1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
/*
Title: Multi-Threaded Garbage Collector - Update phase
Copyright (c) 2010-12 David C. J. Matthews
Based on the original garbage collector code
Copyright 2000-2008
Cambridge University Technical Services Limited
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
This is the third, update, phase of the garbage collector. The previous, copy,
phase will have moved cells in memory. The update phase goes through all cells
that could contain an address of a cell that has been moved and looks for a
tomb-stone that contains its new location.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#elif defined(_WIN32)
#include "winconfig.h"
#else
#error "No configuration file"
#endif
#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x)
#endif
#include "globals.h"
#include "run_time.h"
#include "processes.h"
#include "gc.h"
#include "scanaddrs.h"
#include "check_objects.h"
#include "bitmap.h"
#include "memmgr.h"
#include "gctaskfarm.h"
#include "diagnostics.h"
class MTGCProcessUpdate: public ScanAddress
{
public:
virtual POLYUNSIGNED ScanAddressAt(PolyWord *pt);
virtual void ScanRuntimeAddress(PolyObject **pt, RtsStrength weak);
virtual PolyObject *ScanObjectAddress(PolyObject *base);
void UpdateObjectsInArea(LocalMemSpace *area);
private:
static void UpdateAddress(PolyObject *&obj)
{
while (obj->ContainsForwardingPtr())
obj = obj->GetForwardingPtr();
}
};
/*********************************************************************/
/* This function is called in the update phase to update pointers to */
/* objects in the gc area that are in old mutable segments. */
/*********************************************************************/
PolyObject *MTGCProcessUpdate::ScanObjectAddress(PolyObject *obj)
{
PolyWord val = obj;
LocalMemSpace *space = gMem.LocalSpaceForAddress(val.AsStackAddr()-1);
if (space != 0)
{
UpdateAddress(obj);
ASSERT(obj->ContainsNormalLengthWord());
}
return obj;
}
void MTGCProcessUpdate::ScanRuntimeAddress(PolyObject **pt, RtsStrength/* weak*/)
/* weak is not used, but needed so type of the function is correct */
{
PolyObject *obj = *pt;
if (obj->ContainsForwardingPtr())
{
UpdateAddress(obj);
*pt = obj;
}
}
// Update the addresses in a group of words.
POLYUNSIGNED MTGCProcessUpdate::ScanAddressAt(PolyWord *pt)
{
PolyWord val = *pt;
if (val.IsTagged())
return 0;
// It looked like it would be possible to simplify this code and
// just call ContainsForwardingPtr on any address.
// Profiling shows that it's quite important to avoid calling
// ContainsForwardingPtr unnecessarily. I guess the reason is that
// it actually accesses the memory referenced by the address and it
// is unlikely to be in the cache.
PolyObject *obj = val.AsObjPtr();
if (obj->ContainsForwardingPtr())
{
UpdateAddress(obj);
*pt = obj;
}
return 0;
}
// Updates the addresses for objects in the area with the "allocated" bit set.
// It processes the area between area->pointer and the bit corresponding to area->highest.
// area->highest corresponds to gen_top i.e. we don't process older generations.
void MTGCProcessUpdate::UpdateObjectsInArea(LocalMemSpace *area)
{
PolyWord *pt = area->upperAllocPtr;
POLYUNSIGNED bitno = area->wordNo(pt);
POLYUNSIGNED highest = area->wordNo(area->top);
for (;;)
{
ASSERT(bitno <= highest);
/* Zero unused words. This is necessary so that
ScanAddressesInRegion can work. It requires the allocated
area of memory to contain either objects with a valid length
word or forwarding pointer or zeros. We should only be
zeroing words that we couldn't fill with real data so it
shouldn't be too much. Profiling showed that using dummy
byte objects here didn't make a measurable difference,
*/
while (bitno < highest && !area->bitmap.TestBit(bitno))
{
*pt++ = PolyWord::FromUnsigned(0);
bitno++;
}
if (bitno == highest) {
// Have reached the top of the area
ASSERT(pt == area->top);
break;
}
/* first set bit corresponds to the length word */
pt++;
PolyObject *obj = (PolyObject*)pt;
POLYUNSIGNED L = obj->LengthWord();
bitno++;
if (obj->ContainsForwardingPtr())
{
// Skip over moved objects. We have to find the new location to find
// its length.
