1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
|
(*
Copyright David C. J. Matthews 1989, 2000, 2009-10, 2012-13, 2015-17
Based on original code:
Copyright (c) 2000
Cambridge University Technical Services Limited
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*
Title: Code Generator Routines.
Author: Dave Matthews, Cambridge University Computer Laboratory
Copyright Cambridge University 1989
*)
(* This module contains the code vector and operations to insert code into
it. Each procedure is compiled into a separate segment. Initially it is
compiled into a fixed size segment, and then copied into a segment of the
correct size at the end.
This module contains all the definitions of the X86 opCodes and registers.
It uses "codeseg" to create and operate on the segment itself.
*)
functor X86OUTPUTCODE (
structure DEBUG: DEBUGSIG
structure PRETTY: PRETTYSIG (* for compilerOutTag *)
) : X86CODESIG =
struct
open CODE_ARRAY
open DEBUG;
open Address
open Misc;
val isX64 = wordSize = 8 (* Generate X64 instructions if the word length is 8. *)
infix 5 << <<+ <<- >> >>+ >>- ~>> ~>>+ ~>>- (* Shift operators *)
infix 3 andb orb xorb andbL orbL xorbL andb8 orb8 xorb8
val op << = Word.<< and op >> = Word.>>
val (*op <<+ = LargeWord.<< and *) op >>+ = LargeWord.>>
val op <<- = Word8.<< and op >>- = Word8.>>
val op orb8 = Word8.orb
val op andb8 = Word8.andb
val op andb = Word.andb (* and op andbL = LargeWord.andb *)
and op orb = Word.orb
val wordToWord8 = Word8.fromLargeWord o Word.toLargeWord
(*and word8ToWord = Word.fromLargeWord o Word8.toLargeWord*)
val exp2_16 = 0x10000
val exp2_31 = 0x80000000: LargeInt.int
(* Returns true if this a 32-bit machine or if the constant is within 32-bits.
This is exported to the higher levels. N.B. The test for not isX64
avoids a significant overhead with arbitrary precision arithmetic on
X86/32. *)
fun is32bit v = not isX64 orelse ~exp2_31 <= v andalso v < exp2_31
(* tag a short constant *)
fun tag c = 2 * c + 1;
fun is8BitL (n: LargeInt.int) = ~ 0x80 <= n andalso n < 0x80
local
val shift =
if wordSize = 4
then 0w2
else if wordSize = 8
then 0w3
else raise InternalError "Invalid word size for x86_32 or x86+64"
in
fun wordsToBytes n = n << shift
and bytesToWords n = n >> shift
end
infix 6 addrPlus addrMinus;
(* All indexes into the code vector have type "addrs". This is really a legacy. *)
type addrs = Word.word
val addrZero = 0w0
(* This is the external label type used when constructing operations. *)
datatype label = Label of { labelNo: int }
(* Constants which are too large to go inline in the code are put in
a list and put at the end of the code. They are arranged so that
the garbage collector can find them and change them as necessary.
A reference to a constant is treated like a forward reference to a
label. *)
datatype code =
Code of
{
procName: string, (* Name of the procedure. *)
printAssemblyCode:bool, (* Whether to print the code when we finish. *)
printStream: string->unit, (* The stream to use *)
lowLevelOptimise: bool, (* Whether to do the low-level optimisation pass *)
profileObject : machineWord (* The profile object for this code. *)
}
(* Exported functions *)
fun lowLevelOptimise(Code{lowLevelOptimise, ...}) = lowLevelOptimise
(* EBP/RBP points to a structure that interfaces to the RTS. These are
offsets into that structure. *)
val memRegLocalMPointer = 0 (* Not used in 64-bit *)
and memRegHandlerRegister = wordSize
and memRegLocalMbottom = 2 * wordSize
and memRegStackLimit = 3 * wordSize
and memRegExceptionPacket = 4 * wordSize
and memRegCStackPtr = 6 * wordSize
and memRegThreadSelf = 7 * wordSize
and memRegStackPtr = 8 * wordSize
and memRegHeapOverflowCall = 10 * wordSize
and memRegStackOverflowCall = 11 * wordSize
and memRegStackOverflowCallEx = 12 * wordSize
(* This can probably be much smaller now. *)
and memRegSize = if isX64 then 144 else 56 (* Size of area on the stack. *)
(* create and initialise a code segment *)
fun codeCreate (name : string, profObj, parameters) : code =
let
val printStream = PRETTY.getSimplePrinter(parameters, [])
in
Code
{
procName = name,
printAssemblyCode = DEBUG.getParameter DEBUG.assemblyCodeTag parameters,
printStream = printStream,
lowLevelOptimise = DEBUG.getParameter DEBUG.lowlevelOptimiseTag parameters,
profileObject = profObj
}
end
(* Put 1 unsigned byte at a given offset in the segment. *)
fun set8u (b, addr, seg) = byteVecSet (seg, addr, b)
(* Put 4 bytes at a given offset in the segment. *)
(* b0 is the least significant byte. *)
fun set4Bytes (b3, b2, b1, b0, addr, seg) =
let
val a = addr;
in
(* Little-endian *)
byteVecSet (seg, a, b0);
byteVecSet (seg, a + 0w1, b1);
byteVecSet (seg, a + 0w2, b2);
byteVecSet (seg, a + 0w3, b3)
end;
(* Put 1 unsigned word at a given offset in the segment. *)
fun set32u (ival: LargeWord.word, addr, seg) : unit =
let
val b3 = Word8.fromLargeWord (ival >>+ 0w24)
val b2 = Word8.fromLargeWord (ival >>+ 0w16)
val b1 = Word8.fromLargeWord (ival >>+ 0w8)
val b0 = Word8.fromLargeWord ival
in
set4Bytes (b3, b2, b1, b0, addr, seg)
end
(* Put 1 signed word at a given offset in the segment. *)
fun set32s (ival: LargeInt.int, addr, seg) = set32u(LargeWord.fromLargeInt ival, addr, seg)
fun byteSigned ival =
if ~0x80 <= ival andalso ival < 0x80
then Word8.fromInt ival
else raise InternalError "byteSigned: invalid byte"
(* Convert a large-word value to a little-endian byte sequence. *)
fun largeWordToBytes(_, 0) = []
| largeWordToBytes(ival: LargeWord.word, n) =
Word8.fromLargeWord ival :: largeWordToBytes(ival >>+ 0w8, n-1)
fun word32Unsigned(ival: LargeWord.word) = largeWordToBytes(ival, 4)
fun int32Signed(ival: LargeInt.int) =
if is32bit ival
then word32Unsigned(LargeWord.fromLargeInt ival)
else raise InternalError "int32Signed: invalid word"
(* wordUnsigned is 8 bytes on 64-bits or 4-bytes on 32-bits. *)
fun wordUnsigned(ival: LargeWord.word) = largeWordToBytes(ival, wordSize)
(* Registers. *)
datatype genReg = GeneralReg of Word8.word * bool
and fpReg = FloatingPtReg of Word8.word
and xmmReg = SSE2Reg of Word8.word
datatype reg =
GenReg of genReg
| FPReg of fpReg
| XMMReg of xmmReg
(* These are the real registers we have. The AMD extension encodes the
additional registers through the REX prefix. *)
val eax = GeneralReg (0w0, false)
val ecx = GeneralReg (0w1, false)
val edx = GeneralReg (0w2, false)
val ebx = GeneralReg (0w3, false)
val esp = GeneralReg (0w4, false)
val ebp = GeneralReg (0w5, false)
val esi = GeneralReg (0w6, false)
val edi = GeneralReg (0w7, false)
val r8 = GeneralReg (0w0, true)
val r9 = GeneralReg (0w1, true)
val r10 = GeneralReg (0w2, true)
val r11 = GeneralReg (0w3, true)
val r12 = GeneralReg (0w4, true)
val r13 = GeneralReg (0w5, true)
val r14 = GeneralReg (0w6, true)
val r15 = GeneralReg (0w7, true)
(* Floating point "registers". Actually entries on the floating point stack.
The X86 has a floating point stack with eight entries. *)
val fp0 = FloatingPtReg 0w0
and fp1 = FloatingPtReg 0w1
and fp2 = FloatingPtReg 0w2
and fp3 = FloatingPtReg 0w3
and fp4 = FloatingPtReg 0w4
and fp5 = FloatingPtReg 0w5
and fp6 = FloatingPtReg 0w6
and fp7 = FloatingPtReg 0w7
(* SSE2 Registers. These are used for floating point in 64-bity mode.
We only use XMM0-6 because the others are callee save and we don't
currently save them. *)
val xmm0 = SSE2Reg 0w0
and xmm1 = SSE2Reg 0w1
and xmm2 = SSE2Reg 0w2
and xmm3 = SSE2Reg 0w3
and xmm4 = SSE2Reg 0w4
and xmm5 = SSE2Reg 0w5
and xmm6 = SSE2Reg 0w6
val regClosure = edx (* Addr. of closure for fn. call goes here. *)
fun getReg (GeneralReg r) = r
fun mkReg n = GeneralReg n (* reg.up *)
(* The maximum size of the register vectors and masks. Although the
X86/32 has a floating point stack with eight entries it's much simpler
to treat it as having seven "real" registers. Items are pushed to the
stack and then stored and popped into the current location. It may be
possible to improve the code by some peephole optimisation. *)
val regs = 30 (* Include the X86/64 registers even if this is 32-bit. *)
(* The nth register (counting from 0). *)
(* Profiling shows that applying the constructors here creates a lot of
garbage. Create the entries once and then use vector indexing instead. *)
local
fun regN i =
if i < 8
then GenReg(GeneralReg(Word8.fromInt i, false))
else if i < 16
then GenReg(GeneralReg(Word8.fromInt(i-8), true))
else if i < 23
then FPReg(FloatingPtReg(Word8.fromInt(i-16)))
else XMMReg(SSE2Reg(Word8.fromInt(i-23)))
val regVec = Vector.tabulate(regs, regN)
in
fun regN i = Vector.sub(regVec, i) handle Subscript => raise InternalError "Bad register number"
end
(* The number of the register. *)
fun nReg(GenReg(GeneralReg(r, false))) = Word8.toInt r
| nReg(GenReg(GeneralReg(r, true))) = Word8.toInt r + 8
| nReg(FPReg(FloatingPtReg r)) = Word8.toInt r + 16
| nReg(XMMReg(SSE2Reg r)) = Word8.toInt r + 23
datatype opsize = SZByte | SZWord | SZDWord | SZQWord
val sz32_64 = if isX64 then SZQWord else SZDWord
fun genRegRepr(GeneralReg (0w0, false), SZByte) = "al"
| genRegRepr(GeneralReg (0w1, false), SZByte) = "cl"
| genRegRepr(GeneralReg (0w2, false), SZByte) = "dl"
| genRegRepr(GeneralReg (0w3, false), SZByte) = "bl"
| genRegRepr(GeneralReg (0w4, false), SZByte) = "ah" (* TODO: May be different if there's a rex code *)
| genRegRepr(GeneralReg (0w5, false), SZByte) = "ch"
| genRegRepr(GeneralReg (0w6, false), SZByte) = "dh"
| genRegRepr(GeneralReg (0w7, false), SZByte) = "bh"
| genRegRepr(GeneralReg (reg, true), SZByte) = "r" ^ Int.toString(Word8.toInt reg +8) ^ "b"
| genRegRepr(GeneralReg (0w0, false), SZDWord) = "eax"
| genRegRepr(GeneralReg (0w1, false), SZDWord) = "ecx"
| genRegRepr(GeneralReg (0w2, false), SZDWord) = "edx"
| genRegRepr(GeneralReg (0w3, false), SZDWord) = "ebx"
| genRegRepr(GeneralReg (0w4, false), SZDWord) = "esp"
| genRegRepr(GeneralReg (0w5, false), SZDWord) = "ebp"
| genRegRepr(GeneralReg (0w6, false), SZDWord) = "esi"
| genRegRepr(GeneralReg (0w7, false), SZDWord) = "edi"
| genRegRepr(GeneralReg (reg, true), SZDWord) = "r" ^ Int.toString(Word8.toInt reg +8) ^ "d"
| genRegRepr(GeneralReg (0w0, false), SZQWord) = "rax"
| genRegRepr(GeneralReg (0w1, false), SZQWord) = "rcx"
| genRegRepr(GeneralReg (0w2, false), SZQWord) = "rdx"
| genRegRepr(GeneralReg (0w3, false), SZQWord) = "rbx"
| genRegRepr(GeneralReg (0w4, false), SZQWord) = "rsp"
| genRegRepr(GeneralReg (0w5, false), SZQWord) = "rbp"
| genRegRepr(GeneralReg (0w6, false), SZQWord) = "rsi"
| genRegRepr(GeneralReg (0w7, false), SZQWord) = "rdi"
| genRegRepr(GeneralReg (reg, true), SZQWord) = "r" ^ Int.toString(Word8.toInt reg +8)
| genRegRepr(GeneralReg (0w0, false), SZWord) = "ax"
| genRegRepr(GeneralReg (0w1, false), SZWord) = "cx"
| genRegRepr(GeneralReg (0w2, false), SZWord) = "dx"
| genRegRepr(GeneralReg (0w3, false), SZWord) = "bx"
| genRegRepr(GeneralReg (0w4, false), SZWord) = "sp"
| genRegRepr(GeneralReg (0w5, false), SZWord) = "bp"
| genRegRepr(GeneralReg (0w6, false), SZWord) = "si"
| genRegRepr(GeneralReg (0w7, false), SZWord) = "di"
| genRegRepr(GeneralReg (reg, true), SZWord) = "r" ^ Int.toString(Word8.toInt reg +8) ^ "w"
| genRegRepr _ = "unknown" (* Suppress warning because word values are not exhaustive. *)
and fpRegRepr(FloatingPtReg n) = "fp" ^ Word8.toString n
and xmmRegRepr(SSE2Reg n) = "xmm" ^ Word8.toString n
fun regRepr(GenReg r) = genRegRepr (r, sz32_64)
| regRepr(FPReg r) = fpRegRepr r
| regRepr(XMMReg r) = xmmRegRepr r
(* Install a pretty printer. This is simply for when this code is being
run under the debugger. N.B. We need PolyML.PrettyString here. *)
val () = PolyML.addPrettyPrinter(fn _ => fn _ => fn r => PolyML.PrettyString(regRepr r))
datatype argType = ArgGeneral | ArgFP
structure RegSet =
struct
(* Implement a register set as a bit mask. *)
datatype regSet = RegSet of word
fun singleton r = RegSet(0w1 << Word.fromInt(nReg r))
fun regSetUnion(RegSet r1, RegSet r2) = RegSet(Word.orb(r1, r2))
fun regSetIntersect(RegSet r1, RegSet r2) = RegSet(Word.andb(r1, r2))
local
fun addReg(acc, n) =
if n = regs then acc else addReg(regSetUnion(acc, singleton(regN n)), n+1)
in
val allRegisters = addReg(RegSet 0w0, 0)
end
val noRegisters = RegSet 0w0
fun inSet(r, rs) = regSetIntersect(singleton r, rs) <> noRegisters
fun regSetMinus(RegSet s1, RegSet s2) = RegSet(Word.andb(s1, Word.notb s2))
