File: CODETREE_SIMPLIFIER.sml

package info (click to toggle)
polyml 5.7.1-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid
  • size: 40,616 kB
  • sloc: cpp: 44,142; ansic: 26,963; sh: 22,002; asm: 13,486; makefile: 602; exp: 525; python: 253; awk: 91
file content (1627 lines) | stat: -rw-r--r-- 84,035 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
(*
    Copyright (c) 2013, 2016 David C.J. Matthews

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License version 2.1 as published by the Free Software Foundation.
    
    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.
    
    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
*)

(*
    This is a cut-down version of the optimiser which simplifies the code but
    does not apply any heuristics.  It follows chained bindings, in particular
    through tuples, folds constants expressions involving built-in functions,
    expands inline functions that have previously been marked as inlineable.
    It does not detect small functions that can be inlined nor does it
    code-generate functions without free variables.
*)

functor CODETREE_SIMPLIFIER(
    structure BASECODETREE: BaseCodeTreeSig

    structure CODETREE_FUNCTIONS: CodetreeFunctionsSig

    structure REMOVE_REDUNDANT:
    sig
        type codetree
        type loadForm
        type codeUse
        val cleanProc : (codetree * codeUse list * (int -> loadForm) * int) -> codetree
        structure Sharing: sig type codetree = codetree and loadForm = loadForm and codeUse = codeUse end
    end

    sharing
        BASECODETREE.Sharing
    =   CODETREE_FUNCTIONS.Sharing
    =   REMOVE_REDUNDANT.Sharing
) :
    sig
        type codetree and codeBinding and envSpecial

        val simplifier:
            codetree * int -> (codetree * codeBinding list * envSpecial) * int * bool
        val specialToGeneral:
            codetree * codeBinding list * envSpecial -> codetree

        structure Sharing:
        sig
            type codetree = codetree
            and codeBinding = codeBinding
            and envSpecial = envSpecial
        end
    end
=
struct
    open BASECODETREE
    open Address
    open CODETREE_FUNCTIONS
    open BuiltIns

    exception InternalError = Misc.InternalError

    exception RaisedException
    
    (* The bindings are held internally as a reversed list.  This
       is really only a check that the reversed and forward lists
       aren't confused. *)
    datatype revlist = RevList of codeBinding list

    type simpContext =
    {
        lookupAddr: loadForm -> envGeneral * envSpecial,
        enterAddr: int * (envGeneral * envSpecial) -> unit,
        nextAddress: unit -> int,
        reprocess: bool ref
    }

    fun envGeneralToCodetree(EnvGenLoad ext) = Extract ext
    |   envGeneralToCodetree(EnvGenConst w) = Constnt w

    fun mkDec (laddr, res) = Declar{value = res, addr = laddr, use=[]}

    fun mkEnv([], exp) = exp
    |   mkEnv(decs, exp as Extract(LoadLocal loadAddr)) =
        (
            (* A common case is where we have a binding as the last item
               and then a load of that binding.  Reduce this so other
               optimisations are possible.
               This is still something of a special case that could/should
               be generalised. *)
            case List.last decs of
                Declar{addr=decAddr, value, ... } =>
                    if loadAddr = decAddr
                    then mkEnv(List.take(decs, List.length decs - 1), value)
                    else Newenv(decs, exp)
            |   _ => Newenv(decs, exp)
        )
    |   mkEnv(decs, exp) = Newenv(decs, exp)

    fun isConstnt(Constnt _) = true
    |   isConstnt _ = false

    (* Wrap up the general, bindings and special value as a codetree node.  The
       special entry is discarded except for Constnt entries which are converted
       to ConstntWithInline.  That allows any inlineable code to be carried
       forward to later passes. *)
    fun specialToGeneral(g, RevList(b as _ :: _), s) = mkEnv(List.rev b, specialToGeneral(g, RevList [], s))
    |   specialToGeneral(Constnt(w, p), RevList [], s) = Constnt(w, setInline s p)
    |   specialToGeneral(g, RevList [], _) = g

    (* Convert a constant to a fixed value.  Used in some constant folding. *)
    val toFix: machineWord -> FixedInt.int = FixedInt.fromInt o Word.toIntX o toShort

    local
        val ffiSizeFloat: unit -> word = RunCall.rtsCallFast1 "PolySizeFloat"
        and ffiSizeDouble: unit -> word = RunCall.rtsCallFast1 "PolySizeDouble"
    in
        (* If we have a constant index value we convert that into a byte offset. We need
           to know the size of the item on this platform.  We have to make this check
           when we actually compile the code because the interpreted version will
           generally be run on a platform different from the one the pre-built
           compiler was compiled on. The ML word length will be the same because
           we have separate pre-built compilers for 32 and 64-bit. *)
        fun getMultiplier (LoadStoreMLWord _)   = RunCall.bytesPerWord
        |   getMultiplier (LoadStoreMLByte _)   = 0w1
        |   getMultiplier LoadStoreC8           = 0w1
        |   getMultiplier LoadStoreC16          = 0w2
        |   getMultiplier LoadStoreC32          = 0w4
        |   getMultiplier LoadStoreC64          = 0w8
        |   getMultiplier LoadStoreCFloat       = ffiSizeFloat()
        |   getMultiplier LoadStoreCDouble      = ffiSizeDouble()
        |   getMultiplier LoadStoreUntaggedUnsigned = RunCall.bytesPerWord
    end

    fun simplify(c, s) = mapCodetree (simpGeneral s) c

    (* Process the codetree to return a codetree node.  This is used
       when we don't want the special case. *)
    and simpGeneral { lookupAddr, ...} (Extract ext) =
        let
            val (gen, spec) = lookupAddr ext
        in
            SOME(specialToGeneral(envGeneralToCodetree gen, RevList [], spec))
        end

    |   simpGeneral context (Newenv envArgs) =
            SOME(specialToGeneral(simpNewenv(envArgs, context, RevList [])))

    |   simpGeneral context (Lambda lambda) =
            SOME(Lambda(#1(simpLambda(lambda, context, NONE, NONE))))

    |   simpGeneral context (Eval {function, argList, resultType}) =
            SOME(specialToGeneral(simpFunctionCall(function, argList, resultType, context, RevList[])))

        (* BuiltIn0 functions can't be processed specially. *)

    |   simpGeneral context (Unary{oper, arg1}) =
            SOME(specialToGeneral(simpUnary(oper, arg1, context, RevList [])))

    |   simpGeneral context (Binary{oper, arg1, arg2}) =
            SOME(specialToGeneral(simpBinary(oper, arg1, arg2, context, RevList [])))

    |   simpGeneral context (Arbitrary{oper=ArbCompare test, shortCond, arg1, arg2, longCall}) =
            SOME(specialToGeneral(simpArbitraryCompare(test, shortCond, arg1, arg2, longCall, context, RevList [])))

    |   simpGeneral context (Arbitrary{oper=ArbArith arith, shortCond, arg1, arg2, longCall}) =
            SOME(specialToGeneral(simpArbitraryArith(arith, shortCond, arg1, arg2, longCall, context, RevList [])))

    |   simpGeneral context (AllocateWordMemory {numWords, flags, initial}) =
            SOME(specialToGeneral(simpAllocateWordMemory(numWords, flags, initial, context, RevList [])))

    |   simpGeneral context (Cond(condTest, condThen, condElse)) =
            SOME(specialToGeneral(simpIfThenElse(condTest, condThen, condElse, context, RevList [])))

    |   simpGeneral context (Tuple { fields, isVariant }) =
            SOME(specialToGeneral(simpTuple(fields, isVariant, context, RevList [])))

    |   simpGeneral context (Indirect{ base, offset, isVariant }) =
            SOME(specialToGeneral(simpFieldSelect(base, offset, isVariant, context, RevList [])))

    |   simpGeneral context (SetContainer{container, tuple, filter}) =
        let
            val optCont = simplify(container, context)
            val (cGen, cDecs, cSpec) = simpSpecial(tuple, context, RevList [])
        in
            case cSpec of
                (* If the tuple is a local binding it is simpler to pick it up from the
                   "special" entry. *)
                EnvSpecTuple(size, recEnv) =>
                let
                    val fields = List.tabulate(size, envGeneralToCodetree o #1 o recEnv)
                in
                    SOME(simpPostSetContainer(optCont, Tuple{isVariant=false, fields=fields}, cDecs, filter))
                end

            |   _ => SOME(simpPostSetContainer(optCont, cGen, cDecs, filter))
        end

    |   simpGeneral (context as { enterAddr, nextAddress, reprocess, ...}) (BeginLoop{loop, arguments, ...}) =
        let
            val didReprocess = ! reprocess
            (* To see if we really need the loop first try simply binding the
               arguments and process it.  It's often the case that if one
               or more arguments is a constant that the looping case will
               be eliminated. *)
            val withoutBeginLoop =
                simplify(mkEnv(List.map (Declar o #1) arguments, loop), context)
            
