File: elfexport.cpp

package info (click to toggle)
polyml 5.7.1-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid
  • size: 40,616 kB
  • sloc: cpp: 44,142; ansic: 26,963; sh: 22,002; asm: 13,486; makefile: 602; exp: 525; python: 253; awk: 91
file content (759 lines) | stat: -rw-r--r-- 27,151 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
/*
    Title:     Write out a database as an ELF object file
    Author:    David Matthews.

    Copyright (c) 2006-7, 2011, 2016 David C. J. Matthews

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License version 2.1 as published by the Free Software Foundation.
    
    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR H PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.
    
    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
*/

#include "config.h"

#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif

#ifdef HAVE_STDIO_H
#include <stdio.h>
#endif

#ifdef HAVE_STDDEF_H
#include <stddef.h>
#endif

#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif

#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif

#ifdef HAVE_TIME_H
#include <time.h>
#endif

#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x)
#endif

#ifdef HAVE_ELF_H
#include <elf.h>
#elif defined(HAVE_ELF_ABI_H)
#include <elf_abi.h>
#include <machine/reloc.h>

#ifndef EM_X86_64
#define EM_X86_64 EM_AMD64
#endif

#if defined(HOSTARCHITECTURE_X86_64)

#ifndef R_386_PC32
#define R_386_PC32 R_X86_64_PC32
#endif

#ifndef R_386_32
#define R_386_32 R_X86_64_32
#endif

#ifndef R_X86_64_64
#define R_X86_64_64 R_X86_64_64
#endif

#endif /* HOSTARCHITECTURE_X86_64 */

#endif

// Solaris seems to put processor-specific constants in separate files
#ifdef HAVE_SYS_ELF_SPARC_H
#include <sys/elf_SPARC.h>
#endif
#ifdef HAVE_SYS_ELF_386_H
#include <sys/elf_386.h>
#endif
#ifdef HAVE_SYS_ELF_AMD64_H
#include <sys/elf_amd64.h>
#endif

// Android has the ARM relocation symbol here
#ifdef HAVE_ASM_ELF_H
#include <asm/elf.h>
#endif

#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef HAVE_SYS_UTSNAME_H
#include <sys/utsname.h>
#endif

#include "globals.h"

#include "diagnostics.h"
#include "sys.h"
#include "machine_dep.h"
#include "gc.h"
#include "mpoly.h"
#include "scanaddrs.h"
#include "elfexport.h"
#include "run_time.h"
#include "version.h"
#include "polystring.h"
#include "timing.h"

