1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
|
(*
Copyright (c) 2013, 2016 David C.J. Matthews
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*
This is a cut-down version of the optimiser which simplifies the code but
does not apply any heuristics. It follows chained bindings, in particular
through tuples, folds constants expressions involving built-in functions,
expands inline functions that have previously been marked as inlineable.
It does not detect small functions that can be inlined nor does it
code-generate functions without free variables.
*)
functor CODETREE_SIMPLIFIER(
structure BASECODETREE: BaseCodeTreeSig
structure CODETREE_FUNCTIONS: CodetreeFunctionsSig
structure REMOVE_REDUNDANT:
sig
type codetree
type loadForm
type codeUse
val cleanProc : (codetree * codeUse list * (int -> loadForm) * int) -> codetree
structure Sharing: sig type codetree = codetree and loadForm = loadForm and codeUse = codeUse end
end
sharing
BASECODETREE.Sharing
= CODETREE_FUNCTIONS.Sharing
= REMOVE_REDUNDANT.Sharing
) :
sig
type codetree and codeBinding and envSpecial
val simplifier:
codetree * int -> (codetree * codeBinding list * envSpecial) * int * bool
val specialToGeneral:
codetree * codeBinding list * envSpecial -> codetree
structure Sharing:
sig
type codetree = codetree
and codeBinding = codeBinding
and envSpecial = envSpecial
end
end
=
struct
open BASECODETREE
open Address
open CODETREE_FUNCTIONS
open BuiltIns
exception InternalError = Misc.InternalError
exception RaisedException
(* The bindings are held internally as a reversed list. This
is really only a check that the reversed and forward lists
aren't confused. *)
datatype revlist = RevList of codeBinding list
type simpContext =
{
lookupAddr: loadForm -> envGeneral * envSpecial,
enterAddr: int * (envGeneral * envSpecial) -> unit,
nextAddress: unit -> int,
reprocess: bool ref
}
fun envGeneralToCodetree(EnvGenLoad ext) = Extract ext
| envGeneralToCodetree(EnvGenConst w) = Constnt w
fun mkDec (laddr, res) = Declar{value = res, addr = laddr, use=[]}
fun mkEnv([], exp) = exp
| mkEnv(decs, exp as Extract(LoadLocal loadAddr)) =
(
(* A common case is where we have a binding as the last item
and then a load of that binding. Reduce this so other
optimisations are possible.
This is still something of a special case that could/should
be generalised. *)
case List.last decs of
Declar{addr=decAddr, value, ... } =>
if loadAddr = decAddr
then mkEnv(List.take(decs, List.length decs - 1), value)
else Newenv(decs, exp)
| _ => Newenv(decs, exp)
)
| mkEnv(decs, exp) = Newenv(decs, exp)
fun isConstnt(Constnt _) = true
| isConstnt _ = false
(* Wrap up the general, bindings and special value as a codetree node. The
special entry is discarded except for Constnt entries which are converted
to ConstntWithInline. That allows any inlineable code to be carried
forward to later passes. *)
fun specialToGeneral(g, RevList(b as _ :: _), s) = mkEnv(List.rev b, specialToGeneral(g, RevList [], s))
| specialToGeneral(Constnt(w, p), RevList [], s) = Constnt(w, setInline s p)
| specialToGeneral(g, RevList [], _) = g
(* Convert a constant to a fixed value. Used in some constant folding. *)
val toFix: machineWord -> FixedInt.int = FixedInt.fromInt o Word.toIntX o toShort
local
val ffiSizeFloat: unit -> word = RunCall.rtsCallFast1 "PolySizeFloat"
and ffiSizeDouble: unit -> word = RunCall.rtsCallFast1 "PolySizeDouble"
in
(* If we have a constant index value we convert that into a byte offset. We need
to know the size of the item on this platform. We have to make this check
when we actually compile the code because the interpreted version will
generally be run on a platform different from the one the pre-built
compiler was compiled on. The ML word length will be the same because
we have separate pre-built compilers for 32 and 64-bit. *)
fun getMultiplier (LoadStoreMLWord _) = RunCall.bytesPerWord
| getMultiplier (LoadStoreMLByte _) = 0w1
| getMultiplier LoadStoreC8 = 0w1
| getMultiplier LoadStoreC16 = 0w2
| getMultiplier LoadStoreC32 = 0w4
| getMultiplier LoadStoreC64 = 0w8
| getMultiplier LoadStoreCFloat = ffiSizeFloat()
| getMultiplier LoadStoreCDouble = ffiSizeDouble()
| getMultiplier LoadStoreUntaggedUnsigned = RunCall.bytesPerWord
end
fun simplify(c, s) = mapCodetree (simpGeneral s) c
(* Process the codetree to return a codetree node. This is used
when we don't want the special case. *)
and simpGeneral { lookupAddr, ...} (Extract ext) =
let
val (gen, spec) = lookupAddr ext
in
SOME(specialToGeneral(envGeneralToCodetree gen, RevList [], spec))
end
| simpGeneral context (Newenv envArgs) =
SOME(specialToGeneral(simpNewenv(envArgs, context, RevList [])))
| simpGeneral context (Lambda lambda) =
SOME(Lambda(#1(simpLambda(lambda, context, NONE, NONE))))
| simpGeneral context (Eval {function, argList, resultType}) =
SOME(specialToGeneral(simpFunctionCall(function, argList, resultType, context, RevList[])))
(* BuiltIn0 functions can't be processed specially. *)
| simpGeneral context (Unary{oper, arg1}) =
SOME(specialToGeneral(simpUnary(oper, arg1, context, RevList [])))
| simpGeneral context (Binary{oper, arg1, arg2}) =
SOME(specialToGeneral(simpBinary(oper, arg1, arg2, context, RevList [])))
| simpGeneral context (Arbitrary{oper=ArbCompare test, shortCond, arg1, arg2, longCall}) =
SOME(specialToGeneral(simpArbitraryCompare(test, shortCond, arg1, arg2, longCall, context, RevList [])))
| simpGeneral context (Arbitrary{oper=ArbArith arith, shortCond, arg1, arg2, longCall}) =
SOME(specialToGeneral(simpArbitraryArith(arith, shortCond, arg1, arg2, longCall, context, RevList [])))
| simpGeneral context (AllocateWordMemory {numWords, flags, initial}) =
SOME(specialToGeneral(simpAllocateWordMemory(numWords, flags, initial, context, RevList [])))
| simpGeneral context (Cond(condTest, condThen, condElse)) =
SOME(specialToGeneral(simpIfThenElse(condTest, condThen, condElse, context, RevList [])))
| simpGeneral context (Tuple { fields, isVariant }) =
SOME(specialToGeneral(simpTuple(fields, isVariant, context, RevList [])))
| simpGeneral context (Indirect{ base, offset, isVariant }) =
SOME(specialToGeneral(simpFieldSelect(base, offset, isVariant, context, RevList [])))
| simpGeneral context (SetContainer{container, tuple, filter}) =
let
val optCont = simplify(container, context)
val (cGen, cDecs, cSpec) = simpSpecial(tuple, context, RevList [])
in
case cSpec of
(* If the tuple is a local binding it is simpler to pick it up from the
"special" entry. *)
EnvSpecTuple(size, recEnv) =>
let
val fields = List.tabulate(size, envGeneralToCodetree o #1 o recEnv)
in
SOME(simpPostSetContainer(optCont, Tuple{isVariant=false, fields=fields}, cDecs, filter))
end
| _ => SOME(simpPostSetContainer(optCont, cGen, cDecs, filter))
end
| simpGeneral (context as { enterAddr, nextAddress, reprocess, ...}) (BeginLoop{loop, arguments, ...}) =
let
val didReprocess = ! reprocess
(* To see if we really need the loop first try simply binding the
arguments and process it. It's often the case that if one
or more arguments is a constant that the looping case will
be eliminated. *)
val withoutBeginLoop =
simplify(mkEnv(List.map (Declar o #1) arguments, loop), context)
fun foldLoop f n (Loop l) = f(l, n)
| foldLoop f n (Newenv(_, exp)) = foldLoop f n exp
| foldLoop f n (Cond(_, t, e)) = foldLoop f (foldLoop f n t) e
| foldLoop f n (Handle {handler, ...}) = foldLoop f n handler
| foldLoop f n (SetContainer{tuple, ...}) = foldLoop f n tuple
| foldLoop _ n _ = n
(* Check if the Loop instruction is there. This assumes that these
are the only tail-recursive cases. *)
val hasLoop = foldLoop (fn _ => true) false
in
if not (hasLoop withoutBeginLoop)
then SOME withoutBeginLoop
else
let
(* Reset "reprocess". It may have been set in the withoutBeginLoop
that's not the code we're going to return. *)
val () = reprocess := didReprocess
(* We need the BeginLoop. Create new addresses for the arguments. *)
fun declArg({addr, value, use, ...}, typ) =
let
val newAddr = nextAddress()
in
enterAddr(addr, (EnvGenLoad(LoadLocal newAddr), EnvSpecNone));
({addr = newAddr, value = simplify(value, context), use = use }, typ)
end
(* Now look to see if the (remaining) loops have any arguments that do not change.