            fun foldLoop f n (Loop l) = f(l, n)
            |   foldLoop f n (Newenv(_, exp)) = foldLoop f n exp
            |   foldLoop f n (Cond(_, t, e)) = foldLoop f (foldLoop f n t) e
            |   foldLoop f n (Handle {handler, ...}) = foldLoop f n handler
            |   foldLoop f n (SetContainer{tuple, ...}) = foldLoop f n tuple
            |   foldLoop _ n _ = n
            (* Check if the Loop instruction is there.  This assumes that these
               are the only tail-recursive cases. *)
            val hasLoop = foldLoop (fn _ => true) false
        in
            if not (hasLoop withoutBeginLoop)
            then SOME withoutBeginLoop
            else
            let
                (* Reset "reprocess".  It may have been set in the withoutBeginLoop
                   that's not the code we're going to return. *)
                val () = reprocess := didReprocess
                (* We need the BeginLoop. Create new addresses for the arguments. *)
                fun declArg({addr, value, use, ...}, typ) =
                    let
                        val newAddr = nextAddress()
                    in
                        enterAddr(addr, (EnvGenLoad(LoadLocal newAddr), EnvSpecNone));
                        ({addr = newAddr, value = simplify(value, context), use = use }, typ)
                    end
                (* Now look to see if the (remaining) loops have any arguments that do not change.
                   Do this after processing because we could be eliminating other loops that
                   may change the arguments. *)
                val declArgs = map declArg arguments
                val beginBody = simplify(loop, context)
                
                local
                    fun argsMatch((Extract (LoadLocal argNo), _), ({addr, ...}, _)) = argNo = addr
                    |   argsMatch _ = false
                    
                    fun checkLoopArgs(loopArgs, checks) =
                    let
                        fun map3(loopA :: loopArgs, decA :: decArgs, checkA :: checkArgs) =
                            (argsMatch(loopA, decA) andalso checkA) :: map3(loopArgs, decArgs, checkArgs)
                        |   map3 _ = []
                    in
                        map3(loopArgs, declArgs, checks)
                    end
                in
                    val checkList = foldLoop checkLoopArgs (map (fn _ => true) arguments) beginBody
                end
            in
                if List.exists (fn l => l) checkList
                then
                let
                    (* Turn the original arguments into bindings. *)
                    local
                        fun argLists(true, (arg, _), (tArgs, fArgs)) = (Declar arg :: tArgs, fArgs)
                        |   argLists(false, arg, (tArgs, fArgs)) = (tArgs, arg :: fArgs)
                    in
                        val (unchangedArgs, filteredDeclArgs) = ListPair.foldrEq argLists ([], [])  (checkList, declArgs)
                    end
                    fun changeLoops (Loop loopArgs) =
                        let
                            val newArgs =
                                ListPair.foldrEq(fn (false, arg, l) => arg :: l | (true, _, l) => l) [] (checkList, loopArgs)
                        in
                            Loop newArgs
                        end
                    |   changeLoops(Newenv(decs, exp)) = Newenv(decs, changeLoops exp)
                    |   changeLoops(Cond(i, t, e)) = Cond(i, changeLoops t, changeLoops e)
                    |   changeLoops(Handle{handler, exp, exPacketAddr}) =
                            Handle{handler=changeLoops handler, exp=exp, exPacketAddr=exPacketAddr}
                    |   changeLoops(SetContainer{tuple, container, filter}) =
                            SetContainer{tuple=changeLoops tuple, container=container, filter=filter}
                    |   changeLoops code = code
                    
                    val beginBody = simplify(changeLoops loop, context)
                    (* Reprocess because we've lost any special part from the arguments that
                       haven't changed. *)
                    val () = reprocess := true
                in
                    SOME(mkEnv(unchangedArgs, BeginLoop {loop=beginBody, arguments=filteredDeclArgs}))
                end
                else SOME(BeginLoop {loop=beginBody, arguments=declArgs})
            end
        end

    |   simpGeneral context (TagTest{test, tag, maxTag}) =
        (
            case simplify(test, context) of
                Constnt(testResult, _) =>
                    if isShort testResult andalso toShort testResult = tag
                    then SOME CodeTrue
                    else SOME CodeFalse
            |   sTest => SOME(TagTest{test=sTest, tag=tag, maxTag=maxTag})
        )

    |   simpGeneral context (LoadOperation{kind, address}) =
        let
            (* Try to move constants out of the index. *)
            val (genAddress, RevList decAddress) = simpAddress(address, getMultiplier kind, context)
            (* If the base address and index are constant and this is an immutable
               load we can do this at compile time. *)
            val result =
                case (genAddress, kind) of
                    ({base=Constnt(baseAddr, _), index=NONE, offset}, LoadStoreMLWord _) =>
                    if isShort baseAddr
                    then LoadOperation{kind=kind, address=genAddress}
                    else
                    let
                        (* Ignore the "isImmutable" flag and look at the immutable status of the memory.
                           Check that this is a word object and that the offset is within range.
                           The code for Vector.sub, for example, raises an exception if the index
                           is out of range but still generates the (unreachable) indexing code. *)
                        val addr = toAddress baseAddr
                        val wordOffset = offset div RunCall.bytesPerWord
                    in
                        if isMutable addr orelse not(isWords addr) orelse wordOffset >= length addr
                        then LoadOperation{kind=kind, address=genAddress}
                        else Constnt(toMachineWord(loadWord(addr, wordOffset)), [])
                    end

                |   ({base=Constnt(baseAddr, _), index=NONE, offset}, LoadStoreMLByte _) =>
                    if isShort baseAddr
                    then LoadOperation{kind=kind, address=genAddress}
                    else
                    let
                        val addr = toAddress baseAddr
                        val wordOffset = offset div RunCall.bytesPerWord
                    in
                        if isMutable addr orelse not(isBytes addr) orelse wordOffset >= length addr
                        then LoadOperation{kind=kind, address=genAddress}
                        else Constnt(toMachineWord(loadByte(addr, offset)), [])
                    end

                |   ({base=Constnt(baseAddr, _), index=NONE, offset}, LoadStoreUntaggedUnsigned) =>
                    if isShort baseAddr
                    then LoadOperation{kind=kind, address=genAddress}
                    else
                    let
                        val addr = toAddress baseAddr
                        (* We don't currently have loadWordUntagged in Address but it's only ever
                           used to load the string length word so we can use that. *)
                    in
                        if isMutable addr orelse not(isBytes addr) orelse offset <> 0w0
                        then LoadOperation{kind=kind, address=genAddress}
                        else Constnt(toMachineWord(String.size(RunCall.unsafeCast addr)), [])
                    end

                |   _ => LoadOperation{kind=kind, address=genAddress}
        in
            SOME(mkEnv(List.rev decAddress, result))
        end

    |   simpGeneral context (StoreOperation{kind, address, value}) =
        let
            val (genAddress, decAddress) = simpAddress(address, getMultiplier kind, context)
            val (genValue, RevList decValue, _) = simpSpecial(value, context, decAddress)
        in 
            SOME(mkEnv(List.rev decValue, StoreOperation{kind=kind, address=genAddress, value=genValue}))
        end

    |   simpGeneral (context as {reprocess, ...}) (BlockOperation{kind, sourceLeft, destRight, length}) =
        let
            val multiplier =
                case kind of
                    BlockOpMove{isByteMove=false} => RunCall.bytesPerWord
                |   BlockOpMove{isByteMove=true} => 0w1
                |   BlockOpEqualByte => 0w1
                |   BlockOpCompareByte => 0w1
            val (genSrcAddress, RevList decSrcAddress) = simpAddress(sourceLeft, multiplier, context)
            val (genDstAddress, RevList decDstAddress) = simpAddress(destRight, multiplier, context)
            val (genLength, RevList decLength, _) = simpSpecial(length, context, RevList [])
            (* If we have a short length move we're better doing it as a sequence of loads and stores.
               Comparisons are probably too complicated though it might be possible to
               handle single bytes.  This is particularly useful with string concatenation.
               Small here means four. *)
            val shortLength =
                case genLength of
                    Constnt(lenConst, _) =>
                        if isShort lenConst then let val l = toShort lenConst in if l <= 0w4 then SOME l else NONE end else NONE
                |   _ => NONE
            val combinedDecs = List.rev decSrcAddress @ List.rev decDstAddress @ List.rev decLength
            val operation =
                case (shortLength, kind) of
                    (SOME length, BlockOpMove{isByteMove}) =>
                    let
                        val _ = reprocess := true (* Frequently the source will be a constant. *)
                        val {base=baseSrc, index=indexSrc, offset=offsetSrc} = genSrcAddress
                        and {base=baseDst, index=indexDst, offset=offsetDst} = genDstAddress
                        (* We don't know if the source is immutable but the destination definitely isn't *)
                        val moveKind =
                            if isByteMove then LoadStoreMLByte{isImmutable=false} else LoadStoreMLWord{isImmutable=false}
                        fun makeMoves offset =
                        if offset = length
                        then []
                        else NullBinding(
                                StoreOperation{kind=moveKind,
                                    address={base=baseDst, index=indexDst, offset=offsetDst+offset*multiplier},
                                    value=LoadOperation{kind=moveKind, address={base=baseSrc, index=indexSrc, offset=offsetSrc+offset*multiplier}}}) ::
                                makeMoves(offset+0w1)
                    in
                        mkEnv(combinedDecs @ makeMoves 0w0, CodeZero (* unit result *))
                    end
                |   _ =>
                    mkEnv(combinedDecs, 
                        BlockOperation{kind=kind, sourceLeft=genSrcAddress, destRight=genDstAddress, length=genLength})
        in
            SOME operation
        end

