1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
|
/*
Title: New Foreign Function Interface
Copyright (c) 2015, 2019 David C.J. Matthews
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#elif defined(_WIN32)
#include "winconfig.h"
#else
#error "No configuration file"
#endif
#if (defined(_WIN32) || (defined(HAVE_DLOPEN)))
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_DLFCN_H
#include <dlfcn.h>
#endif
#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x) 0
#endif
#ifdef HAVE_STDIO_H
#include <stdio.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_MALLOC_H
#include <malloc.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#include "globals.h"
// TODO: Do we need this??
// We need to include globals.h before <new> in mingw64 otherwise
// it messes up POLYUFMT/POLYSFMT.
#include <ffi.h>
#include <new>
#include "arb.h"
#include "save_vec.h"
#include "polyffi.h"
#include "run_time.h"
#include "sys.h"
#include "processes.h"
#include "polystring.h"
#if (defined(_WIN32) && ! defined(__CYGWIN__))
#include <windows.h>
#include "Console.h" /* For hApplicationInstance. */
#endif
#include "scanaddrs.h"
#include "diagnostics.h"
#include "reals.h"
#include "rts_module.h"
#include "rtsentry.h"
static Handle poly_ffi (TaskData *taskData, Handle args, Handle code);
extern "C" {
POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFIGeneral(PolyObject *threadId, PolyWord code, PolyWord arg);
POLYEXTERNALSYMBOL POLYUNSIGNED PolySizeFloat();
POLYEXTERNALSYMBOL POLYUNSIGNED PolySizeDouble();
POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFIGetError(PolyWord addr);
POLYEXTERNALSYMBOL POLYUNSIGNED PolyFFISetError(PolyWord err);
}
static struct _abiTable { const char *abiName; ffi_abi abiCode; } abiTable[] =
{
// Unfortunately the ABI entries are enums rather than #defines so we
// can't test individual entries.
#ifdef X86_WIN32
{"sysv", FFI_SYSV},
{"stdcall", FFI_STDCALL},
{"thiscall", FFI_THISCALL},
{"fastcall", FFI_FASTCALL},
{"ms_cdecl", FFI_MS_CDECL},
#elif defined(X86_WIN64)
{"win64", FFI_WIN64},
#elif defined(X86_64) || (defined (__x86_64__) && defined (X86_DARWIN))
{"unix64", FFI_UNIX64},
#elif defined(X86_ANY)
{"sysv", FFI_SYSV},
#endif
{ "default", FFI_DEFAULT_ABI}
};
// Table of constants returned by call 51
static int constantTable[] =
{
FFI_DEFAULT_ABI, // Default ABI
FFI_TYPE_VOID, // Type codes
FFI_TYPE_INT,
FFI_TYPE_FLOAT,
FFI_TYPE_DOUBLE,
FFI_TYPE_UINT8,
FFI_TYPE_SINT8,
FFI_TYPE_UINT16,
FFI_TYPE_SINT16,
FFI_TYPE_UINT32,
FFI_TYPE_SINT32,
FFI_TYPE_UINT64,
FFI_TYPE_SINT64,
FFI_TYPE_STRUCT,
FFI_TYPE_POINTER,
FFI_SIZEOF_ARG // Minimum size for result space
};
// Table of predefined ffi types
static ffi_type *ffiTypeTable[] =
{
&ffi_type_void,
&ffi_type_uint8,
&ffi_type_sint8,
&ffi_type_uint16,
&ffi_type_sint16,
&ffi_type_uint32,
&ffi_type_sint32,
&ffi_type_uint64,
&ffi_type_sint64,
&ffi_type_float,
&ffi_type_double,
&ffi_type_pointer,
&ffi_type_uchar, // These are all aliases for the above
&ffi_type_schar,
&ffi_type_ushort,
&ffi_type_sshort,
&ffi_type_uint,
&ffi_type_sint,
&ffi_type_ulong,
&ffi_type_slong
};
// Callback entry table
static struct _cbStructEntry {
PolyWord mlFunction; // The ML function to call
void *closureSpace; // Space allocated for the closure
void *resultFunction; // Executable address for the function. Needed to free.