#define sym_last_local_sym sym_data_section

#if defined(HOSTARCHITECTURE_X86)
# define HOST_E_MACHINE EM_386
# define HOST_DIRECT_DATA_RELOC R_386_32
# define HOST_DIRECT_FPTR_RELOC R_386_32
# define USE_RELA 0
#elif defined(HOSTARCHITECTURE_PPC)
# define HOST_E_MACHINE EM_PPC
# define HOST_DIRECT_DATA_RELOC R_PPC_ADDR32
# define HOST_DIRECT_FPTR_RELOC R_PPC_ADDR32
# define USE_RELA 1
#elif defined(HOSTARCHITECTURE_PPC64)
# define HOST_E_MACHINE EM_PPC64
# define HOST_DIRECT_DATA_RELOC R_PPC64_ADDR64
# define HOST_DIRECT_FPTR_RELOC R_PPC64_ADDR64
# define USE_RELA 1
#elif defined(HOSTARCHITECTURE_S390)
# define HOST_E_MACHINE EM_S390
# define HOST_DIRECT_DATA_RELOC R_390_32
# define HOST_DIRECT_FPTR_RELOC R_390_32
# define USE_RELA 1
#elif defined(HOSTARCHITECTURE_S390X)
# define HOST_E_MACHINE EM_S390
# define HOST_DIRECT_DATA_RELOC R_390_64
# define HOST_DIRECT_FPTR_RELOC R_390_64
# define USE_RELA 1
#elif defined(HOSTARCHITECTURE_SH)
# define HOST_E_MACHINE EM_SH
# define HOST_DIRECT_DATA_RELOC R_SH_DIR32
# define HOST_DIRECT_FPTR_RELOC R_SH_DIR32
# define USE_RELA 1
#elif defined(HOSTARCHITECTURE_SPARC)
# define HOST_E_MACHINE EM_SPARC
# define HOST_DIRECT_DATA_RELOC R_SPARC_32
# define HOST_DIRECT_FPTR_RELOC R_SPARC_32
# define USE_RELA 1
/* Sparc/Solaris, at least 2.8, requires ELF32_Rela relocations.  For some reason,
   though, it adds the value in the location being relocated (as with ELF32_Rel
   relocations) as well as the addend. To be safe, whenever we use an ELF32_Rela
   relocation we always zero the location to be relocated. */
#elif defined(HOSTARCHITECTURE_SPARC64)
# define HOST_E_MACHINE EM_SPARCV9
# define HOST_DIRECT_DATA_RELOC R_SPARC_64
# define HOST_DIRECT_FPTR_RELOC R_SPARC_64
/* Use the most relaxed memory model. At link time, the most restrictive one is
   chosen, so it does no harm to be as permissive as possible here. */
# define HOST_E_FLAGS EF_SPARCV9_RMO
# define USE_RELA 1
#elif defined(HOSTARCHITECTURE_X86_64)
/* It seems Solaris/X86-64 only supports ELF64_Rela relocations.  It appears that
   Linux will support either so we now use Rela on X86-64. */
# define HOST_E_MACHINE EM_X86_64
# define HOST_DIRECT_DATA_RELOC R_X86_64_64
# define HOST_DIRECT_FPTR_RELOC R_X86_64_64
# define USE_RELA 1
#elif defined(HOSTARCHITECTURE_X32)
# define HOST_E_MACHINE EM_X86_64
# define HOST_DIRECT_DATA_RELOC R_X86_64_32
# define HOST_DIRECT_FPTR_RELOC R_X86_64_32
# define USE_RELA 1
#elif defined(HOSTARCHITECTURE_ARM)
# ifndef EF_ARM_EABI_VER4
#  define EF_ARM_EABI_VER4     0x04000000
# endif
// When linking ARM binaries the linker checks the ABI version.  We
// need to set the version to the same as the libraries.
// GCC currently uses version 4.
# define HOST_E_MACHINE EM_ARM
# define HOST_DIRECT_DATA_RELOC R_ARM_ABS32
# define HOST_DIRECT_FPTR_RELOC R_ARM_ABS32
# define USE_RELA 0
# define HOST_E_FLAGS EF_ARM_EABI_VER4
#elif defined(HOSTARCHITECTURE_HPPA)
