limb we can use the special case.
// This doesn't require shifting. It also doesn't say that it could
// overwrite the arguments.
if (lx == 1 || ly == 1)
{
mp_limb_t g =
(lx == 1) ? mpn_gcd_1(DEREFLIMBHANDLE(long_y), ly, *DEREFLIMBHANDLE(long_x)) :
mpn_gcd_1(DEREFLIMBHANDLE(long_x), lx, *DEREFLIMBHANDLE(long_y));
if (g <= MAXTAGGED)
return taskData->saveVec.push(TAGGED(g));
// Need to allocate space.
Handle r = alloc_and_save(taskData, WORDS(sizeof(mp_limb_t)), F_BYTE_OBJ);
*(DEREFLIMBHANDLE(r)) = g;
return r;
}
// Memory for result. This can be up to the shorter of the two.
// We rely on this zero the memory because we may not set every word here.
Handle r = alloc_and_save(taskData, WORDS((lx < ly ? lx : ly)*sizeof(mp_limb_t)), F_BYTE_OBJ|F_MUTABLE_BIT);
// Can now dereference the handles.
mp_limb_t *xl = DEREFLIMBHANDLE(long_x);
mp_limb_t *yl = DEREFLIMBHANDLE(long_y);
mp_limb_t *rl = DEREFLIMBHANDLE(r);
unsigned xZeroLimbs = 0, xZeroBits = 0;
// Remove whole limbs of zeros. There must be a word which is non-zero.
while (*xl == 0) { xl++; xZeroLimbs++; lx--; }
// Count the low-order bits and shift by that amount.
mp_limb_t t = *xl;
while ((t & 1) == 0) { t = t >> 1; xZeroBits++; }
// Copy the non-zero limbs into a temporary, shifting if necessary.
mp_limb_t *xC = (mp_limb_t*)alloca(lx * sizeof(mp_limb_t));
if (xZeroBits != 0)
{
mpn_rshift(xC, xl, lx, xZeroBits);
if (xC[lx-1] == 0) lx--;
}
else memcpy(xC, xl, lx * sizeof(mp_limb_t));
unsigned yZeroLimbs = 0, yZeroBits = 0;
while (*yl == 0) { yl++; yZeroLimbs++; ly--; }
t = *yl;
while ((t & 1) == 0) { t = t >> 1; yZeroBits++; }
mp_limb_t *yC = (mp_limb_t*)alloca(ly * sizeof(mp_limb_t));
if (yZeroBits != 0)
{
mpn_rshift(yC, yl, ly, yZeroBits);
if (yC[ly-1] == 0) ly--;
}
else memcpy(yC, yl, ly * sizeof(mp_limb_t));
// The result length and shift is the smaller of these
unsigned rZeroLimbs, rZeroBits;
if (xZeroLimbs < yZeroLimbs || (xZeroLimbs == yZeroLimbs && xZeroBits < yZeroBits))
{
rZeroLimbs = xZeroLimbs;
rZeroBits = xZeroBits;
}
else
{
rZeroLimbs = yZeroLimbs;
rZeroBits = yZeroBits;
}
// Now actually compute the GCD
if (lx < ly || (lx == ly && xC[lx-1] < yC[ly-1]))
lx = mpn_gcd(xC, yC, ly, xC, lx);
else
lx = mpn_gcd(xC, xC, lx, yC, ly);
// Shift the temporary result into the final area.
if (rZeroBits != 0)
{
t = mpn_lshift(rl+rZeroLimbs, xC, lx, rZeroBits);
if (t != 0)
rl[rZeroLimbs+lx] = t;
}
else memcpy(rl+rZeroLimbs, xC, lx * sizeof(mp_limb_t));
return make_canonical(taskData, r, false);
}
#else
// Fallback version for when GMP is not defined.