UpdateAddress(obj);
POLYUNSIGNED length = obj->Length();
pt += length;
bitno += length;
}
else // Contains real object
{
if (OBJ_IS_WORD_OBJECT(L))
{
POLYUNSIGNED length = OBJ_OBJECT_LENGTH(L);
area->updated += length+1;
while (length--)
{
PolyWord val = *pt;
if (! val.IsTagged() && val != PolyWord::FromUnsigned(0))
{
PolyObject *obj = val.AsObjPtr();
if (obj->ContainsForwardingPtr())
{
UpdateAddress(obj);
*pt = obj;
}
}
pt++;
bitno++;
}
}
else /* !OBJ_IS_WORD_OBJECT(L) */
{
POLYUNSIGNED length = OBJ_OBJECT_LENGTH(L);
area->updated += length+1;
ScanAddressesInObject(obj, L);
pt += length;
bitno += length;
} /* !OBJ_IS_WORD_OBJECT(L) */
CheckObject(obj); // Can check it after it's been updated
} /* !OBJ_IS_POINTER(L) */
} /* for loop */
}
// Task to update addresses in a local area.
static void updateLocalArea(GCTaskId*, void *arg1, void *arg2)
{
MTGCProcessUpdate *processUpdate = (MTGCProcessUpdate *)arg1;
LocalMemSpace *space = (LocalMemSpace *)arg2;
if (debugOptions & DEBUG_GC_ENHANCED)
Log("GC: Update local area %p\n", space);
// Process the current generation for mutable or immutable areas.
processUpdate->UpdateObjectsInArea(space);
if (debugOptions & DEBUG_GC_ENHANCED)
Log("GC: Completed local update for %p. %lu words updated\n", space, space->updated);
}
// Task to update addresses in a non-local area.
static void updateNonLocalMutableArea(GCTaskId*, void *arg1, void *arg2)
{
MTGCProcessUpdate *processUpdate = (MTGCProcessUpdate *)arg1;
MemSpace *space = (MemSpace *)arg2;
if (debugOptions & DEBUG_GC_ENHANCED)
Log("GC: Update non-local mutable area %p\n", space);
processUpdate->ScanAddressesInRegion(space->bottom, space->top);
if (debugOptions & DEBUG_GC_ENHANCED)
Log("GC: Completed non-local mutable update for %p\n", space);
}
// Task to update addresses maintained by the RTS itself.
static void updateGCProcAddresses(GCTaskId*, void *arg1, void *)
{
MTGCProcessUpdate *processUpdate = (MTGCProcessUpdate *)arg1;
GCModules(processUpdate);
}
void GCUpdatePhase()
{
/* Update phase */
mainThreadPhase = MTP_GCPHASEUPDATE;
/* Invariant: at most the first (gen_top - bottom) bits of each bitmap can be dirty here. */
for(std::vector<LocalMemSpace*>::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++)
(*i)->updated = 0;
// We can do the updates in parallel since they don't interfere at all.
MTGCProcessUpdate processUpdate;
// Process local areas.
for (std::vector<LocalMemSpace*>::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++)
{
LocalMemSpace *space = *i;
// As well as updating the addresses this also clears the bitmaps.
gpTaskFarm->AddWorkOrRunNow(&updateLocalArea, &processUpdate, space);
}
// Scan the permanent mutable areas and the code areas.
for (std::vector<PermanentMemSpace*>::iterator i = gMem.pSpaces.begin(); i < gMem.pSpaces.end(); i++)
{
PermanentMemSpace *space = *i;
if (space->isMutable && ! space->byteOnly)
gpTaskFarm->AddWorkOrRunNow(&updateNonLocalMutableArea, &processUpdate, space);
}
for (std::vector<CodeSpace *>::iterator i = gMem.cSpaces.begin(); i < gMem.cSpaces.end(); i++)
{
CodeSpace *space = *i;
gpTaskFarm->AddWorkOrRunNow(&updateNonLocalMutableArea, &processUpdate, space);
// We could remove the mutable bit if there are no longer any mutable code objects
// but it's easier to leave that to the minor GC.
}
// Update addresses in RTS modules.
gpTaskFarm->AddWorkOrRunNow(&updateGCProcAddresses, &processUpdate, 0);
// Wait for these to complete before proceeding.
gpTaskFarm->WaitForCompletion();
}
|