1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
|
/*
Title: Quick copying garbage collector
Copyright (c) 2011-12, 2016 David C. J. Matthews
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
This is a quick copying garbage collector that moves all the data out of
the allocation areas and into the mutable and immutable areas. If either of
these has filled up it fails and a full garbage collection must be done.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#elif defined(_WIN32)
#include "winconfig.h"
#else
#error "No configuration file"
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x)
#endif
#include "globals.h"
#include "processes.h"
#include "gc.h"
#include "scanaddrs.h"
#include "check_objects.h"
#include "bitmap.h"
#include "memmgr.h"
#include "diagnostics.h"
#include "heapsizing.h"
#include "gctaskfarm.h"
#include "statistics.h"
// This protects access to the gMem.lSpace table.
static PLock localTableLock("Minor GC tables");
static bool succeeded = true;
class QuickGCScanner: public ScanAddress
{
public:
QuickGCScanner(bool r): rootScan(r) {}
virtual ~QuickGCScanner() {}
// Overrides for ScanAddress class
virtual POLYUNSIGNED ScanAddressAt(PolyWord *pt);
virtual PolyObject *ScanObjectAddress(PolyObject *base);
private:
PolyObject *FindNewAddress(PolyObject *obj, POLYUNSIGNED L, LocalMemSpace *srcSpace);
virtual LocalMemSpace *FindSpace(POLYUNSIGNED length, bool isMutable) = 0;
protected:
bool objectCopied;
bool rootScan;
};
class RootScanner: public QuickGCScanner
{
public:
RootScanner(): QuickGCScanner(true), mutableSpace(0), immutableSpace(0) {}
private:
virtual LocalMemSpace *FindSpace(POLYUNSIGNED length, bool isMutable);
LocalMemSpace *mutableSpace, *immutableSpace;
};
class ThreadScanner: public QuickGCScanner
{
public:
ThreadScanner(GCTaskId* id): QuickGCScanner(false), taskID(id), mutableSpace(0), immutableSpace(0),
spaceTable(0), nOwnedSpaces(0) {}
virtual ~ThreadScanner() { free(spaceTable); }
void ScanOwnedAreas(void);
private:
virtual LocalMemSpace *FindSpace(POLYUNSIGNED length, bool isMutable);
bool TakeOwnership(LocalMemSpace *space);
GCTaskId *taskID;
LocalMemSpace *mutableSpace, *immutableSpace;
LocalMemSpace **spaceTable;
unsigned nOwnedSpaces;
};
// This is used when scanning code areas. If there are no mutable cells left we can clear
// the mutable bit and we don't have to scan it again.
class CodeCheck: public ScanAddress
{
public:
CodeCheck(): foundMutable(false) {}
virtual PolyObject *ScanObjectAddress(PolyObject *base) { return base; }
virtual void ScanAddressesInObject(PolyObject *base, POLYUNSIGNED lengthWord)
{ if (OBJ_IS_MUTABLE_OBJECT(lengthWord)) foundMutable = true; }
bool foundMutable;
};
// This uses the conditional exchange instruction to check and update
// the forwarding pointer. It uses a lock prefix so that if another
// thread has updated it in the meantime it will not set it.
// Using the assembly code provides a very small speed-up so may not
// be worth-while.
#if defined(_MSC_VER) && (_MSC_VER >= 1600)
// In later versions of MS C we can use the intrinsic.