# if defined(__hpux)
#  define HOST_OSABI ELFOSABI_HPUX
# elif defined(__NetBSD__)
#  define HOST_OSABI ELFOSABI_NETBSD
# elif defined(__linux__)
#  define HOST_OSABI ELFOSABI_GNU
# endif
# define HOST_E_MACHINE EM_PARISC
# define HOST_DIRECT_DATA_RELOC R_PARISC_DIR32
# define HOST_DIRECT_FPTR_RELOC R_PARISC_PLABEL32
# define HOST_E_FLAGS EFA_PARISC_1_0
# define USE_RELA 1
#elif defined(HOSTARCHITECTURE_IA64)
# define HOST_E_MACHINE EM_IA_64
# define HOST_DIRECT_DATA_RELOC R_IA64_DIR64LSB
# define HOST_DIRECT_FPTR_RELOC R_IA64_FPTR64LSB
# define HOST_E_FLAGS EF_IA_64_ABI64
# define USE_RELA 1
#elif defined(HOSTARCHITECTURE_AARCH64)
# define HOST_E_MACHINE EM_AARCH64
# define HOST_DIRECT_DATA_RELOC R_AARCH64_ABS64
# define HOST_DIRECT_FPTR_RELOC R_AARCH64_ABS64
# define USE_RELA 1
#elif defined(HOSTARCHITECTURE_M68K)
# define HOST_E_MACHINE EM_68K
# define HOST_DIRECT_DATA_RELOC R_68K_32
# define HOST_DIRECT_FPTR_RELOC R_68K_32
# define USE_RELA 1
#elif defined(HOSTARCHITECTURE_MIPS)
# define HOST_E_MACHINE EM_MIPS
# define HOST_DIRECT_DATA_RELOC R_MIPS_32
# define HOST_DIRECT_FPTR_RELOC R_MIPS_32
# ifdef __PIC__
#  define HOST_E_FLAGS EF_MIPS_CPIC
# endif
# define USE_RELA 1
#elif defined(HOSTARCHITECTURE_MIPS64)
# define HOST_E_MACHINE EM_MIPS
# define HOST_DIRECT_DATA_RELOC R_MIPS_64
# define HOST_DIRECT_FPTR_RELOC R_MIPS_64
# ifdef __PIC__
#  define HOST_E_FLAGS (EF_MIPS_ARCH_64 | EF_MIPS_CPIC)
# else
#  define HOST_E_FLAGS EF_MIPS_ARCH_64
# endif
# define USE_RELA 1
#elif defined(HOSTARCHITECTURE_ALPHA)
# define HOST_E_MACHINE EM_ALPHA
# define HOST_DIRECT_DATA_RELOC R_ALPHA_REFQUAD
# define HOST_DIRECT_FPTR_RELOC R_ALPHA_REFQUAD
# define USE_RELA 1
#elif defined(HOSTARCHITECTURE_RISCV32) || defined(HOSTARCHITECTURE_RISCV64)
# define HOST_E_MACHINE EM_RISCV
# if defined(HOSTARCHITECTURE_RISCV32)
#  define HOST_DIRECT_DATA_RELOC R_RISCV_32
#  define HOST_DIRECT_FPTR_RELOC R_RISCV_32
# else
#  define HOST_DIRECT_DATA_RELOC R_RISCV_64
#  define HOST_DIRECT_FPTR_RELOC R_RISCV_64
# endif
# if defined(__riscv_float_abi_soft)
#  define HOST_E_FLAGS_FLOAT_ABI EF_RISCV_FLOAT_ABI_SOFT
# elif defined(__riscv_float_abi_single)
#  define HOST_E_FLAGS_FLOAT_ABI EF_RISCV_FLOAT_ABI_SINGLE
# elif defined(__riscv_float_abi_double)
#  define HOST_E_FLAGS_FLOAT_ABI EF_RISCV_FLOAT_ABI_DOUBLE
# elif defined(__riscv_float_abi_quad)
#  define HOST_E_FLAGS_FLOAT_ABI EF_RISCV_FLOAT_ABI_QUAD
# else
#  error "Unknown RISC-V float ABI"
# endif
# ifdef __riscv_32e
#  define HOST_E_FLAGS_RVE __riscv_32e
# else
#  define HOST_E_FLAGS_RVE 0
# endif
# define HOST_E_FLAGS (HOST_E_FLAGS_FLOAT_ABI | HOST_E_FLAGS_RVE)
# define USE_RELA 1
#else
# error "No support for exporting on this architecture"
#endif