val listToSet = List.foldl (fn(r, rs) => regSetUnion(singleton r, rs)) noRegisters
val generalRegisters = (* Registers checked by the GC. *)
if isX64
then listToSet(map GenReg [eax, ecx, edx, ebx, esi, edi, r8, r9, r10, r11, r12, r13, r14])
else listToSet(map GenReg [eax, ecx, edx, ebx, esi, edi])
(* The floating point stack. Note that this excludes one item so it is always
possible to load a value onto the top of the FP stack. *)
val floatingPtRegisters =
listToSet(map FPReg [fp0, fp1, fp2, fp3, fp4, fp5, fp6(*, fp7*)])
val sse2Registers =
listToSet(map XMMReg [xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6])
fun isAllRegs rs = rs = allRegisters
fun setToList (RegSet regSet)=
let
fun testBit (n, bit, res) =
if n = regs
then res
else testBit(n+1, bit << 0w1,
if (regSet andb bit) <> 0w0
then regN n :: res else res)
in
testBit(0, 0w1, [])
end
val cardinality = List.length o setToList
(* Choose one of the set. This chooses the least value which means that
the ordering of the registers is significant. This is a hot-spot
so is coded directly with the word operations. *)
fun oneOf(RegSet regSet) =
let
fun find(n, bit) =
if n = Word.fromInt regs then raise InternalError "oneOf: empty"
else if Word.andb(bit, regSet) <> 0w0 then n
else find(n+0w1, Word.<<(bit, 0w1))
in
regN(Word.toInt(find(0w0, 0w1)))
end
fun regSetRepr regSet =
let
val regs = setToList regSet
in
"[" ^ String.concatWith "," (List.map regRepr regs) ^ "]"
end
(* Install a pretty printer for when this code is being debugged. *)
val () = PolyML.addPrettyPrinter(fn _ => fn _ => fn r => PolyML.PrettyString(regSetRepr r))
end
open RegSet
datatype arithOp = ADD | OR (*|ADC | SBB*) | AND | SUB | XOR | CMP
fun arithOpToWord ADD = 0w0: Word8.word
| arithOpToWord OR = 0w1
| arithOpToWord AND = 0w4
| arithOpToWord SUB = 0w5
| arithOpToWord XOR = 0w6
| arithOpToWord CMP = 0w7
fun arithOpRepr ADD = "Add"
| arithOpRepr OR = "Or"
| arithOpRepr AND = "And"
| arithOpRepr SUB = "Sub"
| arithOpRepr XOR = "Xor"
| arithOpRepr CMP = "Cmp"
datatype shiftType = SHL | SHR | SAR
fun shiftTypeToWord SHL = 0w4: Word8.word
| shiftTypeToWord SHR = 0w5
| shiftTypeToWord SAR = 0w7
fun shiftTypeRepr SHL = "Shift Left Logical"
| shiftTypeRepr SHR = "Shift Right Logical"
| shiftTypeRepr SAR = "Shift Right Arithemetic"
datatype repOps = CMPSB | MOVSB | MOVSL | STOSB | STOSL
fun repOpsToWord CMPSB = 0wxa6: Word8.word
| repOpsToWord MOVSB = 0wxa4
| repOpsToWord MOVSL = 0wxa5
| repOpsToWord STOSB = 0wxaa
| repOpsToWord STOSL = 0wxab
fun repOpsRepr CMPSB = "CompareBytes"
| repOpsRepr MOVSB = "MoveBytes"
| repOpsRepr MOVSL = "MoveWords"
| repOpsRepr STOSB = "StoreBytes"
| repOpsRepr STOSL = "StoreWords"
datatype fpOps = FADD | FMUL | FCOM | FCOMP | FSUB | FSUBR | FDIV | FDIVR
fun fpOpToWord FADD = 0w0: Word8.word
| fpOpToWord FMUL = 0w1
| fpOpToWord FCOM = 0w2
| fpOpToWord FCOMP = 0w3
| fpOpToWord FSUB = 0w4
| fpOpToWord FSUBR = 0w5
| fpOpToWord FDIV = 0w6
| fpOpToWord FDIVR = 0w7
fun fpOpRepr FADD = "FPAdd"
| fpOpRepr FMUL = "FPMultiply"
| fpOpRepr FCOM = "FPCompare"
| fpOpRepr FCOMP = "FPCompareAndPop"
| fpOpRepr FSUB = "FPSubtract"
| fpOpRepr FSUBR = "FPReverseSubtract"
| fpOpRepr FDIV = "FPDivide"
| fpOpRepr FDIVR = "FPReverseDivide"
datatype fpUnaryOps = FCHS | FABS | FLD1 | FLDZ
fun fpUnaryToWords FCHS = {rm=0w0:Word8.word, nnn=0w4: Word8.word}
| fpUnaryToWords FABS = {rm=0w1, nnn=0w4}
| fpUnaryToWords FLD1 = {rm=0w0, nnn=0w5}
| fpUnaryToWords FLDZ = {rm=0w6, nnn=0w5}
fun fpUnaryRepr FCHS = "FPChangeSign"
| fpUnaryRepr FABS = "FPAbs"
| fpUnaryRepr FLD1 = "FPLoadOne"
| fpUnaryRepr FLDZ = "FPLoadZero"
datatype branchOps = JO | JNO | JE | JNE | JL | JGE | JLE | JG | JB | JNB | JNA | JA | JP | JNP
fun branchOpToWord JO = 0wx0: Word8.word
| branchOpToWord JNO = 0wx1
| branchOpToWord JB = 0wx2
| branchOpToWord JNB = 0wx3
| branchOpToWord JE = 0wx4
| branchOpToWord JNE = 0wx5
| branchOpToWord JNA = 0wx6
| branchOpToWord JA = 0wx7
| branchOpToWord JP = 0wxa
| branchOpToWord JNP = 0wxb
| branchOpToWord JL = 0wxc
| branchOpToWord JGE = 0wxd
| branchOpToWord JLE = 0wxe
| branchOpToWord JG = 0wxf
fun branchOpRepr JO = "JumpOverflow"
| branchOpRepr JNO = "JumpNotOverflow"
| branchOpRepr JE = "JumpEqual"
| branchOpRepr JNE = "JumpNotEqual"
| branchOpRepr JL = "JumpLess"
| branchOpRepr JGE = "JumpGreaterOrEqual"
| branchOpRepr JLE = "JumpLessOrEqual"
| branchOpRepr JG = "JumpGreater"
| branchOpRepr JB = "JumpBefore"
| branchOpRepr JNB= "JumpNotBefore"
| branchOpRepr JNA = "JumpNotAfter"
| branchOpRepr JA = "JumpAfter"
| branchOpRepr JP = "JumpParity"
| branchOpRepr JNP = "JumpNoParity"
datatype sse2Operations =
SSE2Move | SSE2Comp | SSE2Add | SSE2Sub | SSE2Mul | SSE2Div | SSE2Xor |
SSE2And | SSE2MoveSingle | SSE2DoubleToFloat
fun sse2OpRepr SSE2Move = "SSE2Move"
| sse2OpRepr SSE2Comp = "SSE2Comp"
| sse2OpRepr SSE2Add = "SSE2Add"
| sse2OpRepr SSE2Sub = "SSE2Sub"
| sse2OpRepr SSE2Mul = "SSE2Mul"
| sse2OpRepr SSE2Div = "SSE2Div"
| sse2OpRepr SSE2Xor = "SSE2Xor"
| sse2OpRepr SSE2And = "SSE2And"
| sse2OpRepr SSE2MoveSingle = "SSE2MoveSingle"
| sse2OpRepr SSE2DoubleToFloat = "SSE2DoubleToFloat"
(* Primary opCodes. N.B. only opCodes actually used are listed here.
If new instruction are added check they will be handled by the
run-time system in the event of trap. *)
datatype opCode =
Group1_8_A
| Group1_32_A
| Group1_8_a
| JMP_8
| JMP_32
| CALL_32
| MOVL_A_R
| MOVL_R_A
| MOVL_R_A16
| MOVL_R_A32
| MOVB_R_A of {forceRex: bool}
| PUSH_R of Word8.word
| POP_R of Word8.word
| Group5
| NOP
| LEAL
| MOVL_32_64_R of Word8.word
| MOVL_32_A
| MOVB_8_A
| POP_A
| RET
| RET_16
| CondJump of branchOps
| CondJump32 of branchOps
| Arith of arithOp * Word8.word
| Group3_A
| Group3_a
| Group2_8_A
| Group2_CL_A
| Group2_1_A
| PUSH_8
| PUSH_32
| TEST_ACC8
| LOCK_XADD
| FPESC of Word8.word
| XCHNG
| REP (* Rep prefix *)
| MOVZB (* Needs escape code. *)
| MOVZW (* Needs escape code. *)
| MOVL_A_R32 (* As MOVL_A_R but without RAX.W *)
| IMUL (* Needs escape code. *)
| SSE2StoreSingle (* movss with memory destination - needs escape sequence. *)
| SSE2StoreDouble (* movsd with memory destination - needs escape sequence. *)
| CQO_CDQ (* Sign extend before divide.. *)
| SSE2Ops of sse2Operations (* SSE2 instructions. *)
| CVTSI2SD
| HLT (* End of code marker. *)
| IMUL_C8
| IMUL_C32
fun opToInt Group1_8_A = 0wx83
| opToInt Group1_32_A = 0wx81
| opToInt Group1_8_a = 0wx80
| opToInt JMP_8 = 0wxeb
| opToInt JMP_32 = 0wxe9
| opToInt CALL_32 = 0wxe8
| opToInt MOVL_A_R = 0wx8b
| opToInt MOVL_R_A = 0wx89
| opToInt MOVL_R_A16 = 0wx89 (* Also has an OPSIZE prefix. *)
| opToInt MOVL_R_A32 = 0wx89 (* Suppresses the REX.W prefix. *)
| opToInt (MOVB_R_A _) = 0wx88
| opToInt (PUSH_R reg) = 0wx50 + reg
| opToInt (POP_R reg) = 0wx58 + reg
| opToInt Group5 = 0wxff
| opToInt NOP = 0wx90
| opToInt LEAL = 0wx8d
| opToInt (MOVL_32_64_R reg) = 0wxb8 + reg
| opToInt MOVL_32_A = 0wxc7
| opToInt MOVB_8_A = 0wxc6
| opToInt POP_A = 0wx8f
| opToInt RET = 0wxc3
| opToInt RET_16 = 0wxc2
| opToInt (CondJump opc) = 0wx70 + branchOpToWord opc
| opToInt (CondJump32 opc) = 0wx80 + branchOpToWord opc (* Needs 0F prefix *)
| opToInt (Arith (ao,dw)) = arithOpToWord ao * 0w8 + dw
| opToInt Group3_A = 0wxf7
| opToInt Group3_a = 0wxf6
| opToInt Group2_8_A = 0wxc1
| opToInt Group2_1_A = 0wxd1
| opToInt Group2_CL_A = 0wxd3
| opToInt PUSH_8 = 0wx6a
| opToInt PUSH_32 = 0wx68
| opToInt TEST_ACC8 = 0wxa8
| opToInt LOCK_XADD = 0wxC1 (* Needs lock and escape prefixes. *)
| opToInt (FPESC n) = 0wxD8 orb8 n
| opToInt XCHNG = 0wx87
| opToInt REP = 0wxf3
| opToInt MOVZB = 0wxb6 (* Needs escape code. *)
| opToInt MOVZW = 0wxb7 (* Needs escape code. *)
| opToInt MOVL_A_R32 = 0wx8b
| opToInt IMUL = 0wxaf (* Needs escape code. *)
| opToInt SSE2StoreSingle = 0wx11 (* Needs F3 0F escape. *)
| opToInt SSE2StoreDouble = 0wx11 (* Needs F2 0F escape. *)
| opToInt CQO_CDQ = 0wx99
| opToInt (SSE2Ops SSE2Move) = 0wx10 (* Needs F2 0F escape. *)
| opToInt (SSE2Ops SSE2Comp) = 0wx2E (* Needs 66 0F escape. *)
| opToInt (SSE2Ops SSE2Add) = 0wx58 (* Needs F2 0F escape. *)
| opToInt (SSE2Ops SSE2Sub) = 0wx5c (* Needs F2 0F escape. *)
| opToInt (SSE2Ops SSE2Mul) = 0wx59 (* Needs F2 0F escape. *)
| opToInt (SSE2Ops SSE2Div) = 0wx5e (* Needs F2 0F escape. *)
| opToInt (SSE2Ops SSE2And) = 0wx54 (* Needs 66 0F escape. *)
| opToInt (SSE2Ops SSE2Xor) = 0wx57 (* Needs 66 0F escape. *)
| opToInt (SSE2Ops SSE2MoveSingle) = 0wx5A (* Needs F3 0F escape. *)
| opToInt (SSE2Ops SSE2DoubleToFloat) = 0wx5A (* Needs F2 0F escape. *)
| opToInt CVTSI2SD = 0wx2a (* Needs F2 0F escape. *)
| opToInt HLT = 0wxf4
| opToInt IMUL_C8 = 0wx6b
| opToInt IMUL_C32 = 0wx69
datatype mode =
Based0 (* mod = 0 *)
| Based8 (* mod = 1 *)
| Based32 (* mod = 2 *)
| Register (* mod = 3 *) ;
(* Put together the three fields which make up the mod r/m byte. *)
fun modrm (md : mode, rg: Word8.word, rm : Word8.word) : Word8.word =
let
val _ = if rg > 0w7 then raise InternalError "modrm: bad rg" else ()
val _ = if rm > 0w7 then raise InternalError "modrm: bad rm" else ()
val modField: Word8.word =
case md of
Based0 => 0w0
| Based8 => 0w1
| Based32 => 0w2
| Register => 0w3
in
(modField <<- 0w6) orb8 (rg <<- 0w3) orb8 rm
end
(* REX prefix *)
fun rex {w,r,x,b} =
0wx40 orb8 (if w then 0w8 else 0w0) orb8 (if r then 0w4 else 0w0) orb8
(if x then 0w2 else 0w0) orb8 (if b then 0w1 else 0w0)
(* The X86 has the option to include an index register and to scale it. *)
datatype indexType =
NoIndex | Index1 of genReg | Index2 of genReg | Index4 of genReg | Index8 of genReg
(* Lock, Opsize and REPNE prefixes come before the REX. *)
fun opcodePrefix LOCK_XADD = [0wxF0] (* Requires LOCK prefix. *)
| opcodePrefix MOVL_R_A16 = [0wx66] (* Requires OPSIZE prefix. *)
| opcodePrefix SSE2StoreSingle = [0wxf3]
| opcodePrefix SSE2StoreDouble = [0wxf2]
| opcodePrefix(SSE2Ops SSE2Comp) = [0wx66]
| opcodePrefix(SSE2Ops SSE2And) = [0wx66]
| opcodePrefix(SSE2Ops SSE2Xor) = [0wx66]
| opcodePrefix(SSE2Ops SSE2MoveSingle) = [0wxf3]
| opcodePrefix(SSE2Ops _) = [0wxf2]
| opcodePrefix CVTSI2SD = [0wxf2]
| opcodePrefix _ = []
(* A few instructions require an escape. Escapes come after the REX. *)
fun escapePrefix MOVZB = [0wx0f]
| escapePrefix MOVZW = [0wx0f]
| escapePrefix LOCK_XADD = [0wx0f]
| escapePrefix IMUL = [0wx0f]
| escapePrefix(CondJump32 _) = [0wx0f]
| escapePrefix SSE2StoreSingle = [0wx0f]
| escapePrefix SSE2StoreDouble = [0wx0f]
| escapePrefix(SSE2Ops SSE2Comp) = [0wx0f]
| escapePrefix(SSE2Ops SSE2And) = [0wx0f]
| escapePrefix(SSE2Ops SSE2Xor) = [0wx0f]
| escapePrefix(SSE2Ops SSE2MoveSingle) = [0wx0f]
| escapePrefix(SSE2Ops _) = [0wx0f]
| escapePrefix CVTSI2SD = [0wx0f]
| escapePrefix _ = []
(* Generate an opCode byte after doing any pending operations. *)
fun opCodeBytes(opb:opCode, rx) =
let
val rexByte =
case rx of
NONE => []
| SOME rxx =>
if isX64 then [rex rxx]
else raise InternalError "opCodeBytes: rex prefix in 32 bit mode";
in
opcodePrefix opb @ rexByte @ escapePrefix opb @ [opToInt opb]
end
fun rexByte(opb, rrX, rbX, riX) =
let
(* We need a rex prefix if we need to set the length to 64-bit. *)
val need64bit =
case opb of
Group1_8_A => isX64 (* Arithmetic operations - must be 64-bit *)
| Group1_32_A => isX64 (* Arithmetic operations - must be 64-bit *)
| Group2_1_A => isX64 (* 1-bit shifts - must be 64-bit *)
| Group2_8_A => isX64 (* n-bit shifts - must be 64-bit *)
| Group2_CL_A => isX64 (* Shifts by value in CL *)
| Group3_A => isX64 (* Test, Not, Mul etc. *)
| Arith _ => isX64
| MOVL_A_R => isX64 (* Needed *)
| MOVL_R_A => isX64 (* Needed *)
| XCHNG => isX64
| LEAL => isX64 (* Needed to ensure the result is 64-bits *)
| MOVZB => isX64 (* Needed to ensure the result is 64-bits *)
| MOVZW => isX64 (* Needed to ensure the result is 64-bits *)
| MOVL_32_64_R _ => isX64 (* Needed *)
| MOVL_32_A => isX64 (* Needed *)
| IMUL => isX64 (* Needed to ensure the result is 64-bits *)
| LOCK_XADD => isX64 (* Needed to ensure the result is 64-bits *)
| CQO_CDQ => isX64 (* It's only CQO if there's a Rex prefix. *)
| CVTSI2SD => isX64 (* This affects the size of the integer source. *)
| IMUL_C8 => isX64
| IMUL_C32 => isX64
(* Group5 - We only use 2/4/6 and they don't need prefix *)
| _ => false
(* If we are using MOVB_R_A with SIL or DIL we need to force a REX prefix.