Do this after processing because we could be eliminating other loops that
may change the arguments. *)
val declArgs = map declArg arguments
val beginBody = simplify(loop, context)
local
fun argsMatch((Extract (LoadLocal argNo), _), ({addr, ...}, _)) = argNo = addr
| argsMatch _ = false
fun checkLoopArgs(loopArgs, checks) =
let
fun map3(loopA :: loopArgs, decA :: decArgs, checkA :: checkArgs) =
(argsMatch(loopA, decA) andalso checkA) :: map3(loopArgs, decArgs, checkArgs)
| map3 _ = []
in
map3(loopArgs, declArgs, checks)
end
in
val checkList = foldLoop checkLoopArgs (map (fn _ => true) arguments) beginBody
end
in
if List.exists (fn l => l) checkList
then
let
(* Turn the original arguments into bindings. *)
local
fun argLists(true, (arg, _), (tArgs, fArgs)) = (Declar arg :: tArgs, fArgs)
| argLists(false, arg, (tArgs, fArgs)) = (tArgs, arg :: fArgs)
in
val (unchangedArgs, filteredDeclArgs) = ListPair.foldrEq argLists ([], []) (checkList, declArgs)
end
fun changeLoops (Loop loopArgs) =
let
val newArgs =
ListPair.foldrEq(fn (false, arg, l) => arg :: l | (true, _, l) => l) [] (checkList, loopArgs)
in
Loop newArgs
end
| changeLoops(Newenv(decs, exp)) = Newenv(decs, changeLoops exp)
| changeLoops(Cond(i, t, e)) = Cond(i, changeLoops t, changeLoops e)
| changeLoops(Handle{handler, exp, exPacketAddr}) =
Handle{handler=changeLoops handler, exp=exp, exPacketAddr=exPacketAddr}
| changeLoops(SetContainer{tuple, container, filter}) =
SetContainer{tuple=changeLoops tuple, container=container, filter=filter}
| changeLoops code = code
val beginBody = simplify(changeLoops loop, context)
(* Reprocess because we've lost any special part from the arguments that
haven't changed. *)
val () = reprocess := true
in
SOME(mkEnv(unchangedArgs, BeginLoop {loop=beginBody, arguments=filteredDeclArgs}))
end
else SOME(BeginLoop {loop=beginBody, arguments=declArgs})
end
end
| simpGeneral context (TagTest{test, tag, maxTag}) =
(
case simplify(test, context) of
Constnt(testResult, _) =>
if isShort testResult andalso toShort testResult = tag
then SOME CodeTrue
else SOME CodeFalse
| sTest => SOME(TagTest{test=sTest, tag=tag, maxTag=maxTag})
)
| simpGeneral context (LoadOperation{kind, address}) =
let
(* Try to move constants out of the index. *)
val (genAddress, RevList decAddress) = simpAddress(address, getMultiplier kind, context)
(* If the base address and index are constant and this is an immutable
load we can do this at compile time. *)
val result =
case (genAddress, kind) of
({base=Constnt(baseAddr, _), index=NONE, offset}, LoadStoreMLWord _) =>
if isShort baseAddr
then LoadOperation{kind=kind, address=genAddress}
else
let
(* Ignore the "isImmutable" flag and look at the immutable status of the memory.
Check that this is a word object and that the offset is within range.
The code for Vector.sub, for example, raises an exception if the index
is out of range but still generates the (unreachable) indexing code. *)
val addr = toAddress baseAddr
val wordOffset = offset div RunCall.bytesPerWord
in
if isMutable addr orelse not(isWords addr) orelse wordOffset >= length addr
then LoadOperation{kind=kind, address=genAddress}
else Constnt(toMachineWord(loadWord(addr, wordOffset)), [])
end
| ({base=Constnt(baseAddr, _), index=NONE, offset}, LoadStoreMLByte _) =>
if isShort baseAddr
then LoadOperation{kind=kind, address=genAddress}
else
let
val addr = toAddress baseAddr
val wordOffset = offset div RunCall.bytesPerWord
in
if isMutable addr orelse not(isBytes addr) orelse wordOffset >= length addr
then LoadOperation{kind=kind, address=genAddress}
else Constnt(toMachineWord(loadByte(addr, offset)), [])
end
| ({base=Constnt(baseAddr, _), index=NONE, offset}, LoadStoreUntaggedUnsigned) =>
if isShort baseAddr
then LoadOperation{kind=kind, address=genAddress}
else
let
val addr = toAddress baseAddr
(* We don't currently have loadWordUntagged in Address but it's only ever
used to load the string length word so we can use that. *)
in
if isMutable addr orelse not(isBytes addr) orelse offset <> 0w0
then LoadOperation{kind=kind, address=genAddress}
else Constnt(toMachineWord(String.size(RunCall.unsafeCast addr)), [])
end
| _ => LoadOperation{kind=kind, address=genAddress}
in
SOME(mkEnv(List.rev decAddress, result))
end
| simpGeneral context (StoreOperation{kind, address, value}) =
let
val (genAddress, decAddress) = simpAddress(address, getMultiplier kind, context)
val (genValue, RevList decValue, _) = simpSpecial(value, context, decAddress)
in
SOME(mkEnv(List.rev decValue, StoreOperation{kind=kind, address=genAddress, value=genValue}))
end
| simpGeneral (context as {reprocess, ...}) (BlockOperation{kind, sourceLeft, destRight, length}) =
let
val multiplier =
case kind of
BlockOpMove{isByteMove=false} => RunCall.bytesPerWord
| BlockOpMove{isByteMove=true} => 0w1
| BlockOpEqualByte => 0w1
| BlockOpCompareByte => 0w1
val (genSrcAddress, RevList decSrcAddress) = simpAddress(sourceLeft, multiplier, context)
val (genDstAddress, RevList decDstAddress) = simpAddress(destRight, multiplier, context)
val (genLength, RevList decLength, _) = simpSpecial(length, context, RevList [])
(* If we have a short length move we're better doing it as a sequence of loads and stores.
Comparisons are probably too complicated though it might be possible to
handle single bytes. This is particularly useful with string concatenation.
