1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
(*
Copyright (c) 2016-17 David C.J. Matthews
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
functor X86FOREIGNCALL(
structure X86CODE: X86CODESIG
structure X86OPTIMISE:
sig
type operation
type code
type operations = operation list
type address = Address.address
(* Optimise and code-generate. *)
val generateCode: {code: code, ops: operations, labelCount: int} -> address
structure Sharing:
sig
type operation = operation
type code = code
end
end
structure DEBUG: DEBUGSIG
sharing X86CODE.Sharing = X86OPTIMISE.Sharing
): FOREIGNCALLSIG
=
struct
open X86CODE
open Address
exception InternalError = Misc.InternalError
val pushR = PushToStack o RegisterArg
fun moveRR{source, output} = MoveToRegister{source=RegisterArg source, output=output}
fun loadMemory(reg, base, offset) =
MoveToRegister{source=MemoryArg{base=base, offset=offset, index=NoIndex}, output=reg}
and storeMemory(reg, base, offset) =
StoreRegToMemory{toStore=reg, address={base=base, offset=offset, index=NoIndex}}
fun createProfileObject _ (*functionName*) =
let
(* The profile object is a single mutable with the F_bytes bit set. *)
open Address
val profileObject = RunCall.allocateByteMemory(0w1, Word.fromLargeWord(Word8.toLargeWord(Word8.orb(F_mutable, F_bytes))))
fun clear 0w0 = ()
| clear i = (assignByte(profileObject, i-0w1, 0w0); clear (i-0w1))
val () = clear(Word.fromInt wordSize)
in
toMachineWord profileObject
end
val makeEntryPoint: string -> machineWord = RunCall.rtsCallFull1 "PolyCreateEntryPointObject"
datatype abi = X86_32 | X64Win | X64Unix
local
(* Get the ABI. On 64-bit Windows and Unix use different calling conventions. *)
val getABICall: unit -> int = RunCall.rtsCallFast0 "PolyGetABI"
in
fun getABI() =
case getABICall() of
0 => X86_32
| 1 => X64Unix
| 2 => X64Win
| n => raise InternalError ("Unknown ABI type " ^ Int.toString n)
end
val noException = 1
(* Full RTS call version. An extra argument is passed that contains the thread ID.
This allows the taskData object to be found which is needed if the code allocates
any ML memory or raises an exception. It also saves the stack and heap pointers
in case of a GC. *)
fun rtsCallFull (functionName, nArgs (* Not counting the thread ID *), debugSwitches) =
let
val entryPointAddr = makeEntryPoint functionName
(* Get the ABI. On 64-bit Windows and Unix use different calling conventions. *)
val abi = getABI()
(* Branch to check for exception. *)
val exLabel = Label{labelNo=0} (* There's just one label in this function. *)
(* Unix X64. The first six arguments are in rdi, rsi, rdx, rcx, r8, r9.
The rest are on the stack.
Windows X64. The first four arguments are in rcx, rdx, r8 and r9. The rest are
on the stack. The caller must ensure the stack is aligned on 16-byte boundary
and must allocate 32-byte save area for the register args.
rbx, rbp, rdi, rsi, rsp, r12-r15 are saved by the called function.
X86/32. Arguments are pushed to the stack.
ebx, edi, esi, ebp and esp are saved by the called function.
We use esi to hold the argument data pointer and edi to save the ML stack pointer
Our ML conventions use eax, ebx for the first two arguments in X86/32 and
rax, ebx, r8, r9, r10 for the first five arguments in X86/64.
*)
(* The ML stack pointer needs to be
loaded into a register that will be saved by the callee.