// 1600 is Visual Studio 2010. It may well work in older versions
# include <intrin.h>
# pragma intrinsic(_InterlockedCompareExchange)
# if (SIZEOF_VOIDP == 8)
# define InterlockedCompareExchange64 _InterlockedCompareExchange64
# else
# define InterlockedCompareExchange _InterlockedCompareExchange
# endif
#endif
static bool atomiclySetForwarding(LocalMemSpace *space, POLYUNSIGNED *pt,
POLYUNSIGNED testVal, POLYUNSIGNED update)
{
#ifdef _MSC_VER
# if (SIZEOF_VOIDP == 8)
LONGLONG *address = (LONGLONG*)(pt-1);
POLYUNSIGNED result = InterlockedCompareExchange64(address, update, testVal);
return result == testVal;
# else
LONG *address = (LONG*)(pt-1);
POLYUNSIGNED result = InterlockedCompareExchange(address, update, testVal);
return result == testVal;
# endif
#elif((defined(HOSTARCHITECTURE_X86) || defined(HOSTARCHITECTURE_X32)) && defined(__GNUC__))
POLYUNSIGNED result;
__asm__ __volatile__ (
"lock; cmpxchgl %1,%2"
:"=a"(result)
:"r"(update),"m"(pt[-1]),"0"(testVal)
:"memory", "cc"
);
return result == testVal;
#elif(defined(HOSTARCHITECTURE_X86_64) && defined(__GNUC__))
POLYUNSIGNED result;
__asm__ __volatile__ (
"lock; cmpxchgq %1,%2"
:"=a"(result)
:"r"(update),"m"(pt[-1]),"0"(testVal)
:"memory", "cc"
);
return result == testVal;
#else
// Fallback on other targets.
PLocker lock(&space->spaceLock);
if (pt[-1] == testVal)
{
pt[-1] = update;
return true;
}
return false;
#endif
}
PolyObject *QuickGCScanner::FindNewAddress(PolyObject *obj, POLYUNSIGNED L, LocalMemSpace *srcSpace)
{
bool isMutable = OBJ_IS_MUTABLE_OBJECT(L);
POLYUNSIGNED n = OBJ_OBJECT_LENGTH(L);
LocalMemSpace *lSpace = FindSpace(n, isMutable);
if (lSpace == 0)
return 0; // Unable to move it.
PolyObject *newObject = (PolyObject*)(lSpace->lowerAllocPtr+1);
// It's possible that another thread may have actually copied the
// object since we loaded the length word so we check it again.
// If this is a mutable we must ensure that checking the forwarding
// pointer here and updating it if necessary is atomic. We don't need
// to do that for immutable data so there is a small chance that an
// object may be copied twice. That's not a problem for immutable data.
// Also lock this if it's code. This may not be necessary but code objects
// are rare. Updating the addresses in code objects is complicated and
// it's possible that there are assumptions somewhere that there's only one
// copy.
// Avoiding locking for immutables provides only a small speed-up so may not
// be worth-while.
if (isMutable || OBJ_IS_CODE_OBJECT(L))
{
if (! atomiclySetForwarding(srcSpace, (POLYUNSIGNED*)obj, L, OBJ_SET_POINTER(newObject)))
{
newObject = obj->GetForwardingPtr();
if (debugOptions & DEBUG_GC_DETAIL)
Log("GC: Quick: %p %lu %u has already moved to %p\n", obj, n, GetTypeBits(L), newObject);
objectCopied = false;
return newObject;
}
}
else
{
if (obj->ContainsForwardingPtr())
{
newObject = obj->GetForwardingPtr();
if (debugOptions & DEBUG_GC_DETAIL)
Log("GC: Quick: %p %lu %u has already moved to %p\n", obj, n, GetTypeBits(L), newObject);
objectCopied = false;
return newObject;
}
else obj->SetForwardingPtr(newObject);
}
lSpace->lowerAllocPtr += n+1;
CopyObjectToNewAddress(obj, newObject, L);
objectCopied = true;
return newObject;
}
// When scanning the roots we want to distribute the data among the immutable and mutable areas
// so that the work is distributed for the scanning threads.
LocalMemSpace *RootScanner::FindSpace(POLYUNSIGNED n, bool isMutable)
{
LocalMemSpace *lSpace = isMutable ? mutableSpace : immutableSpace;
if (lSpace != 0)
{
// See if there's space in the existing area.
if (lSpace->freeSpace() > n /* At least n+1*/)
return lSpace;
}
// Find the space with the largest free area.
for (std::vector<LocalMemSpace*>::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++)
{
LocalMemSpace *sp = *i;
if (sp->isMutable == isMutable && !sp->allocationSpace &&
(lSpace == 0 || sp->freeSpace() > lSpace->freeSpace()))
lSpace = sp;
}
if (lSpace != 0 && lSpace->freeSpace() > n)
{
if (isMutable) mutableSpace = lSpace; else immutableSpace = lSpace;
return lSpace;
}
return gHeapSizeParameters.AddSpaceInMinorGC(n+1, isMutable);
}
// When scanning within a thread we don't want to be searching the space table.