Small here means four. *)
val shortLength =
case genLength of
Constnt(lenConst, _) =>
if isShort lenConst then let val l = toShort lenConst in if l <= 0w4 then SOME l else NONE end else NONE
| _ => NONE
val combinedDecs = List.rev decSrcAddress @ List.rev decDstAddress @ List.rev decLength
val operation =
case (shortLength, kind) of
(SOME length, BlockOpMove{isByteMove}) =>
let
val _ = reprocess := true (* Frequently the source will be a constant. *)
val {base=baseSrc, index=indexSrc, offset=offsetSrc} = genSrcAddress
and {base=baseDst, index=indexDst, offset=offsetDst} = genDstAddress
(* We don't know if the source is immutable but the destination definitely isn't *)
val moveKind =
if isByteMove then LoadStoreMLByte{isImmutable=false} else LoadStoreMLWord{isImmutable=false}
fun makeMoves offset =
if offset = length
then []
else NullBinding(
StoreOperation{kind=moveKind,
address={base=baseDst, index=indexDst, offset=offsetDst+offset*multiplier},
value=LoadOperation{kind=moveKind, address={base=baseSrc, index=indexSrc, offset=offsetSrc+offset*multiplier}}}) ::
makeMoves(offset+0w1)
in
mkEnv(combinedDecs @ makeMoves 0w0, CodeZero (* unit result *))
end
| _ =>
mkEnv(combinedDecs,
BlockOperation{kind=kind, sourceLeft=genSrcAddress, destRight=genDstAddress, length=genLength})
in
SOME operation
end
| simpGeneral (context as {enterAddr, nextAddress, ...}) (Handle{exp, handler, exPacketAddr}) =
let (* We need to make a new binding for the exception packet. *)
val expBody = simplify(exp, context)
val newAddr = nextAddress()
val () = enterAddr(exPacketAddr, (EnvGenLoad(LoadLocal newAddr), EnvSpecNone))
val handleBody = simplify(handler, context)
in
SOME(Handle{exp=expBody, handler=handleBody, exPacketAddr=newAddr})
end
| simpGeneral _ _ = NONE
(* Where we have an Indirect or Eval we want the argument as either a tuple or
an inline function respectively if that's possible. Getting that also involves
various other cases as well. Because a binding may later be used in such a
context we treat any binding in that way as well. *)
and simpSpecial (Extract ext, { lookupAddr, ...}, tailDecs) =
let
val (gen, spec) = lookupAddr ext
in
(envGeneralToCodetree gen, tailDecs, spec)
end
| simpSpecial (Newenv envArgs, context, tailDecs) = simpNewenv(envArgs, context, tailDecs)
| simpSpecial (Lambda lambda, context, tailDecs) =
let
val (gen, spec) = simpLambda(lambda, context, NONE, NONE)
in
(Lambda gen, tailDecs, spec)
end
| simpSpecial (Eval {function, argList, resultType}, context, tailDecs) =
simpFunctionCall(function, argList, resultType, context, tailDecs)
| simpSpecial (Unary{oper, arg1}, context, tailDecs) =
simpUnary(oper, arg1, context, tailDecs)
| simpSpecial (Binary{oper, arg1, arg2}, context, tailDecs) =
simpBinary(oper, arg1, arg2, context, tailDecs)
| simpSpecial (Arbitrary{oper=ArbCompare test, shortCond, arg1, arg2, longCall}, context, tailDecs) =
simpArbitraryCompare(test, shortCond, arg1, arg2, longCall, context, tailDecs)
| simpSpecial (Arbitrary{oper=ArbArith arith, shortCond, arg1, arg2, longCall}, context, tailDecs) =
simpArbitraryArith(arith, shortCond, arg1, arg2, longCall, context, tailDecs)
| simpSpecial (AllocateWordMemory{numWords, flags, initial}, context, tailDecs) =
simpAllocateWordMemory(numWords, flags, initial, context, tailDecs)
| simpSpecial (Cond(condTest, condThen, condElse), context, tailDecs) =
simpIfThenElse(condTest, condThen, condElse, context, tailDecs)
| simpSpecial (Tuple { fields, isVariant }, context, tailDecs) = simpTuple(fields, isVariant, context, tailDecs)
| simpSpecial (Indirect{ base, offset, isVariant }, context, tailDecs) = simpFieldSelect(base, offset, isVariant, context, tailDecs)
| simpSpecial (c: codetree, s: simpContext, tailDecs): codetree * revlist * envSpecial =
let
(* Anything else - copy it and then split it into the fields. *)
fun split(Newenv(l, e), RevList tailDecs) = (* Pull off bindings. *)
split (e, RevList(List.rev l @ tailDecs))
| split(Constnt(m, p), tailDecs) = (Constnt(m, p), tailDecs, findInline p)
| split(c, tailDecs) = (c, tailDecs, EnvSpecNone)
in
split(simplify(c, s), tailDecs)
end
(* Process a Newenv. We need to add the bindings to the context. *)
and simpNewenv((envDecs: codeBinding list, envExp), context as { enterAddr, nextAddress, reprocess, ...}, tailDecs): codetree * revlist * envSpecial =
let
fun copyDecs ([], decs) =
simpSpecial(envExp, context, decs) (* End of the list - process the result expression. *)
| copyDecs ((Declar{addr, value, ...} :: vs), decs) =
(
case simpSpecial(value, context, decs) of
(* If this raises an exception stop here. *)
vBinding as (Raise _, _, _) => vBinding
| vBinding =>
let
(* Add the declaration to the table. *)
val (optV, dec) = makeNewDecl(vBinding, context)
val () = enterAddr(addr, optV)
in
copyDecs(vs, dec)
end
)
| copyDecs(NullBinding v :: vs, decs) = (* Not a binding - process this and the rest.*)
(
case simpSpecial(v, context, decs) of
(* If this raises an exception stop here. *)
vBinding as (Raise _, _, _) => vBinding
| (cGen, RevList cDecs, _) => copyDecs(vs, RevList(NullBinding cGen :: cDecs))
)
| copyDecs(RecDecs mutuals :: vs, RevList decs) =
(* Mutually recursive declarations. Any of the declarations may
refer to any of the others. They should all be lambdas.
The front end generates functions with more than one argument
(either curried or tupled) as pairs of mutually recursive
functions. The main function body takes its arguments on
the stack (or in registers) and the auxiliary inline function,
possibly nested, takes the tupled or curried arguments and
calls it. If the main function is recursive it will first
call the inline function which is why the pair are mutually
recursive.
As far as possible we want to use the main function since that
uses the least memory. Specifically, if the function recurses
we want the recursive call to pass all the arguments if it
can. *)
let
(* Reorder the function so the explicitly-inlined ones come first.
Their code can then be inserted into the main functions. *)
local
val (inlines, nonInlines) =
List.partition (
fn {lambda = { isInline=Inline, ...}, ... } => true | _ => false) mutuals
in
val orderedDecs = inlines @ nonInlines
end
(* Go down the functions creating new addresses for them and entering them in the table. *)
val addresses =
map (fn {addr, ... } =>
let
val decAddr = nextAddress()
in
enterAddr (addr, (EnvGenLoad(LoadLocal decAddr), EnvSpecNone));
decAddr
end)
orderedDecs
fun processFunction({ lambda, addr, ... }, newAddr) =
let
val (gen, spec) = simpLambda(lambda, context, SOME addr, SOME newAddr)
(* Update the entry in the table to include any inlineable function. *)
val () = enterAddr (addr, (EnvGenLoad (LoadLocal newAddr), spec))
in
{addr=newAddr, lambda=gen, use=[]}
end
val rlist = ListPair.map processFunction (orderedDecs, addresses)
in
(* and put these declarations onto the list. *)
copyDecs(vs, RevList(List.rev(partitionMutableBindings(RecDecs rlist)) @ decs))
end
| copyDecs (Container{addr, size, setter, ...} :: vs, RevList decs) =
let
(* Enter the new address immediately - it's needed in the setter. *)
val decAddr = nextAddress()
val () = enterAddr (addr, (EnvGenLoad(LoadLocal decAddr), EnvSpecNone))
val (setGen, RevList setDecs, _) = simpSpecial(setter, context, RevList [])
in
(* If we have inline expanded a function that sets the container
we're better off eliminating the container completely. *)
case setGen of
SetContainer { tuple, filter, container } =>
let
(* Check the container we're setting is the address we've made for it. *)
val _ =
(case container of Extract(LoadLocal a) => a = decAddr | _ => false)
orelse raise InternalError "copyDecs: Container/SetContainer"
val newDecAddr = nextAddress()
val () = enterAddr (addr, (EnvGenLoad(LoadLocal newDecAddr), EnvSpecNone))
val tupleAddr = nextAddress()
val tupleDec = Declar{addr=tupleAddr, use=[], value=tuple}
val tupleLoad = mkLoadLocal tupleAddr
val resultTuple =
BoolVector.foldri(fn (i, true, l) => mkInd(i, tupleLoad) :: l | (_, false, l) => l) [] filter
val _ = List.length resultTuple = size
orelse raise InternalError "copyDecs: Container/SetContainer size"
val containerDec = Declar{addr=newDecAddr, use=[], value=mkTuple resultTuple}
val _ = reprocess := true
in
copyDecs(vs, RevList(containerDec :: tupleDec :: setDecs @ decs))
end
| _ =>
let
val dec = Container{addr=decAddr, use=[], size=size, setter=setGen}
in
copyDecs(vs, RevList(dec :: setDecs @ decs))
end
end
in
copyDecs(envDecs, tailDecs)
end
(* Prepares a binding for entry into a look-up table. Returns the entry
to put into the table together with any bindings that must be made.