// The first two symbols are special:
// Zero is always special in ELF
// 1 is used for the data section
#define EXTRA_SYMBOLS   2
static unsigned AreaToSym(unsigned area) { return area+EXTRA_SYMBOLS; }

// Section table entries
enum {
    sect_initial = 0,
    sect_sectionnametable,
    sect_stringtable,
    // Data and relocation entries come in here.
    sect_data
    // Finally the symbol table
};

// Add an external reference to the RTS
void ELFExport::addExternalReference(void *relocAddr, const char *name)
{
    externTable.makeEntry(name);
    // The symbol is added after the memory table entries and poly_exports
    writeRelocation(0, relocAddr, symbolNum++, true);
}

// Generate the address relative to the start of the segment.
void ELFExport::setRelocationAddress(void *p, ElfXX_Addr *reloc)
{
    unsigned area = findArea(p);
    POLYUNSIGNED offset = (char*)p - (char*)memTable[area].mtAddr;
    *reloc = offset;
}

/* Get the index corresponding to an address. */
PolyWord ELFExport::createRelocation(PolyWord p, void *relocAddr)
{
    void *addr = p.AsAddress();
    unsigned addrArea = findArea(addr);
    POLYUNSIGNED offset = (char*)addr - (char*)memTable[addrArea].mtAddr;
    return writeRelocation(offset, relocAddr, AreaToSym(addrArea), false);
}

PolyWord ELFExport::writeRelocation(POLYUNSIGNED offset, void *relocAddr, unsigned symbolNum, bool isFuncPtr)
{
#if USE_RELA
    ElfXX_Rela reloc;
    reloc.r_addend = offset;
    offset = 0;
#else
    ElfXX_Rel reloc;
#endif
    // Set the offset within the section we're scanning.
    setRelocationAddress(relocAddr, &reloc.r_offset);
#ifdef HOSTARCHITECTURE_MIPS64
    reloc.r_sym = symbolNum;
    reloc.r_ssym = 0;
    reloc.r_type = isFuncPtr ? HOST_DIRECT_FPTR_RELOC : HOST_DIRECT_DATA_RELOC;
    reloc.r_type2 = 0;
    reloc.r_type3 = 0;
#else
    reloc.r_info = ELFXX_R_INFO(symbolNum, isFuncPtr ? HOST_DIRECT_FPTR_RELOC : HOST_DIRECT_DATA_RELOC);
#endif
    fwrite(&reloc, sizeof(reloc), 1, exportFile);
    relocationCount++;
    return PolyWord::FromUnsigned(offset);
}

/* This is called for each constant within the code. 
   Print a relocation entry for the word and return a value that means
   that the offset is saved in original word. */
void ELFExport::ScanConstant(PolyObject *base, byte *addr, ScanRelocationKind code)
{
    PolyWord p = GetConstantValue(addr, code);

    if (IS_INT(p) || p == PolyWord::FromUnsigned(0))
        return;

    void *a = p.AsAddress();
    unsigned aArea = findArea(a);

    // We don't need a relocation if this is relative to the current segment
    // since the relative address will already be right.
    if (code == PROCESS_RELOC_I386RELATIVE && aArea == findArea(addr))
        return;

    // Set the value at the address to the offset relative to the symbol.
    POLYUNSIGNED offset = (char*)a - (char*)memTable[aArea].mtAddr;

    switch (code)
    {
    case PROCESS_RELOC_DIRECT: // 32 or 64 bit address of target
        {
            PolyWord r = createRelocation(p, addr);
            POLYUNSIGNED w = r.AsUnsigned();
            for (unsigned i = 0; i < sizeof(PolyWord); i++)
            {
                addr[i] = (byte)(w & 0xff);
                w >>= 8;
            }
        }
        break;
#if(defined(HOSTARCHITECTURE_X86) || defined(HOSTARCHITECTURE_X86_64) || \
        defined(HOSTARCHITECTURE_X32))
#ifdef HOSTARCHITECTURE_X86
#define R_PC_RELATIVE R_386_PC32
#else
#define R_PC_RELATIVE R_X86_64_PC32
#endif
     case PROCESS_RELOC_I386RELATIVE:         // 32 bit relative address
        {
#if USE_RELA
            ElfXX_Rela reloc;
            reloc.r_addend = offset;
#else
            ElfXX_Rel reloc;
#endif
            setRelocationAddress(addr, &reloc.r_offset);
            // We seem to need to subtract 4 bytes to get the correct offset in ELF
            offset -= 4;
            reloc.r_info = ELFXX_R_INFO(AreaToSym(aArea), R_PC_RELATIVE);
#if USE_RELA
            // Clear the field.  Even though it's not supposed to be used with Rela the
            // Linux linker at least seems to add the value in here sometimes.
            memset(addr, 0, 4);
#else
            for (unsigned i = 0; i < 4; i++)
            {
                addr[i] = (byte)(offset & 0xff);
                offset >>= 8;
            }
#endif
            fwrite(&reloc, sizeof(reloc), 1, exportFile);
            relocationCount++;
        }
        break;
#endif
        default:
            ASSERT(0); // Wrong type of relocation for this architecture.
    }
}

unsigned long ELFExport::makeStringTableEntry(const char *str, ExportStringTable *stab)
{
    if (str == NULL || str[0] == 0)
        return 0; // First entry is the null string.
    else
        return stab->makeEntry(str);
}

