1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
|
/*
Title: Multi-Threaded Garbage Collector - Mark phase
Copyright (c) 2010-12, 2015-16 David C. J. Matthews
Based on the original garbage collector code
Copyright 2000-2008
Cambridge University Technical Services Limited
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
This is the first, mark, phase of the garbage collector. It detects all
reachable cells in the area being collected. At the end of the phase the
bit-maps associated with the areas will have ones for words belonging to cells
that must be retained and zeros for words that can be reused.
This is now multi-threaded. The mark phase involves setting a bit in the header
of each live cell and then a pass over the memory building the bitmaps and clearing
this bit. It is unfortunate that we cannot use the GC-bit that is used in
forwarding pointers but we may well have forwarded pointers left over from a
partially completed minor GC. Using a bit in the header avoids the need for
locking since at worst it may involve two threads duplicating some marking.
The code ensures that each reachable cell is marked at least once but with
multiple threads a cell may be marked by more than once cell if the
memory is not fully up to date. Each thread has a stack on which it
remembers cells that have been marked but not fully scanned. If a
thread runs out of cells of its own to scan it can pick a pointer off
the stack of another thread and scan that. The original thread will
still scan it some time later but it should find that the addresses
in it have all been marked and it can simply pop this off. This is
all done without locking. Stacks are only modified by the owning
thread and when they pop anything they write zero in its place.
Other threads only need to search for a zero to find if they are
at the top and if they get a pointer that has already been scanned
then this is safe. The only assumption made about the memory is
that all the bits of a word are updated together so that a thread
will always read a value that is a valid pointer.
Many of the ideas are drawn from Flood, Detlefs, Shavit and Zhang 2001
"Parallel Garbage Collection for Shared Memory Multiprocessors".
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#elif defined(_WIN32)
#include "winconfig.h"
#else
#error "No configuration file"
#endif
#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x)
#endif
#include "globals.h"
#include "processes.h"
#include "gc.h"
#include "scanaddrs.h"
#include "check_objects.h"
#include "bitmap.h"
#include "memmgr.h"
#include "diagnostics.h"
#include "gctaskfarm.h"
#include "profiling.h"
#include "heapsizing.h"
#define MARK_STACK_SIZE 3000
#define LARGECACHE_SIZE 20
class MTGCProcessMarkPointers: public ScanAddress
{
public:
MTGCProcessMarkPointers();
virtual void ScanRuntimeAddress(PolyObject **pt, RtsStrength weak);
virtual PolyObject *ScanObjectAddress(PolyObject *base);
virtual void ScanAddressesInObject(PolyObject *base, POLYUNSIGNED lengthWord);
// Have to redefine this for some reason.
void ScanAddressesInObject(PolyObject *base)
{ ScanAddressesInObject(base, base->LengthWord()); }
virtual void ScanConstant(PolyObject *base, byte *addressOfConstant, ScanRelocationKind code);
static void MarkPointersTask(GCTaskId *, void *arg1, void *arg2);
static void InitStatics(unsigned threads)
{
markStacks = new MTGCProcessMarkPointers[threads];
nInUse = 0;
nThreads = threads;
}
static void MarkRoots(void);
static bool RescanForStackOverflow();
private:
bool TestForScan(PolyWord *pt);
void MarkAndTestForScan(PolyWord *pt);
void Reset();
void PushToStack(PolyObject *obj, PolyWord *currentPtr = 0, POLYUNSIGNED originalLength = 0)
{
// If we don't have all the threads running we start a new one but
// only once we have several items on the stack. Otherwise we
// can end up creating a task that terminates almost immediately.
if (nInUse >= nThreads || msp < 2 || ! ForkNew(obj))
{
if (msp < MARK_STACK_SIZE)
{
markStack[msp++] = obj;
if (currentPtr != 0)
{
locPtr++;
if (locPtr == LARGECACHE_SIZE) locPtr = 0;
largeObjectCache[locPtr].base = obj;
largeObjectCache[locPtr].current = currentPtr;
}
}
else StackOverflow(obj);
}
// else the new task is processing it.