static Handle gxd(TaskData *taskData, Handle x, Handle y)
{
Handle marker = taskData->saveVec.mark();
while (1)
{
if (DEREFWORD(y) == TAGGED(0))
return x;
Handle res = rem_longc(taskData, y, x);
PolyWord newY = res->Word();
PolyWord newX = y->Word();
taskData->saveVec.reset(marker);
y = taskData->saveVec.push(newY);
x = taskData->saveVec.push(newX);
}
}
static Handle absValue(TaskData *taskData, Handle x)
{
if (IS_INT(DEREFWORD(x)))
{
if (UNTAGGED(DEREFWORD(x)) < 0)
return neg_longc(taskData, x);
}
else if (OBJ_IS_NEGATIVE(GetLengthWord(DEREFWORD(x))))
return neg_longc(taskData, x);
return x;
}
Handle gcd_arbitrary(TaskData *taskData, Handle x, Handle y)
{
x = absValue(taskData, x);
y = absValue(taskData, y);
if (compareLong(y->Word(), x->Word()) < 0)
return gxd(taskData, y, x);
else return gxd(taskData, x, y);
}
#endif
// This is provided as an adjunct to GCD. Using this saves the RTS
// calls necessary for the division and multiplication.
Handle lcm_arbitrary(TaskData *taskData, Handle x, Handle y)
{
Handle g = gcd_arbitrary(taskData, x, y);
return mult_longc(taskData, x, div_longc(taskData, g, y));
}
POLYUNSIGNED PolyAddArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2)
{
TaskData *taskData = TaskData::FindTaskForId(threadId);
ASSERT(taskData != 0);
taskData->PreRTSCall();
Handle reset = taskData->saveVec.mark();
Handle pushedArg1 = taskData->saveVec.push(arg1);
Handle pushedArg2 = taskData->saveVec.push(arg2);
Handle result = 0;
if (profileMode == kProfileEmulation)
taskData->addProfileCount(1);
try {
// Could raise an exception if out of memory.
result = add_longc(taskData, pushedArg2, pushedArg1);
}
catch (...) { } // If an ML exception is raised
taskData->saveVec.reset(reset); // Ensure the save vec is reset
taskData->PostRTSCall();
if (result == 0) return TAGGED(0).AsUnsigned();
else return result->Word().AsUnsigned();
}
POLYUNSIGNED PolySubtractArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2)
{
TaskData *taskData = TaskData::FindTaskForId(threadId);
ASSERT(taskData != 0);
taskData->PreRTSCall();
Handle reset = taskData->saveVec.mark();
Handle pushedArg1 = taskData->saveVec.push(arg1);
Handle pushedArg2 = taskData->saveVec.push(arg2);
Handle result = 0;
if (profileMode == kProfileEmulation)
taskData->addProfileCount(1);
try {
result = sub_longc(taskData, pushedArg2, pushedArg1);
} catch (...) { } // If an ML exception is raised
taskData->saveVec.reset(reset); // Ensure the save vec is reset
taskData->PostRTSCall();
if (result == 0) return TAGGED(0).AsUnsigned();
else return result->Word().AsUnsigned();
}
POLYUNSIGNED PolyMultiplyArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2)
{
TaskData *taskData = TaskData::FindTaskForId(threadId);
ASSERT(taskData != 0);
taskData->PreRTSCall();
Handle reset = taskData->saveVec.mark();
Handle pushedArg1 = taskData->saveVec.push(arg1);
Handle pushedArg2 = taskData->saveVec.push(arg2);
Handle result = 0;
if (profileMode == kProfileEmulation)
taskData->addProfileCount(1);
try {
result = mult_longc(taskData, pushedArg2, pushedArg1);
} catch (...) { } // If an ML exception is raised
taskData->saveVec.reset(reset); // Ensure the save vec is reset
taskData->PostRTSCall();
if (result == 0) return TAGGED(0).AsUnsigned();
else return result->Word().AsUnsigned();
}
POLYUNSIGNED PolyDivideArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2)
{
TaskData *taskData = TaskData::FindTaskForId(threadId);
ASSERT(taskData != 0);
taskData->PreRTSCall();
Handle reset = taskData->saveVec.mark();
Handle pushedArg1 = taskData->saveVec.push(arg1);
Handle pushedArg2 = taskData->saveVec.push(arg2);
Handle result = 0;