    |   simpGeneral (context as {enterAddr, nextAddress, ...}) (Handle{exp, handler, exPacketAddr}) =
        let (* We need to make a new binding for the exception packet. *)
            val expBody = simplify(exp, context)
            val newAddr = nextAddress()
            val () = enterAddr(exPacketAddr, (EnvGenLoad(LoadLocal newAddr), EnvSpecNone))
            val handleBody = simplify(handler, context)
        in
            SOME(Handle{exp=expBody, handler=handleBody, exPacketAddr=newAddr})
        end

    |   simpGeneral _ _ = NONE

    (* Where we have an Indirect or Eval we want the argument as either a tuple or
       an inline function respectively if that's possible.  Getting that also involves
       various other cases as well. Because a binding may later be used in such a
       context we treat any binding in that way as well. *)
    and simpSpecial (Extract ext, { lookupAddr, ...}, tailDecs) =
        let
            val (gen, spec) = lookupAddr ext
        in
            (envGeneralToCodetree gen, tailDecs, spec)
        end

    |   simpSpecial (Newenv envArgs, context, tailDecs) = simpNewenv(envArgs, context, tailDecs)

    |   simpSpecial (Lambda lambda, context, tailDecs) =
        let
            val (gen, spec) = simpLambda(lambda, context, NONE, NONE)
        in
            (Lambda gen, tailDecs, spec)
        end

    |   simpSpecial (Eval {function, argList, resultType}, context, tailDecs) =
            simpFunctionCall(function, argList, resultType, context, tailDecs)

    |   simpSpecial (Unary{oper, arg1}, context, tailDecs) =
            simpUnary(oper, arg1, context, tailDecs)

    |   simpSpecial (Binary{oper, arg1, arg2}, context, tailDecs) =
            simpBinary(oper, arg1, arg2, context, tailDecs)

    |   simpSpecial (Arbitrary{oper=ArbCompare test, shortCond, arg1, arg2, longCall}, context, tailDecs) =
            simpArbitraryCompare(test, shortCond, arg1, arg2, longCall, context, tailDecs)

    |   simpSpecial (Arbitrary{oper=ArbArith arith, shortCond, arg1, arg2, longCall}, context, tailDecs) =
            simpArbitraryArith(arith, shortCond, arg1, arg2, longCall, context, tailDecs)

    |   simpSpecial (AllocateWordMemory{numWords, flags, initial}, context, tailDecs) =
            simpAllocateWordMemory(numWords, flags, initial, context, tailDecs)

    |   simpSpecial (Cond(condTest, condThen, condElse), context, tailDecs) =
            simpIfThenElse(condTest, condThen, condElse, context, tailDecs)

    |   simpSpecial (Tuple { fields, isVariant }, context, tailDecs) = simpTuple(fields, isVariant, context, tailDecs)

    |   simpSpecial (Indirect{ base, offset, isVariant }, context, tailDecs) = simpFieldSelect(base, offset, isVariant, context, tailDecs)

    |   simpSpecial (c: codetree, s: simpContext, tailDecs): codetree * revlist * envSpecial =
        let
            (* Anything else - copy it and then split it into the fields. *)
            fun split(Newenv(l, e), RevList tailDecs) = (* Pull off bindings. *)
                    split (e, RevList(List.rev l @ tailDecs))
            |   split(Constnt(m, p), tailDecs) = (Constnt(m, p), tailDecs, findInline p)
            |   split(c, tailDecs) = (c, tailDecs, EnvSpecNone)
        in
            split(simplify(c, s), tailDecs)
        end

    (* Process a Newenv.  We need to add the bindings to the context. *)
    and simpNewenv((envDecs: codeBinding list, envExp), context as { enterAddr, nextAddress, reprocess, ...}, tailDecs): codetree * revlist * envSpecial =
    let
        fun copyDecs ([], decs) =
            simpSpecial(envExp, context, decs) (* End of the list - process the result expression. *)

        |   copyDecs ((Declar{addr, value, ...} :: vs), decs) =
            (
                case simpSpecial(value, context, decs) of
                    (* If this raises an exception stop here. *)
                    vBinding as (Raise _, _, _) => vBinding

                |   vBinding =>
                    let
                        (* Add the declaration to the table. *)
                        val (optV, dec) = makeNewDecl(vBinding, context)
                        val () = enterAddr(addr, optV)                  
                    in
                        copyDecs(vs, dec)
                    end
            )

        |   copyDecs(NullBinding v :: vs, decs) = (* Not a binding - process this and the rest.*)
            (
                case simpSpecial(v, context, decs) of
                    (* If this raises an exception stop here. *)
                    vBinding as (Raise _, _, _) => vBinding

                |   (cGen, RevList cDecs, _) => copyDecs(vs, RevList(NullBinding cGen :: cDecs))
            )

        |   copyDecs(RecDecs mutuals :: vs, RevList decs) =
            (* Mutually recursive declarations. Any of the declarations may
               refer to any of the others. They should all be lambdas.

               The front end generates functions with more than one argument
               (either curried or tupled) as pairs of mutually recursive
               functions.  The main function body takes its arguments on
               the stack (or in registers) and the auxiliary inline function,
               possibly nested, takes the tupled or curried arguments and
               calls it.  If the main function is recursive it will first
               call the inline function which is why the pair are mutually
               recursive.
               As far as possible we want to use the main function since that
               uses the least memory.  Specifically, if the function recurses
               we want the recursive call to pass all the arguments if it
               can. *)
            let
                (* Reorder the function so the explicitly-inlined ones come first.
                   Their code can then be inserted into the main functions. *)
                local
                    val (inlines, nonInlines) =
                        List.partition (
                            fn {lambda = { isInline=Inline, ...}, ... } => true | _ => false) mutuals
                in
                    val orderedDecs = inlines @ nonInlines
                end

                (* Go down the functions creating new addresses for them and entering them in the table. *)
                val addresses =
                    map (fn {addr, ... } =>
                        let
                            val decAddr = nextAddress()
                        in
                            enterAddr (addr, (EnvGenLoad(LoadLocal decAddr), EnvSpecNone));
                            decAddr
                        end)
                    orderedDecs

                fun processFunction({ lambda, addr, ... }, newAddr) =
                let
                    val (gen, spec) = simpLambda(lambda, context, SOME addr, SOME newAddr)
                    (* Update the entry in the table to include any inlineable function. *)
                    val () = enterAddr (addr, (EnvGenLoad (LoadLocal newAddr), spec))
                in
                    {addr=newAddr, lambda=gen, use=[]}
                end
                
                val rlist = ListPair.map processFunction (orderedDecs, addresses)
            in
                (* and put these declarations onto the list. *)
                copyDecs(vs, RevList(List.rev(partitionMutableBindings(RecDecs rlist)) @ decs))
            end

        |   copyDecs (Container{addr, size, setter, ...} :: vs, RevList decs) =
            let
                (* Enter the new address immediately - it's needed in the setter. *)
                val decAddr = nextAddress()
                val () = enterAddr (addr, (EnvGenLoad(LoadLocal decAddr), EnvSpecNone))
                val (setGen, RevList setDecs, _) = simpSpecial(setter, context, RevList [])
            in
                (* If we have inline expanded a function that sets the container
                   we're better off eliminating the container completely. *)
                case setGen of
                    SetContainer { tuple, filter, container } =>
                    let
                        (* Check the container we're setting is the address we've made for it. *)
                        val _ =
                            (case container of Extract(LoadLocal a) => a = decAddr | _ => false)
                                orelse raise InternalError "copyDecs: Container/SetContainer"
                        val newDecAddr = nextAddress()
                        val () = enterAddr (addr, (EnvGenLoad(LoadLocal newDecAddr), EnvSpecNone))
                        val tupleAddr = nextAddress()
                        val tupleDec = Declar{addr=tupleAddr, use=[], value=tuple}
                        val tupleLoad = mkLoadLocal tupleAddr
                        val resultTuple =
                            BoolVector.foldri(fn (i, true, l) => mkInd(i, tupleLoad) :: l | (_, false, l) => l) [] filter
                        val _ = List.length resultTuple = size
                                    orelse raise InternalError "copyDecs: Container/SetContainer size"
                        val containerDec = Declar{addr=newDecAddr, use=[], value=mkTuple resultTuple}
                        val _ = reprocess := true
                    in
                        copyDecs(vs, RevList(containerDec :: tupleDec :: setDecs @ decs))
                    end

                |   _ =>
                    let
                        val dec = Container{addr=decAddr, use=[], size=size, setter=setGen}
                    in
                        copyDecs(vs, RevList(dec :: setDecs @ decs))
                    end
            end
    in
        copyDecs(envDecs, tailDecs)
    end