If the general part of the optVal is a constant we can just put the
constant in the table. If it is a load (Extract) it is just renaming
an existing entry so we can return it. Otherwise we have to make
a new binding and return a load (Extract) entry for it. *)
and makeNewDecl((Constnt w, RevList decs, spec), _) = ((EnvGenConst w, spec), RevList decs)
(* No need to create a binding for a constant. *)
| makeNewDecl((Extract ext, RevList decs, spec), _) = ((EnvGenLoad ext, spec), RevList decs)
(* Binding is simply giving a new name to a variable
- can ignore this declaration. *)
| makeNewDecl((gen, RevList decs, spec), { nextAddress, ...}) =
let (* Create a binding for this value. *)
val newAddr = nextAddress()
in
((EnvGenLoad(LoadLocal newAddr), spec), RevList(mkDec(newAddr, gen) :: decs))
end
and simpLambda({body, isInline, name, argTypes, resultType, closure, localCount, ...},
{ lookupAddr, reprocess, ... }, myOldAddrOpt, myNewAddrOpt) =
let
(* A new table for the new function. *)
val oldAddrTab = Array.array (localCount, NONE)
val optClosureList = makeClosure()
val isNowRecursive = ref false
local
fun localOldAddr (LoadLocal addr) = valOf(Array.sub(oldAddrTab, addr))
| localOldAddr (ext as LoadArgument _) = (EnvGenLoad ext, EnvSpecNone)
| localOldAddr (ext as LoadRecursive) = (EnvGenLoad ext, EnvSpecNone)
| localOldAddr (LoadClosure addr) =
let
val oldEntry = List.nth(closure, addr)
(* If the entry in the closure is our own address this is recursive. *)
fun isRecursive(EnvGenLoad(LoadLocal a), SOME b) =
if a = b then (isNowRecursive := true; true) else false
| isRecursive _ = false
in
if isRecursive(EnvGenLoad oldEntry, myOldAddrOpt) then (EnvGenLoad LoadRecursive, EnvSpecNone)
else
let
val newEntry = lookupAddr oldEntry
val makeClosure = addToClosure optClosureList
fun convertResult(genEntry, specEntry) =
(* If after looking up the entry we get our new address it's recursive. *)
if isRecursive(genEntry, myNewAddrOpt)
then (EnvGenLoad LoadRecursive, EnvSpecNone)
else
let
val newGeneral =
case genEntry of
EnvGenLoad ext => EnvGenLoad(makeClosure ext)
| EnvGenConst w => EnvGenConst w
(* Have to modify the environment here so that if we look up free variables
we add them to the closure. *)
fun convertEnv env args = convertResult(env args)
val newSpecial =
case specEntry of
EnvSpecTuple(size, env) => EnvSpecTuple(size, convertEnv env)
| EnvSpecInlineFunction(spec, env) => EnvSpecInlineFunction(spec, convertEnv env)
| EnvSpecUnary _ => EnvSpecNone (* Don't pass this in *)
| EnvSpecBinary _ => EnvSpecNone (* Don't pass this in *)
| EnvSpecNone => EnvSpecNone
in
(newGeneral, newSpecial)
end
in
convertResult newEntry
end
end
and setTab (index, v) = Array.update (oldAddrTab, index, SOME v)
in
val newAddressAllocator = ref 0
fun mkAddr () =
! newAddressAllocator before newAddressAllocator := ! newAddressAllocator + 1
val newCode =
simplify (body,
{
enterAddr = setTab, lookupAddr = localOldAddr,
nextAddress=mkAddr,
reprocess = reprocess
})
end
val closureAfterOpt = extractClosure optClosureList
val localCount = ! newAddressAllocator
(* If we have mutually recursive "small" functions we may turn them into
recursive functions. We have to remove the "small" status from
them to prevent them from being expanded inline anywhere else. The
optimiser may turn them back into "small" functions if the recursion
is actually tail-recursion. *)
val isNowInline =
case isInline of
Inline =>
if ! isNowRecursive then NonInline else Inline
| NonInline => NonInline
(* Clean up the function body at this point if it could be inlined.
There are examples where failing to do this can blow up. This
can be the result of creating both a general and special function
inside an inline function. *)
val cleanBody =
case isNowInline of
NonInline => newCode
| _ => REMOVE_REDUNDANT.cleanProc(newCode, [UseExport], LoadClosure, localCount)
val copiedLambda: lambdaForm =
{
body = cleanBody,
isInline = isNowInline,
name = name,
closure = closureAfterOpt,
argTypes = argTypes,
resultType = resultType,
localCount = localCount,
recUse = []
}
val inlineCode =
case isNowInline of
NonInline => EnvSpecNone
| _ => EnvSpecInlineFunction(copiedLambda, fn addr => (EnvGenLoad(List.nth(closureAfterOpt, addr)), EnvSpecNone))
in
(
copiedLambda,
inlineCode
)
end
and simpFunctionCall(function, argList, resultType, context as { reprocess, ...}, tailDecs) =
let
(* Function call - This may involve inlining the function. *)
(* Get the function to be called and see if it is inline or
a lambda expression. *)
val (genFunct, decsFunct, specFunct) = simpSpecial(function, context, tailDecs)
(* We have to make a special check here that we are not passing in the function
we are trying to expand. This could result in an infinitely recursive expansion. It is only
going to happen in very special circumstances such as a definition of the Y combinator.
If we see that we don't attempt to expand inline. It could be embedded in a tuple
or the closure of a function as well as passed directly. *)
val isRecursiveArg =
case function of
Extract extOrig =>
let
fun containsFunction(Extract thisArg, v) = (v orelse thisArg = extOrig, FOLD_DESCEND)
| containsFunction(Lambda{closure, ...}, v) =
(* Only the closure, not the body *)
(foldl (fn (c, w) => foldtree containsFunction w (Extract c)) v closure, FOLD_DONT_DESCEND)
| containsFunction(Eval _, v) = (v, FOLD_DONT_DESCEND) (* OK if it's called *)
| containsFunction(_, v) = (v, FOLD_DESCEND)
in
List.exists(fn (c, _) => foldtree containsFunction false c) argList
end
| _ => false
in
case (specFunct, genFunct, isRecursiveArg) of
(EnvSpecInlineFunction({body=lambdaBody, localCount, argTypes, ...}, functEnv), _, false) =>
let
val _ = List.length argTypes = List.length argList
orelse raise InternalError "simpFunctionCall: argument mismatch"
val () = reprocess := true (* If we expand inline we have to reprocess *)
and { nextAddress, reprocess, ...} = context
(* Expand a function inline, either one marked explicitly to be inlined or one detected as "small". *)
(* Calling inline proc or a lambda expression which is just called.
The function is replaced with a block containing declarations
of the parameters. We need a new table here because the addresses
we use to index it are the addresses which are local to the function.