}
static void StackOverflow(PolyObject *obj);
static bool ForkNew(PolyObject *obj);
PolyObject *markStack[MARK_STACK_SIZE];
unsigned msp;
bool active;
// For the typical small cell it's easier just to rescan from the start
// but that can be expensive for large cells. This caches the offset for
// large cells.
static const POLYUNSIGNED largeObjectSize = 50;
struct { PolyObject *base; PolyWord *current; } largeObjectCache[LARGECACHE_SIZE];
unsigned locPtr;
static MTGCProcessMarkPointers *markStacks;
protected:
static unsigned nThreads, nInUse;
static PLock stackLock;
};
// There is one mark-stack for each GC thread. markStacks[0] is used by the
// main thread when marking the roots and rescanning after mark-stack overflow.
// Once that work is done markStacks[0] is released and is available for a
// worker thread.
MTGCProcessMarkPointers *MTGCProcessMarkPointers::markStacks;
unsigned MTGCProcessMarkPointers::nThreads, MTGCProcessMarkPointers::nInUse;
PLock MTGCProcessMarkPointers::stackLock("GC mark stack");
// It is possible to have two levels of forwarding because
// we could have a cell in the allocation area that has been moved
// to the immutable area and then shared with another cell.
inline PolyObject *FollowForwarding(PolyObject *obj)
{
while (obj->ContainsForwardingPtr())
obj = obj->GetForwardingPtr();
return obj;
}
MTGCProcessMarkPointers::MTGCProcessMarkPointers(): msp(0), active(false), locPtr(0)
{
// Clear the mark stack
for (unsigned i = 0; i < MARK_STACK_SIZE; i++)
markStack[i] = 0;
// Clear the large object cache just to be sure.
for (unsigned j = 0; j < LARGECACHE_SIZE; j++)
{
largeObjectCache[j].base = 0;
largeObjectCache[j].current = 0;
}
}
// Clear the state at the beginning of a new GC pass.
void MTGCProcessMarkPointers::Reset()
{
locPtr = 0;
//largeObjectCache[locPtr].base = 0;
// Clear the cache completely just to be safe
for (unsigned j = 0; j < LARGECACHE_SIZE; j++)
{
largeObjectCache[j].base = 0;
largeObjectCache[j].current = 0;
}
}
// Called when the stack has overflowed. We need to include this
// in the range to be rescanned.
void MTGCProcessMarkPointers::StackOverflow(PolyObject *obj)
{
MarkableSpace *space = (MarkableSpace*)gMem.SpaceForAddress(obj-1);
ASSERT(space != 0 && (space->spaceType == ST_LOCAL || space->spaceType == ST_CODE));
PLocker lock(&space->spaceLock);
// Have to include this in the range to rescan.
if (space->fullGCRescanStart > ((PolyWord*)obj) - 1)
space->fullGCRescanStart = ((PolyWord*)obj) - 1;
POLYUNSIGNED n = obj->Length();
if (space->fullGCRescanEnd < ((PolyWord*)obj) + n)
space->fullGCRescanEnd = ((PolyWord*)obj) + n;
ASSERT(obj->LengthWord() & _OBJ_GC_MARK); // Should have been marked.
if (debugOptions & DEBUG_GC_ENHANCED)
Log("GC: Mark: Stack overflow. Rescan for %p\n", obj);
}
// Fork a new task. Because we've checked nInUse without taking the lock
// we may find that we can no longer create a new task.
bool MTGCProcessMarkPointers::ForkNew(PolyObject *obj)
{
MTGCProcessMarkPointers *marker = 0;
{
PLocker lock(&stackLock);
if (nInUse == nThreads)
return false;
for (unsigned i = 0; i < nThreads; i++)
{
if (! markStacks[i].active)
{
marker = &markStacks[i];
break;
}
}
ASSERT(marker != 0);
marker->active = true;
nInUse++;
}
bool test = gpTaskFarm->AddWork(&MTGCProcessMarkPointers::MarkPointersTask, marker, obj);
ASSERT(test);
return true;
}
// Main marking task. This is forked off initially to scan a specific object and
// anything reachable from it but once that has finished it tries to find objects
// on other stacks to scan.
void MTGCProcessMarkPointers::MarkPointersTask(GCTaskId *, void *arg1, void *arg2)
{
MTGCProcessMarkPointers *marker = (MTGCProcessMarkPointers*)arg1;
marker->Reset();
marker->ScanAddressesInObject((PolyObject*)arg2);
while (true)
{
// Look for a stack that has at least one item on it.