} *callbackTable;
static unsigned callBackEntries = 0;
static PLock callbackTableLock; // Mutex to protect table.
static Handle mkAbitab(TaskData *taskData, void*, char *p);
static void callbackEntryPt(ffi_cif *cif, void *ret, void* args[], void *data);
static Handle toSysWord(TaskData *taskData, void *p)
{
return Make_sysword(taskData, (uintptr_t)p);
}
Handle poly_ffi(TaskData *taskData, Handle args, Handle code)
{
unsigned c = get_C_unsigned(taskData, code->Word());
switch (c)
{
case 0: // malloc
{
POLYUNSIGNED size = getPolyUnsigned(taskData, args->Word());
return toSysWord(taskData, malloc(size));
}
case 1: // free
{
void *mem = *(void**)(args->WordP());
free(mem);
return taskData->saveVec.push(TAGGED(0));
}
case 2: // Load library
{
TempString libName(args->Word());
#if (defined(_WIN32) && ! defined(__CYGWIN__))
HINSTANCE lib = LoadLibrary(libName);
if (lib == NULL)
{
char buf[256];
#if (defined(UNICODE))
_snprintf(buf, sizeof(buf), "Loading <%S> failed. Error %lu", (LPCTSTR)libName, GetLastError());
#else
_snprintf(buf, sizeof(buf), "Loading <%s> failed. Error %lu", (const char*)libName, GetLastError());
#endif
buf[sizeof(buf)-1] = 0; // Terminate just in case
raise_exception_string(taskData, EXC_foreign, buf);
}
#else
void *lib = dlopen(libName, RTLD_LAZY);
if (lib == NULL)
{
char buf[256];
snprintf(buf, sizeof(buf), "Loading <%s> failed: %s", (const char *)libName, dlerror());
buf[sizeof(buf)-1] = 0; // Terminate just in case
raise_exception_string(taskData, EXC_foreign, buf);
}
#endif
return toSysWord(taskData, lib);
}
case 3: // Load address of executable.
{
#if (defined(_WIN32) && ! defined(__CYGWIN__))
HINSTANCE lib = hApplicationInstance;
#else
void *lib = dlopen(NULL, RTLD_LAZY);
if (lib == NULL)
{
char buf[256];
snprintf(buf, sizeof(buf), "Loading address of executable failed: %s", dlerror());
buf[sizeof(buf)-1] = 0; // Terminate just in case
raise_exception_string(taskData, EXC_foreign, buf);
}
#endif
return toSysWord(taskData, lib);
}
case 4: // Unload library - Is this actually going to be used?
{
#if (defined(_WIN32) && ! defined(__CYGWIN__))
HMODULE hMod = *(HMODULE*)(args->WordP());
if (! FreeLibrary(hMod))
raise_syscall(taskData, "FreeLibrary failed", GetLastError());
#else
void *lib = *(void**)(args->WordP());
if (dlclose(lib) != 0)
{
char buf[256];
snprintf(buf, sizeof(buf), "dlclose failed: %s", dlerror());
buf[sizeof(buf)-1] = 0; // Terminate just in case
raise_exception_string(taskData, EXC_foreign, buf);
}
#endif
return taskData->saveVec.push(TAGGED(0));
}
case 5: // Load the address of a symbol from a library.
{
TempCString symName(args->WordP()->Get(1));
#if (defined(_WIN32) && ! defined(__CYGWIN__))
HMODULE hMod = *(HMODULE*)(args->WordP()->Get(0).AsAddress());
void *sym = (void*)GetProcAddress(hMod, symName);
if (sym == NULL)
{
char buf[256];
_snprintf(buf, sizeof(buf), "Loading symbol <%s> failed. Error %lu", (LPCSTR)symName, GetLastError());
buf[sizeof(buf)-1] = 0; // Terminate just in case
raise_exception_string(taskData, EXC_foreign, buf);
}
#else
void *lib = *(void**)(args->WordP()->Get(0).AsAddress());
void *sym = dlsym(lib, symName);
if (sym == NULL)
{
char buf[256];
snprintf(buf, sizeof(buf), "load_sym <%s> : %s", (const char *)symName, dlerror());
buf[sizeof(buf)-1] = 0; // Terminate just in case
raise_exception_string(taskData, EXC_foreign, buf);
}
#endif
return toSysWord(taskData, sym);
}
// Libffi functions
case 50: // Return a list of available ABIs
return makeList(taskData, sizeof(abiTable)/sizeof(abiTable[0]),
(char*)abiTable, sizeof(abiTable[0]), 0, mkAbitab);
case 51: // A constant from the table
{
unsigned index = get_C_unsigned(taskData, args->Word());
if (index >= sizeof(constantTable) / sizeof(constantTable[0]))
raise_exception_string(taskData, EXC_foreign, "Index out of range");
return Make_arbitrary_precision(taskData, constantTable[index]);
}
case 52: // Return an FFI type
{
unsigned index = get_C_unsigned(taskData, args->Word());
if (index >= sizeof(ffiTypeTable) / sizeof(ffiTypeTable[0]))
raise_exception_string(taskData, EXC_foreign, "Index out of range");
return toSysWord(taskData, ffiTypeTable[index]);
}
case 53: // Extract fields from ffi type.