That's only possible in 64-bit mode. *)
val forceRex =
case opb of
MOVB_R_A {forceRex=true} => (* This is allowed in X86/64 but not in X86/32. *)
if isX64
then true
else raise InternalError "rexByte: MOVB_R_A accessing low order byte of ESI/EDI"
| _ => false
in
if need64bit orelse rrX orelse rbX orelse riX orelse forceRex
then [rex{w=need64bit, r=rrX, b=rbX, x = riX}]
else []
end
(* Register/register operation. *)
fun opReg(opb:opCode, (*dest*)GeneralReg(rrC, rrX), (*source*)GeneralReg(rbC, rbX)) =
let
val pref = opcodePrefix opb (* Any opsize or lock prefix. *)
val rex = rexByte(opb, rrX, rbX, false)
val esc = escapePrefix opb (* Generate the ESCAPE code if needed. *)
val opc = opToInt opb
val mdrm = modrm(Register, rrC, rbC)
in
pref @ rex @ esc @ [opc, mdrm]
end
(* Operations on a register where the second "register" is actually an operation code. *)
fun opRegPlus2(opb:opCode, rd: genReg, op2: Word8.word) =
let
val (rrC, rrX) = getReg rd
val pref = opcodePrefix opb (* Any opsize or lock prefix. *)
val rex = rexByte(opb, false, rrX, false)
val opc = opToInt opb
val mdrm = modrm(Register, op2, rrC)
in
pref @ rex @ [opc, mdrm]
end
local
(* General instruction form with modrm and optional sib bytes. rb is an option since the
base register may be omitted. This is used with LEA to tag integers. *)
fun opIndexedGen (opb:opCode, offset: LargeInt.int, rb: genReg option, ri: indexType, (rrC, rrX)) =
let
(* Base encoding. (Based0, 0w5) means "no base" so if we need ebp as the
base we have to use Based8 at least. *)
val (offsetCode, rbC, rbX) =
case rb of
NONE => (Based0, 0w5 (* no base register *), false)
| SOME rb =>
let
val (rbC, rbX) = getReg rb
val base =
if offset = 0 andalso rbC <> 0wx5 (* Can't use ebp with Based0 *)
then Based0 (* no disp field *)
else if is8BitL offset
then Based8 (* use 8-bit disp field *)
else Based32 (* use 32-bit disp field *)
in
(base, rbC, rbX)
end
(* Index coding. esp can't be used as an index so (0w4, false) means "no index".
But r12 (0w4, true) CAN be. *)
val ((riC, riX), scaleFactor) =
case ri of
NoIndex => ((0w4, false), 0w0)
| Index1 i => (getReg i, 0w0)
| Index2 i => (getReg i, 0w1)
| Index4 i => (getReg i, 0w2)
| Index8 i => (getReg i, 0w3)
(* If the base register is esp or r12 we have to use a sib byte even if
there's no index. That's because 0w4 as a base register means "there's
a SIB byte". *)
val modRmAndOptionalSib =
if rbC = 0w4 (* Code for esp and r12 *) orelse riC <> 0w4 orelse riX
then
let
val mdrm = modrm(offsetCode, rrC, 0w4 (* s-i-b *))
val sibByte = (scaleFactor <<- 0w6) orb8 (riC <<- 0w3) orb8 rbC
in
[mdrm, sibByte]
end
else [modrm(offsetCode, rrC, rbC)]
(* Generate the disp field (if any) *)
val dispField =
case (offsetCode, rb) of
(Based8, _) => [Word8.fromLargeInt offset]
| (Based32, _) => int32Signed offset
| (_, NONE) => (* 32 bit absolute used as base *) int32Signed offset
| _ => []
in
opcodePrefix opb @ rexByte(opb, rrX, rbX, riX) @ escapePrefix opb @
opToInt opb :: modRmAndOptionalSib @ dispField
end
in
fun opEA(opb, offset, rb, r) = opIndexedGen(opb, offset, SOME rb, NoIndex, getReg r)
(* Generate a opcode plus a second modrm byte but where the "register" field in
the modrm byte is actually a code. *)
and opPlus2(opb, offset, rb, op2) = opIndexedGen(opb, offset, SOME rb, NoIndex, (op2, false))
fun opIndexed (opb, offset, rb, ri, rd) =
opIndexedGen(opb, offset, rb, ri, getReg rd)
fun opAddress(opb, offset, rb, ri, rd) = opIndexedGen (opb, offset, SOME rb, ri, getReg rd)
and mMXAddress(opb, offset, rb, ri, SSE2Reg rrC) = opIndexedGen(opb, offset, SOME rb, ri, (rrC, false))
and opAddressPlus2(opb, offset, rb, ri, op2) =
opIndexedGen(opb, offset, SOME rb, ri, (op2, false))
end
fun immediateOperand (opn: arithOp, rd: genReg, imm: LargeInt.int) =
if is8BitL imm
then (* Can use one byte immediate *)
opRegPlus2(Group1_8_A, rd, arithOpToWord opn) @ [Word8.fromLargeInt imm]
else if is32bit imm
then (* Need 32 bit immediate. *)
opRegPlus2(Group1_32_A, rd, arithOpToWord opn) @ int32Signed imm
else (* It won't fit in the immediate; put it in the non-address area. *)
let
val (rc, rx) = getReg rd
val opb = opCodeBytes(Arith (opn, 0w3 (* r/m to reg *)), SOME{w=true, r=rx, b=false, x = false})
val mdrm = modrm (Based0, rc, 0w5 (* PC-relative *))
in
opb @ [mdrm] @ int32Signed(tag 0)
end
fun arithOpReg(opn: arithOp, rd: genReg, rs: genReg) = opReg (Arith (opn, 0w3 (* r/m to reg *)), rd, rs)
type handlerLab = addrs ref
datatype callKinds =
Recursive (* The function calls itself. *)
| ConstantCode of machineWord (* A function that doesn't need a closure *)
| FullCall (* Full closure call *)
| DirectReg of genReg (* Currently used within ForeignCall to call the RTS *)
fun floatingPtOp{escape, md, nnn, rm} =
opCodeBytes(FPESC escape, NONE) @ [(md <<- 0w6) orb8 (nnn <<- 0w3) orb8 rm]
datatype trapEntries =
StackOverflowCall
| StackOverflowCallEx
| HeapOverflowCall
(* RTS call. We need to save any registers that may contain addresses to the stack.
All the registers are preserved but not seen by the GC. *)
fun rtsCall(rtsEntry, regSet) =
let
val entry =
case rtsEntry of
StackOverflowCall => memRegStackOverflowCall
| StackOverflowCallEx => memRegStackOverflowCallEx
| HeapOverflowCall => memRegHeapOverflowCall
val regSet = List.foldl(fn (r, a) => (0w1 << Word.fromInt(nReg(GenReg r))) orb a) 0w0 regSet
val callInstr =
opPlus2(Group5, LargeInt.fromInt entry, ebp, 0w2 (* call *))
val regSetInstr =
if regSet >= 0w256
then [0wxca, (* This is actually a FAR RETURN *)
wordToWord8 regSet, (* Low byte*) wordToWord8 (regSet >> 0w8) (* High byte*)]
else if regSet <> 0w0
then [0wxcd, (* This is actually INT n *) wordToWord8 regSet]
else []
in
callInstr @ regSetInstr
end
(* Operations. *)
type cases = word * label
type memoryAddress = { base: genReg, offset: int, index: indexType }
datatype branchPrediction = PredictNeutral | PredictTaken | PredictNotTaken
datatype 'reg regOrMemoryArg =
RegisterArg of 'reg
| MemoryArg of memoryAddress
| NonAddressConstArg of LargeInt.int
| AddressConstArg of machineWord
datatype nonWordSize = Size8Bit | Size16Bit | Size32Bit
and fpSize = SinglePrecision | DoublePrecision
datatype operation =
MoveToRegister of { source: genReg regOrMemoryArg, output: genReg }
| LoadNonWord of { size: nonWordSize, source: memoryAddress, output: genReg }
| PushToStack of genReg regOrMemoryArg
| PopR of genReg
| ArithToGenReg of { opc: arithOp, output: genReg, source: genReg regOrMemoryArg }
| ArithMemConst of { opc: arithOp, offset: int, base: genReg, source: LargeInt.int }
| ArithMemLongConst of { opc: arithOp, offset: int, base: genReg, source: machineWord }
| ShiftConstant of { shiftType: shiftType, output: genReg, shift: Word8.word }
| ShiftVariable of { shiftType: shiftType, output: genReg } (* Shift amount is in ecx *)
| ConditionalBranch of { test: branchOps, label: label, predict: branchPrediction }
| LockMutableSegment of genReg
| LoadAddress of { output: genReg, offset: int, base: genReg option, index: indexType }
| TestTagR of genReg
| TestByteMem of { base: genReg, offset: int, bits: word }
| CallRTS of {rtsEntry: trapEntries, saveRegs: genReg list }
| StoreRegToMemory of { toStore: genReg, address: memoryAddress }
| StoreConstToMemory of { toStore: LargeInt.int, address: memoryAddress }
| StoreLongConstToMemory of { toStore: machineWord, address: memoryAddress }
| StoreNonWord of { size: nonWordSize, toStore: genReg, address: memoryAddress }
| StoreNonWordConst of { size: nonWordSize, toStore: LargeInt.int, address: memoryAddress }
| AllocStore of { size: int, output: genReg, saveRegs: genReg list }
| AllocStoreVariable of { output: genReg, saveRegs: genReg list }
| StoreInitialised
| CallFunction of callKinds
| JumpToFunction of callKinds
| ReturnFromFunction of int
| RaiseException
| UncondBranch of label
| ResetStack of { numWords: int, preserveCC: bool }
| JumpLabel of label
| LoadLabelAddress of { label: label, output: genReg }
| RepeatOperation of repOps
| DivideAccR of {arg: genReg, isSigned: bool }
| DivideAccM of {base: genReg, offset: int, isSigned: bool }
| AtomicXAdd of {base: genReg, output: genReg}
| FPLoadFromMemory of { address: memoryAddress, precision: fpSize }
| FPLoadFromFPReg of { source: fpReg, lastRef: bool }
| FPLoadFromConst of real
| FPStoreToFPReg of { output: fpReg, andPop: bool }
| FPStoreToMemory of { address: memoryAddress, precision: fpSize, andPop: bool }
| FPArithR of { opc: fpOps, source: fpReg }
| FPArithConst of { opc: fpOps, source: machineWord }
| FPArithMemory of { opc: fpOps, base: genReg, offset: int }
| FPUnary of fpUnaryOps
| FPStatusToEAX
| FPLoadInt of { base: genReg, offset: int }
| FPFree of fpReg
| MultiplyR of { source: genReg regOrMemoryArg, output: genReg }
| XMMArith of { opc: sse2Operations, source: xmmReg regOrMemoryArg, output: xmmReg }
| XMMStoreToMemory of { toStore: xmmReg, address: memoryAddress, precision: fpSize }
| XMMConvertFromInt of { source: genReg, output: xmmReg }
| SignExtendForDivide
| XChng of { reg: genReg, arg: genReg regOrMemoryArg }
| Negative of { output: genReg }
| JumpTable of { cases: label list, jumpSize: jumpSize ref }
| IndexedJumpCalc of { addrReg: genReg, indexReg: genReg, jumpSize: jumpSize ref }
and jumpSize = JumpSize2 | JumpSize8
type operations = operation list
fun printOperation(operation, stream) =
let
fun printGReg r = stream(genRegRepr(r, sz32_64))
val printFPReg = stream o fpRegRepr
and printXMMReg = stream o xmmRegRepr
fun printBaseOffset(b, x, i) =
(
stream(Int.toString i); stream "("; printGReg b; stream ")";
case x of
NoIndex => ()
| Index1 x => (stream "["; printGReg x; stream "]")
| Index2 x => (stream "["; printGReg x; stream "*2]")
| Index4 x => (stream "["; printGReg x; stream "*4]")
| Index8 x => (stream "["; printGReg x; stream "*8]")
)
fun printMemAddress({ base, offset, index }) = printBaseOffset(base, index, offset)
fun printRegOrMemoryArg printReg (RegisterArg r) = printReg r
| printRegOrMemoryArg _ (MemoryArg{ base, offset, index }) = printBaseOffset(base, index, offset)
| printRegOrMemoryArg _ (NonAddressConstArg c) = stream(LargeInt.toString c)
| printRegOrMemoryArg _ (AddressConstArg c) = stream(Address.stringOfWord c)
fun printCallKind Recursive = stream "Recursive"
| printCallKind (ConstantCode w) = (stream "code="; stream(stringOfWord w))
| printCallKind FullCall = stream "via ClosureReg"
| printCallKind (DirectReg reg) = printGReg reg
fun printSize Size8Bit = "Byte"
| printSize Size16Bit = "16Bit"
| printSize Size32Bit = "32Bit"
in
case operation of
MoveToRegister { source, output } =>
(stream "MoveRR "; printGReg output; stream " <= "; printRegOrMemoryArg printGReg source)
| LoadNonWord { size, source, output } =>
(stream "Load"; printSize size; stream " "; printGReg output; stream " <= "; printMemAddress source )
| ArithToGenReg { opc, output, source } =>
(stream (arithOpRepr opc ^ "RR "); printGReg output; stream " <= "; printRegOrMemoryArg printGReg source )
| ArithMemConst { opc, offset, base, source } =>
(
stream (arithOpRepr opc ^ "MC "); printBaseOffset(base, NoIndex, offset);
stream " "; stream(LargeInt.toString source)
)
| ArithMemLongConst { opc, offset, base, source } =>
(
stream (arithOpRepr opc ^ "MC ");
printBaseOffset(base, NoIndex, offset);
stream " <= "; stream(Address.stringOfWord source)
)
| ShiftConstant { shiftType, output, shift } =>
(
stream(shiftTypeRepr shiftType); stream " "; printGReg output;
stream " by "; stream(Word8.toString shift)
)
| ShiftVariable { shiftType, output } => (* Shift amount is in ecx *)
(
stream(shiftTypeRepr shiftType); stream " "; printGReg output; stream " by ECX"
)
| ConditionalBranch { test, label=Label{labelNo, ...}, predict } =>
(
stream(branchOpRepr test); stream " L"; stream(Int.toString labelNo);
case predict of
PredictNeutral => ()
| PredictTaken => stream " PredictTaken"
| PredictNotTaken => stream " PredictNotTaken"
)
| LockMutableSegment reg => (stream "LockMutableSegment "; printGReg reg)
| PushToStack source => (stream "Push "; printRegOrMemoryArg printGReg source)
| PopR dest => (stream "PopR "; printGReg dest)
| StoreRegToMemory { toStore, address } =>
(
stream "StoreRegToMemory "; printMemAddress address;
stream " <= "; printGReg toStore
)
| StoreConstToMemory { toStore, address } =>
(
stream "StoreConstToMemory "; printMemAddress address;
stream " <= "; stream(LargeInt.toString toStore)
)
| StoreLongConstToMemory { address, toStore } =>
(
stream "StoreLongConstToMemory "; printMemAddress address; stream " <= "; stream(Address.stringOfWord toStore)
)
| StoreNonWord { size, toStore, address } =>
(
stream "Store"; printSize size; stream " "; printMemAddress address;
stream " <= "; stream(genRegRepr(toStore, SZByte))
)
| StoreNonWordConst { size, toStore, address } =>
(
stream "StoreConst"; printSize size; stream " "; printMemAddress address;
stream " <= "; stream(LargeInt.toString toStore)
)
| LoadAddress{ output, offset, base, index } =>
(
stream "LoadAddress ";
case base of NONE => () | SOME r => (printGReg r; stream " + ");
stream(Int.toString offset);
case index of
NoIndex => ()
| Index1 x => (stream " + "; printGReg x)
| Index2 x => (stream " + "; printGReg x; stream "*2 ")
| Index4 x => (stream " + "; printGReg x; stream "*4 ")
| Index8 x => (stream " + "; printGReg x; stream "*8 ");
stream " => "; printGReg output
)
| TestTagR reg => ( stream "TestTagR "; printGReg reg )
| TestByteMem { base, offset, bits } =>
( stream "TestByteMem "; printBaseOffset(base, NoIndex, offset); stream " 0x"; stream(Word.toString bits) )
| CallRTS {rtsEntry, ...} =>
(
stream "CallRTS ";
case rtsEntry of
StackOverflowCall => stream "StackOverflowCall"
| HeapOverflowCall => stream "HeapOverflow"
| StackOverflowCallEx => stream "StackOverflowCallEx"
)
| AllocStore { size, output, ... } =>
(stream "AllocStore "; stream(Int.toString size); stream " => "; printGReg output )
| AllocStoreVariable { output, ...} => (stream "AllocStoreVariable "; printGReg output )
| StoreInitialised => stream "StoreInitialised"
| CallFunction callKind => (stream "CallFunction "; printCallKind callKind)
| JumpToFunction callKind => (stream "JumpToFunction "; printCallKind callKind)
| ReturnFromFunction argsToRemove =>
(stream "ReturnFromFunction "; stream(Int.toString argsToRemove))
| RaiseException =>
stream "RaiseException"
| UncondBranch(Label{labelNo, ...})=>
(stream "UncondBranch L"; stream(Int.toString labelNo))
| ResetStack{numWords, preserveCC} =>
(stream "ResetStack "; stream(Int.toString numWords); if preserveCC then stream " preserve CC" else ())
| JumpLabel(Label{labelNo, ...}) =>
(stream "L"; stream(Int.toString labelNo); stream ":")
| LoadLabelAddress{ label=Label{labelNo, ...}, output } =>
(stream "LoadLabelAddress L"; stream(Int.toString labelNo); stream "=>"; printGReg output)
| RepeatOperation repOp => (stream "Repeat "; stream(repOpsRepr repOp))
| DivideAccR{arg, isSigned} => ( stream(if isSigned then "DivideSigned" else "DivideUnsigned"); stream " "; printGReg arg)
| DivideAccM{base, offset, isSigned} => ( stream(if isSigned then "DivideSigned" else "DivideUnsigned"); stream " "; printBaseOffset(base, NoIndex, offset))