MTGCProcessMarkPointers *steal = 0;
for (unsigned i = 0; i < nThreads && steal == 0; i++)
{
if (markStacks[i].markStack[0] != 0)
steal = &markStacks[i];
}
// We're finished if they're all done.
if (steal == 0)
break;
// Look for items on this stack
for (unsigned j = 0; j < MARK_STACK_SIZE; j++)
{
// Pick the item off the stack.
// N.B. The owning thread may update this to zero
// at any time.
PolyObject *toSteal = steal->markStack[j];
if (toSteal == 0) break; // Nothing more on the stack
// The idea here is that the original thread pushed this
// because there were at least two addresses it needed to
// process. It started down one branch but left the other.
// Since it will have marked cells in the branch it has
// followed this thread will start on the unprocessed
// address(es).
marker->ScanAddressesInObject(toSteal);
}
}
PLocker lock(&stackLock);
marker->active = false; // It's finished
nInUse--;
ASSERT(marker->markStack[0] == 0);
}
// Tests if this needs to be scanned. It marks it if it has not been marked
// unless it has to be scanned.
bool MTGCProcessMarkPointers::TestForScan(PolyWord *pt)
{
if ((*pt).IsTagged())
return false;
// This could contain a forwarding pointer if it points into an
// allocation area and has been moved by the minor GC.
// We have to be a little careful. Another thread could also
// be following any forwarding pointers here. However it's safe
// because they will update it with the same value.
PolyObject *obj = (*pt).AsObjPtr();
if (obj->ContainsForwardingPtr())
{
obj = FollowForwarding(obj);
*pt = obj;
}
MemSpace *sp = gMem.SpaceForAddress(obj-1);
if (sp == 0 || (sp->spaceType != ST_LOCAL && sp->spaceType != ST_CODE))
return false; // Ignore it if it points to a permanent area
POLYUNSIGNED L = obj->LengthWord();
if (L & _OBJ_GC_MARK)
return false; // Already marked
if (debugOptions & DEBUG_GC_DETAIL)
Log("GC: Mark: %p %" POLYUFMT " %u\n", obj, OBJ_OBJECT_LENGTH(L), GetTypeBits(L));
if (OBJ_IS_BYTE_OBJECT(L))
{
obj->SetLengthWord(L | _OBJ_GC_MARK); // Mark it
return false; // We've done as much as we need
}
return true;
}
void MTGCProcessMarkPointers::MarkAndTestForScan(PolyWord *pt)
{
if (TestForScan(pt))
{
PolyObject *obj = (*pt).AsObjPtr();
obj->SetLengthWord(obj->LengthWord() | _OBJ_GC_MARK);
}
}
// The initial entry to process the roots. These may be RTS addresses or addresses in
// a thread stack. Also called recursively to process the addresses of constants in
// code segments. This is used in situations where a scanner may return the
// updated address of an object.
PolyObject *MTGCProcessMarkPointers::ScanObjectAddress(PolyObject *obj)
{
PolyWord val = obj;
MemSpace *sp = gMem.SpaceForAddress(val.AsStackAddr()-1);
if (!(sp->spaceType == ST_LOCAL || sp->spaceType == ST_CODE))
return obj; // Ignore it if it points to a permanent area
// We may have a forwarding pointer if this has been moved by the
// minor GC.
if (obj->ContainsForwardingPtr())
{
obj = FollowForwarding(obj);
val = obj;
}
ASSERT(obj->ContainsNormalLengthWord());
POLYUNSIGNED L = obj->LengthWord();
if (L & _OBJ_GC_MARK)
return obj; // Already marked
obj->SetLengthWord(L | _OBJ_GC_MARK); // Mark it
if (profileMode == kProfileLiveData || (profileMode == kProfileLiveMutables && obj->IsMutable()))
AddObjectProfile(obj);
POLYUNSIGNED n = OBJ_OBJECT_LENGTH(L);
if (debugOptions & DEBUG_GC_DETAIL)
Log("GC: Mark: %p %" POLYUFMT " %u\n", obj, n, GetTypeBits(L));
if (OBJ_IS_BYTE_OBJECT(L))
return obj;
// If we already have something on the stack we must being called
// recursively to process a constant in a code segment. Just push
// it on the stack and let the caller deal with it.
if (msp != 0)
PushToStack(obj); // Can't check this because it may have forwarding ptrs.
else
{
MTGCProcessMarkPointers::ScanAddressesInObject(obj, L);
// We can only check after we've processed it because if we
// have addresses left over from an incomplete partial GC they
// may need to forwarded.