    (* Prepares a binding for entry into a look-up table.  Returns the entry
       to put into the table together with any bindings that must be made.
       If the general part of the optVal is a constant we can just put the
       constant in the table. If it is a load (Extract) it is just renaming
       an existing entry so we can return it.  Otherwise we have to make
       a new binding and return a load (Extract) entry for it. *)
    and makeNewDecl((Constnt w, RevList decs, spec), _) = ((EnvGenConst w, spec), RevList decs)
                (* No need to create a binding for a constant. *)

    |   makeNewDecl((Extract ext, RevList decs, spec), _) = ((EnvGenLoad ext, spec), RevList decs)
                (* Binding is simply giving a new name to a variable
                   - can ignore this declaration. *) 

    |   makeNewDecl((gen, RevList decs, spec), { nextAddress, ...}) =
        let (* Create a binding for this value. *)
            val newAddr = nextAddress()
        in
            ((EnvGenLoad(LoadLocal newAddr), spec), RevList(mkDec(newAddr, gen) :: decs))
        end

    and simpLambda({body, isInline, name, argTypes, resultType, closure, localCount, ...},
                  { lookupAddr, reprocess, ... }, myOldAddrOpt, myNewAddrOpt) =
        let
            (* A new table for the new function. *)
            val oldAddrTab = Array.array (localCount, NONE)
            val optClosureList = makeClosure()
            val isNowRecursive = ref false

            local
                fun localOldAddr (LoadLocal addr) = valOf(Array.sub(oldAddrTab, addr))
                |   localOldAddr (ext as LoadArgument _) = (EnvGenLoad ext, EnvSpecNone)
                |   localOldAddr (ext as LoadRecursive) = (EnvGenLoad ext, EnvSpecNone)
                |   localOldAddr (LoadClosure addr) =
                    let
                        val oldEntry = List.nth(closure, addr)
                        (* If the entry in the closure is our own address this is recursive. *)
                        fun isRecursive(EnvGenLoad(LoadLocal a), SOME b) =
                            if a = b then (isNowRecursive := true; true) else false
                        |   isRecursive _ = false
                    in
                        if isRecursive(EnvGenLoad oldEntry, myOldAddrOpt) then (EnvGenLoad LoadRecursive, EnvSpecNone)
                        else
                        let
                            val newEntry = lookupAddr oldEntry
                            val makeClosure = addToClosure optClosureList

                            fun convertResult(genEntry, specEntry) =
                                (* If after looking up the entry we get our new address it's recursive. *)
                                if isRecursive(genEntry, myNewAddrOpt)
                                then (EnvGenLoad LoadRecursive, EnvSpecNone)
                                else
                                let
                                    val newGeneral =
                                        case genEntry of
                                            EnvGenLoad ext => EnvGenLoad(makeClosure ext)
                                        |   EnvGenConst w => EnvGenConst w
                                    (* Have to modify the environment here so that if we look up free variables
                                       we add them to the closure. *)
                                    fun convertEnv env args = convertResult(env args)
                                    val newSpecial =
                                        case specEntry of
                                            EnvSpecTuple(size, env) => EnvSpecTuple(size, convertEnv env)
                                        |   EnvSpecInlineFunction(spec, env) => EnvSpecInlineFunction(spec, convertEnv env)
                                        |   EnvSpecUnary _ => EnvSpecNone (* Don't pass this in *)
                                        |   EnvSpecBinary _ => EnvSpecNone (* Don't pass this in *)
                                        |   EnvSpecNone => EnvSpecNone
                                in
                                    (newGeneral, newSpecial)
                                end
                        in
                            convertResult newEntry
                        end
                    end

                and setTab (index, v) = Array.update (oldAddrTab, index, SOME v)
            in
                val newAddressAllocator = ref 0

                fun mkAddr () = 
                    ! newAddressAllocator before newAddressAllocator := ! newAddressAllocator + 1

                val newCode =
                    simplify (body,
                    {
                        enterAddr = setTab, lookupAddr = localOldAddr,
                        nextAddress=mkAddr,
                        reprocess = reprocess
                    })
            end

            val closureAfterOpt = extractClosure optClosureList
            val localCount = ! newAddressAllocator
            (* If we have mutually recursive "small" functions we may turn them into
               recursive functions.  We have to remove the "small" status from
               them to prevent them from being expanded inline anywhere else.  The
               optimiser may turn them back into "small" functions if the recursion
               is actually tail-recursion. *)
            val isNowInline =
                case isInline of
                    Inline =>
                        if ! isNowRecursive then NonInline else Inline
                |   NonInline => NonInline

            (* Clean up the function body at this point if it could be inlined.
               There are examples where failing to do this can blow up.  This
               can be the result of creating both a general and special function
               inside an inline function. *)
            val cleanBody =
                case isNowInline of
                    NonInline => newCode
                |   _ => REMOVE_REDUNDANT.cleanProc(newCode, [UseExport], LoadClosure, localCount)

            val copiedLambda: lambdaForm =
                {
                    body          = cleanBody,
                    isInline      = isNowInline,
                    name          = name,
                    closure       = closureAfterOpt,
                    argTypes      = argTypes,
                    resultType    = resultType,
                    localCount    = localCount,
                    recUse        = []
                }

            val inlineCode =
                case isNowInline of
                    NonInline => EnvSpecNone
                |   _ => EnvSpecInlineFunction(copiedLambda, fn addr => (EnvGenLoad(List.nth(closureAfterOpt, addr)), EnvSpecNone))
         in
            (
                copiedLambda,
                inlineCode
            )
        end

    and simpFunctionCall(function, argList, resultType, context as { reprocess, ...}, tailDecs) =
    let
        (* Function call - This may involve inlining the function. *)

        (* Get the function to be called and see if it is inline or
           a lambda expression. *)
        val (genFunct, decsFunct, specFunct) = simpSpecial(function, context, tailDecs)
        (* We have to make a special check here that we are not passing in the function
           we are trying to expand.  This could result in an infinitely recursive expansion.  It is only
           going to happen in very special circumstances such as a definition of the Y combinator.
           If we see that we don't attempt to expand inline.  It could be embedded in a tuple
           or the closure of a function as well as passed directly. *)
        val isRecursiveArg =
            case function of
                Extract extOrig =>
                    let
                        fun containsFunction(Extract thisArg, v) = (v orelse thisArg = extOrig, FOLD_DESCEND)
                        |   containsFunction(Lambda{closure, ...}, v) =
                                (* Only the closure, not the body *)
                                (foldl (fn (c, w) => foldtree containsFunction w (Extract c)) v closure, FOLD_DONT_DESCEND)
                        |   containsFunction(Eval _, v) = (v, FOLD_DONT_DESCEND) (* OK if it's called *)
                        |   containsFunction(_, v) = (v, FOLD_DESCEND)
                    in
                        List.exists(fn (c, _) => foldtree containsFunction false c) argList
                    end
            |   _ => false
    in
        case (specFunct, genFunct, isRecursiveArg) of
            (EnvSpecInlineFunction({body=lambdaBody, localCount, argTypes, ...}, functEnv), _, false) =>
            let
                val _ = List.length argTypes = List.length argList
                            orelse raise InternalError "simpFunctionCall: argument mismatch"
                val () = reprocess := true (* If we expand inline we have to reprocess *)
                and { nextAddress, reprocess, ...} = context

                (* Expand a function inline, either one marked explicitly to be inlined or one detected as "small". *)
                (* Calling inline proc or a lambda expression which is just called.
                   The function is replaced with a block containing declarations
                   of the parameters.  We need a new table here because the addresses
                   we use to index it are the addresses which are local to the function.
                   New addresses are created in the range of the surrounding function. *)
                val localVec = Array.array(localCount, NONE)

                local
                    fun processArgs([], bindings) = ([], bindings)
                    |   processArgs((arg, _)::args, bindings) =
                        let
                            val (thisArg, newBindings) = 
                                makeNewDecl(simpSpecial(arg, context, bindings), context)
                            val (otherArgs, resBindings) = processArgs(args, newBindings)
                        in
                            (thisArg::otherArgs, resBindings)
                        end
                    val (params, bindings) = processArgs(argList, decsFunct)
                    val paramVec = Vector.fromList params
                in
                    fun getParameter n = Vector.sub(paramVec, n)

                    (* Bindings necessary for the arguments *)
                    val copiedArgs = bindings
                end

                local
                    fun localOldAddr(LoadLocal addr) = valOf(Array.sub(localVec, addr))
                    |   localOldAddr(LoadArgument addr) = getParameter addr
                    |   localOldAddr(LoadClosure closureEntry) = functEnv closureEntry
                    |   localOldAddr LoadRecursive = raise InternalError "localOldAddr: LoadRecursive"

                    fun setTabForInline (index, v) = Array.update (localVec, index, SOME v)
                    val lambdaContext =
                    {
                        lookupAddr=localOldAddr, enterAddr=setTabForInline,
                        nextAddress=nextAddress, reprocess = reprocess
                    }
                in
                    val (cGen, cDecs, cSpec) = simpSpecial(lambdaBody,lambdaContext, copiedArgs)
                end
            in
                (cGen, cDecs, cSpec)
            end

        |   (_, gen as Constnt _, _) => (* Not inlinable - constant function. *)
            let
                val copiedArgs = map (fn (arg, argType) => (simplify(arg, context), argType)) argList
                val evCopiedCode =
                    Eval {function = gen, argList = copiedArgs, resultType=resultType}
            in
                (evCopiedCode, decsFunct, EnvSpecNone)
            end

        |   (_, gen, _) => (* Anything else. *)
            let
                val copiedArgs = map (fn (arg, argType) => (simplify(arg, context), argType)) argList
                val evCopiedCode = 
                    Eval {function = gen, argList = copiedArgs, resultType=resultType}
            in
                (evCopiedCode, decsFunct, EnvSpecNone)
            end
    end
    