{
ffi_type *ffit = *(ffi_type**)(args->WordP());
Handle sizeHandle = Make_arbitrary_precision(taskData, ffit->size);
Handle alignHandle = Make_arbitrary_precision(taskData, ffit->alignment);
Handle typeHandle = Make_arbitrary_precision(taskData, ffit->type);
Handle elemHandle = toSysWord(taskData, ffit->elements);
Handle resHandle = alloc_and_save(taskData, 4);
resHandle->WordP()->Set(0, sizeHandle->Word());
resHandle->WordP()->Set(1, alignHandle->Word());
resHandle->WordP()->Set(2, typeHandle->Word());
resHandle->WordP()->Set(3, elemHandle->Word());
return resHandle;
}
case 54: // Construct an ffi type.
{
// This is probably only used to create structs.
size_t size = getPolyUnsigned(taskData, args->WordP()->Get(0));
unsigned short align = get_C_ushort(taskData, args->WordP()->Get(1));
unsigned short type = get_C_ushort(taskData, args->WordP()->Get(2));
unsigned nElems = 0;
for (PolyWord p = args->WordP()->Get(3); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t)
nElems++;
size_t space = sizeof(ffi_type);
// If we need the elements add space for the elements plus
// one extra for the zero terminator.
if (nElems != 0) space += (nElems+1) * sizeof(ffi_type *);
ffi_type *result = (ffi_type*)calloc(1, space);
// Raise an exception rather than returning zero.
if (result == 0) raise_syscall(taskData, "Insufficient memory", ENOMEM);
ffi_type **elem = 0;
if (nElems != 0) elem = (ffi_type **)(result+1);
result->size = size;
result->alignment = align;
result->type = type;
result->elements = elem;
if (elem != 0)
{
for (PolyWord p = args->WordP()->Get(3); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t)
{
PolyWord e = ((ML_Cons_Cell*)p.AsObjPtr())->h;
*elem++ = *(ffi_type**)(e.AsAddress());
}
*elem = 0;
}
return toSysWord(taskData, result);
}
case 55: // Create a CIF. This contains all the types and some extra information.
// The result is in allocated memory followed immediately by the argument type vector.
{
ffi_abi abi = (ffi_abi)get_C_ushort(taskData, args->WordP()->Get(0));
ffi_type *rtype = *(ffi_type **)args->WordP()->Get(1).AsAddress();
unsigned nArgs = 0;
for (PolyWord p = args->WordP()->Get(2); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t)
nArgs++;
// Allocate space for the cif followed by the argument type vector
size_t space = sizeof(ffi_cif) + nArgs * sizeof(ffi_type*);
ffi_cif *cif = (ffi_cif *)malloc(space);
if (cif == 0) raise_syscall(taskData, "Insufficient memory", ENOMEM);
ffi_type **atypes = (ffi_type **)(cif+1);
// Copy the arguments types.
ffi_type **at = atypes;
for (PolyWord p = args->WordP()->Get(2); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t)
{
PolyWord e = ((ML_Cons_Cell*)p.AsObjPtr())->h;
*at++ = *(ffi_type**)(e.AsAddress());
}
ffi_status status = ffi_prep_cif(cif, abi, nArgs, rtype, atypes);
if (status == FFI_BAD_TYPEDEF)
raise_exception_string(taskData, EXC_foreign, "Bad typedef in ffi_prep_cif");
else if (status == FFI_BAD_ABI)
raise_exception_string(taskData, EXC_foreign, "Bad ABI in ffi_prep_cif");
else if (status != FFI_OK)
raise_exception_string(taskData, EXC_foreign, "Error in ffi_prep_cif");
return toSysWord(taskData, cif);
}
case 56: // Call a function.
{
ffi_cif *cif = *(ffi_cif **)args->WordP()->Get(0).AsAddress();
void *f = *(void**)args->WordP()->Get(1).AsAddress();
void *res = *(void**)args->WordP()->Get(2).AsAddress();
void **arg = *(void***)args->WordP()->Get(3).AsAddress();
// We release the ML memory across the call so a GC can occur
// even if this thread is blocked in the C code.
processes->ThreadReleaseMLMemory(taskData);
ffi_call(cif, FFI_FN(f), res, arg);
// Do we need to save the value of errno/GetLastError here?
processes->ThreadUseMLMemory(taskData);
return taskData->saveVec.push(TAGGED(0));
}
case 57: // Create a callback.