CheckObject (obj);
}
return obj;
}
// These functions are only called with pointers held by the runtime system.
// Weak references can occur in the runtime system, eg. streams and windows.
// Weak references are not marked and so unreferenced streams and windows
// can be detected and closed.
void MTGCProcessMarkPointers::ScanRuntimeAddress(PolyObject **pt, RtsStrength weak)
{
if (weak == STRENGTH_WEAK) return;
*pt = ScanObjectAddress(*pt);
CheckPointer (*pt); // Check it after any forwarding pointers have been followed.
}
// This is called via ScanAddressesInRegion to process the permanent mutables. It is
// also called from ScanObjectAddress to process root addresses.
// It processes all the addresses reachable from the object.
void MTGCProcessMarkPointers::ScanAddressesInObject(PolyObject *obj, POLYUNSIGNED lengthWord)
{
if (OBJ_IS_BYTE_OBJECT(lengthWord))
return;
while (true)
{
ASSERT (OBJ_IS_LENGTH(lengthWord));
// Get the length and base address. N.B. If this is a code segment
// these will be side-effected by GetConstSegmentForCode.
POLYUNSIGNED length = OBJ_OBJECT_LENGTH(lengthWord);
if (OBJ_IS_WEAKREF_OBJECT(lengthWord))
{
// Special case.
ASSERT(OBJ_IS_MUTABLE_OBJECT(lengthWord)); // Should be a mutable.
ASSERT(OBJ_IS_WORD_OBJECT(lengthWord)); // Should be a plain object.
// We need to mark the "SOME" values in this object but we don't mark
// the references contained within the "SOME".
PolyWord *baseAddr = (PolyWord*)obj;
// Mark every word but ignore the result.
for (POLYUNSIGNED i = 0; i < length; i++)
(void)MarkAndTestForScan(baseAddr+i);
// We've finished with this.
length = 0;
}
else if (OBJ_IS_CODE_OBJECT(lengthWord))
{
// It's better to process the whole code object in one go.
ScanAddress::ScanAddressesInObject(obj, lengthWord);
length = 0; // Finished
}
// else it's a normal object,
// If there are only two addresses in this cell that need to be
// followed we follow them immediately and treat this cell as done.
// If there are more than two we push the address of this cell on
// the stack, follow the first address and then rescan it. That way
// list cells are processed once only but we don't overflow the
// stack by pushing all the addresses in a very large vector.
PolyWord *baseAddr = (PolyWord*)obj;
PolyWord *endWord = baseAddr + length;
PolyObject *firstWord = 0;
PolyObject *secondWord = 0;
PolyWord *restartAddr = 0;
if (obj == largeObjectCache[locPtr].base)
{
baseAddr = largeObjectCache[locPtr].current;
ASSERT(baseAddr > (PolyWord*)obj && baseAddr < ((PolyWord*)obj)+length);
if (locPtr == 0) locPtr = LARGECACHE_SIZE-1; else locPtr--;
}
while (baseAddr != endWord)
{
PolyWord wordAt = *baseAddr;
if (wordAt.IsDataPtr() && wordAt != PolyWord::FromUnsigned(0))
{
// Normal address. We can have words of all zeros at least in the
// situation where we have a partially constructed code segment where
// the constants at the end of the code have not yet been filled in.
if (TestForScan(baseAddr))
{
if (firstWord == 0)
firstWord = baseAddr->AsObjPtr();
else if (secondWord == 0)
{
// If we need to rescan because there are three or more words to do
// this is the place we need to restart (or the start of the cell if it's
// small).
restartAddr = baseAddr;
secondWord = baseAddr->AsObjPtr();
}
else break; // More than two words.