| AtomicXAdd{base, output} => (stream "LockedXAdd ("; printGReg base; stream ") <=> "; printGReg output)
| FPLoadFromMemory{address, precision=DoublePrecision} => (stream "FPLoadDouble "; printMemAddress address)
| FPLoadFromMemory{address, precision=SinglePrecision} => (stream "FPLoadSingle "; printMemAddress address)
| FPLoadFromFPReg {source, lastRef} =>
(stream "FPLoad "; printFPReg source; if lastRef then stream " (LAST)" else())
| FPLoadFromConst const => (stream "FPLoad "; stream(Real.toString const) )
| FPStoreToFPReg{ output, andPop } =>
(if andPop then stream "FPStoreAndPop => " else stream "FPStore => "; printFPReg output)
| FPStoreToMemory{ address, precision=DoublePrecision, andPop: bool } =>
(
if andPop then stream "FPStoreDoubleAndPop => " else stream "FPStoreDouble => ";
printMemAddress address
)
| FPStoreToMemory{ address, precision=SinglePrecision, andPop: bool } =>
(
if andPop then stream "FPStoreSingleAndPop => " else stream "FPStoreSingle => ";
printMemAddress address
)
| FPArithR{ opc, source } => (stream(fpOpRepr opc); stream " "; printFPReg source)
| FPArithConst{ opc, source } => (stream(fpOpRepr opc); stream(Address.stringOfWord source))
| FPArithMemory{ opc, base, offset } => (stream(fpOpRepr opc); stream " "; printBaseOffset(base, NoIndex, offset))
| FPUnary opc => stream(fpUnaryRepr opc)
| FPStatusToEAX => (stream "FPStatus "; printGReg eax)
| FPLoadInt { base, offset} => (stream "FPLoadInt "; printBaseOffset(base, NoIndex, offset))
| FPFree reg => (stream "FPFree "; printFPReg reg)
| MultiplyR {source, output } => (stream "MultiplyR"; stream " "; printRegOrMemoryArg printGReg source; stream " *=>"; printGReg output)
| XMMArith { opc, source, output } =>
(
stream (sse2OpRepr opc ^ "RM "); printXMMReg output; stream " <= "; printRegOrMemoryArg printXMMReg source
)
| XMMStoreToMemory { toStore, address, precision=DoublePrecision } =>
(
stream "MoveDouble "; printXMMReg toStore; stream " => "; printMemAddress address
)
| XMMStoreToMemory { toStore, address, precision=SinglePrecision } =>
(
stream "MoveSingle "; printXMMReg toStore; stream " => "; printMemAddress address
)
| XMMConvertFromInt { source, output } =>
(
stream "ConvertFromInt "; printGReg source; stream " => "; printXMMReg output
)
| SignExtendForDivide => stream "SignExtendForDivide"
| XChng { reg, arg } => (stream "XChng "; printGReg reg; stream " <=> "; printRegOrMemoryArg printGReg arg)
| Negative { output } => (stream "Negative "; printGReg output)
| JumpTable{cases, ...} =>
List.app(fn(Label{labelNo, ...}) => (stream "UncondBranch L"; stream(Int.toString labelNo); stream "\n")) cases
| IndexedJumpCalc { addrReg, indexReg, jumpSize=ref jumpSize } =>
(
stream "IndexedJumpCalc "; printGReg addrReg; stream " += "; printGReg indexReg;
print (case jumpSize of JumpSize2 => " * 2" | JumpSize8 => " * 8 ")
)
;
stream "\n"
end
datatype implement = ImplementGeneral | ImplementLiteral of machineWord
fun printLowLevelCode(ops, Code{printAssemblyCode, printStream, procName, ...}) =
if printAssemblyCode
then
(
if procName = "" (* No name *) then printStream "?" else printStream procName;
printStream ":\n";
List.app(fn i => printOperation(i, printStream)) ops;
printStream "\n"
)
else ()
(* Code generate a list of operations. The list is in reverse order i.e. last instruction first. *)
fun codeGenerate ops =
let
fun cgOp(LockMutableSegment baseReg) =
(* Remove the mutable bit from the flag byte. *)(*andb CONST(0xff-0x40),-1[Reax]*)
opPlus2(Group1_8_a, ~1, baseReg, arithOpToWord AND) @ [0wxff - 0wx40]
| cgOp(MoveToRegister{ source=RegisterArg source, output }) =
(* Move from one general register to another. *)
opReg(MOVL_R_A, source, output)
| cgOp(MoveToRegister{ source=NonAddressConstArg source, output}) =
if isX64
then
(
if source >= ~0x40000000 andalso source < 0x40000000
then (* Signed 32-bits. *)
(* This is not scanned in 64-bit mode because 32-bit values aren't
big enough to contain addresses. *)
opRegPlus2(MOVL_32_A, output, 0w0) @ int32Signed source
else (* Too big for 32-bits; put it in the non-word area. *)
let
val (rc, rx) = getReg output
val opb = opCodeBytes(MOVL_A_R, SOME{w=true, r=rx, b=false, x = false})
val mdrm = modrm (Based0, rc, 0w5 (* PC-relative *))
in
opb @ [mdrm] @ int32Signed(tag 0)
end
)
else (* 32-bit mode. *)
(
(* The RTS scans for possible addresses in MOV instructions so we
can only use MOV if this is a tagged value. If it isn't we have
to use something else such as XOR/ADD. In particular this is used
before LOCK XADD for atomic inc/dec.
TODO: There are various special cases such as setting to -1 can
be done with an OR whatever the initial value. INC can be used
in 32-bit mode instead of ADD for 1. LEAL isn't a good idea. *)
if source mod 2 = 0
then arithOpReg(XOR, output, output) @
(if source = 0 then []
else immediateOperand(ADD, output, source))
else
let
val (rc, _) = getReg output
val opb = opCodeBytes(MOVL_32_64_R rc, NONE)
in
opb @ int32Signed source
end
)
| cgOp(MoveToRegister{ source=AddressConstArg _, output }) =
let
val (rc, rx) = getReg output
val opb =
opCodeBytes(MOVL_32_64_R rc,
if isX64 then SOME {w=true, r=false, b=rx, x=false} else NONE)
val constnt =
if wordSize = 8
then wordUnsigned(LargeWord.fromLargeInt(tag 0))
else int32Signed(tag 0)
in
opb @ constnt
end
| cgOp(MoveToRegister{source=MemoryArg{base, offset, index}, output }) =
opAddress(MOVL_A_R, LargeInt.fromInt offset, base, index, output)
| cgOp(LoadNonWord{size=Size8Bit, source={base, offset, index}, output }) =
opAddress(MOVZB, LargeInt.fromInt offset, base, index, output)
| cgOp(LoadNonWord{size=Size16Bit, source={base, offset, index}, output }) =
opAddress(MOVZW, LargeInt.fromInt offset, base, index, output)
| cgOp(LoadNonWord{size=Size32Bit, source={base, offset, index}, output }) =
opAddress(MOVL_A_R32, LargeInt.fromInt offset, base, index, output)
| cgOp(LoadAddress{ offset, base, index, output }) =
(* This provides a mixture of addition and multiplication in a single
instruction. *)
opIndexed(LEAL, LargeInt.fromInt offset, base, index, output)
| cgOp(ArithToGenReg{ opc, output, source=RegisterArg source }) =
arithOpReg (opc, output, source)
| cgOp(ArithToGenReg{ opc, output, source=NonAddressConstArg source }) =
let
(* On the X86/32 we use CMP with literal sources to compare with an
address and the RTS searches for them in the code. Any
non-address constant must be tagged. Most will be but we
might want to use this to compare with the contents of a
LargeWord value. *)
val _ =
if isX64 orelse is8BitL source orelse opc <> CMP orelse IntInf.andb(source, 1) = 1
then ()
else raise InternalError "CMP with constant that looks like an address"
in
immediateOperand(opc, output, source)
end
| cgOp(ArithToGenReg{ opc, output, source=AddressConstArg _ }) =
(* This is only used for opc=CMP to compare addresses for equality. *)
let
val (rc, rx) = getReg output
in
if isX64
then
let
val opb = opCodeBytes(Arith (opc, 0w3), SOME {w=true, r=rx, b=false, x=false})
val mdrm = modrm(Based0, rc, 0w5 (* Immediate address. *))
in
opb @ [mdrm] @ int32Signed(tag 0) (* This is the address of the constant. *)
end
else
let
val opb = opCodeBytes(Group1_32_A (* group1, 32 bit immediate *), NONE)
val mdrm = modrm(Register, arithOpToWord opc, rc)
in
opb @ [mdrm] @ int32Signed(tag 0)
end
end
| cgOp(ArithToGenReg{ opc, output, source=MemoryArg{offset, base, index} }) =
opAddress(Arith (opc, 0w3), LargeInt.fromInt offset, base, index, output)
| cgOp(ArithMemConst{ opc, offset, base, source }) =
if is8BitL source
then (* Can use one byte immediate *)
opPlus2(Group1_8_A (* group1, 8 bit immediate *),
LargeInt.fromInt offset, base, arithOpToWord opc) @ [Word8.fromLargeInt source]
else (* Need 32 bit immediate. *)
opPlus2(Group1_32_A (* group1, 32 bit immediate *),
LargeInt.fromInt offset, base, arithOpToWord opc) @ int32Signed source
| cgOp(ArithMemLongConst{ opc, offset, base, ... }) =
(* Currently this is always a comparison. It is only valid in 32-bit mode because
the constant is only 32-bits. *)
if isX64
then raise InternalError "ArithMemLongConst in 64-bit mode"
else
let
val opb = opPlus2 (Group1_32_A, LargeInt.fromInt offset, base, arithOpToWord opc)
in
opb @ int32Signed(tag 0)
end
| cgOp(ShiftConstant { shiftType, output, shift }) =
if shift = 0w1
then opRegPlus2(Group2_1_A, output, shiftTypeToWord shiftType)
else opRegPlus2(Group2_8_A, output, shiftTypeToWord shiftType) @ [shift]
| cgOp(ShiftVariable { shiftType, output }) =
opRegPlus2(Group2_CL_A, output, shiftTypeToWord shiftType)
| cgOp(TestTagR reg) =
let
(* Test the bottom bit and jump depending on its value. This is used
for tag tests in arbitrary precision operations and also for testing
for short/long values. *)
val (regNum, rx) = getReg reg
in
if reg = eax
then (* Special instruction for testing accumulator. Can use an 8-bit test. *)
opCodeBytes(TEST_ACC8, NONE) @ [0w1]
else if isX64
then
let
(* We can use a REX code to force it to always use the low order byte. *)
val opb = opCodeBytes(Group3_a,
if rx orelse regNum >= 0w4 then SOME{w=false, r=false, b=rx, x=false} else NONE)
val mdrm = modrm (Register, 0w0 (* test *), regNum)
in
opb @ [mdrm, 0w1]
end
else if reg = ebx orelse reg = ecx orelse reg = edx (* can we use an 8-bit test? *)
then (* Yes. The register value refers to low-order byte. *)
let
val opb = opCodeBytes(Group3_a, NONE)
val mdrm = modrm(Register, 0w0 (* test *), regNum)
in
opb @ [mdrm, 0w1]
end
else
let
val opb = opCodeBytes(Group3_A, NONE)
val mdrm = modrm (Register, 0w0 (* test *), regNum)
in
opb @ mdrm :: word32Unsigned 0w1
end
end
| cgOp(TestByteMem{base, offset, bits}) =
(* Test the tag bit and set the condition code. *)
opPlus2(Group3_a, LargeInt.fromInt offset, base, 0w0 (* test *)) @ [wordToWord8 bits]
| cgOp(ConditionalBranch{ test=opc, ... }) = opCodeBytes(CondJump32 opc, NONE) @ word32Unsigned 0w0
| cgOp(CallRTS{rtsEntry, saveRegs}) = rtsCall(rtsEntry, saveRegs)
| cgOp(RepeatOperation repOp) =
let
(* We don't explicitly clear the direction flag. Should that be done? *)
val opb = opCodeBytes(REP, NONE)
(* Put in a rex prefix to force 64-bit mode. *)
val optRex =
if isX64 andalso (case repOp of STOSL => true | MOVSL => true | _ => false)
then [rex{w=true, r=false, b=false, x=false}]
else []
val repOp = repOpsToWord repOp
in
opb @ optRex @ [repOp]
end
| cgOp(DivideAccR{arg, isSigned}) = opRegPlus2(Group3_A, arg, if isSigned then 0w7 else 0w6)
| cgOp(DivideAccM{base, offset, isSigned}) =
opPlus2(Group3_A, LargeInt.fromInt offset, base, if isSigned then 0w7 else 0w6)
| cgOp(AtomicXAdd{base, output}) =
(* Locked exchange-and-add. We need the lock prefix before the REX prefix. *)
opEA(LOCK_XADD, 0, base, output)
| cgOp(PushToStack(RegisterArg reg)) =
let
val (rc, rx) = getReg reg
in
(* Always 64-bit but a REX prefix may be needed for the register. *)
opCodeBytes(PUSH_R rc, if rx then SOME{w=false, b = true, x=false, r = false } else NONE)
end
| cgOp(PushToStack(MemoryArg{base, offset, index})) =
opAddressPlus2(Group5, LargeInt.fromInt offset, base, index, 0w6 (* push *))
| cgOp(PushToStack(NonAddressConstArg constnt)) =
if is8BitL constnt
then opCodeBytes(PUSH_8, NONE) @ [Word8.fromLargeInt constnt]
else if is32bit constnt
then opCodeBytes(PUSH_32, NONE) @ int32Signed constnt
else (* It won't fit in the immediate; put it in the non-address area. *)
let
val opb = opCodeBytes(Group5, NONE)
val mdrm = modrm(Based0, 0w6 (* push *), 0w5 (* PC rel *))
in
opb @ [mdrm] @ int32Signed(tag 0)
end
| cgOp(PushToStack(AddressConstArg _)) =
if isX64
then (* Put it in the constant area. *)
let
val opb = opCodeBytes(Group5, NONE)
val mdrm = modrm(Based0, 0w6 (* push *), 0w5 (* PC rel *));
in
opb @ [mdrm] @ int32Signed(tag 0)
end
else (* 32-bit *) opCodeBytes(PUSH_32, NONE) @ int32Signed(tag 0)
| cgOp(PopR reg ) =
let
val (rc, rx) = getReg reg
in
(* Always 64-bit but a REX prefix may be needed for the register. *)
opCodeBytes(POP_R rc, if rx then SOME{w=false, b = true, x=false, r = false } else NONE)
end
| cgOp(StoreRegToMemory{toStore, address={offset, base, index}}) =
opAddress(MOVL_R_A, LargeInt.fromInt offset, base, index, toStore)
| cgOp(StoreConstToMemory{ toStore=toStore, address={offset, base, index} }) =
(
(* Short constant. In 32-bit mode this is scanned as a possible address. That means
we can't have an untagged constant in it. That's not a problem in 64-bit mode.
There's a special check for using this to set the length word on newly allocated
memory. *)
isX64 orelse toStore = 0 orelse toStore mod 2 = 1 orelse offset = ~wordSize
orelse raise InternalError "cgOp: StoreConstToMemory not tagged";
opAddressPlus2(MOVL_32_A, LargeInt.fromInt offset, base, index, 0w0) @
int32Signed toStore
)
| cgOp(StoreLongConstToMemory{ address={offset, base, index}, ... }) =
(* We can only store a 32-bit constant so we can't use this for 64-bit addresses. *)
if isX64
then raise InternalError "StoreLongConstToMemory in 64-bit mode"
else opAddressPlus2(MOVL_32_A, LargeInt.fromInt offset, base, index, 0w0) @ int32Signed (tag 0)
| cgOp(StoreNonWord{ size = Size8Bit, toStore, address={offset, base, index} }) =
let
val (rrC, _) = getReg toStore
(* In 64-bit mode we can specify the low-order byte of RSI/RDI but we
must use a REX prefix. This isn't possible in 32-bit mode. *)
val opcode = MOVB_R_A{forceRex= rrC >= 0w4}
val _ = isX64 orelse rrC < 0w4 orelse raise InternalError "High byte register"
in
opAddress(opcode, LargeInt.fromInt offset, base, index, toStore)
end
| cgOp(StoreNonWord{ size = Size16Bit, toStore, address={offset, base, index}}) =
opAddress(MOVL_R_A16, LargeInt.fromInt offset, base, index, toStore)
| cgOp(StoreNonWord{ size = Size32Bit, toStore, address={offset, base, index}}) =
opAddress(MOVL_R_A32, LargeInt.fromInt offset, base, index, toStore)
| cgOp(StoreNonWordConst{ size=Size8Bit, toStore=toStore, address={offset, base, index}}) =
opAddressPlus2(MOVB_8_A, LargeInt.fromInt offset, base, index, 0w0) @
[Word8.fromLargeInt toStore]
| cgOp(StoreNonWordConst{ size=Size16Bit, ... }) =
raise InternalError "StoreNonWordConst: 16Bit"
| cgOp(StoreNonWordConst{ size=Size32Bit, ... }) =
raise InternalError "StoreNonWordConst: 32Bit"
(* Allocation is dealt with by expanding the code. *)
| cgOp(AllocStore _) = raise InternalError "cgOp: AllocStore"
| cgOp(AllocStoreVariable _) = raise InternalError "cgOp: AllocStoreVariable"
| cgOp StoreInitialised = raise InternalError "cgOp: StoreInitialised"
| cgOp(CallFunction Recursive) = (* Call to the start of the code. Offset is patched in later. *)
opCodeBytes (CALL_32, NONE) @ int32Signed 0
| cgOp(CallFunction FullCall) =
(* Indirect call to the address held in the first word of the closure. *)
opAddressPlus2(Group5, 0, regClosure, NoIndex, 0w2 (* call *))
| cgOp(CallFunction(ConstantCode _)) =
if isX64
then
let
val opc = opCodeBytes(Group5, NONE)
val mdrm = modrm(Based0, 0w2 (* call *), 0w5 (* PC rel *))
in
opc @ [mdrm] @ int32Signed(tag 0)
end
(* Because this is a relative branch we need to point this at itself.