The entry point doesn't need to be but must be a register
that isn't used for an argument. *)
(* We have to save the stack pointer to the argument structure but
we still need a register if we have args on the stack. *)
val (entryPtrReg, saveMLStackPtrReg) =
if isX64 then (r11, r13) else (ecx, edi)
val stackSpace =
case abi of
X64Unix => memRegSize
| X64Win => memRegSize + 32 (* Requires 32-byte save area. *)
| X86_32 =>
let
(* GCC likes to keep the stack on a 16-byte alignment. *)
val argSpace = (nArgs+1)*4
val align = argSpace mod 16
in
(* Add sufficient space so that esp will be 16-byte aligned *)
if align = 0
then memRegSize
else memRegSize + 16 - align
end
val code =
[
MoveToRegister{source=AddressConstArg entryPointAddr, output=entryPtrReg}, (* Load the entry point ref. *)
loadMemory(entryPtrReg, entryPtrReg, 0)(* Load its value. *)
] @
(
(* Save heap ptr. This is in r15 in X86/64 *)
if isX64 then [storeMemory(r15, ebp, memRegLocalMPointer)] (* Save heap ptr *)
else []
) @
[
moveRR{source=esp, output=saveMLStackPtrReg}, (* Save this in case it is needed for arguments. *)
(* Have to save the stack pointer to the arg structure in case we need to scan the stack for a GC. *)
storeMemory(esp, ebp, memRegStackPtr), (* Save ML stack and switch to C stack. *)
loadMemory(esp, ebp, memRegCStackPtr), (*moveRR{source=ebp, output=esp},*) (* Load the saved C stack pointer. *)
(* Set the stack pointer past the data on the stack. For Windows/64 add in a 32 byte save area *)
ArithToGenReg{opc=SUB, output=esp, source=NonAddressConstArg(LargeInt.fromInt stackSpace)}
] @
(
case (abi, nArgs) of (* Set the argument registers. *)
(X64Unix, 0) => [ loadMemory(edi, ebp, memRegThreadSelf) ]
| (X64Unix, 1) => [ loadMemory(edi, ebp, memRegThreadSelf), moveRR{source=eax, output=esi} ]
| (X64Unix, 2) =>
[ loadMemory(edi, ebp, memRegThreadSelf), moveRR{source=eax, output=esi}, moveRR{source=ebx, output=edx} ]
| (X64Unix, 3) =>
[ loadMemory(edi, ebp, memRegThreadSelf), moveRR{source=eax, output=esi}, moveRR{source=ebx, output=edx}, moveRR{source=r8, output=ecx} ]
| (X64Win, 0) => [ loadMemory(ecx, ebp, memRegThreadSelf) ]
| (X64Win, 1) => [ loadMemory(ecx, ebp, memRegThreadSelf), moveRR{source=eax, output=edx} ]
| (X64Win, 2) =>
[ loadMemory(ecx, ebp, memRegThreadSelf), moveRR{source=eax, output=edx}, moveRR{source=ebx, output=r8} ]
| (X64Win, 3) =>
[ loadMemory(ecx, ebp, memRegThreadSelf), moveRR{source=eax, output=edx}, moveRR{source=r8, output=r9}, moveRR{source=ebx, output=r8} ]
| (X86_32, 0) => [ PushToStack(MemoryArg{base=ebp, offset=memRegThreadSelf, index=NoIndex}) ]
| (X86_32, 1) => [ pushR eax, PushToStack(MemoryArg{base=ebp, offset=memRegThreadSelf, index=NoIndex}) ]
| (X86_32, 2) => [ pushR ebx, pushR eax, PushToStack(MemoryArg{base=ebp, offset=memRegThreadSelf, index=NoIndex}) ]
| (X86_32, 3) =>
[
(* We need to move an argument from the ML stack. *)
PushToStack(MemoryArg{base=saveMLStackPtrReg, offset=4, index=NoIndex}), pushR ebx, pushR eax,
PushToStack(MemoryArg{base=ebp, offset=memRegThreadSelf, index=NoIndex})
]
| _ => raise InternalError "rtsCall: Abi/argument count not implemented"
) @
[
CallFunction(DirectReg entryPtrReg), (* Call the function *)
moveRR{source=saveMLStackPtrReg, output=esp} (* Restore the ML stack pointer *)
] @
(
if isX64 then [loadMemory(r15, ebp, memRegLocalMPointer) ] (* Copy back the heap ptr *)
else []
) @
[
ArithMemConst{opc=CMP, offset=memRegExceptionPacket, base=ebp, source=noException},
ConditionalBranch{test=JNE, predict=PredictNotTaken, label=exLabel},
(* Remove any arguments that have been passed on the stack. *)
ReturnFromFunction(Int.max(case abi of X86_32 => nArgs-2 | _ => nArgs-5, 0)),
JumpLabel exLabel, (* else raise the exception *)
loadMemory(eax, ebp, memRegExceptionPacket),
RaiseException
]
val profileObject = createProfileObject functionName