New addresses are created in the range of the surrounding function. *)
val localVec = Array.array(localCount, NONE)
local
fun processArgs([], bindings) = ([], bindings)
| processArgs((arg, _)::args, bindings) =
let
val (thisArg, newBindings) =
makeNewDecl(simpSpecial(arg, context, bindings), context)
val (otherArgs, resBindings) = processArgs(args, newBindings)
in
(thisArg::otherArgs, resBindings)
end
val (params, bindings) = processArgs(argList, decsFunct)
val paramVec = Vector.fromList params
in
fun getParameter n = Vector.sub(paramVec, n)
(* Bindings necessary for the arguments *)
val copiedArgs = bindings
end
local
fun localOldAddr(LoadLocal addr) = valOf(Array.sub(localVec, addr))
| localOldAddr(LoadArgument addr) = getParameter addr
| localOldAddr(LoadClosure closureEntry) = functEnv closureEntry
| localOldAddr LoadRecursive = raise InternalError "localOldAddr: LoadRecursive"
fun setTabForInline (index, v) = Array.update (localVec, index, SOME v)
val lambdaContext =
{
lookupAddr=localOldAddr, enterAddr=setTabForInline,
nextAddress=nextAddress, reprocess = reprocess
}
in
val (cGen, cDecs, cSpec) = simpSpecial(lambdaBody,lambdaContext, copiedArgs)
end
in
(cGen, cDecs, cSpec)
end
| (_, gen as Constnt _, _) => (* Not inlinable - constant function. *)
let
val copiedArgs = map (fn (arg, argType) => (simplify(arg, context), argType)) argList
val evCopiedCode =
Eval {function = gen, argList = copiedArgs, resultType=resultType}
in
(evCopiedCode, decsFunct, EnvSpecNone)
end
| (_, gen, _) => (* Anything else. *)
let
val copiedArgs = map (fn (arg, argType) => (simplify(arg, context), argType)) argList
val evCopiedCode =
Eval {function = gen, argList = copiedArgs, resultType=resultType}
in
(evCopiedCode, decsFunct, EnvSpecNone)
end
end
(* Special processing for the current builtIn1 operations. *)
(* Constant folding for built-ins. These ought to be type-correct i.e. we should have
tagged values in some cases and addresses in others. However there may be run-time
tests that would ensure type-correctness and we can't be sure that they will always
be folded at compile-time. e.g. we may have
if isShort c then shortOp c else longOp c
If c is a constant then we may try to fold both the shortOp and the longOp and one
of these will be type-incorrect although never executed at run-time. *)
and simpUnary(oper, arg1, context as { reprocess, ...}, tailDecs) =
let
val (genArg1, decArg1, specArg1) = simpSpecial(arg1, context, tailDecs)
in
case (oper, genArg1) of
(NotBoolean, Constnt(v, _)) =>
(
reprocess := true;
(if isShort v andalso toShort v = 0w0 then CodeTrue else CodeFalse, decArg1, EnvSpecNone)
)
| (IsTaggedValue, Constnt(v, _)) =>
(
reprocess := true;
(if isShort v then CodeTrue else CodeFalse, decArg1, EnvSpecNone)
)
| (IsTaggedValue, genArg1) =>
(
(* We use this to test for nil values and if we have constructed a record
(or possibly a function) it can't be null. *)
case specArg1 of
EnvSpecTuple _ => (CodeFalse, decArg1, EnvSpecNone) before reprocess := true
| EnvSpecInlineFunction _ =>
(CodeFalse, decArg1, EnvSpecNone) before reprocess := true
| _ => (Unary{oper=oper, arg1=genArg1}, decArg1, EnvSpecNone)
)
| (MemoryCellLength, Constnt(v, _)) =>
(
reprocess := true;
(if isShort v then CodeZero else Constnt(toMachineWord(Address.length(toAddress v)), []), decArg1, EnvSpecNone)
)
| (MemoryCellFlags, Constnt(v, _)) =>
(
reprocess := true;
(if isShort v then CodeZero else Constnt(toMachineWord(Address.flags(toAddress v)), []), decArg1, EnvSpecNone)
)
| (LongWordToTagged, Constnt(v, _)) =>
(
reprocess := true;
(Constnt(toMachineWord(Word.fromLargeWord(RunCall.unsafeCast v)), []), decArg1, EnvSpecNone)
)
| (LongWordToTagged, genArg1) =>
(
(* If we apply LongWordToTagged to an argument we have created with UnsignedToLongWord
we can return the original argument. *)
case specArg1 of
EnvSpecUnary(UnsignedToLongWord, originalArg) =>
(
reprocess := true;
(originalArg, decArg1, EnvSpecNone)
)
| _ => (Unary{oper=LongWordToTagged, arg1=genArg1}, decArg1, EnvSpecNone)
)
| (SignedToLongWord, Constnt(v, _)) =>
(
reprocess := true;
(Constnt(toMachineWord(Word.toLargeWordX(RunCall.unsafeCast v)), []), decArg1, EnvSpecNone)
)
| (UnsignedToLongWord, Constnt(v, _)) =>
(
reprocess := true;
(Constnt(toMachineWord(Word.toLargeWord(RunCall.unsafeCast v)), []), decArg1, EnvSpecNone)
)
| (UnsignedToLongWord, genArg1) =>
(* Add the operation as the special entry. It can then be recognised by LongWordToTagged. *)
(Unary{oper=oper, arg1=genArg1}, decArg1, EnvSpecUnary(UnsignedToLongWord, genArg1))
| _ => (Unary{oper=oper, arg1=genArg1}, decArg1, EnvSpecNone)
end
and simpBinary(oper, arg1, arg2, context as {reprocess, ...}, tailDecs) =
let
val (genArg1, decArg1, _ (*specArg1*)) = simpSpecial(arg1, context, tailDecs)
val (genArg2, decArgs, _ (*specArg2*)) = simpSpecial(arg2, context, decArg1)
in
case (oper, genArg1, genArg2) of
(WordComparison{test, isSigned}, Constnt(v1, _), Constnt(v2, _)) =>
if (case test of TestEqual => false | _ => not(isShort v1) orelse not(isShort v2))
then (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
else
let
val () = reprocess := true
val testResult =
case (test, isSigned) of
(* TestEqual can be applied to addresses. *)
(TestEqual, _) => RunCall.pointerEq(v1, v2)
| (TestLess, false) => toShort v1 < toShort v2
| (TestLessEqual, false) => toShort v1 <= toShort v2
| (TestGreater, false) => toShort v1 > toShort v2
| (TestGreaterEqual, false) => toShort v1 >= toShort v2
| (TestLess, true) => toFix v1 < toFix v2
| (TestLessEqual, true) => toFix v1 <= toFix v2
| (TestGreater, true) => toFix v1 > toFix v2
| (TestGreaterEqual, true) => toFix v1 >= toFix v2
in
(if testResult then CodeTrue else CodeFalse, decArgs, EnvSpecNone)
end
| (FixedPrecisionArith arithOp, Constnt(v1, _), Constnt(v2, _)) =>
if not(isShort v1) orelse not(isShort v2)
then (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
else
let
val () = reprocess := true
val v1S = toFix v1
and v2S = toFix v2
fun asConstnt v = Constnt(toMachineWord v, [])
val raiseOverflow = Raise(Constnt(toMachineWord Overflow, []))
val raiseDiv = Raise(Constnt(toMachineWord Div, [])) (* ?? There's usually an explicit test. *)
val resultCode =
case arithOp of
ArithAdd => (asConstnt(v1S+v2S) handle Overflow => raiseOverflow)
| ArithSub => (asConstnt(v1S-v2S) handle Overflow => raiseOverflow)
| ArithMult => (asConstnt(v1S*v2S) handle Overflow => raiseOverflow)
| ArithQuot => (asConstnt(FixedInt.quot(v1S,v2S)) handle Overflow => raiseOverflow | Div => raiseDiv)
| ArithRem => (asConstnt(FixedInt.rem(v1S,v2S)) handle Overflow => raiseOverflow | Div => raiseDiv)
| ArithDiv => (asConstnt(FixedInt.div(v1S,v2S)) handle Overflow => raiseOverflow | Div => raiseDiv)
| ArithMod => (asConstnt(FixedInt.mod(v1S,v2S)) handle Overflow => raiseOverflow | Div => raiseDiv)
in
(resultCode, decArgs, EnvSpecNone)
end
(* Addition and subtraction of zero. These can arise as a result of
inline expansion of more general functions. *)
| (FixedPrecisionArith ArithAdd, arg1, Constnt(v2, _)) =>
if isShort v2 andalso toShort v2 = 0w0
then (arg1, decArgs, EnvSpecNone)
else (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
| (FixedPrecisionArith ArithAdd, Constnt(v1, _), arg2) =>
if isShort v1 andalso toShort v1 = 0w0
then (arg2, decArgs, EnvSpecNone)
else (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
| (FixedPrecisionArith ArithSub, arg1, Constnt(v2, _)) =>
if isShort v2 andalso toShort v2 = 0w0
then (arg1, decArgs, EnvSpecNone)
else (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
| (WordArith arithOp, Constnt(v1, _), Constnt(v2, _)) =>
if not(isShort v1) orelse not(isShort v2)
then (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
else
let
val () = reprocess := true
val v1S = toShort v1
and v2S = toShort v2
fun asConstnt v = Constnt(toMachineWord v, [])
val resultCode =
case arithOp of
ArithAdd => asConstnt(v1S+v2S)
| ArithSub => asConstnt(v1S-v2S)
| ArithMult => asConstnt(v1S*v2S)
| ArithQuot => raise InternalError "WordArith: ArithQuot"
| ArithRem => raise InternalError "WordArith: ArithRem"
| ArithDiv => asConstnt(v1S div v2S)
| ArithMod => asConstnt(v1S mod v2S)
in
(resultCode, decArgs, EnvSpecNone)
end
| (WordArith ArithAdd, arg1, Constnt(v2, _)) =>
if isShort v2 andalso toShort v2 = 0w0
then (arg1, decArgs, EnvSpecNone)
else (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
| (WordArith ArithAdd, Constnt(v1, _), arg2) =>