}
}
baseAddr++;
}
if (baseAddr != endWord)
// Put this back on the stack while we process the first word
PushToStack(obj, length < largeObjectSize ? 0 : restartAddr, length);
else if (secondWord != 0)
{
// Mark it now because we will process it.
secondWord->SetLengthWord(secondWord->LengthWord() | _OBJ_GC_MARK);
// Put this on the stack. If this is a list node we will be
// pushing the tail.
PushToStack(secondWord);
}
if (firstWord != 0)
{
// Mark it and process it immediately.
firstWord->SetLengthWord(firstWord->LengthWord() | _OBJ_GC_MARK);
obj = firstWord;
}
else if (msp == 0)
{
markStack[msp] = 0; // Really finished
return;
}
else
{
// Clear the item above the top. This really is finished.
if (msp < MARK_STACK_SIZE) markStack[msp] = 0;
// Pop the item from the stack but don't overwrite it yet.
// This allows another thread to steal it if there really
// is nothing else to do. This is only really important
// for large objects.
obj = markStack[--msp]; // Pop something.
}
lengthWord = obj->LengthWord();
}
}
// Process a constant within the code. This is a direct copy of ScanAddress::ScanConstant
// with the addition of the locking.
void MTGCProcessMarkPointers::ScanConstant(PolyObject *base, byte *addressOfConstant, ScanRelocationKind code)
{
// If we have newly compiled code the constants may be in the
// local heap. MTGCProcessMarkPointers::ScanObjectAddress can
// return an updated address for a local address if there is a
// forwarding pointer.
// Constants can be aligned on any byte offset so another thread
// scanning the same code could see an invalid address if it read
// the constant while it was being updated. We put a lock round
// this just in case.
MemSpace *space = gMem.SpaceForAddress(addressOfConstant);
PLock *lock = 0;
if (space->spaceType == ST_CODE)
lock = &((CodeSpace*)space)->spaceLock;
if (lock != 0)
lock->Lock();
PolyWord p = GetConstantValue(addressOfConstant, code);
if (lock != 0)
lock->Unlock();
if (! IS_INT(p))
{
PolyWord oldValue = p;
ScanAddress::ScanAddressAt(&p);
if (p != oldValue) // Update it if it has changed.
{
if (lock != 0)
lock->Lock();
SetConstantValue(addressOfConstant, p, code);
if (lock != 0)
lock->Unlock();
}
}
}
// Mark all the roots. This is run in the main thread and has the effect
// of starting new tasks as the scanning runs.
void MTGCProcessMarkPointers::MarkRoots(void)
{
ASSERT(nThreads >= 1);
ASSERT(nInUse == 0);
MTGCProcessMarkPointers *marker = &markStacks[0];
marker->Reset();
marker->active = true;
nInUse = 1;
// Scan the permanent mutable areas.
for (std::vector<PermanentMemSpace*>::iterator i = gMem.pSpaces.begin(); i < gMem.pSpaces.end(); i++)
{
PermanentMemSpace *space = *i;
if (space->isMutable && ! space->byteOnly)
marker->ScanAddressesInRegion(space->bottom, space->top);
}
// Scan the RTS roots.
GCModules(marker);
ASSERT(marker->markStack[0] == 0);
// When this has finished there may well be other tasks running.
PLocker lock(&stackLock);
marker->active = false;
nInUse--;
}
// This class just allows us to use ScanAddress::ScanAddressesInRegion to call
// ScanAddressesInObject for each object in the region.
class Rescanner: public ScanAddress
{
public:
Rescanner(MTGCProcessMarkPointers *marker): m_marker(marker) {}
virtual void ScanAddressesInObject(PolyObject *obj, POLYUNSIGNED lengthWord)
{
// If it has previously been marked it is known to be reachable but
// the contents may not have been scanned if the stack overflowed.
if (lengthWord &_OBJ_GC_MARK)
m_marker->ScanAddressesInObject(obj, lengthWord);
}
// Have to define this.
virtual PolyObject *ScanObjectAddress(PolyObject *base) { ASSERT(false); return 0; }
bool ScanSpace(MarkableSpace *space);
private:
MTGCProcessMarkPointers *m_marker;
};
// Rescan any marked objects in the area between fullGCRescanStart and fullGCRescanEnd.