{
#ifdef INTERPRETED
raise_exception_string(taskData, EXC_foreign, "Callbacks are not implemented in the byte code interpreter");
#endif
Handle mlFunction = taskData->saveVec.push(args->WordP()->Get(0));
ffi_cif *cif = *(ffi_cif **)args->WordP()->Get(1).AsAddress();
void *resultFunction;
// Allocate the memory. resultFunction is set to the executable address in or related to
// the memory.
ffi_closure *closure = (ffi_closure *)ffi_closure_alloc(sizeof(ffi_closure), &resultFunction);
if (closure == 0)
raise_exception_string(taskData, EXC_foreign, "Callbacks not implemented or insufficient memory");
PLocker pLocker(&callbackTableLock);
// Find a free entry in the table if there is one.
unsigned entryNo = 0;
while (entryNo < callBackEntries && callbackTable[entryNo].closureSpace != 0) entryNo++;
if (entryNo == callBackEntries)
{
// Need to grow the table.
struct _cbStructEntry *newTable =
(struct _cbStructEntry*)realloc(callbackTable, (callBackEntries+1)*sizeof(struct _cbStructEntry));
if (newTable == 0)
raise_exception_string(taskData, EXC_foreign, "Unable to allocate memory for callback table");
callbackTable = newTable;
callBackEntries++;
}
callbackTable[entryNo].mlFunction = mlFunction->Word();
callbackTable[entryNo].closureSpace = closure;
callbackTable[entryNo].resultFunction = resultFunction;
if (ffi_prep_closure_loc(closure, cif, callbackEntryPt, (void*)((uintptr_t)entryNo), resultFunction) != FFI_OK)
raise_exception_string(taskData, EXC_foreign,"libffi error: ffi_prep_closure_loc failed");
return toSysWord(taskData, resultFunction);
}
case 58: // Free an existing callback.
{
// The address returned from call 57 above is the executable address that can
// be passed as a callback function. The writable memory address returned
// as the result of ffi_closure_alloc may or may not be the same. To be safe
// we need to search the table.
void *resFun = *(void**)args->Word().AsAddress();
PLocker pLocker(&callbackTableLock);
for (unsigned i = 0; i < callBackEntries; i++)
{
if (callbackTable[i].resultFunction == resFun)
{
ffi_closure_free(callbackTable[i].closureSpace);
callbackTable[i].closureSpace = 0;
callbackTable[i].resultFunction = 0;
callbackTable[i].mlFunction = TAGGED(0); // Release the ML function
return taskData->saveVec.push(TAGGED(0));
}
}
raise_exception_string(taskData, EXC_foreign, "Invalid callback entry");
}
default:
{
char msg[100];
sprintf(msg, "Unknown ffi function: %d", c);
raise_exception_string(taskData, EXC_foreign, msg);
return 0;
}
}
}
// Construct an entry in the ABI table.
static Handle mkAbitab(TaskData *taskData, void *arg, char *p)
{
struct _abiTable *ab = (struct _abiTable *)p;
// Construct a pair of the string and the code
Handle name = taskData->saveVec.push(C_string_to_Poly(taskData, ab->abiName));
Handle code = Make_arbitrary_precision(taskData, ab->abiCode);
Handle result = alloc_and_save(taskData, 2);
result->WordP()->Set(0, name->Word());
result->WordP()->Set(1, code->Word());
return result;
}
// This is the C function that will get control when any callback is made. The "data"
// argument is the index of the entry in the callback table..
static void callbackEntryPt(ffi_cif *cif, void *ret, void* args[], void *data)
{
uintptr_t cbIndex = (uintptr_t)data;
ASSERT(cbIndex < callBackEntries);
// We should get the task data for the thread that is running this code.
// If this thread has been created by the foreign code we will have to
// create a new one here.
TaskData *taskData = processes->GetTaskDataForThread();
if (taskData == 0)
{
try {
taskData = processes->CreateNewTaskData(0, 0, 0, TAGGED(0));
}
catch (std::bad_alloc &) {
::Exit("Unable to create thread data - insufficient memory");
}
catch (MemoryException &) {
::Exit("Unable to create thread data - insufficient memory");
}
}
else processes->ThreadUseMLMemory(taskData);
// We may get multiple calls to call-backs and we mustn't risk
// overflowing the save-vec.