void ELFExport::writeSymbol(const char *symbolName, long value, long size, int binding, int sttype, int section)
{
    ElfXX_Sym symbol;
    memset(&symbol, 0, sizeof(symbol)); // Zero unused fields
    symbol.st_name = makeStringTableEntry(symbolName, &symStrings);
    symbol.st_value = value;
    symbol.st_size = size;
    symbol.st_info = ELFXX_ST_INFO(binding, sttype);
    symbol.st_other = 0;
    symbol.st_shndx = section;
    fwrite(&symbol, sizeof(symbol), 1, exportFile);
}

// Set the file alignment.
void ELFExport::alignFile(int align)
{
    char pad[32] = {0}; // Maximum alignment
    int offset = ftell(exportFile);
    if ((offset % align) == 0) return;
    fwrite(&pad, align - (offset % align), 1, exportFile);
}

void ELFExport::createStructsRelocation(unsigned sym, POLYUNSIGNED offset, POLYSIGNED addend)
{
#if USE_RELA
    ElfXX_Rela reloc;
    reloc.r_addend = addend;
#else
    ElfXX_Rel reloc;
#endif
    reloc.r_offset = offset;
#ifdef HOSTARCHITECTURE_MIPS64
    reloc.r_sym = sym;
    reloc.r_ssym = 0;
    reloc.r_type = HOST_DIRECT_DATA_RELOC;
    reloc.r_type2 = 0;
    reloc.r_type3 = 0;
#else
    reloc.r_info = ELFXX_R_INFO(sym, HOST_DIRECT_DATA_RELOC);
#endif
    fwrite(&reloc, sizeof(reloc), 1, exportFile);
    relocationCount++;
}

void ELFExport::exportStore(void)
{
    PolyWord    *p;
    ElfXX_Ehdr fhdr;
    ElfXX_Shdr *sections = 0;
    unsigned numSections = 6 + 2*memTableEntries /*- 1*/;
    // The symbol table comes at the end.
    unsigned sect_symtab = sect_data + 2*memTableEntries + 2/* - 1*/;
    
    unsigned i;
    
    // External symbols start after the memory table entries and "poly_exports".
    symbolNum = EXTRA_SYMBOLS+memTableEntries+1;

    // Both the string tables have an initial null entry.
    symStrings.makeEntry("");
    sectionStrings.makeEntry("");

    // Write out initial values for the headers.  These are overwritten at the end.
    // File header
    memset(&fhdr, 0, sizeof(fhdr));
    fhdr.e_ident[EI_MAG0] = 0x7f;
    fhdr.e_ident[EI_MAG1] = 'E';
    fhdr.e_ident[EI_MAG2] = 'L';
    fhdr.e_ident[EI_MAG3] = 'F';
    fhdr.e_ident[EI_CLASS] = ELFCLASSXX; // ELFCLASS32 or ELFCLASS64
    fhdr.e_ident[EI_VERSION] = EV_CURRENT;
#ifdef HOST_OSABI
    fhdr.e_ident[EI_OSABI] = HOST_OSABI;
#endif
    {
        union { unsigned long wrd; char chrs[sizeof(unsigned long)]; } endian;
        endian.wrd = 1;
        if (endian.chrs[0] == 0)
            fhdr.e_ident[EI_DATA] = ELFDATA2MSB; // Big endian
        else
            fhdr.e_ident[EI_DATA] = ELFDATA2LSB; // Little endian
    }
    fhdr.e_type = ET_REL;
    // The machine needs to match the machine we're compiling for
    // even if this is actually portable code.
    fhdr.e_machine = HOST_E_MACHINE;
#ifdef HOST_E_FLAGS
    fhdr.e_flags = HOST_E_FLAGS;
#endif
    fhdr.e_version = EV_CURRENT;
    fhdr.e_shoff = sizeof(fhdr); // Offset to section header - immediately follows
    fhdr.e_ehsize = sizeof(fhdr);
    fhdr.e_shentsize = sizeof(ElfXX_Shdr);
    fhdr.e_shnum = numSections;
    fhdr.e_shstrndx = sect_sectionnametable; // Section name table section index;
    fwrite(&fhdr, sizeof(fhdr), 1, exportFile); // Write it for the moment.

    sections = new ElfXX_Shdr[numSections];
    memset(sections, 0, sizeof(ElfXX_Shdr) * numSections); // Necessary?