// N.B. We may have threads already processing other areas and they could overflow
// their stacks and change fullGCRescanStart or fullGCRescanEnd.
bool Rescanner::ScanSpace(MarkableSpace *space)
{
PolyWord *start, *end;
{
PLocker lock(&space->spaceLock);
start = space->fullGCRescanStart;
end = space->fullGCRescanEnd;
space->fullGCRescanStart = space->top;
space->fullGCRescanEnd = space->bottom;
}
if (start < end)
{
if (debugOptions & DEBUG_GC_ENHANCED)
Log("GC: Mark: Rescanning from %p to %p\n", start, end);
ScanAddressesInRegion(start, end);
return true; // Require rescan
}
else return false;
}
// When the threads created by marking the roots have completed we need to check that
// the mark stack has not overflowed. If it has we need to rescan. This rescanning
// pass may result in a further overflow so if we find we have to rescan we repeat.
bool MTGCProcessMarkPointers::RescanForStackOverflow()
{
ASSERT(nThreads >= 1);
ASSERT(nInUse == 0);
MTGCProcessMarkPointers *marker = &markStacks[0];
marker->Reset();
marker->active = true;
nInUse = 1;
bool rescan = false;
Rescanner rescanner(marker);
for (std::vector<LocalMemSpace*>::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++)
{
if (rescanner.ScanSpace(*i))
rescan = true;
}
for (std::vector<CodeSpace *>::iterator i = gMem.cSpaces.begin(); i < gMem.cSpaces.end(); i++)
{
if (rescanner.ScanSpace(*i))
rescan = true;
}
{
PLocker lock(&stackLock);
nInUse--;
marker->active = false;
}
return rescan;
}
static void SetBitmaps(LocalMemSpace *space, PolyWord *pt, PolyWord *top)
{
while (pt < top)
{
PolyObject *obj = (PolyObject*)++pt;
// If it has been copied by a minor collection skip it
if (obj->ContainsForwardingPtr())
{
obj = FollowForwarding(obj);
ASSERT(obj->ContainsNormalLengthWord());
pt += obj->Length();
}
else
{
POLYUNSIGNED L = obj->LengthWord();
POLYUNSIGNED n = OBJ_OBJECT_LENGTH(L);
if (L & _OBJ_GC_MARK)
{
obj->SetLengthWord(L & ~(_OBJ_GC_MARK));
POLYUNSIGNED bitno = space->wordNo(pt);
space->bitmap.SetBits(bitno - 1, n + 1);
if (OBJ_IS_MUTABLE_OBJECT(L))
space->m_marked += n + 1;
else
space->i_marked += n + 1;
if ((PolyWord*)obj <= space->fullGCLowerLimit)
space->fullGCLowerLimit = (PolyWord*)obj-1;
if (OBJ_IS_WEAKREF_OBJECT(L))
{
// Add this to the limits for the containing area.
PolyWord *baseAddr = (PolyWord*)obj;
PolyWord *startAddr = baseAddr-1; // Must point AT length word.
PolyWord *endObject = baseAddr + n;
if (startAddr < space->lowestWeak) space->lowestWeak = startAddr;
if (endObject > space->highestWeak) space->highestWeak = endObject;
}
}
pt += n;
}
}
}
static void CreateBitmapsTask(GCTaskId *, void *arg1, void *arg2)
{
LocalMemSpace *lSpace = (LocalMemSpace *)arg1;
lSpace->bitmap.ClearBits(0, lSpace->spaceSize());
SetBitmaps(lSpace, lSpace->bottom, lSpace->top);
}
// Parallel task to check the marks on cells in the code area and
// turn them into byte areas if they are free.
static void CheckMarksOnCodeTask(GCTaskId *, void *arg1, void *arg2)
{
CodeSpace *space = (CodeSpace*)arg1;
PolyWord *pt = space->bottom;
PolyWord *lastFree = 0;
POLYUNSIGNED lastFreeSpace = 0;
space->largestFree = 0;
space->firstFree = 0;
while (pt < space->top)
{
PolyObject *obj = (PolyObject*)(pt+1);
// There should not be forwarding pointers
ASSERT(obj->ContainsNormalLengthWord());
POLYUNSIGNED L = obj->LengthWord();
POLYUNSIGNED length = OBJ_OBJECT_LENGTH(L);
if (L & _OBJ_GC_MARK)
{
// It's marked - retain it.