LocalMemSpace *ThreadScanner::FindSpace(POLYUNSIGNED n, bool isMutable)
{
LocalMemSpace *lSpace = isMutable ? mutableSpace : immutableSpace;
if (lSpace != 0)
{
// See if there's space in the existing area.
if (lSpace->freeSpace() > n /* At least n+1*/)
return lSpace;
}
for (unsigned i = 0; i < nOwnedSpaces; i++)
{
lSpace = spaceTable[i];
if (lSpace->isMutable == isMutable &&
! lSpace->allocationSpace && lSpace->freeSpace() > n /* At least n+1*/)
{
if (n < 10)
{
// We use this space for further allocations unless we are trying to
// allocate a "large" object.
if (isMutable) mutableSpace = lSpace; else immutableSpace = lSpace;
}
return lSpace;
}
}
PLocker l(&localTableLock);
// Another thread may allocate a new area, reallocating gMem.lSpaces so we
// we need a lock here.
if (taskID != 0)
{
// See if we can take a space that is currently unused.
for (std::vector<LocalMemSpace*>::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++)
{
lSpace = *i;
if (lSpace->spaceOwner == 0 && lSpace->isMutable == isMutable &&
! lSpace->allocationSpace && lSpace->freeSpace() > n /* At least n+1*/)
{
if (debugOptions & DEBUG_GC_ENHANCED)
Log("GC: Quick: Thread %p is taking ownership of space %p\n", taskID, lSpace);
if (! TakeOwnership(lSpace))
return 0;
return lSpace;
}
}
}
lSpace = gHeapSizeParameters.AddSpaceInMinorGC(n+1, isMutable);
if (lSpace != 0 && TakeOwnership(lSpace))
return lSpace;
return 0;
}
// Copy all the objects.
POLYUNSIGNED QuickGCScanner::ScanAddressAt(PolyWord *pt)
{
POLYUNSIGNED n = 1; // Set up the loop to process one word at *pt
pt++;
while (n-- != 0)
{
PolyWord val = *(--pt);
if (! val.IsTagged())
{
LocalMemSpace *space = gMem.LocalSpaceForAddress(val.AsStackAddr()-1);
// We only copy it if it is in a local allocation space and not in the
// "overflow" area of data that could not copied by the last full GC.
if (space != 0 && space->allocationSpace && val.AsAddress() <= space->upperAllocPtr)
{
// We shouldn't get code addresses since we handle code
// segments separately so if this isn't an integer it must be an object address.
ASSERT(OBJ_IS_DATAPTR(val));
PolyObject *obj = val.AsObjPtr();
// Load the length word without any interlock. We can't assume that
// another thread won't also copy this at the same time.
POLYUNSIGNED L = obj->LengthWord();
// Has it been moved already? N.B. Another thread may be in the process of
// moving it so the new object may not be fully copied.
if (OBJ_IS_POINTER(L))
*pt = OBJ_GET_POINTER(L);
else
{
// We need to copy this object.
PolyObject *newObject = FindNewAddress(obj, L, space); // New address of object.
if (newObject == 0) { // Couldn't copy it - not enough space.
succeeded = false;
if (debugOptions & DEBUG_GC_DETAIL)
Log("GC: Quick: Insufficient space to move %p %lu %u\n",
obj, OBJ_OBJECT_LENGTH(L), GetTypeBits(L));
return 0;
}
*pt = newObject; // Update the pointer to the object
// N.B. If another thread has just copied it "newObject" may actually
// be an address in another thread's space. In that case "objectCopied"
// will be false.
if (debugOptions & DEBUG_GC_DETAIL)
Log("GC: Quick: %p %lu %u moved to %p\n", obj, OBJ_OBJECT_LENGTH(L), GetTypeBits(L), newObject);
// Stop now unless this is a simple word object we have been able to move.