val newCode = codeCreate (functionName, profileObject, debugSwitches)
val createdCode = X86OPTIMISE.generateCode{code=newCode, labelCount=1(*One label.*), ops=code}
(* Have to create a closure for this *)
open Address
val closure = allocWordData(0w1, Word8.orb (F_mutable, F_words), toMachineWord 0w0)
in
assignWord(closure, 0w0, toMachineWord createdCode);
lock closure;
closure
end
(* This is a quicker version but can only be used if the RTS entry does
not allocated ML memory, raise an exception or need to suspend the thread. *)
fun rtsCallFast (functionName, nArgs, debugSwitches) =
let
val entryPointAddr = makeEntryPoint functionName
(* Get the ABI. On 64-bit Windows and Unix use different calling conventions. *)
val abi = getABI()
val (entryPtrReg, saveMLStackPtrReg) =
if isX64 then (r11, r13) else (ecx, edi)
val stackSpace =
case abi of
X64Unix => memRegSize
| X64Win => memRegSize + 32 (* Requires 32-byte save area. *)
| X86_32 =>
let
(* GCC likes to keep the stack on a 16-byte alignment. *)
val argSpace = nArgs*4
val align = argSpace mod 16
in
(* Add sufficient space so that esp will be 16-byte aligned *)
if align = 0
then memRegSize
else memRegSize + 16 - align
end
val code =
[
MoveToRegister{source=AddressConstArg entryPointAddr, output=entryPtrReg}, (* Load the entry point ref. *)
loadMemory(entryPtrReg, entryPtrReg, 0),(* Load its value. *)
moveRR{source=esp, output=saveMLStackPtrReg}, (* Save ML stack and switch to C stack. *)
loadMemory(esp, ebp, memRegCStackPtr),
(* Set the stack pointer past the data on the stack. For Windows/64 add in a 32 byte save area *)
ArithToGenReg{opc=SUB, output=esp, source=NonAddressConstArg(LargeInt.fromInt stackSpace)}
] @
(
case (abi, nArgs) of (* Set the argument registers. *)
(_, 0) => []
| (X64Unix, 1) => [ moveRR{source=eax, output=edi} ]
| (X64Unix, 2) =>
[ moveRR{source=eax, output=edi}, moveRR{source=ebx, output=esi} ]
| (X64Unix, 3) =>
[ moveRR{source=eax, output=edi}, moveRR{source=ebx, output=esi}, moveRR{source=r8, output=edx} ]
| (X64Unix, 4) =>
[ moveRR{source=eax, output=edi}, moveRR{source=ebx, output=esi}, moveRR{source=r8, output=edx}, moveRR{source=r9, output=ecx} ]
| (X64Win, 1) => [ moveRR{source=eax, output=ecx} ]
| (X64Win, 2) => [ moveRR{source=eax, output=ecx}, moveRR{source=ebx, output=edx} ]
| (X64Win, 3) =>
[ moveRR{source=eax, output=ecx}, moveRR{source=ebx, output=edx} (* Arg3 is already in r8. *) ]
| (X64Win, 4) =>
[ moveRR{source=eax, output=ecx}, moveRR{source=ebx, output=edx} (* Arg3 is already in r8 and arg4 in r9. *) ]
| (X86_32, 1) => [ pushR eax ]
| (X86_32, 2) => [ pushR ebx, pushR eax ]
| (X86_32, 3) =>
[
(* We need to move an argument from the ML stack. *)
loadMemory(edx, saveMLStackPtrReg, 4), pushR edx, pushR ebx, pushR eax
]
| (X86_32, 4) =>
[
(* We need to move an arguments from the ML stack. *)
loadMemory(edx, saveMLStackPtrReg, 4), pushR edx,
loadMemory(edx, saveMLStackPtrReg, 8), pushR edx,
pushR ebx, pushR eax
]
| _ => raise InternalError "rtsCall: Abi/argument count not implemented"
) @
[
CallFunction(DirectReg entryPtrReg), (* Call the function *)
moveRR{source=saveMLStackPtrReg, output=esp}, (* Restore the ML stack pointer *)
(* Remove any arguments that have been passed on the stack. *)
ReturnFromFunction(Int.max(case abi of X86_32 => nArgs-2 | _ => nArgs-5, 0))
]
val profileObject = createProfileObject functionName
val newCode = codeCreate (functionName, profileObject, debugSwitches)
val createdCode = X86OPTIMISE.generateCode{code=newCode, labelCount=0, ops=code}
(* Have to create a closure for this *)
open Address
val closure = allocWordData(0w1, Word8.orb (F_mutable, F_words), toMachineWord 0w0)
in
assignWord(closure, 0w0, toMachineWord createdCode);
lock closure;
closure
end
(* RTS call with one double-precision floating point argument and a floating point result.