    // Set up the section header but don't write it yet.

    // Section 0 - all zeros
    sections[sect_initial].sh_type = SHT_NULL;
    sections[sect_initial].sh_link = SHN_UNDEF;

    // Section name table.
    sections[sect_sectionnametable].sh_name = makeStringTableEntry(".shstrtab", &sectionStrings);
    sections[sect_sectionnametable].sh_type = SHT_STRTAB;
    sections[sect_sectionnametable].sh_addralign = sizeof(char);
    // sections[sect_sectionnametable].sh_offset is set later
    // sections[sect_sectionnametable].sh_size is set later

    // Symbol name table.
    sections[sect_stringtable].sh_name = makeStringTableEntry(".strtab", &sectionStrings);
    sections[sect_stringtable].sh_type = SHT_STRTAB;
    sections[sect_stringtable].sh_addralign = sizeof(char);
    // sections[sect_stringtable].sh_offset is set later
    // sections[sect_stringtable].sh_size is set later

    unsigned long dataName = makeStringTableEntry(".data", &sectionStrings);
    unsigned long dataRelName = makeStringTableEntry(USE_RELA ? ".rela.data" : ".rel.data", &sectionStrings);
    unsigned long textName = makeStringTableEntry(".text", &sectionStrings);
    unsigned long textRelName = makeStringTableEntry(USE_RELA ? ".rela.text" : ".rel.text", &sectionStrings);
    unsigned long rodataName = makeStringTableEntry(".rodata", &sectionStrings);
    unsigned long rodataRelName = makeStringTableEntry(USE_RELA ? ".rela.rodata" : ".rel.rodata", &sectionStrings);

    // Main data sections.  Each one has a relocation section.
    for (i=0; i < memTableEntries; i++)
    {
        unsigned s = sect_data + i*2;
        sections[s].sh_addralign = 8; // 8-byte alignment
        sections[s].sh_type = SHT_PROGBITS;
        if (memTable[i].mtFlags & MTF_WRITEABLE)
        {
            // Mutable areas
            ASSERT(!(memTable[i].mtFlags & MTF_EXECUTABLE)); // Executable areas can't be writable.
            sections[s].sh_name = dataName;
            sections[s].sh_flags = SHF_WRITE | SHF_ALLOC;
            sections[s+1].sh_name = dataRelName; // Name of relocation section
        }
        else if (memTable[i].mtFlags & MTF_EXECUTABLE)
        {
            // Code areas are marked as executable.
            sections[s].sh_name = textName;
            sections[s].sh_flags = SHF_ALLOC | SHF_EXECINSTR;
            sections[s+1].sh_name = textRelName; // Name of relocation section
        }
        else
        {
            // Non-code immutable areas
            sections[s].sh_name = rodataName;
            sections[s].sh_flags = SHF_ALLOC;
            sections[s+1].sh_name = rodataRelName; // Name of relocation section
        }
        // sections[s].sh_size is set later
        // sections[s].sh_offset is set later.
        // sections[s].sh_size is set later.

        // Relocation section
        sections[s+1].sh_type = USE_RELA ? SHT_RELA : SHT_REL; // Contains relocation with/out explicit addends (ElfXX_Rel)
        sections[s+1].sh_link = sect_symtab; // Index to symbol table
        sections[s+1].sh_info = s; // Applies to the data section
        sections[s+1].sh_addralign = sizeof(long); // Align to a word
        sections[s+1].sh_entsize = USE_RELA ? sizeof(ElfXX_Rela) : sizeof(ElfXX_Rel);
        // sections[s+1].sh_offset is set later.
        // sections[s+1].sh_size is set later.
    }