// Also stop if we're just scanning the roots.
if (! rootScan && newObject != obj && ! OBJ_IS_MUTABLE_OBJECT(L) &&
GetTypeBits(L) == 0 && objectCopied)
{
// We can simply return zero in which case this performs a breadth-first scan.
// A breadth-first scan distributes the objects through the memory so
// to retain some degree of locality we try to copy some object pointed at
// by this one. We work from the end back so that we follow the tail pointers
// for lists.
n = OBJ_OBJECT_LENGTH(L); // Object length
pt = (PolyWord*)newObject + n;
}
}
}
}
}
// We've reached the end without finding a pointer to follow
return 0;
}
// The initial entry to process the roots. Also used when processing the addresses
// in objects that can't be handled by ScanAddressAt.
PolyObject *QuickGCScanner::ScanObjectAddress(PolyObject *base)
{
PolyWord val = base;
// Scan this as an address.
(void)QuickGCScanner::ScanAddressAt(&val);
// Ignore the result of ScanAddressAt which is always zero and
// just return the updated address.
return val.AsObjPtr();
}
// Add this to the set of spaces we own. Must be called with the
// localTableLock held.
bool ThreadScanner::TakeOwnership(LocalMemSpace *space)
{
ASSERT(space->spaceOwner == 0);
LocalMemSpace **v = (LocalMemSpace**)realloc(spaceTable, (nOwnedSpaces+1)*sizeof(LocalMemSpace*));
if (v == 0)
return false;
spaceTable = v;
space->spaceOwner = taskID;
spaceTable[nOwnedSpaces++] = space;
return true;
}
// Thread function to scan an area. It scans the addresses in the region
// copying any objects from the allocation area into mutable or immutable
// areas it owns. It then processes all the areas it owns until there
// are no further addresses to scan.
static void scanArea(GCTaskId *id, void *arg1, void *arg2)
{
ThreadScanner marker(id);
marker.ScanAddressesInRegion((PolyWord*)arg1, (PolyWord*)arg2);
marker.ScanOwnedAreas();
}
void ThreadScanner::ScanOwnedAreas()
{
while (true)
{
bool allDone = true;
// We're finished when there is no unscanned data in any space we own.
for (unsigned k = 0; k < nOwnedSpaces && allDone; k++)
{
LocalMemSpace *space = spaceTable[k];
allDone = space->partialGCScan == space->lowerAllocPtr;
}
if (allDone)
break;
// Scan each area that has had data added to it.
for (unsigned l = 0; l < nOwnedSpaces; l++)
{
LocalMemSpace *space = spaceTable[l];
// Scan the area. This may well result in more data being added
while (space->partialGCScan < space->lowerAllocPtr)
{
// Is the queue draining? If so it's probably worth creating
// some spare work.
if (gpTaskFarm->Draining() && gpTaskFarm->ThreadCount() > 1)
{
PolyWord *mid =
space->partialGCScan + (space->lowerAllocPtr - space->partialGCScan)/2;
// Split the space in two.
PolyWord *p = space->partialGCScan;
while (p < mid)
{
PolyObject *o = (PolyObject*)(p+1);
ASSERT(o->ContainsNormalLengthWord());
p += o->Length()+1;
}
// Start a new task to scan the area up to the half-way point.
// Because we round up to the end of the next object we may
// include the whole area but that's probably better because
// we may have other areas to scan.
if (gpTaskFarm->AddWork(scanArea, space->partialGCScan, p))
{
space->partialGCScan = p;
if (space->lowerAllocPtr == space->partialGCScan)
break;
}
}
PolyObject *obj = (PolyObject*)(space->partialGCScan+1);
ASSERT(obj->ContainsNormalLengthWord());
POLYUNSIGNED length = obj->Length();
ASSERT(space->partialGCScan+length+1 <= space->lowerAllocPtr);
space->partialGCScan += length+1;
if (length != 0)
ScanAddressesInObject(obj);
// If any thread has run out of space we should stop.
if (! succeeded)
return;
}
}
}
// Release the spaces we're holding in case another thread wants to use them.