if (profileMode == kProfileEmulation)
taskData->addProfileCount(1);
try {
// May raise divide exception
result = div_longc(taskData, pushedArg2, pushedArg1);
} catch (...) { } // If an ML exception is raised
taskData->saveVec.reset(reset); // Ensure the save vec is reset
taskData->PostRTSCall();
if (result == 0) return TAGGED(0).AsUnsigned();
else return result->Word().AsUnsigned();
}
POLYUNSIGNED PolyRemainderArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2)
{
TaskData *taskData = TaskData::FindTaskForId(threadId);
ASSERT(taskData != 0);
taskData->PreRTSCall();
Handle reset = taskData->saveVec.mark();
Handle pushedArg1 = taskData->saveVec.push(arg1);
Handle pushedArg2 = taskData->saveVec.push(arg2);
Handle result = 0;
if (profileMode == kProfileEmulation)
taskData->addProfileCount(1);
try {
result = rem_longc(taskData, pushedArg2, pushedArg1);
} catch (...) { } // If an ML exception is raised
taskData->saveVec.reset(reset); // Ensure the save vec is reset
taskData->PostRTSCall();
if (result == 0) return TAGGED(0).AsUnsigned();
else return result->Word().AsUnsigned();
}
POLYUNSIGNED PolyQuotRemArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2, PolyWord arg3)
{
TaskData *taskData = TaskData::FindTaskForId(threadId);
ASSERT(taskData != 0);
taskData->PreRTSCall();
Handle reset = taskData->saveVec.mark();
Handle pushedArg1 = taskData->saveVec.push(arg1);
Handle pushedArg2 = taskData->saveVec.push(arg2);
Handle pushedArg3 = taskData->saveVec.push(arg3);
if (profileMode == kProfileEmulation)
taskData->addProfileCount(1);
try {
quot_rem_c(taskData, pushedArg3, pushedArg2, pushedArg1);
} catch (...) { } // If an ML exception is raised
taskData->saveVec.reset(reset); // Ensure the save vec is reset
taskData->PostRTSCall();
return 0; // Result is unit
}
// This can be a fast call. It does not need to allocate or use handles.
POLYSIGNED PolyCompareArbitrary(PolyWord arg1, PolyWord arg2)
{
return TAGGED(compareLong(arg2, arg1)).AsSigned();
}
POLYUNSIGNED PolyGCDArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2)
{
TaskData *taskData = TaskData::FindTaskForId(threadId);
ASSERT(taskData != 0);
taskData->PreRTSCall();
Handle reset = taskData->saveVec.mark();
Handle pushedArg1 = taskData->saveVec.push(arg1);
Handle pushedArg2 = taskData->saveVec.push(arg2);
Handle result = 0;
try {
result = gcd_arbitrary(taskData, pushedArg2, pushedArg1);
// Generally shouldn't raise an exception but might run out of store.
} catch (...) { } // If an ML exception is raised
taskData->saveVec.reset(reset); // Ensure the save vec is reset
taskData->PostRTSCall();
if (result == 0) return TAGGED(0).AsUnsigned();
else return result->Word().AsUnsigned();
}
POLYUNSIGNED PolyLCMArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2)
{
TaskData *taskData = TaskData::FindTaskForId(threadId);
ASSERT(taskData != 0);
taskData->PreRTSCall();
Handle reset = taskData->saveVec.mark();
Handle pushedArg1 = taskData->saveVec.push(arg1);
Handle pushedArg2 = taskData->saveVec.push(arg2);
Handle result = 0;
try {
result = lcm_arbitrary(taskData, pushedArg2, pushedArg1);
// Generally shouldn't raise an exception but might run out of store.
} catch (...) { } // If an ML exception is raised
taskData->saveVec.reset(reset); // Ensure the save vec is reset
taskData->PostRTSCall();
if (result == 0) return TAGGED(0).AsUnsigned();
else return result->Word().AsUnsigned();
}
// Extract the low order part of an arbitrary precision value as a boxed LargeWord.word
// value. If the value is negative it is treated as a twos complement value.
// This is used Word.fromLargeInt and LargeWord.fromLargeInt with long-form
// arbitrary precision values.