    // Table data - Poly tables that describe the memory layout.
    unsigned sect_table_data = sect_data + 2*memTableEntries;

    sections[sect_table_data].sh_name = dataName;
    sections[sect_table_data].sh_type = SHT_PROGBITS;
    sections[sect_table_data].sh_flags = SHF_WRITE | SHF_ALLOC;
    sections[sect_table_data].sh_addralign = 8; // 8-byte alignment
    // Table relocation
    sections[sect_table_data+1].sh_name = dataRelName;
    sections[sect_table_data+1].sh_type = USE_RELA ? SHT_RELA : SHT_REL; // Contains relocation with/out explicit addends (ElfXX_Rel)
    sections[sect_table_data+1].sh_link = sect_symtab; // Index to symbol table
    sections[sect_table_data+1].sh_info = sect_table_data; // Applies to table section
    sections[sect_table_data+1].sh_addralign = sizeof(long); // Align to a word
    sections[sect_table_data+1].sh_entsize = USE_RELA ? sizeof(ElfXX_Rela) : sizeof(ElfXX_Rel);

    // Symbol table.
    sections[sect_symtab].sh_name = makeStringTableEntry(".symtab", &sectionStrings);
    sections[sect_symtab].sh_type = SHT_SYMTAB;
    sections[sect_symtab].sh_link = sect_stringtable; // String table to use
    sections[sect_symtab].sh_addralign = sizeof(long); // Align to a word
    sections[sect_symtab].sh_entsize = sizeof(ElfXX_Sym);
    // sections[sect_symtab].sh_info is set later
    // sections[sect_symtab].sh_size is set later
    // sections[sect_symtab].sh_offset is set later

    // Write the relocations.

    for (i = 0; i < memTableEntries; i++)
    {
        unsigned relocSection = sect_data + i*2 + 1;
        alignFile(sections[relocSection].sh_addralign);
        sections[relocSection].sh_offset = ftell(exportFile);
        relocationCount = 0;
        // Create the relocation table and turn all addresses into offsets.
        char *start = (char*)memTable[i].mtAddr;
        char *end = start + memTable[i].mtLength;
        for (p = (PolyWord*)start; p < (PolyWord*)end; )
        {
            p++;
            PolyObject *obj = (PolyObject*)p;
            POLYUNSIGNED length = obj->Length();
            // Update any constants before processing the object
            // We need that for relative jumps/calls in X86/64.
            if (length != 0 && obj->IsCodeObject())
                machineDependent->ScanConstantsWithinCode(obj, this);
            relocateObject(obj);
            p += length;
        }
        sections[relocSection].sh_size =
            relocationCount * (USE_RELA ? sizeof(ElfXX_Rela) : sizeof(ElfXX_Rel));
    }

    // Relocations for "exports" and "memTable";
    alignFile(sections[sect_table_data+1].sh_addralign);
    sections[sect_table_data+1].sh_offset = ftell(exportFile);
    relocationCount = 0;
    // TODO: This won't be needed if we put these in a separate section.
    POLYUNSIGNED areaSpace = 0;
    for (i = 0; i < memTableEntries; i++)
        areaSpace += memTable[i].mtLength;

    // Address of "memTable" within "exports". We can't use createRelocation because
    // the position of the relocation is not in either the mutable or the immutable area.
    POLYSIGNED memTableOffset = (POLYSIGNED)sizeof(exportDescription); // It follows immediately after this.
    createStructsRelocation(AreaToSym(memTableEntries), offsetof(exportDescription, memTable), memTableOffset);

    // Address of "rootFunction" within "exports"
    unsigned rootAddrArea = findArea(rootFunction);
    POLYSIGNED rootOffset = (char*)rootFunction - (char*)memTable[rootAddrArea].mtAddr;
    createStructsRelocation(AreaToSym(rootAddrArea), offsetof(exportDescription, rootFunction), rootOffset);

    // Addresses of the areas within memtable.
    for (i = 0; i < memTableEntries; i++)
    {
        createStructsRelocation(AreaToSym(i),
            sizeof(exportDescription) + i * sizeof(memoryTableEntry) + offsetof(memoryTableEntry, mtAddr),
            0 /* No offset relative to base symbol*/);
    }

    sections[sect_table_data+1].sh_size =
        relocationCount * (USE_RELA ? sizeof(ElfXX_Rela) : sizeof(ElfXX_Rel));