for (unsigned m = 0; m < nOwnedSpaces; m++)
{
LocalMemSpace *space = spaceTable[m];
space->spaceOwner = 0;
}
nOwnedSpaces = 0;
}
bool RunQuickGC(const POLYUNSIGNED wordsRequiredToAllocate)
{
// If the last minor GC took too long force a full GC.
if (gHeapSizeParameters.RunMajorGCImmediately())
return false;
gHeapSizeParameters.RecordGCTime(HeapSizeParameters::GCTimeStart);
globalStats.incCount(PSC_GC_PARTIALGC);
mainThreadPhase = MTP_GCQUICK;
succeeded = true;
if (debugOptions & DEBUG_GC)
Log("GC: Beginning quick GC\n");
if (debugOptions & DEBUG_HEAPSIZE)
gMem.ReportHeapSizes("Minor GC (before)");
POLYUNSIGNED spaceBeforeGC = 0;
for(std::vector<LocalMemSpace*>::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++)
{
LocalMemSpace *lSpace = *i;
ASSERT (lSpace->top >= lSpace->upperAllocPtr);
ASSERT (lSpace->upperAllocPtr >= lSpace->lowerAllocPtr);
ASSERT (lSpace->lowerAllocPtr >= lSpace->bottom);
// Remember the top before we started this GC. It's
// only relevant for mutable areas. It avoids us rescanning
// objects that may have been added to the space as a result of
// scanning another space.
if (lSpace->isMutable)
lSpace->partialGCTop = lSpace->upperAllocPtr;
else lSpace->partialGCTop = lSpace->top;
// If we're scanning a space this is where we start.
// For immutable areas this only includes newly added
// data but for mutable areas we have to scan data added
// by previous partial GCs.
if (lSpace->isMutable && ! lSpace->allocationSpace)
lSpace->partialGCRootBase = lSpace->bottom;
else lSpace->partialGCRootBase = lSpace->lowerAllocPtr;
lSpace->spaceOwner = 0; // Not currently owned
// Add up the space in the mutable and immutable areas
if (! lSpace->allocationSpace)
spaceBeforeGC += lSpace->allocatedSpace();
}
// First scan the roots, copying the data into the mutable and immutable areas.
RootScanner rootScan;
// Scan the permanent mutable areas. This could be parallelised but it doesn't
// appear to be worthwhile at the moment.
for (std::vector<PermanentMemSpace*>::iterator i = gMem.pSpaces.begin(); i < gMem.pSpaces.end(); i++)
{
PermanentMemSpace *space = *i;
if (space->isMutable && ! space->byteOnly)
rootScan.ScanAddressesInRegion(space->bottom, space->top);
}
// Scan code spaces.
for (std::vector<CodeSpace *>::iterator i = gMem.cSpaces.begin(); i < gMem.cSpaces.end(); i++)
{
CodeSpace *space = *i;
// Spaces are mutable if any object has been added to the area since the last GC.
if (space->isMutable)
{
rootScan.ScanAddressesInRegion(space->bottom, space->top);
// Check to see if any of the objects are still mutable. If they are
// we are still building the code and must rescan it on the next GC.
// If there aren't we don't need to unless another code object is added.
CodeCheck codeCheck;
codeCheck.ScanAddressesInRegion(space->bottom, space->top);
space->isMutable = codeCheck.foundMutable;
}
}
// Scan RTS addresses. This will include the thread stacks.
GCModules(&rootScan);
// At this point the immutable and mutable areas will have some root objects
// in the space between partialGCRootBase (the old value of lowerAllocPtr) and
// lowerAllocPtr. These will contain the addresses of objects in the allocation
// areas. We need to scan these root objects and then any new objects we copy
// until there are no objects left to scan.
// We also need to scan local mutable areas since these are roots as well.
// They have data between partialGCTop and top. Parallelising this appears
// to be a significant gain.
// We have to be careful about the pointers here. AddWorkOrRunNow begins
// a thread immediately and so the scanning threads may be running while
// we are still creating new tasks. To avoid tripping up we use separate
// pointers to the root objects rather than using lowerAllocPtr and
// partialGCScan because these can be modified by the scanning tasks.