POLYUNSIGNED PolyGetLowOrderAsLargeWord(PolyObject *threadId, PolyWord arg)
{
TaskData *taskData = TaskData::FindTaskForId(threadId);
ASSERT(taskData != 0);
taskData->PreRTSCall();
Handle reset = taskData->saveVec.mark();
POLYSIGNED p = 0;
if (arg.IsTagged())
p = arg.UnTagged();
else
{
bool negative = OBJ_IS_NEGATIVE(GetLengthWord(arg)) ? true : false;
#ifdef USE_GMP
mp_limb_t c = *(mp_limb_t*)arg.AsCodePtr();
p = c;
#else
POLYUNSIGNED length = get_length(arg);
if (length > sizeof(PolyWord)) length = sizeof(PolyWord);
byte *ptr = arg.AsCodePtr();
while (length--)
{
p = (p << 8) | ptr[length];
}
#endif
if (negative) p = -p;
}
Handle result = alloc_and_save(taskData, 1, F_BYTE_OBJ);
result->WordP()->Set(0, PolyWord::FromUnsigned(p));
taskData->saveVec.reset(reset); // Ensure the save vec is reset
taskData->PostRTSCall();
return result->Word().AsUnsigned();
}
POLYUNSIGNED PolyOrArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2)
{
TaskData *taskData = TaskData::FindTaskForId(threadId);
ASSERT(taskData != 0);
taskData->PreRTSCall();
Handle reset = taskData->saveVec.mark();
Handle pushedArg1 = taskData->saveVec.push(arg1);
Handle pushedArg2 = taskData->saveVec.push(arg2);
Handle result = 0;
try {
// Could raise an exception if out of memory.
result = or_longc(taskData, pushedArg2, pushedArg1);
}
catch (...) { } // If an ML exception is raised
taskData->saveVec.reset(reset); // Ensure the save vec is reset
taskData->PostRTSCall();
if (result == 0) return TAGGED(0).AsUnsigned();
else return result->Word().AsUnsigned();
}
POLYUNSIGNED PolyAndArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2)
{
TaskData *taskData = TaskData::FindTaskForId(threadId);
ASSERT(taskData != 0);
taskData->PreRTSCall();
Handle reset = taskData->saveVec.mark();
Handle pushedArg1 = taskData->saveVec.push(arg1);
Handle pushedArg2 = taskData->saveVec.push(arg2);
Handle result = 0;
try {
// Could raise an exception if out of memory.
result = and_longc(taskData, pushedArg2, pushedArg1);
}
catch (...) { } // If an ML exception is raised
taskData->saveVec.reset(reset); // Ensure the save vec is reset
taskData->PostRTSCall();
if (result == 0) return TAGGED(0).AsUnsigned();
else return result->Word().AsUnsigned();
}
POLYUNSIGNED PolyXorArbitrary(PolyObject *threadId, PolyWord arg1, PolyWord arg2)
{
TaskData *taskData = TaskData::FindTaskForId(threadId);
ASSERT(taskData != 0);
taskData->PreRTSCall();
Handle reset = taskData->saveVec.mark();
Handle pushedArg1 = taskData->saveVec.push(arg1);
Handle pushedArg2 = taskData->saveVec.push(arg2);
Handle result = 0;
try {
// Could raise an exception if out of memory.
result = xor_longc(taskData, pushedArg2, pushedArg1);
}
catch (...) { } // If an ML exception is raised
taskData->saveVec.reset(reset); // Ensure the save vec is reset
taskData->PostRTSCall();
if (result == 0) return TAGGED(0).AsUnsigned();
else return result->Word().AsUnsigned();
}
struct _entrypts arbitraryPrecisionEPT[] =
{
{ "PolyAddArbitrary", (polyRTSFunction)&PolyAddArbitrary},
{ "PolySubtractArbitrary", (polyRTSFunction)&PolySubtractArbitrary},
{ "PolyMultiplyArbitrary", (polyRTSFunction)&PolyMultiplyArbitrary},
{ "PolyDivideArbitrary", (polyRTSFunction)&PolyDivideArbitrary},
{ "PolyRemainderArbitrary", (polyRTSFunction)&PolyRemainderArbitrary},
{ "PolyQuotRemArbitrary", (polyRTSFunction)&PolyQuotRemArbitrary},
{ "PolyCompareArbitrary", (polyRTSFunction)&PolyCompareArbitrary},
{ "PolyGCDArbitrary", (polyRTSFunction)&PolyGCDArbitrary},
{ "PolyLCMArbitrary", (polyRTSFunction)&PolyLCMArbitrary},
{ "PolyGetLowOrderAsLargeWord", (polyRTSFunction)&PolyGetLowOrderAsLargeWord},
{ "PolyOrArbitrary", (polyRTSFunction)&PolyOrArbitrary},
{ "PolyAndArbitrary", (polyRTSFunction)&PolyAndArbitrary},
{ "PolyXorArbitrary", (polyRTSFunction)&PolyXorArbitrary},
{ NULL, NULL} // End of list.
};
|