    (* Special processing for the current builtIn1 operations. *)
    (* Constant folding for built-ins.  These ought to be type-correct i.e. we should have
       tagged values in some cases and addresses in others.  However there may be run-time
       tests that would ensure type-correctness and we can't be sure that they will always
       be folded at compile-time.  e.g. we may have
        if isShort c then shortOp c else longOp c
       If c is a constant then we may try to fold both the shortOp and the longOp and one
       of these will be type-incorrect although never executed at run-time. *)

    and simpUnary(oper, arg1, context as { reprocess, ...}, tailDecs) =
    let
        val (genArg1, decArg1, specArg1) = simpSpecial(arg1, context, tailDecs)
    in
        case (oper, genArg1) of
            (NotBoolean, Constnt(v, _)) =>
            (
                reprocess := true;
                (if isShort v andalso toShort v = 0w0 then CodeTrue else CodeFalse, decArg1, EnvSpecNone)
            )

        |   (IsTaggedValue, Constnt(v, _)) =>
            (
                reprocess := true;
                (if isShort v then CodeTrue else CodeFalse, decArg1, EnvSpecNone)
            )

        |   (IsTaggedValue, genArg1) =>
            (
                (* We use this to test for nil values and if we have constructed a record
                   (or possibly a function) it can't be null. *)
                case specArg1 of
                    EnvSpecTuple _ => (CodeFalse, decArg1, EnvSpecNone) before reprocess := true
                |   EnvSpecInlineFunction _ =>
                        (CodeFalse, decArg1, EnvSpecNone) before reprocess := true
                |   _ => (Unary{oper=oper, arg1=genArg1}, decArg1, EnvSpecNone)
            )
        |   (MemoryCellLength, Constnt(v, _)) =>
            (
                reprocess := true;
                (if isShort v then CodeZero else Constnt(toMachineWord(Address.length(toAddress v)), []), decArg1, EnvSpecNone)
            )

        |   (MemoryCellFlags, Constnt(v, _)) =>
            (
                reprocess := true;
                (if isShort v then CodeZero else Constnt(toMachineWord(Address.flags(toAddress v)), []), decArg1, EnvSpecNone)
            )

        |   (LongWordToTagged, Constnt(v, _)) =>
            (
                reprocess := true;
                (Constnt(toMachineWord(Word.fromLargeWord(RunCall.unsafeCast v)), []), decArg1, EnvSpecNone)
            )

        |   (LongWordToTagged, genArg1) =>
            (
                (* If we apply LongWordToTagged to an argument we have created with UnsignedToLongWord
                   we can return the original argument. *)
                case specArg1 of
                    EnvSpecUnary(UnsignedToLongWord, originalArg) =>
                    (
                        reprocess := true;
                        (originalArg, decArg1, EnvSpecNone)
                    )
                 |  _ => (Unary{oper=LongWordToTagged, arg1=genArg1}, decArg1, EnvSpecNone)
            )

        |   (SignedToLongWord, Constnt(v, _)) =>
            (
                reprocess := true;
                (Constnt(toMachineWord(Word.toLargeWordX(RunCall.unsafeCast v)), []), decArg1, EnvSpecNone)
            )

        |   (UnsignedToLongWord, Constnt(v, _)) =>
            (
                reprocess := true;
                (Constnt(toMachineWord(Word.toLargeWord(RunCall.unsafeCast v)), []), decArg1, EnvSpecNone)
            )

        |   (UnsignedToLongWord, genArg1) =>
                (* Add the operation as the special entry.  It can then be recognised by LongWordToTagged. *)
                (Unary{oper=oper, arg1=genArg1}, decArg1, EnvSpecUnary(UnsignedToLongWord, genArg1))

        |   _ => (Unary{oper=oper, arg1=genArg1}, decArg1, EnvSpecNone)
    end

    and simpBinary(oper, arg1, arg2, context as {reprocess, ...}, tailDecs) =
    let
        val (genArg1, decArg1, _ (*specArg1*)) = simpSpecial(arg1, context, tailDecs)
        val (genArg2, decArgs, _ (*specArg2*)) = simpSpecial(arg2, context, decArg1)
    in
        case (oper, genArg1, genArg2) of
            (WordComparison{test, isSigned}, Constnt(v1, _), Constnt(v2, _)) =>
            if (case test of TestEqual => false | _ => not(isShort v1) orelse not(isShort v2))
            then (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
            else
            let
                val () = reprocess := true
                val testResult =
                    case (test, isSigned) of
                        (* TestEqual can be applied to addresses. *)
                        (TestEqual, _)              => RunCall.pointerEq(v1, v2)
                    |   (TestLess, false)           => toShort v1 < toShort v2
                    |   (TestLessEqual, false)      => toShort v1 <= toShort v2
                    |   (TestGreater, false)        => toShort v1 > toShort v2
                    |   (TestGreaterEqual, false)   => toShort v1 >= toShort v2
                    |   (TestLess, true)            => toFix v1 < toFix v2
                    |   (TestLessEqual, true)       => toFix v1 <= toFix v2
                    |   (TestGreater, true)         => toFix v1 > toFix v2
                    |   (TestGreaterEqual, true)    => toFix v1 >= toFix v2
            in
                (if testResult then CodeTrue else CodeFalse, decArgs, EnvSpecNone)
            end

        |   (FixedPrecisionArith arithOp, Constnt(v1, _), Constnt(v2, _)) =>
            if not(isShort v1) orelse not(isShort v2)
            then (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
            else
            let
                val () = reprocess := true
                val v1S = toFix v1
                and v2S = toFix v2
                fun asConstnt v = Constnt(toMachineWord v, [])
                val raiseOverflow = Raise(Constnt(toMachineWord Overflow, []))
                val raiseDiv = Raise(Constnt(toMachineWord Div, [])) (* ?? There's usually an explicit test. *)
                val resultCode =
                    case arithOp of
                        ArithAdd => (asConstnt(v1S+v2S) handle Overflow => raiseOverflow)
                    |   ArithSub => (asConstnt(v1S-v2S) handle Overflow => raiseOverflow)
                    |   ArithMult => (asConstnt(v1S*v2S) handle Overflow => raiseOverflow)
                    |   ArithQuot => (asConstnt(FixedInt.quot(v1S,v2S)) handle Overflow => raiseOverflow | Div => raiseDiv)
                    |   ArithRem => (asConstnt(FixedInt.rem(v1S,v2S)) handle Overflow => raiseOverflow | Div => raiseDiv)
                    |   ArithDiv => (asConstnt(FixedInt.div(v1S,v2S)) handle Overflow => raiseOverflow | Div => raiseDiv)
                    |   ArithMod => (asConstnt(FixedInt.mod(v1S,v2S)) handle Overflow => raiseOverflow | Div => raiseDiv)
            in
                (resultCode, decArgs, EnvSpecNone)
            end

            (* Addition and subtraction of zero.  These can arise as a result of
               inline expansion of more general functions. *)
        |   (FixedPrecisionArith ArithAdd, arg1, Constnt(v2, _)) =>
            if isShort v2 andalso toShort v2 = 0w0
            then (arg1, decArgs, EnvSpecNone)
            else (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)

        |   (FixedPrecisionArith ArithAdd, Constnt(v1, _), arg2) =>
            if isShort v1 andalso toShort v1 = 0w0
            then (arg2, decArgs, EnvSpecNone)
            else (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)

        |   (FixedPrecisionArith ArithSub, arg1, Constnt(v2, _)) =>
            if isShort v2 andalso toShort v2 = 0w0
            then (arg1, decArgs, EnvSpecNone)
            else (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)

        |   (WordArith arithOp, Constnt(v1, _), Constnt(v2, _)) =>
            if not(isShort v1) orelse not(isShort v2)
            then (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
            else
            let
                val () = reprocess := true
                val v1S = toShort v1
                and v2S = toShort v2
                fun asConstnt v = Constnt(toMachineWord v, [])
                val resultCode =
                    case arithOp of
                        ArithAdd => asConstnt(v1S+v2S)
                    |   ArithSub => asConstnt(v1S-v2S)
                    |   ArithMult => asConstnt(v1S*v2S)
                    |   ArithQuot => raise InternalError "WordArith: ArithQuot"
                    |   ArithRem => raise InternalError "WordArith: ArithRem"
                    |   ArithDiv => asConstnt(v1S div v2S)
                    |   ArithMod => asConstnt(v1S mod v2S)
            in
               (resultCode, decArgs, EnvSpecNone)
            end

        |   (WordArith ArithAdd, arg1, Constnt(v2, _)) =>
            if isShort v2 andalso toShort v2 = 0w0
            then (arg1, decArgs, EnvSpecNone)
            else (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)

        |   (WordArith ArithAdd, Constnt(v1, _), arg2) =>
            if isShort v1 andalso toShort v1 = 0w0
            then (arg2, decArgs, EnvSpecNone)
            else (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)

        |   (WordArith ArithSub, arg1, Constnt(v2, _)) =>
            if isShort v2 andalso toShort v2 = 0w0
            then (arg1, decArgs, EnvSpecNone)
            else (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)

        |   (WordLogical logOp, Constnt(v1, _), Constnt(v2, _)) =>
            if not(isShort v1) orelse not(isShort v2)
            then (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
            else
            let
                val () = reprocess := true
                val v1S = toShort v1
                and v2S = toShort v2
                fun asConstnt v = Constnt(toMachineWord v, [])
                val resultCode =
                    case logOp of
                        LogicalAnd => asConstnt(Word.andb(v1S,v2S))
                    |   LogicalOr => asConstnt(Word.orb(v1S,v2S))
                    |   LogicalXor => asConstnt(Word.xorb(v1S,v2S))
            in
               (resultCode, decArgs, EnvSpecNone)
            end

        |   (WordLogical logop, arg1, arg2 as Constnt(v2, _)) =>
            (* Return the zero if we are anding with zero otherwise the original arg *)
            if isShort v2 andalso toShort v2 = 0w0
            then (case logop of LogicalAnd => arg2 | _ => arg1, decArgs, EnvSpecNone)
            else (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)

        |   (WordLogical logop, Constnt(v1, _), arg2) =>
            if isShort v1 andalso toShort v1 = 0w0
            then (case logop of LogicalAnd => arg2 | _ => arg2, decArgs, EnvSpecNone)
            else (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
        