Until it is set to the relative offset of the destination it
needs to contain an address within the code and this could
be the last instruction. *)
else opCodeBytes (CALL_32, NONE) @ int32Signed ~5
| cgOp(CallFunction(DirectReg reg)) = opRegPlus2(Group5, reg, 0w2 (* call *))
| cgOp(JumpToFunction Recursive) =
(* Jump to the start of the current function. Offset is patched in later. *)
opCodeBytes (JMP_32, NONE) @ int32Signed 0
| cgOp(JumpToFunction FullCall) = opAddressPlus2(Group5, 0, regClosure, NoIndex, 0w4 (* jmp *))
| cgOp(JumpToFunction (ConstantCode _)) =
if isX64
then
let
val opb = opCodeBytes (Group5, NONE)
val mdrm = modrm(Based0, 0w4 (* jmp *), 0w5 (* PC rel *))
in
opb @ [mdrm] @ int32Signed(tag 0)
end
else opCodeBytes (JMP_32, NONE) @ int32Signed ~5 (* As with Call. *)
| cgOp(JumpToFunction (DirectReg reg)) =
(* Used as part of indexed case - not for entering a function. *)
opRegPlus2(Group5, reg, 0w4 (* jmp *))
| cgOp(ReturnFromFunction args) =
if args = 0
then opCodeBytes(RET, NONE)
else
let
val offset = Word.fromInt(args * wordSize)
in
opCodeBytes(RET_16, NONE) @ [wordToWord8 offset, wordToWord8(offset >> 0w8)]
end
| cgOp RaiseException =
let
(* Load the current handler into ebx. Any register will do since we
don't preserve registers across exceptions. *)
val loadInstr = opEA(MOVL_A_R, LargeInt.fromInt memRegHandlerRegister, ebp, ebx)
val opb = opCodeBytes(Group5, NONE)
val mdrm = modrm (Based0, 0w4 (* jmp *), #1 (getReg ebx))
in
loadInstr @ opb @ [mdrm]
end
| cgOp(UncondBranch _) = opToInt JMP_32 :: word32Unsigned 0w0
| cgOp(ResetStack{numWords, preserveCC}) =
let
val bytes = Word.toLargeInt(wordsToBytes(Word.fromInt numWords))
in
(* If we don't need to preserve the CC across the reset we use ADD since
it's shorter. *)
if preserveCC
then opEA(LEAL, bytes, esp, esp)
else immediateOperand(ADD, esp, bytes)
end
| cgOp(JumpLabel _) = [] (* No code. *)
| cgOp(LoadLabelAddress{ output, ... }) =
(* Load the address of a label. Used when setting up an exception handler or
in indexed cases. *)
let
val (rc, rx) = getReg output
in
(* On X86/64 we can use pc-relative addressing to set the start of the handler.
On X86/32 we have to load the address of the start of the code and add an offset. *)
if isX64
then
let
val opb = opCodeBytes(LEAL, SOME {w=true, r=rx, b=false, x=false})
val mdrm = modrm(Based0, rc, 0w5 (* Immediate address. *))
in
opb @ mdrm :: int32Signed 0
end
else opCodeBytes(MOVL_32_64_R rc, NONE) @ int32Signed(tag 0) @
opRegPlus2(Group1_32_A, output, arithOpToWord ADD) @ int32Signed 0
end
| cgOp (FPLoadFromMemory {address={ base, offset, index }, precision}) =
let
val loadInstr =
case precision of
DoublePrecision => FPESC 0w5
| SinglePrecision => FPESC 0w1
in
opAddressPlus2(loadInstr, LargeInt.fromInt offset, base, index, 0wx0)
end
| cgOp (FPLoadFromFPReg{source=FloatingPtReg fp, ...}) =
(* Assume there's nothing currently on the stack. *)
floatingPtOp({escape=0w1, md=0w3, nnn=0w0, rm= fp + 0w0}) (* FLD ST(r1) *)
| cgOp (FPLoadFromConst realValue ) =
let
open Real
infix ==
in
(* Treat +/- 0,1 as special cases. *)
if realValue == 0.0 (* This is also true for -0.0 *)
then floatingPtOp({escape=0w1, md=0w3, nnn=0w5, rm=0w6}) (* FLDZ *) @
(if signBit realValue
then floatingPtOp({escape=0w1, md=0w3, nnn=0w4, rm=0w0})
else [])
else if realValue == 1.0
then floatingPtOp({escape=0w1, md=0w3, nnn=0w5, rm=0w0}) (* FLD1 *)
else if realValue == ~1.0
then
floatingPtOp({escape=0w1, md=0w3, nnn=0w5, rm=0w0}) @ (* FLD1 *)
floatingPtOp({escape=0w1, md=0w3, nnn=0w4, rm=0w0}) (* FCHS *)
else
(* The real constant here is actually the address of an 8-byte memory
object. FLD takes the address as the argument and in 32-bit mode
we use an absolute address. In 64-bit mode we need to put the
constant at the end of the code segment and use PC-relative
addressing which happens to be encoded in the same way. *)
let
val opb = opCodeBytes(FPESC 0w5, NONE) (* FLD [Constant] *)
val mdrm = modrm (Based0, 0w0, 0w5 (* constant address/PC-relative *))
in
opb @ [mdrm] @ int32Signed(tag 0)
end
end
| cgOp (FPStoreToFPReg{ output=FloatingPtReg dest, andPop }) =
(* Assume there's one item on the stack. *)
floatingPtOp({escape=0w5, md=0w3, nnn=if andPop then 0wx3 else 0wx2,
rm = dest+0w1(* One item *)}) (* FSTP ST(n+1) *)
| cgOp (FPStoreToMemory{address={ base, offset, index}, precision, andPop }) =
let
val storeInstr =
case precision of
DoublePrecision => FPESC 0w5
| SinglePrecision => FPESC 0w1
val subInstr = if andPop then 0wx3 else 0wx2
in
opAddressPlus2(storeInstr, LargeInt.fromInt offset, base, index, subInstr)
end
| cgOp (FPArithR{ opc, source = FloatingPtReg src}) =
floatingPtOp({escape=0w0, md=0w3, nnn=fpOpToWord opc,
rm=src + 0w1 (* One item already there *)})
| cgOp (FPArithConst{ opc, ... }) =
(* See comment on FPLoadFromConst *)
let
val opb = opCodeBytes(FPESC 0w4, NONE) (* FADD etc [constnt] *)
val mdrm = modrm (Based0, fpOpToWord opc, 0w5 (* constant address *))
in
opb @ [mdrm] @ int32Signed(tag 0)
end
| cgOp (FPArithMemory{ opc, base, offset }) =
opPlus2(FPESC 0w4, LargeInt.fromInt offset, base, fpOpToWord opc) (* FADD/FMUL etc [r2] *)
| cgOp (FPUnary opc ) =
let
val {rm, nnn} = fpUnaryToWords opc
in
floatingPtOp({escape=0w1, md=0w3, nnn=nnn, rm=rm}) (* FCHS etc *)
end
| cgOp (FPStatusToEAX ) =
opCodeBytes(FPESC 0w7, NONE) @ [0wxe0] (* FNSTSW AX *)
| cgOp (FPFree(FloatingPtReg reg)) =
floatingPtOp({escape=0w5, md=0w3, nnn=0w0, rm=reg}) (* FFREE FP(n) *)
| cgOp (FPLoadInt{base, offset}) =
(* fildl (esp) in 32-bit mode or fildq (esp) in 64-bit mode. *)
if isX64
then opPlus2(FPESC 0w7, LargeInt.fromInt offset, base, 0w5)
else opPlus2(FPESC 0w3, LargeInt.fromInt offset, base, 0w0)
| cgOp (MultiplyR {source=RegisterArg srcReg, output}) =
(* We use the 0F AF form of IMUL rather than the Group3 MUL or IMUL
because the former allows us to specify the destination register.
The Group3 forms produce double length results in RAX:RDX/EAX:EDX
but we only ever want the low-order half. *)
opReg(IMUL (* 2 byte opcode *), output, srcReg)
| cgOp (MultiplyR {source=MemoryArg{base, offset, index}, output}) =
(* This may be used for large-word multiplication. *)
opAddress(IMUL (* 2 byte opcode *), LargeInt.fromInt offset, base, index, output)
| cgOp(MultiplyR {source=NonAddressConstArg constnt, output}) =
(* If the constant is an 8-bit or 32-bit value we are actually using a
three-operand instruction where the argument can be a register or memory
and the destination register does not need to be the same as the source. *)
if is8BitL constnt
then opReg(IMUL_C8, output, output) @ [Word8.fromLargeInt constnt]
else if is32bit constnt
then opReg(IMUL_C32, output, output) @ int32Signed constnt
else
let
val (rc, rx) = getReg output
val opb = opCodeBytes(IMUL, SOME{w=true, r=rx, b=false, x = false})
val mdrm = modrm(Based0, rc, 0w5 (* PC rel *))
in
opb @ [mdrm] @ int32Signed(tag 0)
end
| cgOp(MultiplyR {source=AddressConstArg _, ...}) =
raise InternalError "Multiply - address constant"
| cgOp (XMMArith { opc, source=MemoryArg{base, offset, index}, output }) =
mMXAddress(SSE2Ops opc, LargeInt.fromInt offset, base, index, output)
| cgOp (XMMArith { opc, source=AddressConstArg _, output=SSE2Reg rrC }) =
let
(* The real constant here is actually the address of an 8-byte memory
object. The SSE2 instruction takes the address as the argument and in 32-bit mode
we use an absolute address. In 64-bit mode we need to put the
constant at the end of the code segment and use PC-relative
addressing which happens to be encoded in the same way. *)
val opb = opCodeBytes(SSE2Ops opc, NONE)
val mdrm = modrm (Based0, rrC, 0w5 (* constant address/PC-relative *))
in
opb @ [mdrm] @ int32Signed(tag 0)
end
| cgOp (XMMArith { opc, source=RegisterArg(SSE2Reg rrS), output=SSE2Reg rrC }) =
let
val oper = SSE2Ops opc
val pref = opcodePrefix oper
val esc = escapePrefix oper
val opc = opToInt oper
val mdrm = modrm(Register, rrC, rrS)
in
pref @ esc @ [opc, mdrm]
end
| cgOp (XMMArith _) = raise InternalError "cgOp: XMMArith"
| cgOp (XMMStoreToMemory { toStore, address={base, offset, index}, precision }) =
let
val oper =
case precision of
DoublePrecision => SSE2StoreDouble
| SinglePrecision => SSE2StoreSingle
in
mMXAddress(oper, LargeInt.fromInt offset, base, index, toStore)
end
| cgOp (XMMConvertFromInt { source, output=SSE2Reg rrC }) =
let
(* The source is a general register and the output a XMM register. *)
(* TODO: The source can be a memory location. *)
val (rbC, rbX) = getReg source
in
(* This is a special case with both an XMM and general register. *)
opcodePrefix CVTSI2SD @ rexByte(CVTSI2SD, false, rbX, false) @
escapePrefix CVTSI2SD @ [opToInt CVTSI2SD, modrm(Register, rrC, rbC)]
end
| cgOp SignExtendForDivide =
opCodeBytes(CQO_CDQ, if isX64 then SOME {w=true, r=false, b=false, x=false} else NONE)
| cgOp (XChng { reg, arg=RegisterArg regY }) = opReg(XCHNG, reg, regY)
| cgOp (XChng { reg, arg=MemoryArg{offset, base, index} }) =
opAddress(XCHNG, LargeInt.fromInt offset, base, index, reg)
| cgOp (XChng _) = raise InternalError "cgOp: XChng"
| cgOp (Negative {output}) =
opRegPlus2(Group3_A, output, 0w3 (* neg *))
| cgOp (JumpTable{cases, jumpSize=ref jumpSize}) =
let
val _ = jumpSize = JumpSize8 orelse raise InternalError "cgOp: JumpTable"
(* Make one jump for each case and pad it 8 bytes with Nops. *)
fun makeJump (_, l) = opToInt JMP_32 :: word32Unsigned 0w0 @ [opToInt NOP, opToInt NOP, opToInt NOP] @ l
in
List.foldl makeJump [] cases
end
| cgOp(IndexedJumpCalc{ addrReg, indexReg, jumpSize=ref jumpSize }) =
(
jumpSize = JumpSize8 orelse raise InternalError "cgOp: IndexedJumpCalc";
(* Should currently be JumpSize8 which requires a multiplier of 4 and
4 to be subtracted to remove the shifted tag. *)
opAddress(LEAL, ~4, addrReg, Index4 indexReg, addrReg)
)
in
List.rev(List.foldl (fn (c, list) => Word8Vector.fromList(cgOp c) :: list) [] ops)
end
(* General function to process the code. ic is the byte counter within the original code. *)
fun foldCode foldFn n (ops, byteList) =
let
fun doFold(oper :: operList, bytes :: byteList, ic, acc) =
doFold(operList, byteList, ic + Word.fromInt(Word8Vector.length bytes),
foldFn(oper, bytes, ic, acc))
| doFold(_, _, _, n) = n
in
doFold(ops, byteList, 0w0, n)
end
(* Go through the code and update branch and similar instructions with the destinations
of the branches. Long branches are converted to short where possible and the code
is reprocessed. That might repeat if the effect of shorting one branch allows
another to be shortened. *)
fun fixupLabels(ops, bytesList, labelCount) =
let
(* Label array - initialise to 0wxff... . Every label should be defined
but just in case, this is more likely to be detected in int32Signed. *)
val labelArray = Array.array(labelCount, ~ 0w1)
(* First pass - Set the addresses of labels. *)
fun setLabelAddresses(oper :: operList, bytes :: byteList, ic) =
(
case oper of
JumpLabel(Label{labelNo, ...}) => Array.update(labelArray, labelNo, ic)
| _ => ();
setLabelAddresses(operList, byteList, ic + Word.fromInt(Word8Vector.length bytes))
)
| setLabelAddresses(_, _, ic) = ic (* Return the length of the code. *)
fun fixup32(destination, bytes, ic) =
let
val brLength = Word8Vector.length bytes
(* The offset is relative to the end of the branch instruction. *)
val diff = Word.toInt destination - Word.toInt ic - brLength
in
Word8VectorSlice.concat[
Word8VectorSlice.slice(bytes, 0, SOME(brLength-4)), (* The original opcode. *)
Word8VectorSlice.full(Word8Vector.fromList(int32Signed(LargeInt.fromInt diff)))
]
end
fun fixupAddress(UncondBranch(Label{labelNo, ...}), bytes, ic, list) =
let
val destination = Array.sub(labelArray, labelNo)
val brLength = Word8Vector.length bytes
(* The offset is relative to the end of the branch instruction. *)
val diff = Word.toInt destination - Word.toInt ic - brLength
in
if brLength = 2
then (* It's a short branch. Take the original operand and set the relative offset. *)
Word8Vector.fromList [opToInt JMP_8, byteSigned diff] :: list
else if brLength <> 5
then raise InternalError "fixupAddress"
else (* 32-bit offset. If it will fit in a byte we can use a short branch.