    // Now the symbol table.
    alignFile(sections[sect_symtab].sh_addralign);
    sections[sect_symtab].sh_offset = ftell(exportFile);
    writeSymbol("", 0, 0, 0, 0, 0); // Initial symbol
    // Write the local symbols first.
    writeSymbol("", 0, 0, STB_LOCAL, STT_SECTION, sect_data); // .data section

    // Create symbols for the address areas.  AreaToSym assumes these come first.
    for (i = 0; i < memTableEntries; i++)
    {
        unsigned s = sect_data + i*2;
        char buff[50];
        sprintf(buff, "area%1u", i);
        writeSymbol(buff, 0, 0, STB_LOCAL, STT_OBJECT, s);
    }

    // Global symbols - Exported symbol for table.
    writeSymbol("poly_exports", 0, 
        sizeof(exportDescription)+sizeof(memoryTableEntry)*memTableEntries,
        STB_GLOBAL, STT_OBJECT, sect_table_data);
 
    // External references
    for (unsigned i = 0; i < externTable.stringSize; i += (unsigned)strlen(externTable.strings+i) + 1)
        writeSymbol(externTable.strings+i, 0, 0, STB_GLOBAL, STT_FUNC, SHN_UNDEF);

    sections[sect_symtab].sh_info = EXTRA_SYMBOLS+memTableEntries; // One more than last local sym
    sections[sect_symtab].sh_size = sizeof(ElfXX_Sym) * symbolNum;

    // Now the binary data.
    for (i = 0; i < memTableEntries; i++)
    {
        unsigned dataSection = sect_data + i*2;
        sections[dataSection].sh_size = memTable[i].mtLength;
        alignFile(sections[dataSection].sh_addralign);
        sections[dataSection].sh_offset = ftell(exportFile);
        fwrite(memTable[i].mtAddr, 1, memTable[i].mtLength, exportFile);
    }

    exportDescription exports;
    memset(&exports, 0, sizeof(exports));
    exports.structLength = sizeof(exportDescription);
    exports.memTableSize = sizeof(memoryTableEntry);
    exports.memTableEntries = memTableEntries;
    exports.memTable = USE_RELA ? 0 : (memoryTableEntry *)memTableOffset;
    // Set the value to be the offset relative to the base of the area.  We have set a relocation
    // already which will add the base of the area.
    exports.rootFunction = USE_RELA ? 0 : (void*)rootOffset;
    exports.timeStamp = getBuildTime();
    exports.architecture = machineDependent->MachineArchitecture();
    exports.rtsVersion = POLY_version_number;

    // Set the address values to zero before we write.  They will always
    // be relative to their base symbol.
    for (i = 0; i < memTableEntries; i++)
        memTable[i].mtAddr = 0;

    // Now the binary data.
    alignFile(sections[sect_table_data].sh_addralign);
    sections[sect_table_data].sh_offset = ftell(exportFile);
    sections[sect_table_data].sh_size = sizeof(exportDescription) + memTableEntries*sizeof(memoryTableEntry);

    fwrite(&exports, sizeof(exports), 1, exportFile);
    fwrite(memTable, sizeof(memoryTableEntry), memTableEntries, exportFile);

    // The section name table
    sections[sect_sectionnametable].sh_offset = ftell(exportFile);
    fwrite(sectionStrings.strings, sectionStrings.stringSize, 1, exportFile);
    sections[sect_sectionnametable].sh_size = sectionStrings.stringSize;

    // The symbol name table
    sections[sect_stringtable].sh_offset = ftell(exportFile);
    fwrite(symStrings.strings, symStrings.stringSize, 1, exportFile);
    sections[sect_stringtable].sh_size = symStrings.stringSize;

    // Finally the section headers.
    alignFile(4);
    fhdr.e_shoff = ftell(exportFile);
    fwrite(sections, sizeof(ElfXX_Shdr) * numSections, 1, exportFile);

    // Rewind to rewrite the file header with the offset of the section headers.
    rewind(exportFile);
    fwrite(&fhdr, sizeof(fhdr), 1, exportFile);
    fclose(exportFile); exportFile = NULL;

    delete[]sections;
}