            (* TODO: Constant folding of shifts. *)

        |   _ => (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
    end

    (* Arbitrary precision operations.  This is a sort of mixture of a built-in and a conditional. *)
    and simpArbitraryCompare(TestEqual, shortCond, arg1, arg2, longCall, context, tailDecs) =
            (* Equality is a special case and is only there to ensure that it is not accidentally converted into
               an indexed case further down.  We must leave it as it is. *)
        let
            val (genCond, decCond, _ (*specArg1*)) = simpSpecial(shortCond, context, tailDecs)
            val (genArg1, decArg1, _ (*specArg1*)) = simpSpecial(arg1, context, decCond)
            val (genArg2, decArgs, _ (*specArg2*)) = simpSpecial(arg2, context, decArg1)
        in
            (Arbitrary{oper=ArbCompare TestEqual, shortCond=genCond, arg1=genArg1, arg2=genArg2, longCall=simplify(longCall, context)}, decArgs, EnvSpecNone)
        end

    |   simpArbitraryCompare(test, shortCond, arg1, arg2, longCall, context as {reprocess, ...}, tailDecs) =
    let
        val (genCond, decCond, _ (*specArg1*)) = simpSpecial(shortCond, context, tailDecs)
        val (genArg1, decArg1, _ (*specArg1*)) = simpSpecial(arg1, context, decCond)
        val (genArg2, decArgs, _ (*specArg2*)) = simpSpecial(arg2, context, decArg1)
        val posFlags = Address.F_bytes and negFlags = Word8.orb(Address.F_bytes, Address.F_negative)
    in
        (* Fold any constant/constant operations but more importantly, if we
           have variable/constant operations where the constant is short we
           can avoid using the full arbitrary precision call by just looking
           at the sign bit. *)
        case (genCond, genArg1, genArg2) of
            (Constnt(c1, _),  _, _) =>
                if isShort c1 andalso toShort c1 = 0w0
                then (* One argument is definitely long - generate the long form. *)
                    (Binary{oper=WordComparison{test=test, isSigned=true}, arg1=simplify(longCall, context), arg2=CodeZero},
                        decArgs, EnvSpecNone)
                else (* Both arguments are short.  That should mean they're constants. *)
                    (Binary{oper=WordComparison{test=test, isSigned=true}, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
                         before reprocess := true
        |   (_, genArg1, cArg2 as Constnt _) =>
            let (* The constant must be short otherwise the test would be false. *)
                val isNeg =
                    case test of
                        TestLess => true
                    |   TestLessEqual => true
                    |   _ => false
                (* Translate i < c into
                        if isShort i then toShort i < c else isNegative i *)
                val newCode =
                    Cond(Unary{oper=BuiltIns.IsTaggedValue, arg1=genArg1},
                        Binary { oper = BuiltIns.WordComparison{test=test, isSigned=true}, arg1 = genArg1, arg2 = cArg2 },
                        Binary { oper = BuiltIns.WordComparison{test=TestEqual, isSigned=false},
                                arg1=Unary { oper = MemoryCellFlags, arg1=genArg1 },
                                arg2=Constnt(toMachineWord(if isNeg then negFlags else posFlags), [])}
                        )
            in
                (newCode, decArgs, EnvSpecNone)
            end
        |   (_, cArg1 as Constnt _, genArg2) =>
            let
                (* We're testing c < i  so the test is
                   if isShort i then c < toShort i else isPositive i *)
                val isPos =
                    case test of
                        TestLess => true
                    |   TestLessEqual => true
                    |   _ => false
                val newCode =
                    Cond(Unary{oper=BuiltIns.IsTaggedValue, arg1=genArg2},
                        Binary { oper = BuiltIns.WordComparison{test=test, isSigned=true}, arg1 = cArg1, arg2 = genArg2 },
                        Binary { oper = BuiltIns.WordComparison{test=TestEqual, isSigned=false},
                                arg1=Unary { oper = MemoryCellFlags, arg1=genArg2 },
                                arg2=Constnt(toMachineWord(if isPos then posFlags else negFlags), [])}
                        )
            in
                (newCode, decArgs, EnvSpecNone)
            end
        |   _ => (Arbitrary{oper=ArbCompare test, shortCond=genCond, arg1=genArg1, arg2=genArg2, longCall=simplify(longCall, context)}, decArgs, EnvSpecNone)
    end
    
    and simpArbitraryArith(arith, shortCond, arg1, arg2, longCall, context, tailDecs) =
    let
        val (genCond, decCond, _ (*specArg1*)) = simpSpecial(shortCond, context, tailDecs)
        val (genArg1, decArg1, _ (*specArg1*)) = simpSpecial(arg1, context, decCond)
        val (genArg2, decArgs, _ (*specArg2*)) = simpSpecial(arg2, context, decArg1)
    in
        case genCond of
            Constnt(c1, _) =>
            if isShort c1 andalso toShort c1 = 0w0
            then (* One argument is definitely long - generate the long form. *)
                (simplify(longCall, context), decArgs, EnvSpecNone)
            else (* If we know they're both short they must be constants and we could fold them. N.B. We can still get an overflow. *)
                (Arbitrary{oper=ArbArith arith, shortCond=genCond, arg1=genArg1, arg2=genArg2, longCall=simplify(longCall, context)}, decArgs, EnvSpecNone)
        |   _ => (Arbitrary{oper=ArbArith arith, shortCond=genCond, arg1=genArg1, arg2=genArg2, longCall=simplify(longCall, context)}, decArgs, EnvSpecNone)
    end

    and simpAllocateWordMemory(numWords, flags, initial, context, tailDecs) =
    let
        val (genArg1, decArg1, _ (*specArg1*)) = simpSpecial(numWords, context, tailDecs)
        val (genArg2, decArg2, _ (*specArg2*)) = simpSpecial(flags, context, decArg1)
        val (genArg3, decArg3, _ (*specArg3*)) = simpSpecial(initial, context, decArg2)
    in 
        (AllocateWordMemory{numWords=genArg1, flags=genArg2, initial=genArg3}, decArg3, EnvSpecNone)
    end

    (* Loads, stores and block operations use address values.  The index value is initially
       an arbitrary code tree but we can recognise common cases of constant index values
       or where a constant has been added to the index.
       TODO: If these are C memory moves we can also look at the base address.
       The base address for C memory operations is a LargeWord.word value i.e.
       the address is contained in a box.  The base addresses for ML memory
       moves is an ML address i.e. unboxed. *)
    and simpAddress({base, index=NONE, offset}, _, context) =
        let
            val (genBase, decBase, _ (*specBase*)) = simpSpecial(base, context, RevList[])
        in
            ({base=genBase, index=NONE, offset=offset}, decBase)
        end

    |   simpAddress({base, index=SOME index, offset}, multiplier, context) =
        let
            val (genBase, RevList decBase, _) = simpSpecial(base, context, RevList[])
            val (genIndex, RevList decIndex, _ (* specIndex *)) = simpSpecial(index, context, RevList[])
            val (newIndex, newOffset) =
                case genIndex of
                    Constnt(indexOffset, _) =>
                        if isShort indexOffset
                        then (NONE, offset + toShort indexOffset * multiplier)
                        else (SOME genIndex, offset)
                |   _ => (SOME genIndex, offset)
        in
            ({base=genBase, index=newIndex, offset=newOffset}, RevList(decIndex @ decBase))
        end


(*
    (* A built-in function.  We can call certain built-ins immediately if
       the arguments are constants.  *)
    and simpBuiltIn(rtsCallNo, argList, context as { reprocess, ...}) =
    let
        val copiedArgs = map (fn arg => simpSpecial(arg, context)) argList
        open RuntimeCalls
        (* When checking for a constant we need to check that there are no bindings.
           They could have side-effects. *)
        fun isAConstant(Constnt _, [], _) = true
        |   isAConstant _ = false
    in
        (* If the function is an RTS call that is safe to evaluate immediately and all the
           arguments are constants evaluate it now. *)
        if earlyRtsCall rtsCallNo andalso List.all isAConstant copiedArgs
        then
        let
            val () = reprocess := true
            exception Interrupt = Thread.Thread.Interrupt