if isShort v1 andalso toShort v1 = 0w0
then (arg2, decArgs, EnvSpecNone)
else (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
| (WordArith ArithSub, arg1, Constnt(v2, _)) =>
if isShort v2 andalso toShort v2 = 0w0
then (arg1, decArgs, EnvSpecNone)
else (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
| (WordLogical logOp, Constnt(v1, _), Constnt(v2, _)) =>
if not(isShort v1) orelse not(isShort v2)
then (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
else
let
val () = reprocess := true
val v1S = toShort v1
and v2S = toShort v2
fun asConstnt v = Constnt(toMachineWord v, [])
val resultCode =
case logOp of
LogicalAnd => asConstnt(Word.andb(v1S,v2S))
| LogicalOr => asConstnt(Word.orb(v1S,v2S))
| LogicalXor => asConstnt(Word.xorb(v1S,v2S))
in
(resultCode, decArgs, EnvSpecNone)
end
| (WordLogical logop, arg1, arg2 as Constnt(v2, _)) =>
(* Return the zero if we are anding with zero otherwise the original arg *)
if isShort v2 andalso toShort v2 = 0w0
then (case logop of LogicalAnd => arg2 | _ => arg1, decArgs, EnvSpecNone)
else (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
| (WordLogical logop, Constnt(v1, _), arg2) =>
if isShort v1 andalso toShort v1 = 0w0
then (case logop of LogicalAnd => arg2 | _ => arg2, decArgs, EnvSpecNone)
else (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
(* TODO: Constant folding of shifts. *)
| _ => (Binary{oper=oper, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
end
(* Arbitrary precision operations. This is a sort of mixture of a built-in and a conditional. *)
and simpArbitraryCompare(TestEqual, shortCond, arg1, arg2, longCall, context, tailDecs) =
(* Equality is a special case and is only there to ensure that it is not accidentally converted into
an indexed case further down. We must leave it as it is. *)
let
val (genCond, decCond, _ (*specArg1*)) = simpSpecial(shortCond, context, tailDecs)
val (genArg1, decArg1, _ (*specArg1*)) = simpSpecial(arg1, context, decCond)
val (genArg2, decArgs, _ (*specArg2*)) = simpSpecial(arg2, context, decArg1)
in
(Arbitrary{oper=ArbCompare TestEqual, shortCond=genCond, arg1=genArg1, arg2=genArg2, longCall=simplify(longCall, context)}, decArgs, EnvSpecNone)
end
| simpArbitraryCompare(test, shortCond, arg1, arg2, longCall, context as {reprocess, ...}, tailDecs) =
let
val (genCond, decCond, _ (*specArg1*)) = simpSpecial(shortCond, context, tailDecs)
val (genArg1, decArg1, _ (*specArg1*)) = simpSpecial(arg1, context, decCond)
val (genArg2, decArgs, _ (*specArg2*)) = simpSpecial(arg2, context, decArg1)
val posFlags = Address.F_bytes and negFlags = Word8.orb(Address.F_bytes, Address.F_negative)
in
(* Fold any constant/constant operations but more importantly, if we
have variable/constant operations where the constant is short we
can avoid using the full arbitrary precision call by just looking
at the sign bit. *)
case (genCond, genArg1, genArg2) of
(Constnt(c1, _), _, _) =>
if isShort c1 andalso toShort c1 = 0w0
then (* One argument is definitely long - generate the long form. *)
(Binary{oper=WordComparison{test=test, isSigned=true}, arg1=simplify(longCall, context), arg2=CodeZero},
decArgs, EnvSpecNone)
else (* Both arguments are short. That should mean they're constants. *)
(Binary{oper=WordComparison{test=test, isSigned=true}, arg1=genArg1, arg2=genArg2}, decArgs, EnvSpecNone)
before reprocess := true
| (_, genArg1, cArg2 as Constnt _) =>
let (* The constant must be short otherwise the test would be false. *)
val isNeg =
case test of
TestLess => true
| TestLessEqual => true
| _ => false
(* Translate i < c into
if isShort i then toShort i < c else isNegative i *)
val newCode =
Cond(Unary{oper=BuiltIns.IsTaggedValue, arg1=genArg1},
Binary { oper = BuiltIns.WordComparison{test=test, isSigned=true}, arg1 = genArg1, arg2 = cArg2 },
Binary { oper = BuiltIns.WordComparison{test=TestEqual, isSigned=false},
arg1=Unary { oper = MemoryCellFlags, arg1=genArg1 },
arg2=Constnt(toMachineWord(if isNeg then negFlags else posFlags), [])}
)
in
(newCode, decArgs, EnvSpecNone)
end
| (_, cArg1 as Constnt _, genArg2) =>
let
(* We're testing c < i so the test is
if isShort i then c < toShort i else isPositive i *)
val isPos =
case test of
TestLess => true
| TestLessEqual => true
| _ => false
val newCode =
Cond(Unary{oper=BuiltIns.IsTaggedValue, arg1=genArg2},
Binary { oper = BuiltIns.WordComparison{test=test, isSigned=true}, arg1 = cArg1, arg2 = genArg2 },
Binary { oper = BuiltIns.WordComparison{test=TestEqual, isSigned=false},
arg1=Unary { oper = MemoryCellFlags, arg1=genArg2 },
arg2=Constnt(toMachineWord(if isPos then posFlags else negFlags), [])}
)
in
(newCode, decArgs, EnvSpecNone)
end
| _ => (Arbitrary{oper=ArbCompare test, shortCond=genCond, arg1=genArg1, arg2=genArg2, longCall=simplify(longCall, context)}, decArgs, EnvSpecNone)
end
and simpArbitraryArith(arith, shortCond, arg1, arg2, longCall, context, tailDecs) =
let
val (genCond, decCond, _ (*specArg1*)) = simpSpecial(shortCond, context, tailDecs)
val (genArg1, decArg1, _ (*specArg1*)) = simpSpecial(arg1, context, decCond)
val (genArg2, decArgs, _ (*specArg2*)) = simpSpecial(arg2, context, decArg1)
in
case genCond of
Constnt(c1, _) =>
if isShort c1 andalso toShort c1 = 0w0
then (* One argument is definitely long - generate the long form. *)
(simplify(longCall, context), decArgs, EnvSpecNone)
else (* If we know they're both short they must be constants and we could fold them. N.B. We can still get an overflow. *)
(Arbitrary{oper=ArbArith arith, shortCond=genCond, arg1=genArg1, arg2=genArg2, longCall=simplify(longCall, context)}, decArgs, EnvSpecNone)
| _ => (Arbitrary{oper=ArbArith arith, shortCond=genCond, arg1=genArg1, arg2=genArg2, longCall=simplify(longCall, context)}, decArgs, EnvSpecNone)
end
and simpAllocateWordMemory(numWords, flags, initial, context, tailDecs) =
let
val (genArg1, decArg1, _ (*specArg1*)) = simpSpecial(numWords, context, tailDecs)
val (genArg2, decArg2, _ (*specArg2*)) = simpSpecial(flags, context, decArg1)
val (genArg3, decArg3, _ (*specArg3*)) = simpSpecial(initial, context, decArg2)
in
(AllocateWordMemory{numWords=genArg1, flags=genArg2, initial=genArg3}, decArg3, EnvSpecNone)
end
(* Loads, stores and block operations use address values. The index value is initially
an arbitrary code tree but we can recognise common cases of constant index values
or where a constant has been added to the index.
TODO: If these are C memory moves we can also look at the base address.
The base address for C memory operations is a LargeWord.word value i.e.
the address is contained in a box. The base addresses for ML memory
moves is an ML address i.e. unboxed. *)
and simpAddress({base, index=NONE, offset}, _, context) =
let
val (genBase, decBase, _ (*specBase*)) = simpSpecial(base, context, RevList[])
in
({base=genBase, index=NONE, offset=offset}, decBase)
end
| simpAddress({base, index=SOME index, offset}, multiplier, context) =
let
val (genBase, RevList decBase, _) = simpSpecial(base, context, RevList[])
val (genIndex, RevList decIndex, _ (* specIndex *)) = simpSpecial(index, context, RevList[])
val (newIndex, newOffset) =
case genIndex of
Constnt(indexOffset, _) =>
if isShort indexOffset
then (NONE, offset + toShort indexOffset * multiplier)
else (SOME genIndex, offset)
| _ => (SOME genIndex, offset)
in
({base=genBase, index=newIndex, offset=newOffset}, RevList(decIndex @ decBase))
end
(*
(* A built-in function. We can call certain built-ins immediately if
the arguments are constants. *)
and simpBuiltIn(rtsCallNo, argList, context as { reprocess, ...}) =
let
val copiedArgs = map (fn arg => simpSpecial(arg, context)) argList
open RuntimeCalls
(* When checking for a constant we need to check that there are no bindings.
They could have side-effects. *)
fun isAConstant(Constnt _, [], _) = true
| isAConstant _ = false
in
(* If the function is an RTS call that is safe to evaluate immediately and all the
arguments are constants evaluate it now. *)
if earlyRtsCall rtsCallNo andalso List.all isAConstant copiedArgs
then
let
val () = reprocess := true
exception Interrupt = Thread.Thread.Interrupt
(* Turn the arguments into a vector. *)
val argVector =
case makeConstVal(mkTuple(List.map specialToGeneral copiedArgs)) of
Constnt(w, _) => w
| _ => raise InternalError "makeConstVal: Not constant"
(* Call the function. If it raises an exception (e.g. divide
by zero) generate code to raise the exception at run-time.