If this is a reverse branch we can actually use values up to -131
here because we've calculated using the end of the long branch. *)
if diff <= 127 andalso diff >= ~(128 + 3)
then Word8Vector.fromList [opToInt JMP_8, 0w0 (* Fixed on next pass *)] :: list
else Word8Vector.fromList(opToInt JMP_32 :: int32Signed(LargeInt.fromInt diff)) :: list
end
| fixupAddress(ConditionalBranch{label=Label{labelNo, ...}, test, ...}, bytes, ic, list) =
let
val destination = Array.sub(labelArray, labelNo)
val brLength = Word8Vector.length bytes
(* The offset is relative to the end of the branch instruction. *)
val diff = Word.toInt destination - Word.toInt ic - brLength
in
if brLength = 2
then (* It's a short branch. Take the original operand and set the relative offset. *)
Word8Vector.fromList [opToInt(CondJump test), byteSigned diff] :: list
else if brLength <> 6
then raise InternalError "fixupAddress"
else if diff <= 127 andalso diff >= ~(128+4)
then Word8Vector.fromList[opToInt(CondJump test), 0w0 (* Fixed on next pass *)] :: list
else Word8Vector.fromList(opCodeBytes(CondJump32 test, NONE) @ int32Signed(LargeInt.fromInt diff)) :: list
end
| fixupAddress(LoadLabelAddress{ label=Label{labelNo, ...}, ... }, brCode, ic, list) =
let
val destination = Array.sub(labelArray, labelNo)
in
if isX64
then (* This is a relative offset on the X86/64. *)
fixup32(destination, brCode, ic) :: list
else (* On X86/32 the address is relative to the start of the code so we simply put in
the destination address. *)
Word8VectorSlice.concat[
Word8VectorSlice.slice(brCode, 0, SOME(Word8Vector.length brCode-4)),
Word8VectorSlice.full(Word8Vector.fromList(int32Signed(Word.toLargeInt destination)))] :: list
end
| fixupAddress(JumpTable{cases, jumpSize as ref JumpSize8}, brCode: Word8Vector.vector, ic, list) =
let
(* Each branch is a 32-bit jump padded up to 8 bytes. *)
fun processCase(Label{labelNo, ...} :: cases, offset, ic) =
fixup32(Array.sub(labelArray, labelNo),
Word8VectorSlice.vector(Word8VectorSlice.slice(brCode, offset, SOME 5)), ic) ::
Word8VectorSlice.vector(Word8VectorSlice.slice(brCode, offset+5, SOME 3)) ::
processCase(cases, offset+8, ic+0w8)
| processCase _ = []
(* Could we use short branches? If all of the branches were short the
table would be smaller so the offsets we use would be less.
Ignore backwards branches - could only occur if we have linked labels
in a loop. *)
val newStartOfCode = ic + Word.fromInt(List.length cases * 6)
fun tryShort(Label{labelNo, ...} :: cases, ic) =
let
val destination = Array.sub(labelArray, labelNo)
in
if destination > ic + 0w2 andalso destination - ic - 0w2 < 0w127
then tryShort(cases, ic+0w2)
else false
end
| tryShort _ = true
val newCases =
if tryShort(cases, newStartOfCode)
then
(
jumpSize := JumpSize2;
(* Generate a short branch table. *)
List.map(fn _ => Word8Vector.fromList [opToInt JMP_8, 0w0 (* Fixed on next pass *)]) cases
)
else processCase(cases, 0, ic)
in
Word8Vector.concat newCases :: list
end
| fixupAddress(JumpTable{cases, jumpSize=ref JumpSize2}, _, ic, list) =
let
(* Each branch is a short jump. *)
fun processCase(Label{labelNo, ...} :: cases, offset, ic) =
let
val destination = Array.sub(labelArray, labelNo)
val brLength = 2
val diff = Word.toInt destination - Word.toInt ic - brLength
in
Word8Vector.fromList[opToInt JMP_8, byteSigned diff] :: processCase(cases, offset+2, ic+0w2)
end
| processCase _ = []
in
Word8Vector.concat(processCase(cases, 0, ic)) :: list
end
(* If we've shortened a jump table we have to change the indexing. *)
| fixupAddress(IndexedJumpCalc{ addrReg, indexReg, jumpSize=ref JumpSize2 }, _, _, list) =
(* On x86/32 it might be shorter to use DEC addrReg; ADD addrReg, indexReg. *)
Word8Vector.fromList(opAddress(LEAL, ~1, addrReg, Index1 indexReg, addrReg)) :: list
| fixupAddress(CallFunction Recursive, brCode, ic, list) =
let
val brLen = Word8Vector.length brCode
in
(* Call to the start of the code. Offset is -(bytes to start). *)
Word8VectorSlice.concat[
Word8VectorSlice.slice(brCode, 0, SOME(brLen-4)), (* The original opcode. *)
Word8VectorSlice.full(Word8Vector.fromList(int32Signed(LargeInt.fromInt(~(Word.toInt ic+brLen)))))
] :: list
end
| fixupAddress(JumpToFunction Recursive, brCode, ic, list) =
let
val brLen = Word8Vector.length brCode
in
(* Call to the start of the code. Offset is -(bytes to start). *)
Word8VectorSlice.concat[
Word8VectorSlice.slice(brCode, 0, SOME(brLen-4)), (* The original opcode. *)
Word8VectorSlice.full(Word8Vector.fromList(int32Signed(LargeInt.fromInt(~(Word.toInt ic+brLen)))))
] :: list
end
| fixupAddress(_, bytes, _, list) = bytes :: list
fun reprocess(bytesList, lastCodeSize) =
let
val fixedList = List.rev(foldCode fixupAddress [] (ops, bytesList))
val newCodeSize = setLabelAddresses(ops, fixedList, 0w0)
in
if newCodeSize = lastCodeSize
then (fixedList, lastCodeSize)
else if newCodeSize > lastCodeSize
then raise InternalError "reprocess - size increased"
else reprocess(fixedList, newCodeSize)
end
in
reprocess(bytesList, setLabelAddresses(ops, bytesList, 0w0))
end
(* The handling of constants generally differs between 32- and 64-bits. In 32-bits we put all constants
inline and the GC processes the code to find the addresss. For real values the "constant" is actually
the address of the boxed real value.
In 64-bit mode only the MOV instruction allows a 64-bit quantity so in all other cases only non-addresses
that will fit in 32-bits are inline. Other constants are stored in one of two areas at the end of the
code segment. Non-addresses, including the actual values of reals, are stored in the non-address area
and addresses go in the address area. Only the latter is scanned by the GC.
The address area is also used in 32-bit mode but only has the address of the function name and the
address of the profile ref in it. *)
datatype constnts =
SelfAddress (* The address of the start of the code - inline absolute address 32-bit only *)
| InlineAbsoluteAddress of machineWord (* An address in the code *)
| InlineRelativeAddress of machineWord (* A relative address: 32-bit only. *)
| ConstantArea of machineWord (* A PC-relative address to the constant area - 64-bit only. *)
| RealConstant of machineWord (* A PC-relative address to the non-address area - 64-bit only.*)
| IntConstant of LargeInt.int (* A PC-relative address to the non-address area - 64-bit only.*)
local
fun getConstant(MoveToRegister{ source=NonAddressConstArg source, ...}, bytes, ic, l) =
if isX64
then
(
if source >= ~0x40000000 andalso source < 0x40000000
then (* Signed 32-bits. *) l
else (* Too big for 32-bits. *)
(ic + Word.fromInt(Word8Vector.length bytes) - 0w4, IntConstant source) :: l
)
else l (* 32-bit mode. The constant will always be inline even if we've had to use XOR r,r; ADD r,c *)
| getConstant(MoveToRegister{ source=AddressConstArg source, ... }, bytes, ic, l) =
(* This is the only InlineAbsolute constant form that is valid on X86/64 as well as X86/32. *)
(ic + Word.fromInt(Word8Vector.length bytes) - Word.fromInt wordSize, InlineAbsoluteAddress source) :: l
| getConstant(ArithToGenReg{ source=NonAddressConstArg source, ... }, bytes, ic, l) =
if is32bit source
then l
else (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, IntConstant source) :: l
| getConstant(ArithToGenReg{ source=AddressConstArg source, ... }, bytes, ic, l) =
(ic + Word.fromInt(Word8Vector.length bytes) - 0w4,
if isX64 then ConstantArea source else InlineAbsoluteAddress source) :: l
| getConstant(ArithMemLongConst{ source, ... }, bytes, ic, l) = (* 32-bit only. *)
(ic + Word.fromInt(Word8Vector.length bytes) - 0w4, InlineAbsoluteAddress source) :: l
| getConstant(PushToStack(NonAddressConstArg constnt), bytes, ic, l) =
if is32bit constnt then l
else (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, IntConstant constnt) :: l
| getConstant(PushToStack(AddressConstArg constnt), bytes, ic, l) =
(ic + Word.fromInt(Word8Vector.length bytes) - 0w4,
if isX64 then ConstantArea constnt else InlineAbsoluteAddress constnt) :: l
| getConstant(StoreLongConstToMemory{ toStore, ... }, bytes, ic, l) = (* 32-bit only. *)
(ic + Word.fromInt(Word8Vector.length bytes) - 0w4, InlineAbsoluteAddress toStore) :: l
| getConstant(CallFunction(ConstantCode w), bytes, ic, l) =
(ic + Word.fromInt(Word8Vector.length bytes) - 0w4,
if isX64 then ConstantArea w else InlineRelativeAddress w) :: l
| getConstant(JumpToFunction(ConstantCode w), bytes, ic, l) =
(ic + Word.fromInt(Word8Vector.length bytes) - 0w4,
if isX64 then ConstantArea w else InlineRelativeAddress w) :: l
| getConstant(LoadLabelAddress _, _, ic, l) =
(* We need the address of the code itself but it's in the first of a pair of instructions. *)
if isX64 then l else (ic + 0w1, SelfAddress) :: l
| getConstant(FPLoadFromConst realValue, bytes, ic, l) =
if Real.==(realValue, 0.0) orelse Real.==(realValue, 1.0) orelse Real.==(realValue, ~1.0)
then l
else (ic + Word.fromInt(Word8Vector.length bytes) - 0w4,
if isX64 then RealConstant(toMachineWord realValue) else InlineAbsoluteAddress (toMachineWord realValue)) :: l
| getConstant(FPArithConst{ source, ... }, bytes, ic, l) =
(ic + Word.fromInt(Word8Vector.length bytes) - 0w4,
if isX64 then RealConstant(toMachineWord source) else InlineAbsoluteAddress (toMachineWord source)) :: l
| getConstant(XMMArith { source=AddressConstArg constVal, ... }, bytes, ic, l) =
(ic + Word.fromInt(Word8Vector.length bytes) - 0w4,
if isX64 then RealConstant(toMachineWord constVal) else InlineAbsoluteAddress (toMachineWord constVal)) :: l
| getConstant(MultiplyR{ source=NonAddressConstArg source, ... }, bytes, ic, l) =
if is32bit source
then l
else (ic + Word.fromInt(Word8Vector.length bytes) - 0w4, IntConstant source) :: l
| getConstant(_, _, _, l) = l
in
val getConstants = foldCode getConstant []
end
(* It is convenient to have AllocStore and AllocStoreVariable as primitives at the higher
level but at this point it's better to expand them into their basic instructions. *)
fun expandComplexOperations(instrs, oldLabelCount) =
let
val labelCount = ref oldLabelCount
fun mkLabel() = Label{labelNo= !labelCount} before labelCount := !labelCount + 1
(* On X86/64 the local pointer is in r15. On X86/32 it's in memRegs. *)
val localPointer =
if isX64 then RegisterArg r15 else MemoryArg{base=ebp, offset=memRegLocalMPointer, index=NoIndex}
fun allocStoreCommonCode (resultReg, isVarAlloc, regSaveSet: genReg list) =
let
val compare =
ArithToGenReg{opc=CMP, output=resultReg, source=MemoryArg{base=ebp, offset=memRegLocalMbottom, index=NoIndex}}
(* Normally we won't have run out of store so we want the default
branch prediction to skip the test here. However doing that
involves adding an extra branch which lengthens the code so
it's probably not worth while. *)
(* Just checking against the lower limit can fail
in the situation where the heap pointer is at the low end of
the address range and the store required is so large that the
subtraction results in a negative number. In that case it
will be > (unsigned) lower_limit so in addition we have
to check that the result is < (unsigned) heap_pointer.
This actually happened on Windows with X86-64.
In theory this can happen with fixed-size allocations as
well as variable allocations but in practice fixed-size
allocations are going to be small enough that it's not a
problem. *)
val destLabel = mkLabel()
val branches =
if isVarAlloc
then
let
val extraLabel = mkLabel()
in
[ConditionalBranch{test=JB, label=extraLabel, predict=PredictNotTaken},
ArithToGenReg{opc=CMP, output=resultReg, source=localPointer},
ConditionalBranch{test=JB, label=destLabel, predict=PredictTaken},
JumpLabel extraLabel]
end
else [ConditionalBranch{test=JNB, label=destLabel, predict=PredictTaken}]
val callRts = CallRTS{rtsEntry=HeapOverflowCall, saveRegs=regSaveSet}
val fixup = JumpLabel destLabel
(* Update the heap pointer now we have the store. This is also
used by the RTS in the event of a trap to work out how much
store was being allocated. *)
val update =
if isX64 then MoveToRegister{source=RegisterArg resultReg, output=r15}
else StoreRegToMemory{toStore=resultReg, address={base=ebp, offset=memRegLocalMPointer, index=NoIndex}}
in
compare :: branches @ [callRts, fixup, update]
end
fun doExpansion([], code, _) = code
| doExpansion(AllocStore {size, output, saveRegs} :: instrs, code, inAllocation) =
let
val _ = inAllocation andalso raise InternalError "doExpansion: Allocation started but not complete"
val () = if List.exists (fn r => r = output) saveRegs then raise InternalError "AllocStore: in set" else ()
val bytes = (size + 1) * wordSize
val startCode =
if isX64
then [LoadAddress{output=output, offset = ~ bytes, base=SOME r15, index=NoIndex}]
(* TODO: What if it's too big to fit? *)
else
[MoveToRegister{source=MemoryArg{base=ebp, offset=memRegLocalMPointer, index=NoIndex}, output=output},
LoadAddress{output=output, offset = ~ bytes, base=SOME output, index=NoIndex}]
val resultCode = startCode @ allocStoreCommonCode(output, false, saveRegs)
in
doExpansion(instrs, (List.rev resultCode) @ code, true)
end
| doExpansion(AllocStoreVariable {output, saveRegs} :: instrs, code, inAllocation) =
let
(* Allocates memory whose size as a number of bytes is in the output register. *)
val _ = inAllocation andalso raise InternalError "doExpansion: Allocation started but not complete"
val () = if List.exists (fn r => r = output) saveRegs then raise InternalError "AllocStore: in set" else ()
(* Negate the length and add it to the current heap pointer. *)
val startCode =
[Negative{output=output}, ArithToGenReg{opc=ADD, output=output, source=localPointer}]
val resultCode = startCode @ allocStoreCommonCode(output, true, saveRegs)
in
doExpansion(instrs, (List.rev resultCode) @ code, true)
end
| doExpansion(StoreInitialised :: instrs, code, _) = doExpansion(instrs, code, false)
| doExpansion(instr :: instrs, code, inAlloc) = doExpansion(instrs, instr::code, inAlloc)
val expanded = List.rev(doExpansion(instrs, [], false))
in
(expanded, !labelCount)
end
fun printCode (Code{procName, printStream, ...}, seg) =
let
val print = printStream
val ptr = ref 0w0;
(* prints a string representation of a number *)
fun printValue v =
if v < 0 then (print "-"; print(LargeInt.toString (~ v))) else print(LargeInt.toString v)
infix 3 +:= ;
fun (x +:= y) = (x := !x + (y:word));
fun get16s (a, seg) : int =
let
val b0 = Word8.toInt (codeVecGet (seg, a));
val b1 = Word8.toInt (codeVecGet (seg, a + 0w1));
val b1' = if b1 >= 0x80 then b1 - 0x100 else b1;
in
(b1' * 0x100) + b0
end
fun get16u(a, seg) : int =
Word8.toInt (codeVecGet (seg, a + 0w1)) * 0x100 + Word8.toInt (codeVecGet (seg, a))
(* Get 1 unsigned byte from the given offset in the segment. *)
fun get8u (a, seg) : Word8.word = codeVecGet (seg, a);
(* Get 1 signed byte from the given offset in the segment. *)
fun get8s (a, seg) : int = Word8.toIntX (codeVecGet (seg, a));
(* Get 1 signed 32 bit word from the given offset in the segment. *)
fun get32s (a, seg) : LargeInt.int =
let
val b0 = Word8.toLargeInt (codeVecGet (seg, a));
val b1 = Word8.toLargeInt (codeVecGet (seg, a + 0w1));
val b2 = Word8.toLargeInt (codeVecGet (seg, a + 0w2));
val b3 = Word8.toLargeInt (codeVecGet (seg, a + 0w3));
val b3' = if b3 >= 0x80 then b3 - 0x100 else b3;
val topHw = (b3' * 0x100) + b2;
val bottomHw = (b1 * 0x100) + b0;
in
(topHw * exp2_16) + bottomHw
end
fun get64s (a, seg) : LargeInt.int =
let
val b0 = Word8.toLargeInt (codeVecGet (seg, a));
val b1 = Word8.toLargeInt (codeVecGet (seg, a + 0w1));
val b2 = Word8.toLargeInt (codeVecGet (seg, a + 0w2));
val b3 = Word8.toLargeInt (codeVecGet (seg, a + 0w3));
val b4 = Word8.toLargeInt (codeVecGet (seg, a + 0w4));
val b5 = Word8.toLargeInt (codeVecGet (seg, a + 0w5));
val b6 = Word8.toLargeInt (codeVecGet (seg, a + 0w6));
val b7 = Word8.toLargeInt (codeVecGet (seg, a + 0w7));
val b7' = if b7 >= 0x80 then b7 - 0x100 else b7;
in
((((((((b7' * 0x100 + b6) * 0x100 + b5) * 0x100 + b4) * 0x100 + b3)
* 0x100 + b2) * 0x100) + b1) * 0x100) + b0
end
fun print32 () = printValue (get32s (!ptr, seg)) before (ptr +:= 0w4)
and print64 () = printValue (get64s (!ptr, seg)) before (ptr +:= 0w8)
and print16 () = printValue (LargeInt.fromInt(get16s (!ptr, seg)) before (ptr +:= 0w2))
and print8 () = printValue (LargeInt.fromInt(get8s (!ptr, seg)) before (ptr +:= 0w1))
fun printJmp () =
let
val valu = get8s (!ptr, seg) before ptr +:= 0w1
in
print (Word.fmt StringCvt.HEX (Word.fromInt valu + !ptr))
end
(* Print an effective address. The register field may designate a general register
or an xmm register depending on the instruction. *)
fun printEAGeneral printRegister (rex, sz) =
let
val modrm = codeVecGet (seg, !ptr)
val () = ptr +:= 0w1
(* Decode the Rex prefix if present. *)
val rexX = (rex andb8 0wx2) <> 0w0
val rexB = (rex andb8 0wx1) <> 0w0
val prefix =
case sz of
SZByte => "byte ptr "
| SZWord => "word ptr "
| SZDWord => "dword ptr "
| SZQWord => "qword ptr "
in
case (modrm >>- 0w6, modrm andb8 0w7, isX64) of
(0w3, rm, _) => printRegister(rm, rexB, sz)
| (md, 0w4, _) =>
let (* s-i-b present. *)
val sib = codeVecGet (seg, !ptr)
val () = ptr +:= 0w1
val ss = sib >>- 0w6
val index = (sib >>- 0w3) andb8 0w7
val base = sib andb8 0w7
in
print prefix;
case (md, base, isX64) of
(0w1, _, _) => print8 ()
| (0w2, _, _) => print32 ()
| (0w0, 0w5, _) => print32 () (* Absolute in 32-bit mode. PC-relative in 64-bit ?? *)
| _ => ();
print "[";
if md <> 0w0 orelse base <> 0w5
then
(
print (genRegRepr (mkReg (base, rexB), sz32_64));
if index = 0w4 then () else print ","
)
else ();
if index = 0w4 andalso not rexX (* No index. *)
then ()
else print (genRegRepr (mkReg(index, rexX), sz32_64) ^
(if ss = 0w0 then "*1"
else if ss = 0w1 then "*2"
else if ss = 0w2 then "*4"
else "*8"));
print "]"
end
| (0w0, 0w5, false) => (* Absolute address.*) (print prefix; print32 ())
| (0w0, 0w5, _) => (* PC-relative in 64-bit *)
(print prefix; print ".+"; print32 ())
| (md, rm, _) => (* register plus offset. *)
(
print prefix;
if md = 0w1 then print8 ()
else if md = 0w2 then print32 ()
else ();
print ("[" ^ genRegRepr (mkReg(rm, rexB), sz32_64) ^ "]")
)
end
(* For most instructions we want to print a general register. *)
val printEA =
printEAGeneral (fn (rm, rexB, sz) => print (genRegRepr (mkReg(rm, rexB), sz)))
and printEAxmm =
printEAGeneral (fn (rm, _, _) => print (xmmRegRepr(SSE2Reg rm)))
fun printArith opc =
print
(case opc of
0 => "add "
| 1 => "or "
| 2 => "adc "
| 3 => "sbb "
| 4 => "and "
| 5 => "sub "
| 6 => "xor "
| _ => "cmp "
)
fun printGvEv (opByte, rex, rexR, sz) =
let
(* Register is in next byte. *)
val nb = codeVecGet (seg, !ptr)
val reg = (nb >>- 0w3) andb8 0w7
in
printArith(Word8.toInt((opByte div 0w8) mod 0w8));
print "\t";
print (genRegRepr (mkReg(reg, rexR), sz));
print ",";
printEA(rex, sz)
end
fun printMovCToR (opByte, sz, rexB) =
(
print "mov \t";
print(genRegRepr (mkReg (opByte mod 0w8, rexB), sz));
print ",";
case sz of SZDWord => print32 () | SZQWord => print64 () | _ => print "???"