            (* Turn the arguments into a vector.  *)
            val argVector =
                case makeConstVal(mkTuple(List.map specialToGeneral copiedArgs)) of
                    Constnt(w, _) => w
                |   _ => raise InternalError "makeConstVal: Not constant"

            (* Call the function.  If it raises an exception (e.g. divide
               by zero) generate code to raise the exception at run-time.
               We don't do that for Interrupt which we assume only arises
               by user interaction and not as a result of executing the
               code so we reraise that exception immediately. *)
            val ioOp : int -> machineWord =
                RunCall.run_call1 RuntimeCalls.POLY_SYS_io_operation
            (* We need callcode_tupled here because we pass the arguments as
               a tuple but the RTS functions we're calling expect arguments in
               registers or on the stack. *)
            val call: (address * machineWord) -> machineWord =
                RunCall.run_call1 RuntimeCalls.POLY_SYS_callcode_tupled
            val code =
                Constnt (call(toAddress(ioOp rtsCallNo), argVector), [])
                    handle exn as Interrupt => raise exn (* Must not handle this *)
                    | exn => Raise (Constnt(toMachineWord exn, []))
        in
            (code, [], EnvSpecNone)
        end
            (* We can optimise certain built-ins in combination with others.
               If we have POLY_SYS_unsigned_to_longword combined with POLY_SYS_longword_to_tagged
               we can eliminate both.  This can occur in cases such as Word.fromLargeWord o Word8.toLargeWord.
               If we have POLY_SYS_cmem_load_X functions where the address is formed by adding
               a constant to an address we can move the addend into the load instruction. *)
            (* TODO: Could we also have POLY_SYS_signed_to_longword here? *)
        else if rtsCallNo = POLY_SYS_longword_to_tagged andalso
                (case copiedArgs of [(_, _, EnvSpecBuiltIn(r, _))] => r = POLY_SYS_unsigned_to_longword | _ => false)
        then
        let
            val arg = (* Get the argument of the argument. *)
                case copiedArgs of
                    [(_, _, EnvSpecBuiltIn(_, [arg]))] => arg
                |   _ => raise Bind
        in
            (arg, [], EnvSpecNone)
        end
        else if (rtsCallNo = POLY_SYS_cmem_load_8 orelse rtsCallNo = POLY_SYS_cmem_load_16 orelse
                 rtsCallNo = POLY_SYS_cmem_load_32 orelse rtsCallNo = POLY_SYS_cmem_load_64 orelse
                 rtsCallNo = POLY_SYS_cmem_store_8 orelse rtsCallNo = POLY_SYS_cmem_store_16 orelse
                 rtsCallNo = POLY_SYS_cmem_store_32 orelse rtsCallNo = POLY_SYS_cmem_store_64) andalso
                (* Check if the first argument is an addition.  The second should be a constant.
                   If the addend is a constant it will be a large integer i.e. the address of a
                   byte segment. *)
                let
                    (* Check that we have a valid value to add to a large word.
                       The cmem_load/store values sign extend their arguments so we
                       use toLargeWordX here. *)
                    fun isAcceptableOffset c =
                        if isShort c (* Shouldn't occur. *) then false
                        else
                        let
                            val l: LargeWord.word = RunCall.unsafeCast c
                        in
                            Word.toLargeWordX(Word.fromLargeWord l) = l
                        end
                in
                    case copiedArgs of (_, _, EnvSpecBuiltIn(r, args)) :: (Constnt _, _, _) :: _ =>
                        r = POLY_SYS_plus_longword andalso
                            (case args of
                                (* If they were both constants we'd have folded them. *)
                                [Constnt(c, _), _] => isAcceptableOffset c
                            |   [_, Constnt(c, _)] => isAcceptableOffset c
                            | _ => false)
                        | _ => false
                end
        then
        let
            (* We have a load or store with an added constant. *)
            val (base, offset) =
                case copiedArgs of
                    (_, _, EnvSpecBuiltIn(_, [Constnt(offset, _), base])) :: (Constnt(existing, _), _, _) :: _ =>
                        (base, Word.fromLargeWord(RunCall.unsafeCast offset) + toShort existing)
                |   (_, _, EnvSpecBuiltIn(_, [base, Constnt(offset, _)])) :: (Constnt(existing, _), _, _) :: _ =>
                        (base, Word.fromLargeWord(RunCall.unsafeCast offset) + toShort existing)
                |   _ => raise Bind
            val newDecs = List.map(fn h => makeNewDecl(h, context)) copiedArgs
            val genArgs = List.map(fn ((g, _), _) => envGeneralToCodetree g) newDecs
            val preDecs = List.foldr (op @) [] (List.map #2 newDecs)
            val gen = BuiltIn(rtsCallNo, base :: Constnt(toMachineWord offset, []) :: List.drop(genArgs, 2))
        in
            (gen, preDecs, EnvSpecNone)
        end
        else
        let
            (* Create bindings for the arguments.  This ensures that any side-effects in the
               evaluation of the arguments are performed in the correct order even if the
               application of the built-in itself is applicative.  The new arguments are
               either loads or constants which are applicative. *)
            val newDecs = List.map(fn h => makeNewDecl(h, context)) copiedArgs
            val genArgs = List.map(fn ((g, _), _) => envGeneralToCodetree g) newDecs
            val preDecs = List.foldr (op @) [] (List.map #2 newDecs)
            val gen = BuiltIn(rtsCallNo, genArgs)
            val spec =
                if reorderable gen
                then EnvSpecBuiltIn(rtsCallNo, genArgs)
                else EnvSpecNone
        in
            (gen, preDecs, spec)
        end
    end
*)
    and simpIfThenElse(condTest, condThen, condElse, context, tailDecs) =
    (* If-then-else.  The main simplification is if we have constants in the
       test or in both the arms. *)
    let
        val word0 = toMachineWord 0
        val word1 = toMachineWord 1
  
        val False = word0
        val True  = word1
    in
        case simpSpecial(condTest, context, tailDecs) of
            (* If the test is a constant we can return the appropriate arm and
               ignore the other.  *)
            (Constnt(testResult, _), bindings, _) =>
                let
                    val arm = 
                        if wordEq (testResult, False) (* false - return else-part *)
                        then condElse (* if false then x else y == y *)
                        (* if true then x else y == x *)
                        else condThen
                in
                    simpSpecial(arm, context, bindings)
                end
        |   (testGen, testbindings as RevList testBList, _) =>
            let
                fun mkNot arg = Unary{oper=BuiltIns.NotBoolean, arg1=arg}
            in
                case (simpSpecial(condThen, context, RevList[]), simpSpecial(condElse, context, RevList[])) of
                    ((thenConst as Constnt(thenVal, _), RevList [], _), (elseConst as Constnt(elseVal, _), RevList [], _)) =>
                        (* Both arms return constants.  This situation can arise in
                           situations where we have andalso/orelse where the second
                           "argument" has been reduced to a constant. *)
                        if wordEq (thenVal, elseVal)
                        then (* If the test has a side-effect we have to do it otherwise we can remove
                                it.  If we're in a nested andalso/orelse that may mean we can simplify
                                the next level out. *)
                            (thenConst (* or elseConst *),
                             if sideEffectFree testGen then testbindings else RevList(NullBinding testGen :: testBList),
                             EnvSpecNone)
              
                        (* if x then true else false == x *)
                        else if wordEq (thenVal, True) andalso wordEq (elseVal, False)
                        then (testGen, testbindings, EnvSpecNone)
          
                        (* if x then false else true == not x  *)
                        else if wordEq (thenVal, False) andalso wordEq (elseVal, True)
                        then (mkNot testGen, testbindings, EnvSpecNone)
          
                        else (* can't optimise *) (Cond (testGen, thenConst, elseConst), testbindings, EnvSpecNone)

                        (* Rewrite "if x then raise y else z" into "(if x then raise y else (); z)"
                           The advantage is that any tuples in z are lifted outside the "if". *)
                |   (thenPart as (Raise _, _:revlist, _), (elsePart, RevList elseBindings, elseSpec)) =>
                        (* then-part raises an exception *)
                        (elsePart, RevList(elseBindings @ NullBinding(Cond (testGen, specialToGeneral thenPart, CodeZero)) :: testBList), elseSpec)

                |   ((thenPart, RevList thenBindings, thenSpec), elsePart as (Raise _, _, _)) =>
                        (* else part raises an exception *)
                        (thenPart, RevList(thenBindings @ NullBinding(Cond (testGen, CodeZero, specialToGeneral elsePart)) :: testBList), thenSpec)

                |   (thenPart, elsePart) => (Cond (testGen, specialToGeneral thenPart, specialToGeneral elsePart), testbindings, EnvSpecNone)
            end
    end

    (* Tuple construction.  Tuples are also used for datatypes and structures (i.e. modules) *)
    and simpTuple(entries, isVariant, context, tailDecs) =
     (* The main reason for optimising record constructions is that they
        appear as tuples in ML. We try to ensure that loads from locally
        created tuples do not involve indirecting from the tuple but can
        get the value which was put into the tuple directly. If that is
        successful we may find that the tuple is never used directly so
        the use-count mechanism will ensure it is never created. *)
    let
        val tupleSize = List.length entries
        (* The record construction is treated as a block of local
           declarations so that any expressions which might have side-effects
           are done exactly once. *)
        (* We thread the bindings through here to avoid having to append the result. *)
        fun processFields([], bindings) = ([], bindings)
        |   processFields(field::fields, bindings) =
            let
                val (thisField, newBindings) = 
                    makeNewDecl(simpSpecial(field, context, bindings), context)
                val (otherFields, resBindings) = processFields(fields, newBindings)
            in
                (thisField::otherFields, resBindings)
            end
        val (fieldEntries, allBindings) = processFields(entries, tailDecs)