We don't do that for Interrupt which we assume only arises
by user interaction and not as a result of executing the
code so we reraise that exception immediately. *)
val ioOp : int -> machineWord =
RunCall.run_call1 RuntimeCalls.POLY_SYS_io_operation
(* We need callcode_tupled here because we pass the arguments as
a tuple but the RTS functions we're calling expect arguments in
registers or on the stack. *)
val call: (address * machineWord) -> machineWord =
RunCall.run_call1 RuntimeCalls.POLY_SYS_callcode_tupled
val code =
Constnt (call(toAddress(ioOp rtsCallNo), argVector), [])
handle exn as Interrupt => raise exn (* Must not handle this *)
| exn => Raise (Constnt(toMachineWord exn, []))
in
(code, [], EnvSpecNone)
end
(* We can optimise certain built-ins in combination with others.
If we have POLY_SYS_unsigned_to_longword combined with POLY_SYS_longword_to_tagged
we can eliminate both. This can occur in cases such as Word.fromLargeWord o Word8.toLargeWord.
If we have POLY_SYS_cmem_load_X functions where the address is formed by adding
a constant to an address we can move the addend into the load instruction. *)
(* TODO: Could we also have POLY_SYS_signed_to_longword here? *)
else if rtsCallNo = POLY_SYS_longword_to_tagged andalso
(case copiedArgs of [(_, _, EnvSpecBuiltIn(r, _))] => r = POLY_SYS_unsigned_to_longword | _ => false)
then
let
val arg = (* Get the argument of the argument. *)
case copiedArgs of
[(_, _, EnvSpecBuiltIn(_, [arg]))] => arg
| _ => raise Bind
in
(arg, [], EnvSpecNone)
end
else if (rtsCallNo = POLY_SYS_cmem_load_8 orelse rtsCallNo = POLY_SYS_cmem_load_16 orelse
rtsCallNo = POLY_SYS_cmem_load_32 orelse rtsCallNo = POLY_SYS_cmem_load_64 orelse
rtsCallNo = POLY_SYS_cmem_store_8 orelse rtsCallNo = POLY_SYS_cmem_store_16 orelse
rtsCallNo = POLY_SYS_cmem_store_32 orelse rtsCallNo = POLY_SYS_cmem_store_64) andalso
(* Check if the first argument is an addition. The second should be a constant.
If the addend is a constant it will be a large integer i.e. the address of a
byte segment. *)
let
(* Check that we have a valid value to add to a large word.
The cmem_load/store values sign extend their arguments so we
use toLargeWordX here. *)
fun isAcceptableOffset c =
if isShort c (* Shouldn't occur. *) then false
else
let
val l: LargeWord.word = RunCall.unsafeCast c
in
Word.toLargeWordX(Word.fromLargeWord l) = l
end
in
case copiedArgs of (_, _, EnvSpecBuiltIn(r, args)) :: (Constnt _, _, _) :: _ =>
r = POLY_SYS_plus_longword andalso
(case args of
(* If they were both constants we'd have folded them. *)
[Constnt(c, _), _] => isAcceptableOffset c
| [_, Constnt(c, _)] => isAcceptableOffset c
| _ => false)
| _ => false
end
then
let
(* We have a load or store with an added constant. *)
val (base, offset) =
case copiedArgs of
(_, _, EnvSpecBuiltIn(_, [Constnt(offset, _), base])) :: (Constnt(existing, _), _, _) :: _ =>
(base, Word.fromLargeWord(RunCall.unsafeCast offset) + toShort existing)
| (_, _, EnvSpecBuiltIn(_, [base, Constnt(offset, _)])) :: (Constnt(existing, _), _, _) :: _ =>
(base, Word.fromLargeWord(RunCall.unsafeCast offset) + toShort existing)
| _ => raise Bind
val newDecs = List.map(fn h => makeNewDecl(h, context)) copiedArgs
val genArgs = List.map(fn ((g, _), _) => envGeneralToCodetree g) newDecs
val preDecs = List.foldr (op @) [] (List.map #2 newDecs)
val gen = BuiltIn(rtsCallNo, base :: Constnt(toMachineWord offset, []) :: List.drop(genArgs, 2))
in
(gen, preDecs, EnvSpecNone)
end
else
let
(* Create bindings for the arguments. This ensures that any side-effects in the
evaluation of the arguments are performed in the correct order even if the
application of the built-in itself is applicative. The new arguments are
either loads or constants which are applicative. *)
val newDecs = List.map(fn h => makeNewDecl(h, context)) copiedArgs
val genArgs = List.map(fn ((g, _), _) => envGeneralToCodetree g) newDecs
val preDecs = List.foldr (op @) [] (List.map #2 newDecs)
val gen = BuiltIn(rtsCallNo, genArgs)
val spec =
if reorderable gen
then EnvSpecBuiltIn(rtsCallNo, genArgs)
else EnvSpecNone
in
(gen, preDecs, spec)
end
end
*)
and simpIfThenElse(condTest, condThen, condElse, context, tailDecs) =
(* If-then-else. The main simplification is if we have constants in the
test or in both the arms. *)
let
val word0 = toMachineWord 0
val word1 = toMachineWord 1
val False = word0
val True = word1
in
case simpSpecial(condTest, context, tailDecs) of
(* If the test is a constant we can return the appropriate arm and
ignore the other. *)
(Constnt(testResult, _), bindings, _) =>
let
val arm =
if wordEq (testResult, False) (* false - return else-part *)
then condElse (* if false then x else y == y *)
(* if true then x else y == x *)
else condThen
in
simpSpecial(arm, context, bindings)
end
| (testGen, testbindings as RevList testBList, _) =>
let
fun mkNot arg = Unary{oper=BuiltIns.NotBoolean, arg1=arg}
in
case (simpSpecial(condThen, context, RevList[]), simpSpecial(condElse, context, RevList[])) of
((thenConst as Constnt(thenVal, _), RevList [], _), (elseConst as Constnt(elseVal, _), RevList [], _)) =>
(* Both arms return constants. This situation can arise in
situations where we have andalso/orelse where the second
"argument" has been reduced to a constant. *)
if wordEq (thenVal, elseVal)
then (* If the test has a side-effect we have to do it otherwise we can remove
it. If we're in a nested andalso/orelse that may mean we can simplify
the next level out. *)
(thenConst (* or elseConst *),
if sideEffectFree testGen then testbindings else RevList(NullBinding testGen :: testBList),
EnvSpecNone)
(* if x then true else false == x *)
else if wordEq (thenVal, True) andalso wordEq (elseVal, False)
then (testGen, testbindings, EnvSpecNone)
(* if x then false else true == not x *)
else if wordEq (thenVal, False) andalso wordEq (elseVal, True)
then (mkNot testGen, testbindings, EnvSpecNone)
else (* can't optimise *) (Cond (testGen, thenConst, elseConst), testbindings, EnvSpecNone)
(* Rewrite "if x then raise y else z" into "(if x then raise y else (); z)"
The advantage is that any tuples in z are lifted outside the "if". *)
| (thenPart as (Raise _, _:revlist, _), (elsePart, RevList elseBindings, elseSpec)) =>
(* then-part raises an exception *)
(elsePart, RevList(elseBindings @ NullBinding(Cond (testGen, specialToGeneral thenPart, CodeZero)) :: testBList), elseSpec)
| ((thenPart, RevList thenBindings, thenSpec), elsePart as (Raise _, _, _)) =>
(* else part raises an exception *)
(thenPart, RevList(thenBindings @ NullBinding(Cond (testGen, CodeZero, specialToGeneral elsePart)) :: testBList), thenSpec)
| (thenPart, elsePart) => (Cond (testGen, specialToGeneral thenPart, specialToGeneral elsePart), testbindings, EnvSpecNone)
end
end
(* Tuple construction. Tuples are also used for datatypes and structures (i.e. modules) *)
and simpTuple(entries, isVariant, context, tailDecs) =
(* The main reason for optimising record constructions is that they
appear as tuples in ML. We try to ensure that loads from locally
created tuples do not involve indirecting from the tuple but can
get the value which was put into the tuple directly. If that is
successful we may find that the tuple is never used directly so
the use-count mechanism will ensure it is never created. *)
let
val tupleSize = List.length entries
(* The record construction is treated as a block of local
declarations so that any expressions which might have side-effects
are done exactly once. *)
(* We thread the bindings through here to avoid having to append the result. *)
fun processFields([], bindings) = ([], bindings)
| processFields(field::fields, bindings) =
let