ASSERT(L & _OBJ_CODE_OBJ);
obj->SetLengthWord(L & ~(_OBJ_GC_MARK)); // Clear the mark bit
lastFree = 0;
lastFreeSpace = 0;
}
else { // Turn it into a byte area i.e. free. It may already be free.
if (space->firstFree == 0) space->firstFree = pt;
space->headerMap.ClearBit(pt-space->bottom); // Remove the "header" bit
if (lastFree + lastFreeSpace == pt)
// Merge free spaces. Speeds up subsequent scans.
lastFreeSpace += length + 1;
else
{
lastFree = pt;
lastFreeSpace = length + 1;
}
PolyObject *freeSpace = (PolyObject*)(lastFree+1);
freeSpace->SetLengthWord(lastFreeSpace-1, F_BYTE_OBJ);
if (lastFreeSpace > space->largestFree) space->largestFree = lastFreeSpace;
}
pt += length+1;
}
}
void GCMarkPhase(void)
{
mainThreadPhase = MTP_GCPHASEMARK;
// Clear the mark counters and set the rescan limits.
for(std::vector<LocalMemSpace*>::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++)
{
LocalMemSpace *lSpace = *i;
lSpace->i_marked = lSpace->m_marked = 0;
lSpace->fullGCRescanStart = lSpace->top;
lSpace->fullGCRescanEnd = lSpace->bottom;
}
for (std::vector<CodeSpace *>::iterator i = gMem.cSpaces.begin(); i < gMem.cSpaces.end(); i++)
{
CodeSpace *space = *i;
space->fullGCRescanStart = space->top;
space->fullGCRescanEnd = space->bottom;
}
MTGCProcessMarkPointers::MarkRoots();
gpTaskFarm->WaitForCompletion();
// Do we have to rescan because the mark stack overflowed?
bool rescan;
do {
rescan = MTGCProcessMarkPointers::RescanForStackOverflow();
gpTaskFarm->WaitForCompletion();
} while(rescan);
gHeapSizeParameters.RecordGCTime(HeapSizeParameters::GCTimeIntermediate, "Mark");
// Turn the marks into bitmap entries.
for (std::vector<LocalMemSpace*>::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++)
gpTaskFarm->AddWorkOrRunNow(&CreateBitmapsTask, *i, 0);
// Process the code areas.
for (std::vector<CodeSpace *>::iterator i = gMem.cSpaces.begin(); i < gMem.cSpaces.end(); i++)
gpTaskFarm->AddWorkOrRunNow(&CheckMarksOnCodeTask, *i, 0);
gpTaskFarm->WaitForCompletion(); // Wait for completion of the bitmaps
gMem.RemoveEmptyCodeAreas();
gHeapSizeParameters.RecordGCTime(HeapSizeParameters::GCTimeIntermediate, "Bitmap");
POLYUNSIGNED totalLive = 0;
for(std::vector<LocalMemSpace*>::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++)
{
LocalMemSpace *lSpace = *i;
if (! lSpace->isMutable) ASSERT(lSpace->m_marked == 0);
totalLive += lSpace->m_marked + lSpace->i_marked;
if (debugOptions & DEBUG_GC_ENHANCED)
Log("GC: Mark: %s space %p: %" POLYUFMT " immutable words marked, %" POLYUFMT " mutable words marked\n",
lSpace->spaceTypeString(), lSpace,
lSpace->i_marked, lSpace->m_marked);
}
if (debugOptions & DEBUG_GC)
Log("GC: Mark: Total live data %" POLYUFMT " words\n", totalLive);
}
// Set up the stacks.
void initialiseMarkerTables()
{
unsigned threads = gpTaskFarm->ThreadCount();
if (threads == 0) threads = 1;
MTGCProcessMarkPointers::InitStatics(threads);
}
|