)
fun printShift (opByte, rex, sz) =
let
(* Opcode is determined by next byte. *)
val nb = Word8.toInt (codeVecGet (seg, !ptr))
val opc = (nb div 8) mod 8
in
print
(case opc of
4 => "shl "
| 5 => "shr "
| 7 => "sar "
| _ => "???"
);
print "\t";
printEA(rex, sz);
print ",";
if opByte = opToInt Group2_1_A then print "1"
else if opByte = opToInt Group2_CL_A then print "cl"
else print8 ()
end
fun printFloat (opByte, rex) =
let
(* Opcode is in next byte. *)
val opByte2 = codeVecGet (seg, !ptr)
val nnn = (opByte2 >>- 0w3) andb8 0w7
val escNo = opByte andb8 0wx7
in
if (opByte2 andb8 0wxC0) = 0wxC0
then (* mod = 11 *)
(
case (escNo, nnn, opByte2 andb8 0wx7 (* modrm *)) of
(0w1, 0w4, 0w0) => print "fchs"
| (0w1, 0w4, 0w1) => print "fabs"
| (0w1, 0w5, 0w6) => print "fldz"
| (0w1, 0w5, 0w1) => print "flf1"
| (0w7, 0w4, 0w0) => print "fnstsw\tax"
| (0w1, 0w5, 0w0) => print "fld1"
| (0w1, 0w6, 0w3) => print "fpatan"
| (0w1, 0w7, 0w2) => print "fsqrt"
| (0w1, 0w7, 0w6) => print "fsin"
| (0w1, 0w7, 0w7) => print "fcos"
| (0w1, 0w6, 0w7) => print "fincstp"
| (0w1, 0w6, 0w6) => print "fdecstp"
| (0w5, 0w2, rno) => print ("fst \tst(" ^ Word8.toString rno ^ ")")
| (0w5, 0w3, rno) => print ("fstp\tst(" ^ Word8.toString rno ^ ")")
| (0w1, 0w0, rno) => print ("fld \tst(" ^ Word8.toString rno ^ ")")
| (0w1, 0w1, rno) => print ("fxch\tst(" ^ Word8.toString rno ^ ")")
| (0w0, 0w3, rno) => print ("fcomp\tst(" ^ Word8.toString rno ^ ")")
| (0w0, 0w0, rno) => print ("fadd\tst,st(" ^ Word8.toString rno ^ ")")
| (0w0, 0w1, rno) => print ("fmul\tst,st(" ^ Word8.toString rno ^ ")")
| (0w0, 0w4, rno) => print ("fsub\tst,st(" ^ Word8.toString rno ^ ")")
| (0w0, 0w5, rno) => print ("fsubr\tst,st(" ^ Word8.toString rno ^ ")")
| (0w0, 0w6, rno) => print ("fdiv\tst,st(" ^ Word8.toString rno ^ ")")
| (0w0, 0w7, rno) => print ("fdivr\tst,st(" ^ Word8.toString rno ^ ")")
| (0w5, 0w0, rno) => print ("ffree\tst(" ^ Word8.toString rno ^ ")")
| _ => (printValue(Word8.toLargeInt opByte); printValue(Word8.toLargeInt opByte2));
ptr +:= 0w1
)
else (* mod = 00, 01, 10 *)
(
case (escNo, nnn) of
(0w1, 0w0) => (print "fld \t"; printEA(rex, SZDWord)) (* Single precision. *)
| (0w1, 0w2) => (print "fst\t"; printEA(rex, SZDWord))
| (0w1, 0w3) => (print "fstp\t"; printEA(rex, SZDWord))
| (0w3, 0w0) => (print "fildl\t"; printEA(rex, SZQWord))
| (0w7, 0w5) => (print "fildq\t"; printEA(rex, SZQWord))
| (0w4, 0w0) => (print "fadd\t"; printEA(rex, SZQWord))
| (0w4, 0w1) => (print "fmul\t"; printEA(rex, SZQWord))
| (0w4, 0w3) => (print "fcomp\t"; printEA(rex, SZQWord))
| (0w4, 0w4) => (print "fsub\t"; printEA(rex, SZQWord))
| (0w4, 0w5) => (print "fsubr\t"; printEA(rex, SZQWord))
| (0w4, 0w6) => (print "fdiv\t"; printEA(rex, SZQWord))
| (0w4, 0w7) => (print "fdivr\t"; printEA(rex, SZQWord))
| (0w5, 0w0) => (print "fld \t"; printEA(rex, SZQWord)) (* Double precision. *)
| (0w5, 0w2) => (print "fst\t"; printEA(rex, SZQWord))
| (0w5, 0w3) => (print "fstp\t"; printEA(rex, SZQWord))
| _ => (printValue(Word8.toLargeInt opByte); printValue(Word8.toLargeInt opByte2))
)
end
fun printJmp32 oper =
let
val valu = get32s (!ptr, seg) before (ptr +:= 0w4)
in
print oper; print "\t";
print (Word.fmt StringCvt.HEX (!ptr + Word.fromLargeInt valu))
end
fun printMask mask =
let
val wordMask = Word.fromInt mask
fun printAReg n =
if n = regs then ()
else
(
if (wordMask andb (0w1 << Word.fromInt n)) <> 0w0
then (print(regRepr(regN n)); print " ")
else ();
printAReg(n+1)
)
in
printAReg 0
end
in
if procName = "" (* No name *) then print "?" else print procName;
print ":\n";
while get8u (!ptr, seg) <> 0wxf4 (* HLT. *) do
let
val () = print (Word.fmt StringCvt.HEX (!ptr)) (* The address in hex. *)
val () = print "\t"
(* See if we have a lock prefix. *)
val () =
if get8u (!ptr, seg) = 0wxF0
then (print "lock "; ptr := !ptr + 0w1)
else ()
val legacyPrefix =
let
val p = get8u (!ptr, seg)
in
if p = 0wxF2 orelse p = 0wxF3 orelse p = 0wx66
then (ptr := !ptr + 0w1; p)
else 0wx0
end
(* See if we have a REX byte. *)
val rex =
let
val b = get8u (!ptr, seg);
in
if b >= 0wx40 andalso b <= 0wx4f
then (ptr := !ptr + 0w1; b)
else 0w0
end
val rexW = (rex andb8 0wx8) <> 0w0
val rexR = (rex andb8 0wx4) <> 0w0
val rexB = (rex andb8 0wx1) <> 0w0
val opByte = get8u (!ptr, seg) before ptr +:= 0w1
val sizeFromRexW =
if rexW then SZQWord else if legacyPrefix = 0wx66 then SZWord else SZDWord
in
case opByte of
0wx03 => printGvEv (opByte, rex, rexR, sizeFromRexW)
| 0wx0b => printGvEv (opByte, rex, rexR, sizeFromRexW)
| 0wx0f => (* ESCAPE *)
let
(* Opcode is in next byte. *)
val opByte2 = codeVecGet (seg, !ptr)
val () = (ptr +:= 0w1)
in
case legacyPrefix of
0w0 =>
(
case opByte2 of
0wxC1 =>
let
val nb = codeVecGet (seg, !ptr);
val reg = (nb >>- 0w3) andb8 0w7
in
(* The address argument comes first in the assembly code. *)
print "xadd\t";
printEA (rex, sizeFromRexW);
print ",";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW))
end
| 0wxB6 =>
let
val nb = codeVecGet (seg, !ptr);
val reg = (nb >>- 0w3) andb8 0w7
in
print "movzx\t";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW));
print ",";
printEA (rex, SZByte)
end
| 0wxB7 =>
let
val nb = codeVecGet (seg, !ptr);
val reg = (nb >>- 0w3) andb8 0w7
in
print "movzx\t";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW));
print ",";
printEA (rex, SZWord)
end
| 0wxAF =>
let
val nb = codeVecGet (seg, !ptr);
val reg = (nb >>- 0w3) andb8 0w7
in
print "imul\t";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW));
print ",";
printEA (rex, sizeFromRexW)
end
| 0wx80 => printJmp32 "jo "
| 0wx81 => printJmp32 "jno "
| 0wx82 => printJmp32 "jb "
| 0wx83 => printJmp32 "jnb "
| 0wx84 => printJmp32 "je "
| 0wx85 => printJmp32 "jne "
| 0wx86 => printJmp32 "jna "
| 0wx87 => printJmp32 "ja "
| 0wx88 => printJmp32 "js "
| 0wx89 => printJmp32 "jns "
| 0wx8a => printJmp32 "jp "
| 0wx8b => printJmp32 "jnp "
| 0wx8c => printJmp32 "jl "
| 0wx8d => printJmp32 "jge "
| 0wx8e => printJmp32 "jle "
| 0wx8f => printJmp32 "jg "
| _ => (print "esc\t"; printValue(Word8.toLargeInt opByte2))
)
| 0wxf2 => (* SSE2 instruction *)
let
val nb = codeVecGet (seg, !ptr)
val reg = SSE2Reg((nb >>- 0w3) andb8 0w7)
in
case opByte2 of
0wx10 => ( print "movsd\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| 0wx11 => ( print "movsd\t"; printEAxmm(rex, SZQWord); print ","; print(xmmRegRepr reg) )
| 0wx2a => ( print "cvtsi2sd\t"; print(xmmRegRepr reg); print ","; printEA(rex, sizeFromRexW) )
| 0wx58 => ( print "addsd\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| 0wx59 => ( print "mulsd\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| 0wx5a => ( print "cvtsd2ss\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| 0wx5c => ( print "subsd\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| 0wx5e => ( print "divsd\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| b => (print "F2\n"; print "0F\n"; print(Word8.fmt StringCvt.HEX b))
end
| 0wxf3 => (* SSE2 instruction. *)
let
val nb = codeVecGet (seg, !ptr)
val reg = SSE2Reg((nb >>- 0w3) andb8 0w7)
in
case opByte2 of
0wx5a => ( print "cvtss2sd\t"; print(xmmRegRepr reg); print ","; printEA(rex, sizeFromRexW) )
| 0wx11 => ( print "movss\t"; printEAxmm(rex, SZDWord); print ","; print(xmmRegRepr reg) )
| b => (print "F3\n"; print "0F\n"; print(Word8.fmt StringCvt.HEX b))
end
| 0wx66 => (* SSE2 instruction *)
let
val nb = codeVecGet (seg, !ptr)
val reg = SSE2Reg((nb >>- 0w3) andb8 0w7)
in
case opByte2 of
0wx2e => ( print "ucomisd\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| 0wx54 => ( print "andpd\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| 0wx57 => ( print "xorpd\t"; print(xmmRegRepr reg); print ","; printEAxmm(rex, SZQWord) )
| b => (print "66\n"; print "0F\n"; print(Word8.fmt StringCvt.HEX b))
end
| _ => (print "esc\t"; printValue(Word8.toLargeInt opByte2))
end (* ESCAPE *)
| 0wx13 => printGvEv (opByte, rex, rexR, sizeFromRexW)
| 0wx1b => printGvEv (opByte, rex, rexR, sizeFromRexW)
| 0wx23 => printGvEv (opByte, rex, rexR, sizeFromRexW)
| 0wx2b => printGvEv (opByte, rex, rexR, sizeFromRexW)
| 0wx33 => printGvEv (opByte, rex, rexR, sizeFromRexW)
| 0wx3b => printGvEv (opByte, rex, rexR, sizeFromRexW)
(* Push and Pop. These are 64-bit on X86/64 whether there is REX prefix or not. *)
| 0wx50 => print ("push\t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx51 => print ("push\t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx52 => print ("push\t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx53 => print ("push\t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx54 => print ("push\t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx55 => print ("push\t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx56 => print ("push\t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx57 => print ("push\t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx58 => print ("pop \t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx59 => print ("pop \t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx5a => print ("pop \t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx5b => print ("pop \t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx5c => print ("pop \t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx5d => print ("pop \t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx5e => print ("pop \t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx5f => print ("pop \t" ^ genRegRepr (mkReg (opByte mod 0w8, rexB), sz32_64))
| 0wx68 => (print "push\t"; print32 ())
| 0wx69 =>
let
(* Register is in next byte. *)
val nb = codeVecGet (seg, !ptr)
val reg = (nb >>- 0w3) andb8 0w7
in
print "imul\t"; print(genRegRepr (mkReg(reg, rexR), sizeFromRexW)); print ",";
printEA(rex, sizeFromRexW); print ","; print32 ()
end
| 0wx6a => (print "push\t"; print8 ())
| 0wx6b =>
let
(* Register is in next byte. *)
val nb = codeVecGet (seg, !ptr)
val reg = (nb >>- 0w3) andb8 0w7
in
print "imul\t"; print(genRegRepr (mkReg(reg, rexR), sizeFromRexW)); print ",";
printEA(rex, sizeFromRexW); print ","; print8 ()
end
| 0wx70 => (print "jo \t"; printJmp())
| 0wx71 => (print "jno \t"; printJmp())
| 0wx72 => (print "jb \t"; printJmp())
| 0wx73 => (print "jnb \t"; printJmp())
| 0wx74 => (print "je \t"; printJmp())
| 0wx75 => (print "jne \t"; printJmp())
| 0wx76 => (print "jna \t"; printJmp())
| 0wx77 => (print "ja \t"; printJmp())
| 0wx78 => (print "js \t"; printJmp())
| 0wx79 => (print "jns \t"; printJmp())
| 0wx7a => (print "jp \t"; printJmp())
| 0wx7b => (print "jnp \t"; printJmp())
| 0wx7c => (print "jl \t"; printJmp())
| 0wx7d => (print "jge \t"; printJmp())
| 0wx7e => (print "jle \t"; printJmp())
| 0wx7f => (print "jg \t"; printJmp())
| 0wx80 => (* Group1_8_a *)
let (* Memory, byte constant *)
(* Opcode is determined by next byte. *)
val nb = Word8.toInt (codeVecGet (seg, !ptr))
in
printArith ((nb div 8) mod 8);
print "\t";
printEA(rex, SZByte);
print ",";
print8 ()
end
| 0wx81 =>
let (* Memory, 32-bit constant *)
(* Opcode is determined by next byte. *)
val nb = Word8.toInt (codeVecGet (seg, !ptr))
in
printArith ((nb div 8) mod 8);
print "\t";
printEA(rex, sizeFromRexW);
print ",";
print32 ()
end
| 0wx83 =>
let (* Word memory, 8-bit constant *)
(* Opcode is determined by next byte. *)
val nb = Word8.toInt (codeVecGet (seg, !ptr))
in
printArith ((nb div 8) mod 8);
print "\t";
printEA(rex, sizeFromRexW);
print ",";
print8 ()
end
| 0wx87 =>
let (* xchng *)
(* Register is in next byte. *)
val nb = codeVecGet (seg, !ptr)
val reg = (nb >>- 0w3) andb8 0w7
in
print "xchng \t";
printEA(rex, sizeFromRexW);
print ",";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW))
end
| 0wx88 =>
let (* mov eb,gb i.e a store *)
(* Register is in next byte. *)
val nb = Word8.toInt (codeVecGet (seg, !ptr));