        (* Make sure we include any inline code in the result.  If this tuple is
           being "exported" we will lose the "special" part. *)
        fun envResToCodetree(EnvGenLoad(ext), _) = Extract ext
        |   envResToCodetree(EnvGenConst(w, p), s) = Constnt(w, setInline s p)

        val generalFields = List.map envResToCodetree fieldEntries

        val genRec =
            if List.all isConstnt generalFields
            then makeConstVal(Tuple{ fields = generalFields, isVariant = isVariant })
            else Tuple{ fields = generalFields, isVariant = isVariant }

        (* Get the field from the tuple if possible.  If it's a variant, though,
           we may try to get an invalid field.  See Tests/Succeed/Test167. *)
        fun getField addr =
            if addr < tupleSize
            then List.nth(fieldEntries, addr)
            else if isVariant
            then (EnvGenConst(toMachineWord 0, []), EnvSpecNone)
            else raise InternalError "getField - invalid index"

        val specRec = EnvSpecTuple(tupleSize, getField)
    in
        (genRec, allBindings, specRec)
    end

    and simpFieldSelect(base, offset, isVariant, context, tailDecs) =
    let
        val (genSource, decSource, specSource) = simpSpecial(base, context, tailDecs)
    in
        (* Try to do the selection now if possible. *)
        case specSource of
            EnvSpecTuple(_, recEnv) =>
            let
                (* The "special" entry we've found is a tuple.  That means that
                   we are taking a field from a tuple we made earlier and so we
                   should be able to get the original code we used when we made
                   the tuple.  That might mean the tuple is never used and
                   we can optimise away the construction of it completely. *)
                val (newGen, newSpec) = recEnv offset
            in
                (envGeneralToCodetree newGen, decSource, newSpec)
            end
                   
        |   _ => (* No special case possible. If the tuple is a constant mkInd/mkVarField
                    will do the selection immediately. *)
                ((if isVariant then mkVarField else mkInd) (offset, genSource), decSource, EnvSpecNone)
    end

    (* Process a SetContainer.  Unlike the other simpXXX functions this is called
       after the arguments have been processed.  We try to push the SetContainer
       to the leaves of the expression. *)
    and simpPostSetContainer(container, Tuple{fields, ...}, RevList tupleDecs, filter) =
        let
            (* Apply the filter now. *)
            fun select(n, hd::tl) =
                if n >= BoolVector.length filter
                then []
                else if BoolVector.sub(filter, n) then hd :: select(n+1, tl) else select(n+1, tl)
            |   select(_, []) = []
            val selected = select(0, fields)
            (* Frequently we will have produced an indirection from the same base.  These
               will all be bindings so we have to reverse the process. *)

            fun findOriginal a =
                List.find(fn Declar{addr, ...} => addr = a | _ => false) tupleDecs

            fun checkFields(last, Extract(LoadLocal a) :: tl) =
                (
                    case findOriginal a of
                        SOME(Declar{value=Indirect{base=Extract ext, isVariant=false, offset, ...}, ...}) =>
                        (
                            case last of
                                NONE => checkFields(SOME(ext, [offset]), tl)
                            |   SOME(lastExt, offsets) =>
                                    (* It has to be the same base and with increasing offsets
                                       (no reordering). *)
                                    if lastExt = ext andalso offset > hd offsets
                                    then checkFields(SOME(ext, offset :: offsets), tl)
                                    else NONE
                        )
                    |   _ => NONE
                )
            |   checkFields(_, _ :: _) = NONE
            |   checkFields(last, []) = last

            fun fieldsToFilter fields =
            let
                val maxDest = List.foldl Int.max ~1 fields
                val filterArray = BoolArray.array(maxDest+1, false)
                val _ = List.app(fn n => BoolArray.update(filterArray, n, true)) fields
            in
                BoolArray.vector filterArray
            end
        in
            case checkFields(NONE, selected) of
                SOME (ext, fields) =>
                    let
                        val filter = fieldsToFilter fields
                    in
                        case ext of
                            LoadLocal localAddr =>
                            let
                                (* Is this a container?  If it is and we're copying all of it we can
                                   replace the inner container with a binding to the outer.
                                   We have to be careful because it is possible that we may create
                                   and set the inner container, then have some bindings that do some
                                   side-effects with the inner container before then copying it to
                                   the outer container.  For simplicity and to maintain the condition
                                   that the container is set in the tails we only merge the containers
                                   if it's at the end (after any "filtering"). *)
                                val allSet = BoolVector.foldl (fn (a, t) => a andalso t) true filter

                                fun findContainer [] = NONE
                                |   findContainer (Declar{value, ...} :: tl) =
                                        if sideEffectFree value then findContainer tl else NONE
                                |   findContainer (Container{addr, size, setter, ...} :: tl) =
                                        if localAddr = addr andalso size = BoolVector.length filter andalso allSet
                                        then SOME (setter, tl)
                                        else NONE
                                |   findContainer _ = NONE
                            in
                                case findContainer tupleDecs of
                                    SOME (setter, decs) =>
                                        (* Put in a binding for the inner container address so the
                                           setter will set the outer container. *)
                                        mkEnv(List.rev(Declar{addr=localAddr, value=container, use=[]} :: decs), setter)
                                |   NONE =>
                                        mkEnv(List.rev tupleDecs,
                                                SetContainer{container=container, tuple = Extract ext, filter=filter})
                            end
                        |   _ =>
                            mkEnv(List.rev tupleDecs,
                                    SetContainer{container=container, tuple = Extract ext, filter=filter})
                    end

            |   NONE =>
                    mkEnv(List.rev tupleDecs,
                         SetContainer{container=container, tuple = mkTuple selected,
                                       filter=BoolVector.tabulate(List.length selected, fn _ => true)})
        end

    |   simpPostSetContainer(container, Cond(ifpt, thenpt, elsept), RevList tupleDecs, filter) =
            mkEnv(List.rev tupleDecs,
                Cond(ifpt,
                    simpPostSetContainer(container, thenpt, RevList [], filter),
                    simpPostSetContainer(container, elsept, RevList [], filter)))

    |   simpPostSetContainer(container, Newenv(envDecs, envExp), RevList tupleDecs, filter) =
            simpPostSetContainer(container, envExp, RevList(List.rev envDecs @ tupleDecs), filter)

    |   simpPostSetContainer(container, BeginLoop{loop, arguments}, RevList tupleDecs, filter) =
            mkEnv(List.rev tupleDecs,
                BeginLoop{loop = simpPostSetContainer(container, loop, RevList [], filter),
                    arguments=arguments})

    |   simpPostSetContainer(_, loop as Loop _, RevList tupleDecs, _) =
            (* If we are inside a BeginLoop we only set the container on leaves
               that exit the loop.  Loop entries will go back to the BeginLoop
               so we don't add SetContainer nodes. *)
            mkEnv(List.rev tupleDecs, loop)

    |   simpPostSetContainer(container, Handle{exp, handler, exPacketAddr}, RevList tupleDecs, filter) =
            mkEnv(List.rev tupleDecs,
                Handle{
                    exp = simpPostSetContainer(container, exp, RevList [], filter),
                    handler = simpPostSetContainer(container, handler, RevList [], filter),
                    exPacketAddr = exPacketAddr})

    |   simpPostSetContainer(container, tupleGen, RevList tupleDecs, filter) =
            mkEnv(List.rev tupleDecs, mkSetContainer(container, tupleGen, filter))

    fun simplifier(c, numLocals) =
    let
        val localAddressAllocator = ref 0
        val addrTab = Array.array(numLocals, NONE)
        
        fun lookupAddr (LoadLocal addr) = valOf(Array.sub(addrTab, addr))
        |   lookupAddr (env as LoadArgument _) = (EnvGenLoad env, EnvSpecNone)
        |   lookupAddr (env as LoadRecursive) = (EnvGenLoad env, EnvSpecNone)
        |   lookupAddr (LoadClosure _) = raise InternalError "top level reached in simplifier"

        and enterAddr (addr, tab) = Array.update (addrTab, addr, SOME tab)

        fun mkAddr () = 
            ! localAddressAllocator before localAddressAllocator := ! localAddressAllocator + 1
        val reprocess = ref false
        val (gen, RevList bindings, spec) =
            simpSpecial(c,
                {lookupAddr = lookupAddr, enterAddr = enterAddr, nextAddress = mkAddr, reprocess = reprocess}, RevList[])
    in
        ((gen, List.rev bindings, spec), ! localAddressAllocator, !reprocess)
    end
    
    fun specialToGeneral(g, b as _ :: _, s) = mkEnv(b, specialToGeneral(g, [], s))
    |   specialToGeneral(Constnt(w, p), [], s) = Constnt(w, setInline s p)
    |   specialToGeneral(g, [], _) = g


    structure Sharing =
    struct
        type codetree = codetree
        and codeBinding = codeBinding
        and envSpecial = envSpecial
    end
end;