First version. This will probably be merged into the above code in due
course.
Currently ML always uses boxed values for floats. *)
fun rtsCallFastFloattoFloat (functionName, debugSwitches) =
let
val entryPointAddr = makeEntryPoint functionName
(* Get the ABI. On 64-bit Windows and Unix use different calling conventions. *)
val abi = getABI()
val (entryPtrReg, saveMLStackPtrReg) =
if isX64 then (r11, r13) else (ecx, edi)
val stackSpace =
case abi of
X64Unix => memRegSize
| X64Win => memRegSize + 32 (* Requires 32-byte save area. *)
| X86_32 =>
let
(* GCC likes to keep the stack on a 16-byte alignment. *)
val argSpace = 8 (*nArgs*4*) (* One "double" value. *)
val align = argSpace mod 16
in
(* Add sufficient space so that esp will be 16-byte aligned *)
if align = 0
then memRegSize
else memRegSize + 16 - align
end
(* Constants for a box for a float *)
val fpBoxSize = 8 div wordSize
val fpBoxLengthWord32 = IntInf.orb(IntInf.fromInt fpBoxSize, IntInf.<<(Word8.toLargeInt F_bytes, 0w24))
val code =
[
MoveToRegister{source=AddressConstArg entryPointAddr, output=entryPtrReg}, (* Load the entry point ref. *)
loadMemory(entryPtrReg, entryPtrReg, 0),(* Load its value. *)
moveRR{source=esp, output=saveMLStackPtrReg}, (* Save ML stack and switch to C stack. *)
loadMemory(esp, ebp, memRegCStackPtr),
(* Set the stack pointer past the data on the stack. For Windows/64 add in a 32 byte save area *)
ArithToGenReg{opc=SUB, output=esp, source=NonAddressConstArg(LargeInt.fromInt stackSpace)}
] @
(
case abi of
(* X64 on both Windows and Unix take the first arg in xmm0. We need to
unbox the value pointed at by rax. *)
X64Unix => [ XMMArith { opc= SSE2Move, source=MemoryArg{base=eax, offset=0, index=NoIndex}, output=xmm0 } ]
| X64Win => [ XMMArith { opc= SSE2Move, source=MemoryArg{base=eax, offset=0, index=NoIndex}, output=xmm0 } ]
| X86_32 =>
(* eax contains the address of the value. This must be unboxed onto the stack. *)
[
FPLoadFromMemory{address={base=eax, offset=0, index=NoIndex}, precision=DoublePrecision},
ArithToGenReg{ opc=SUB, output=esp, source=NonAddressConstArg 8},
FPStoreToMemory{ address={base=esp, offset=0, index=NoIndex}, precision=DoublePrecision, andPop=true }
]
) @
[
CallFunction(DirectReg entryPtrReg), (* Call the function *)
moveRR{source=saveMLStackPtrReg, output=esp} (* Restore the ML stack pointer *)
] @
(
(* Put the floating point result into a box. *)
case abi of
X86_32 =>
[
AllocStore{size=fpBoxSize, output=eax, saveRegs=[]},
StoreConstToMemory{toStore=fpBoxLengthWord32,
address={offset= ~wordSize, base=eax, index=NoIndex}},
FPStoreToMemory{ address={base=eax, offset=0, index=NoIndex}, precision=DoublePrecision, andPop=true },
StoreInitialised
]
| _ => (* X64 The result is in xmm0 *)
[
AllocStore{size=fpBoxSize, output=eax, saveRegs=[]},
StoreConstToMemory{toStore=LargeInt.fromInt fpBoxSize,
address={offset= ~wordSize, base=eax, index=NoIndex}},
StoreNonWordConst{size=Size8Bit, toStore=Word8.toLargeInt F_bytes, address={offset= ~1, base=eax, index=NoIndex}},
XMMStoreToMemory { address={base=eax, offset=0, index=NoIndex}, precision=DoublePrecision, toStore=xmm0 },
StoreInitialised
]
) @
[
(* Remove any arguments that have been passed on the stack. *)
ReturnFromFunction 0
]
val profileObject = createProfileObject functionName
val newCode = codeCreate (functionName, profileObject, debugSwitches)
val createdCode = X86OPTIMISE.generateCode{code=newCode, labelCount=0, ops=code}
(* Have to create a closure for this *)
open Address
val closure = allocWordData(0w1, Word8.orb (F_mutable, F_words), toMachineWord 0w0)
in
assignWord(closure, 0w0, toMachineWord createdCode);
lock closure;
closure
end
(* RTS call with one general (i.e. ML word) argument and a floating point result.