val reg = (nb div 8) mod 8;
in
print "mov \t";
printEA(rex, SZByte);
print ",";
if rexR
then print ("r" ^ Int.toString(reg+8) ^ "B")
else case reg of
0 => print "al"
| 1 => print "cl"
| 2 => print "dl"
| 3 => print "bl"
(* If there is a REX byte these select the low byte of the registers. *)
| 4 => print (if rex = 0w0 then "ah" else "sil")
| 5 => print (if rex = 0w0 then "ch" else "dil")
| 6 => print (if rex = 0w0 then "dh" else "bpl")
| 7 => print (if rex = 0w0 then "bh" else "spl")
| _ => print ("r" ^ Int.toString reg)
end
| 0wx89 =>
let (* mov ev,gv i.e. a store *)
(* Register is in next byte. *)
val nb = codeVecGet (seg, !ptr)
val reg = (nb >>- 0w3) andb8 0w7
in
print "mov \t";
printEA(rex, sizeFromRexW);
print ",";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW))
end
| 0wx8b =>
let (* mov gv,ev i.e. a load *)
(* Register is in next byte. *)
val nb = codeVecGet (seg, !ptr)
val reg = (nb >>- 0w3) andb8 0w7
in
print "mov \t";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW));
print ",";
printEA(rex, sizeFromRexW)
end
| 0wx8d =>
let (* lea gv.M *)
(* Register is in next byte. *)
val nb = codeVecGet (seg, !ptr)
val reg = (nb >>- 0w3) andb8 0w7
in
print "lea \t";
print (genRegRepr (mkReg(reg, rexR), sizeFromRexW));
print ",";
printEA(rex, sizeFromRexW)
end
| 0wx8f => (print "pop \t"; printEA(rex, sz32_64))
| 0wx90 => print "nop"
| 0wx99 => if rexW then print "cqo" else print "cdq"
| 0wx9e => print "sahf\n"
| 0wxa4 => (if legacyPrefix = 0wxf3 then print "rep " else (); print "movsb")
| 0wxa5 => (if legacyPrefix = 0wxf3 then print "rep " else (); print "movsl")
| 0wxa6 => (if legacyPrefix = 0wxf3 then print "repe " else (); print "cmpsb")
| 0wxa8 => (print "test\tal,"; print8 ())
| 0wxaa => (if legacyPrefix = 0wxf3 then print "rep " else (); print "stosb")
| 0wxab =>
(
if legacyPrefix = 0wxf3 then print "rep " else ();
if rexW then print "stosq" else print "stosl"
)
| 0wxb8 => printMovCToR (opByte, sizeFromRexW, rexB)
| 0wxb9 => printMovCToR (opByte, sizeFromRexW, rexB)
| 0wxba => printMovCToR (opByte, sizeFromRexW, rexB)
| 0wxbb => printMovCToR (opByte, sizeFromRexW, rexB)
| 0wxbc => printMovCToR (opByte, sizeFromRexW, rexB)
| 0wxbd => printMovCToR (opByte, sizeFromRexW, rexB)
| 0wxbe => printMovCToR (opByte, sizeFromRexW, rexB)
| 0wxbf => printMovCToR (opByte, sizeFromRexW, rexB)
| 0wxc1 => (* Group2_8_A *) printShift (opByte, rex, sizeFromRexW)
| 0wxc2 => (print "ret \t"; print16 ())
| 0wxc3 => print "ret"
| 0wxc6 => (* move 8-bit constant to memory *)
(
print "mov \t";
printEA(rex, SZByte);
print ",";
print8 ()
)
| 0wxc7 => (* move 32/64-bit constant to memory *)
(
print "mov \t";
printEA(rex, sizeFromRexW);
print ",";
print32 ()
)
| 0wxca => (* Register mask *)
let
val mask = get16u (!ptr, seg) before (ptr +:= 0w2)
in
print "SAVE\t";
printMask mask
end
| 0wxcd => (* Register mask *)
let
val mask = get8u (!ptr, seg) before (ptr +:= 0w1)
in
print "SAVE\t";
printMask(Word8.toInt mask)
end
| 0wxd1 => (* Group2_1_A *) printShift (opByte, rex, sizeFromRexW)
| 0wxd3 => (* Group2_CL_A *) printShift (opByte, rex, sizeFromRexW)
| 0wxd8 => printFloat (opByte, rex) (* Floating point escapes *)
| 0wxd9 => printFloat (opByte, rex)
| 0wxda => printFloat (opByte, rex)
| 0wxdb => printFloat (opByte, rex)
| 0wxdc => printFloat (opByte, rex)
| 0wxdd => printFloat (opByte, rex)
| 0wxde => printFloat (opByte, rex)
| 0wxdf => printFloat (opByte, rex)
| 0wxe8 =>
let (* 32-bit relative call. *)
val valu = get32s (!ptr, seg) before (ptr +:= 0w4)
in
print "call\t";
print (Word.fmt StringCvt.HEX (!ptr + Word.fromLargeInt valu))
end
| 0wxe9 =>
let (* 32-bit relative jump. *)
val valu = get32s (!ptr, seg) before (ptr +:= 0w4)
in
print "jmp \t";
print (Word.fmt StringCvt.HEX (!ptr + Word.fromLargeInt valu))
end
| 0wxeb => (print "jmp \t"; printJmp())
| 0wxf4 => print "hlt" (* Marker to indicate end-of-code. *)
| 0wxf6 => (* Group3_a *)
let
(* Opcode is determined by next byte. *)
val nb = Word8.toInt (codeVecGet (seg, !ptr))
val opc = (nb div 8) mod 8
in
print
(case opc of
0 => "test"
| 3 => "neg"
| _ => "???"
);
print "\t";
printEA(rex, SZByte);
if opc = 0 then (print ","; print8 ()) else ()
end
| 0wxf7 => (* Group3_A *)
let
(* Opcode is determined by next byte. *)
val nb = Word8.toInt (codeVecGet (seg, !ptr))
val opc = (nb div 8) mod 8
in
print
(case opc of
0 => "test"
| 3 => "neg "
| 4 => "mul "
| 5 => "imul"
| 6 => "div "
| 7 => "idiv"
| _ => "???"
);
print "\t";
printEA(rex, sizeFromRexW);
(* Test has an immediate operand. It's 32-bits even in 64-bit mode. *)
if opc = 0 then (print ","; print32 ()) else ()
end
| 0wxff => (* Group5 *)
let
(* Opcode is determined by next byte. *)
val nb = Word8.toInt (codeVecGet (seg, !ptr))
val opc = (nb div 8) mod 8
in
print
(case opc of
2 => "call"
| 4 => "jmp "
| 6 => "push"
| _ => "???"
);
print "\t";
printEA(rex, sz32_64) (* None of the cases we use need a prefix. *)
end
| _ => print(Word8.fmt StringCvt.HEX opByte);
print "\n"
end; (* end of while loop *)
print "\n"
end (* printCode *);
(* This actually does the final code-generation. *)
fun generateCode
{ops=operations,
code=cvec as Code{procName, printAssemblyCode, printStream, profileObject, ...},
labelCount} : address =
let
val (expanded, newLabelCount) = expandComplexOperations (operations, labelCount)
val () = printLowLevelCode(expanded, cvec)
local
val initialBytesList = codeGenerate expanded
in
(* Fixup labels and shrink long branches to short. *)
val (bytesList, codeSize) = fixupLabels(expanded, initialBytesList, newLabelCount)
end
val constantList = getConstants(expanded, bytesList)
(* Get the number of constants that need to be added to the address area. *)
val constsInConstArea = List.foldl (fn ((_, ConstantArea _), n) => n+1 | (_, n) => n) 0 constantList
local
(* Add one byte for the HLT and round up to a number of words. *)
val endOfCode = (codeSize+Word.fromInt wordSize) div Word.fromInt wordSize
val realSize = 0w8 div Word.fromInt wordSize
fun addSizes((_, RealConstant _), n) = n+realSize
| addSizes((_, IntConstant _), n) = n+0w1
| addSizes(_, n) = n
val numOfNonAddrWords = List.foldl addSizes 0w0 constantList
in
val endOfByteArea = endOfCode + numOfNonAddrWords
(* +4 for function name, register mask (no longer used), profile object and count of constants. *)
val segSize = endOfByteArea + Word.fromInt constsInConstArea + 0w4
end
(* Create a byte vector and copy the data in. This is a byte area and not scanned
by the GC so cannot contain any addresses. *)
val byteVec = byteVecMake segSize
val ic = ref 0w0
local
fun genByte (ival: Word8.word) = set8u (ival, !ic, byteVec) before ic := !ic + 0w1
in
fun genBytes l = Word8Vector.app (fn i => genByte i) l
val () = List.app (fn b => genBytes b) bytesList
val () = genBytes(Word8Vector.fromList(opCodeBytes(HLT, NONE))) (* Marker - this is used by ScanConstants in the RTS. *)
end
(* Align ic onto a fullword boundary. *)
val () = ic := ((!ic + Word.fromInt wordSize - 0w1) andb ~ (Word.fromInt wordSize))
(* Copy the non-address constants. These are only used in 64-bit mode and are
either real constants or integers that are too large to fit in a 32-bit
inline constants. We don't use this for real constants in 32-bit mode because
we don't have relative addressing. Instead a real constant is the inline
address of a boxed real number. *)
local
fun putNonAddrConst(addrs, RealConstant m) =
let
val addrOfConst = ! ic
val c = toMachineWord m
val cAsAddr = toAddress c
(* For the moment this should always be a real number contained in
a byte segment. If this changes in the future we may need to
align this back onto a 4/8-byte boundary. *)
val cLength = length cAsAddr * Word.fromInt wordSize
val _ = (cLength = 0w8 andalso flags cAsAddr = F_bytes) orelse
raise InternalError "putNonAddrConst: Not a real number"
fun doCopy n =
if n = cLength then ()
else (genBytes(Word8Vector.fromList[loadByte(cAsAddr, n)]); doCopy(n+0w1))
val () = doCopy 0w0
in
set32s(Word.toLargeInt(addrOfConst - addrs - 0w4), addrs, byteVec)
end
| putNonAddrConst(addrs, IntConstant imm) =
let
val addrOfConst = ! ic
fun setMem(m, n) =
if n = Word.fromInt wordSize then ()
else
(
genBytes(Word8Vector.fromList[Word8.fromLargeInt(m mod 0x100)]);
setMem(m div 0x100, n+0w1)
)
val () = setMem(imm, 0w0)
in
set32s(Word.toLargeInt(addrOfConst - addrs - 0w4), addrs, byteVec)
end
| putNonAddrConst _ = ()
in
val () = List.app putNonAddrConst constantList
end
val _ = bytesToWords(! ic) = endOfByteArea orelse raise InternalError "mismatch"
(* Put in the number of constants. This must go in before we actually put
in any constants. In 32-bit mode there are only three constants: the
function name and the register mask, now unused and the profile object.
All other constants are in the code. *)
local
val addr = wordsToBytes(endOfByteArea + 0w3 + Word.fromInt constsInConstArea)
fun setBytes(_, _, 0) = ()
| setBytes(ival, offset, count) =
(
byteVecSet(byteVec, offset, Word8.fromLargeInt(ival mod 256));
setBytes(ival div 256, offset+0w1, count-1)
)
in
val () = setBytes(LargeInt.fromInt(3 + constsInConstArea), addr, wordSize)
end;
(* We've put in all the byte data so it is safe to convert this to a mutable code
cell that can contain addresses and will be scanned by the GC. *)
val codeSeg = byteVecToCodeVec byteVec
(* Various RTS functions assume that the first constant is the function name.
The profiler assumes that the third word is the address of the mutable that
contains the profile count. The second word used to be used for the register
mask but is no longer used. *)
val () = codeVecPutWord (codeSeg, endOfByteArea, toMachineWord procName)
val () = codeVecPutWord (codeSeg, endOfByteArea + 0w1, toMachineWord 1 (* No longer used. *))
(* Next the profile object. *)
val () = codeVecPutWord (codeSeg, endOfByteArea + 0w2, profileObject)
in
let
fun setBytes(_, _, 0w0) = ()
| setBytes(b, addr, count) =
(
codeVecSet (codeSeg, addr, wordToWord8 b);
setBytes(b >> 0w8, addr+0w1, count-0w1)
)
fun putConst ((addrs, SelfAddress), constAddr) =
(* Self address goes inline. *)
(codeVecPutConstant (codeSeg, addrs, toMachineWord(codeVecAddr codeSeg), ConstAbsolute); constAddr)
| putConst ((addrs, InlineAbsoluteAddress m), constAddr) =
(codeVecPutConstant (codeSeg, addrs, m, ConstAbsolute); constAddr)
| putConst ((addrs, InlineRelativeAddress m), constAddr) =
(codeVecPutConstant (codeSeg, addrs, m, ConstX86Relative); constAddr)
| putConst ((addrs, ConstantArea m), constAddr) =
(* Not inline. Put the constant in the constant area and set the original address
to be the relative offset to the constant itself. *)
(
codeVecPutWord (codeSeg, constAddr, m);
(* Put in the 32-bit offset - always unsigned since the destination
is after the reference. *)
setBytes(constAddr * Word.fromInt wordSize - addrs - 0w4, addrs, 0w4);
constAddr+0w1
)
| putConst (_, constOffset) = constOffset
(* Put the constants. Any values in the constant area start at +3 i.e. after the profile. *)
val _ = List.foldl putConst (endOfByteArea+0w3) constantList
val () =
if printAssemblyCode
then (* print out the code *)
(
printCode(cvec, codeSeg);
printStream "\n\n"
)
else ()
in
(* Finally lock the code and return the code address. *)
codeVecLockAndGetExecutable codeSeg
end (* the result *)
end (* generateCode *)
structure Sharing =
struct
type code = code
and reg = reg
and genReg = genReg
and fpReg = fpReg
and addrs = addrs
and operation = operation
and regSet = RegSet.regSet
and label = label
and branchOps = branchOps
and callKinds = callKinds
and arithOp = arithOp
and shiftType = shiftType
and repOps = repOps
and fpOps = fpOps
and fpUnaryOps = fpUnaryOps
and sse2Operations = sse2Operations
end
end (* struct *) (* CODECONS *);
|