// It's also possible for new spaces to be added to the table by the scanning
// tasks while we are still adding tasks. It is important that the values of
// partialGCRootBase, partialGCRootTop and partialGCTop are properly initialised
// for these new spaces.
for (std::vector<LocalMemSpace*>::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++)
{
LocalMemSpace *space = *i;
space->partialGCRootTop = space->lowerAllocPtr; // Top of the roots
space->partialGCScan = space->lowerAllocPtr; // Start of scanning for new data.
}
// Now start creating tasks. From this point only a thread that owns a space
// may read or modify lowerAllocPtr or partialGCScan.
{
unsigned l = 0;
while (true)
{
LocalMemSpace *space;
{
// There is a chance that a thread that has already been forked may
// allocate a new space and realloc gMem.lSpaces. We have to drop
// the lock before calling AddWorkOrRunNow in case we "run now".
PLocker lock(&localTableLock);
if (l >= gMem.lSpaces.size())
break;
space = gMem.lSpaces[l++];
}
if (space->partialGCRootBase != space->partialGCRootTop)
gpTaskFarm->AddWorkOrRunNow(scanArea, space->partialGCRootBase, space->partialGCRootTop);
if (space->partialGCTop != space->top)
gpTaskFarm->AddWorkOrRunNow(scanArea, space->partialGCTop, space->top);
}
}
gpTaskFarm->WaitForCompletion();
POLYUNSIGNED spaceAfterGC = 0;
if (succeeded)
{
globalStats.setSize(PSS_AFTER_LAST_GC, 0);
globalStats.setSize(PSS_ALLOCATION, 0);
globalStats.setSize(PSS_ALLOCATION_FREE, 0);
// If it succeeded the allocation areas are now empty.
for(std::vector<LocalMemSpace*>::iterator i = gMem.lSpaces.begin(); i < gMem.lSpaces.end(); i++)
{
LocalMemSpace *lSpace = *i;
POLYUNSIGNED free;
if (lSpace->allocationSpace)
{
lSpace->lowerAllocPtr = lSpace->bottom;
free = lSpace->freeSpace();
#ifdef FILL_UNUSED_MEMORY
// This provides extra checking if we have dangling pointers
memset(lSpace->bottom, 0xaa, (char*)lSpace->upperAllocPtr - (char*)lSpace->bottom);
#endif
globalStats.incSize(PSS_ALLOCATION, free*sizeof(PolyWord));
globalStats.incSize(PSS_ALLOCATION_FREE, free*sizeof(PolyWord));
}
else free = lSpace->freeSpace();
if (debugOptions & DEBUG_GC_ENHANCED)
Log("GC: %s space %p %d free in %d words %2.1f%% full\n", lSpace->spaceTypeString(),
lSpace, lSpace->freeSpace(), lSpace->spaceSize(),
((float)lSpace->allocatedSpace()) * 100 / (float)lSpace->spaceSize());
globalStats.incSize(PSS_AFTER_LAST_GC, free*sizeof(PolyWord));
spaceAfterGC += lSpace->allocatedSpace();
}
if (! gMem.CheckForAllocation(wordsRequiredToAllocate))
succeeded = false;
}
if (succeeded)
{
gHeapSizeParameters.RecordGCTime(HeapSizeParameters::GCTimeEnd);
if (! gHeapSizeParameters.AdjustSizeAfterMinorGC(spaceAfterGC, spaceBeforeGC)) // Adjust the allocation size.
return false; // If necessary trigger a full GC immediately
gHeapSizeParameters.resetMinorTimingData();
// Remove allocation spaces that are larger than the default
// and any excess over the current size of the allocation area.
gMem.RemoveExcessAllocation();
if (debugOptions & DEBUG_HEAPSIZE)
gMem.ReportHeapSizes("Minor GC (after)");
if (debugOptions & DEBUG_GC)
Log("GC: Completed successfully\n");
CheckMemory();
}
else
{
// There was insufficient room to copy everything. We will need to
// run a full GC.
gHeapSizeParameters.RecordGCTime(HeapSizeParameters::GCTimeEnd);
if (debugOptions & DEBUG_GC)
Log("GC: Quick GC failed\n");
}
return succeeded;
}
|