This is used only to convert arbitrary precision values to floats.
In due course this will be merged into the other functions. *)
fun rtsCallFastGeneraltoFloat (functionName, debugSwitches) =
let
val entryPointAddr = makeEntryPoint functionName
(* Get the ABI. On 64-bit Windows and Unix use different calling conventions. *)
val abi = getABI()
val (entryPtrReg, saveMLStackPtrReg) =
if isX64 then (r11, r13) else (ecx, edi)
val stackSpace =
case abi of
X64Unix => memRegSize
| X64Win => memRegSize + 32 (* Requires 32-byte save area. *)
| X86_32 =>
let
(* GCC likes to keep the stack on a 16-byte alignment. *)
val argSpace = 8 (*nArgs*4*) (* One "double" value. *)
val align = argSpace mod 16
in
(* Add sufficient space so that esp will be 16-byte aligned *)
if align = 0
then memRegSize
else memRegSize + 16 - align
end
(* Constants for a box for a float *)
val fpBoxSize = 8 div wordSize
val fpBoxLengthWord32 = IntInf.orb(IntInf.fromInt fpBoxSize, IntInf.<<(Word8.toLargeInt F_bytes, 0w24))
val code =
[
MoveToRegister{source=AddressConstArg entryPointAddr, output=entryPtrReg}, (* Load the entry point ref. *)
loadMemory(entryPtrReg, entryPtrReg, 0),(* Load its value. *)
moveRR{source=esp, output=saveMLStackPtrReg}, (* Save ML stack and switch to C stack. *)
loadMemory(esp, ebp, memRegCStackPtr),
(* Set the stack pointer past the data on the stack. For Windows/64 add in a 32 byte save area *)
ArithToGenReg{opc=SUB, output=esp, source=NonAddressConstArg(LargeInt.fromInt stackSpace)}
] @
(
case abi of
X64Unix => [ moveRR{source=eax, output=edi} ]
| X64Win => [ moveRR{source=eax, output=ecx} ]
| X86_32 => [ pushR eax ]
) @
[
CallFunction(DirectReg entryPtrReg), (* Call the function *)
moveRR{source=saveMLStackPtrReg, output=esp} (* Restore the ML stack pointer *)
] @
(
(* Put the floating point result into a box. *)
case abi of
X86_32 =>
[
AllocStore{size=fpBoxSize, output=eax, saveRegs=[]},
StoreConstToMemory{toStore=fpBoxLengthWord32,
address={offset= ~wordSize, base=eax, index=NoIndex}},
FPStoreToMemory{ address={base=eax, offset=0, index=NoIndex}, precision=DoublePrecision, andPop=true },
StoreInitialised
]
| _ => (* X64 The result is in xmm0 *)
[
AllocStore{size=fpBoxSize, output=eax, saveRegs=[]},
StoreConstToMemory{toStore=LargeInt.fromInt fpBoxSize,
address={offset= ~wordSize, base=eax, index=NoIndex}},
StoreNonWordConst{size=Size8Bit, toStore=Word8.toLargeInt F_bytes, address={offset= ~1, base=eax, index=NoIndex}},
XMMStoreToMemory { address={base=eax, offset=0, index=NoIndex}, precision=DoublePrecision, toStore=xmm0 },
StoreInitialised
]
) @
[
(* Remove any arguments that have been passed on the stack. *)
ReturnFromFunction 0
]
val profileObject = createProfileObject functionName
val newCode = codeCreate (functionName, profileObject, debugSwitches)
val createdCode = X86OPTIMISE.generateCode{code=newCode, labelCount=0, ops=code}
(* Have to create a closure for this *)
open Address
val closure = allocWordData(0w1, Word8.orb (F_mutable, F_words), toMachineWord 0w0)
in
assignWord(closure, 0w0, toMachineWord createdCode);
lock closure;
closure
end
end;
|