Handle mark = taskData->saveVec.mark();
// In the future we might want to call C functions without some of the
// overhead that comes with an RTS call which may allocate in ML
// memory. If we do that we also have to ensure that callbacks
// don't allocate, so this code would have to change.
Handle mlEntryHandle;
{
// Get the ML function. Lock to avoid another thread moving
// callbackTable under our feet.
PLocker pLocker(&callbackTableLock);
struct _cbStructEntry *cbEntry = &callbackTable[cbIndex];
mlEntryHandle = taskData->saveVec.push(cbEntry->mlFunction);
}
// Create a pair of the arg vector and the result pointer.
Handle argHandle = toSysWord(taskData, args);
Handle resHandle = toSysWord(taskData, ret); // Result must go in here.
Handle pairHandle = alloc_and_save(taskData, 2);
pairHandle->WordP()->Set(0, argHandle->Word());
pairHandle->WordP()->Set(1, resHandle->Word());
taskData->EnterCallbackFunction(mlEntryHandle, pairHandle);
taskData->saveVec.reset(mark);
// Release ML memory now we're going back to C.
processes->ThreadReleaseMLMemory(taskData);
}
class PolyFFI: public RtsModule
{
public:
virtual void GarbageCollect(ScanAddress *process);
};
// Declare this. It will be automatically added to the table.
static PolyFFI polyFFIModule;
// We need to scan the callback table.
void PolyFFI::GarbageCollect(ScanAddress *process)
{
for (unsigned i = 0; i < callBackEntries; i++)
process->ScanRuntimeWord(&callbackTable[i].mlFunction);
}
#else
// The foreign function interface isn't available.
#include "polyffi.h"
#include "run_time.h"
#include "sys.h"
Handle poly_ffi(TaskData *taskData, Handle args, Handle code)
{
raise_exception_string(taskData, EXC_foreign, "The foreign function interface is not available on this platform");
}
#endif
// General interface to IO. Ideally the various cases will be made into
// separate functions.
POLYUNSIGNED PolyFFIGeneral(PolyObject *threadId, PolyWord code, PolyWord arg)
{
TaskData *taskData = TaskData::FindTaskForId(threadId);
ASSERT(taskData != 0);
taskData->PreRTSCall();
Handle reset = taskData->saveVec.mark();
Handle pushedCode = taskData->saveVec.push(code);
Handle pushedArg = taskData->saveVec.push(arg);
Handle result = 0;
try {
result = poly_ffi(taskData, pushedArg, pushedCode);
} catch (...) { } // If an ML exception is raised
taskData->saveVec.reset(reset);
taskData->PostRTSCall();
if (result == 0) return TAGGED(0).AsUnsigned();
else return result->Word().AsUnsigned();
}
// These functions are needed in the compiler
POLYUNSIGNED PolySizeFloat()
{
return TAGGED(ffi_type_float.size).AsUnsigned();
}
POLYUNSIGNED PolySizeDouble()
{
return TAGGED(ffi_type_double.size).AsUnsigned();
}
// Get either errno or GetLastError
POLYUNSIGNED PolyFFIGetError(PolyWord addr)
{
#if (defined(_WIN32) && ! defined(__CYGWIN__))
addr.AsObjPtr()->Set(0, PolyWord::FromUnsigned(GetLastError()));
#else
addr.AsObjPtr()->Set(0, PolyWord::FromUnsigned((POLYUNSIGNED)errno));
#endif
return 0;
}
// The argument is a SysWord.word value i.e. the address of a byte cell.
POLYUNSIGNED PolyFFISetError(PolyWord err)
{
#if (defined(_WIN32) && ! defined(__CYGWIN__))
SetLastError((DWORD)(err.AsObjPtr()->Get(0).AsUnsigned()));
#else
errno = err.AsObjPtr()->Get(0).AsSigned();
#endif
return 0;
}
struct _entrypts polyFFIEPT[] =
{
{ "PolyFFIGeneral", (polyRTSFunction)&PolyFFIGeneral},
{ "PolySizeFloat", (polyRTSFunction)&PolySizeFloat},
{ "PolySizeDouble", (polyRTSFunction)&PolySizeDouble},
{ "PolyFFIGetError", (polyRTSFunction)&PolyFFIGetError},
{ "PolyFFISetError", (polyRTSFunction)&PolyFFISetError},
{ NULL, NULL} // End of list.
};
|