val (thisField, newBindings) =
makeNewDecl(simpSpecial(field, context, bindings), context)
val (otherFields, resBindings) = processFields(fields, newBindings)
in
(thisField::otherFields, resBindings)
end
val (fieldEntries, allBindings) = processFields(entries, tailDecs)
(* Make sure we include any inline code in the result. If this tuple is
being "exported" we will lose the "special" part. *)
fun envResToCodetree(EnvGenLoad(ext), _) = Extract ext
| envResToCodetree(EnvGenConst(w, p), s) = Constnt(w, setInline s p)
val generalFields = List.map envResToCodetree fieldEntries
val genRec =
if List.all isConstnt generalFields
then makeConstVal(Tuple{ fields = generalFields, isVariant = isVariant })
else Tuple{ fields = generalFields, isVariant = isVariant }
(* Get the field from the tuple if possible. If it's a variant, though,
we may try to get an invalid field. See Tests/Succeed/Test167. *)
fun getField addr =
if addr < tupleSize
then List.nth(fieldEntries, addr)
else if isVariant
then (EnvGenConst(toMachineWord 0, []), EnvSpecNone)
else raise InternalError "getField - invalid index"
val specRec = EnvSpecTuple(tupleSize, getField)
in
(genRec, allBindings, specRec)
end
and simpFieldSelect(base, offset, isVariant, context, tailDecs) =
let
val (genSource, decSource, specSource) = simpSpecial(base, context, tailDecs)
in
(* Try to do the selection now if possible. *)
case specSource of
EnvSpecTuple(_, recEnv) =>
let
(* The "special" entry we've found is a tuple. That means that
we are taking a field from a tuple we made earlier and so we
should be able to get the original code we used when we made
the tuple. That might mean the tuple is never used and
we can optimise away the construction of it completely. *)
val (newGen, newSpec) = recEnv offset
in
(envGeneralToCodetree newGen, decSource, newSpec)
end
| _ => (* No special case possible. If the tuple is a constant mkInd/mkVarField
will do the selection immediately. *)
((if isVariant then mkVarField else mkInd) (offset, genSource), decSource, EnvSpecNone)
end
(* Process a SetContainer. Unlike the other simpXXX functions this is called
after the arguments have been processed. We try to push the SetContainer
to the leaves of the expression. *)
and simpPostSetContainer(container, Tuple{fields, ...}, RevList tupleDecs, filter) =
let
(* Apply the filter now. *)
fun select(n, hd::tl) =
if n >= BoolVector.length filter
then []
else if BoolVector.sub(filter, n) then hd :: select(n+1, tl) else select(n+1, tl)
| select(_, []) = []
val selected = select(0, fields)
(* Frequently we will have produced an indirection from the same base. These
will all be bindings so we have to reverse the process. *)
fun findOriginal a =
List.find(fn Declar{addr, ...} => addr = a | _ => false) tupleDecs
fun checkFields(last, Extract(LoadLocal a) :: tl) =
(
case findOriginal a of
SOME(Declar{value=Indirect{base=Extract ext, isVariant=false, offset, ...}, ...}) =>
(
case last of
NONE => checkFields(SOME(ext, [offset]), tl)
| SOME(lastExt, offsets) =>
(* It has to be the same base and with increasing offsets
(no reordering). *)
if lastExt = ext andalso offset > hd offsets
then checkFields(SOME(ext, offset :: offsets), tl)
else NONE
)
| _ => NONE
)
| checkFields(_, _ :: _) = NONE
| checkFields(last, []) = last
fun fieldsToFilter fields =
let
val maxDest = List.foldl Int.max ~1 fields
val filterArray = BoolArray.array(maxDest+1, false)
val _ = List.app(fn n => BoolArray.update(filterArray, n, true)) fields
in
BoolArray.vector filterArray
end
in
case checkFields(NONE, selected) of
SOME (ext, fields) =>
let
val filter = fieldsToFilter fields
in
case ext of
LoadLocal localAddr =>
let
(* Is this a container? If it is and we're copying all of it we can
replace the inner container with a binding to the outer.
We have to be careful because it is possible that we may create
and set the inner container, then have some bindings that do some
side-effects with the inner container before then copying it to
the outer container. For simplicity and to maintain the condition
that the container is set in the tails we only merge the containers
if it's at the end (after any "filtering"). *)
val allSet = BoolVector.foldl (fn (a, t) => a andalso t) true filter
fun findContainer [] = NONE
| findContainer (Declar{value, ...} :: tl) =
if sideEffectFree value then findContainer tl else NONE
| findContainer (Container{addr, size, setter, ...} :: tl) =
if localAddr = addr andalso size = BoolVector.length filter andalso allSet
then SOME (setter, tl)
else NONE
| findContainer _ = NONE
in
case findContainer tupleDecs of
SOME (setter, decs) =>
(* Put in a binding for the inner container address so the
setter will set the outer container. *)
mkEnv(List.rev(Declar{addr=localAddr, value=container, use=[]} :: decs), setter)
| NONE =>
mkEnv(List.rev tupleDecs,
SetContainer{container=container, tuple = Extract ext, filter=filter})
end
| _ =>
mkEnv(List.rev tupleDecs,
SetContainer{container=container, tuple = Extract ext, filter=filter})
end
| NONE =>
mkEnv(List.rev tupleDecs,
SetContainer{container=container, tuple = mkTuple selected,
filter=BoolVector.tabulate(List.length selected, fn _ => true)})
end
| simpPostSetContainer(container, Cond(ifpt, thenpt, elsept), RevList tupleDecs, filter) =
mkEnv(List.rev tupleDecs,
Cond(ifpt,
simpPostSetContainer(container, thenpt, RevList [], filter),
simpPostSetContainer(container, elsept, RevList [], filter)))
| simpPostSetContainer(container, Newenv(envDecs, envExp), RevList tupleDecs, filter) =
simpPostSetContainer(container, envExp, RevList(List.rev envDecs @ tupleDecs), filter)
| simpPostSetContainer(container, BeginLoop{loop, arguments}, RevList tupleDecs, filter) =
mkEnv(List.rev tupleDecs,
BeginLoop{loop = simpPostSetContainer(container, loop, RevList [], filter),
arguments=arguments})
| simpPostSetContainer(_, loop as Loop _, RevList tupleDecs, _) =
(* If we are inside a BeginLoop we only set the container on leaves
that exit the loop. Loop entries will go back to the BeginLoop
so we don't add SetContainer nodes. *)
mkEnv(List.rev tupleDecs, loop)
| simpPostSetContainer(container, Handle{exp, handler, exPacketAddr}, RevList tupleDecs, filter) =
mkEnv(List.rev tupleDecs,
Handle{
exp = simpPostSetContainer(container, exp, RevList [], filter),
handler = simpPostSetContainer(container, handler, RevList [], filter),
exPacketAddr = exPacketAddr})
| simpPostSetContainer(container, tupleGen, RevList tupleDecs, filter) =
mkEnv(List.rev tupleDecs, mkSetContainer(container, tupleGen, filter))
fun simplifier(c, numLocals) =
let
val localAddressAllocator = ref 0
val addrTab = Array.array(numLocals, NONE)
fun lookupAddr (LoadLocal addr) = valOf(Array.sub(addrTab, addr))
| lookupAddr (env as LoadArgument _) = (EnvGenLoad env, EnvSpecNone)
| lookupAddr (env as LoadRecursive) = (EnvGenLoad env, EnvSpecNone)
| lookupAddr (LoadClosure _) = raise InternalError "top level reached in simplifier"
and enterAddr (addr, tab) = Array.update (addrTab, addr, SOME tab)
fun mkAddr () =
! localAddressAllocator before localAddressAllocator := ! localAddressAllocator + 1
val reprocess = ref false
val (gen, RevList bindings, spec) =
simpSpecial(c,
{lookupAddr = lookupAddr, enterAddr = enterAddr, nextAddress = mkAddr, reprocess = reprocess}, RevList[])
in
((gen, List.rev bindings, spec), ! localAddressAllocator, !reprocess)
end
fun specialToGeneral(g, b as _ :: _, s) = mkEnv(b, specialToGeneral(g, [], s))
| specialToGeneral(Constnt(w, p), [], s) = Constnt(w, setInline s p)
| specialToGeneral(g, [], _) = g
structure Sharing =
struct
type codetree = codetree
and codeBinding = codeBinding
and envSpecial = envSpecial
end
end;
|