1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
|
(*
Copyright (c) 2009, 2013, 2015-16 David C.J. Matthews
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*
Title: Operations on global and local values.
Author: Dave Matthews, Cambridge University Computer Laboratory
Copyright Cambridge University 1986
*)
functor DATATYPE_REP (
structure CODETREE : CODETREESIG
structure STRUCTVALS : STRUCTVALSIG;
structure TYPESTRUCT : TYPETREESIG
structure MISC :
sig
exception InternalError of string; (* compiler error *)
val quickSort : ('a -> 'a -> bool) -> 'a list -> 'a list
end;
structure ADDRESS : AddressSig
structure COPIER: COPIERSIG
structure TYPEIDCODE: TYPEIDCODESIG
sharing STRUCTVALS.Sharing = TYPESTRUCT.Sharing
= COPIER.Sharing = CODETREE.Sharing = ADDRESS = MISC
= TYPEIDCODE.Sharing
) : DATATYPEREPSIG =
struct
open MISC;
open CODETREE;
open TYPESTRUCT; (* Open this first because unitType is in STRUCTVALS as well. *)
open Universal; (* for tag etc. *)
open STRUCTVALS;
open ADDRESS;
open TYPEIDCODE
open COPIER
val length = List.length;
val orb = Word8.orb
infix 7 orb;
(* These are the possible representations of a value constructor. *)
datatype representations =
RefForm (* As for OnlyOne but must be a monotype. *)
| UnitForm (* If the only value in an enumeration. *)
| OnlyOne (* If only one constructor, there is no tag or box. *)
(* Could be replaced by "UnboxedForm"? *)
| EnumForm of { tag: word, maxTag: word } (* Enumeration - argument is the number. *)
| ShortForm of word (* As EnumForm except that one datatype is BoxedForm. *)
| BoxedForm (* Boxed but not tagged (only unary constructor) *)
| UnboxedForm of int (* Unboxed and untagged (only unary constructor) *)
| ConstForm of { value: machineWord, maxTag: word} (* Constant - argument is a tagged value. *)
| TaggedBox of { tag: word, maxTag: word } (* Union - tagged and boxed. i.e. the representation is a
pair whose first word is the tag and second is the value. *)
| TaggedTuple of { tag: word, maxTag: word, size: int }
(* Union - tagged but with in-line tuple. i.e. for a
tuple of size n the representation is a tuple of size n+1
whose first word contains the tag. *)
val arg1 = mkLoadArgument 0 (* saves a lot of garbage *)
val mutableFlags = F_words orb F_mutable;
(* allocate 1 mutable word, initialise to "v" *)
fun refApplyCode v =
mkAllocateWordMemory(mkConst (toMachineWord 1), mkConst (toMachineWord mutableFlags), v)
local
fun mkTag (tag:word) : codetree = mkConst (toMachineWord tag);
(* How to apply the constructor at run-time or, if, it's a constant make it now. *)
fun constrApply (test: representations, arg) : codetree =
let
fun tagTupleApplyCode (tag, n, arg) =
mkEval (mkInlproc (mkDatatype (mkTag tag :: List.tabulate(n, fn i => mkInd(i, arg1))), 1, "", [], 0), [arg])
(* Even though unboxed tuples (e.g. list cells) are the same as tuples we need to add
this extra step so that the result is a variant tuple i.e. the optimiser can tell
that this may not always be a tuple. *)
fun tupleApplyCode (n, arg) =
mkEval (mkInlproc (mkDatatype (List.tabulate(n, fn i => mkInd(i, arg1))), 1, "", [], 0), [arg])
in
case test of
UnboxedForm 0 => arg (* Function - never detupled. *)
| UnboxedForm size => tupleApplyCode(size, arg)
| BoxedForm => mkDatatype [arg]
| RefForm => refApplyCode arg
| TaggedBox{tag, ...} => mkDatatype [mkTag tag, arg]
| TaggedTuple{tag, size, ...} => tagTupleApplyCode(tag, size, arg)
| OnlyOne => arg
| ConstForm{ value, ...} => mkConst value (* tagged value. *)
| EnumForm{tag, ...} => mkConst (toMachineWord tag)
| ShortForm tag => mkConst (toMachineWord tag)
| UnitForm => CodeZero
end
(* The run-time test whether a value matches a constructor. *)
fun constrMatch (test: representations, value:codetree) : codetree =
let
fun testTag (tag, v) = mkEqualWord(mkTag tag, v)
fun testTagOf(tag, maxTag, v) = mkTagTest (v, tag, maxTag)
fun testBoxedTagOf (tag, maxTag, v) =
testTagOf (tag, maxTag, mkInd (0, v))
(* Tag is first field. It is always present and is always the tag so
we can use mkInd here rather than mkVarField. *)
val testBoxed = mkNot o mkIsShort (* not (isShort v) *)
(* get the tag from a TaggedBox or ConstForm *)
fun loadTag (u: machineWord) : machineWord =
loadWord (toAddress u, 0w0); (* tag is first field *)
in
case test of
UnboxedForm _ => testBoxed value
| BoxedForm => testBoxed value
| RefForm => CodeTrue
| EnumForm{tag, maxTag} => testTagOf(tag, maxTag, value)
| ShortForm tag => testTag(tag, value)
| TaggedBox{tag, maxTag} => testBoxedTagOf(tag, maxTag, value)
| TaggedTuple{tag, maxTag, ...} => testBoxedTagOf(tag, maxTag, value)
| ConstForm{value=c, maxTag} => testBoxedTagOf(toShort (loadTag c), maxTag, value)
| OnlyOne => CodeTrue
| UnitForm => CodeTrue
end
(* The run-time code to destruct a construction. *)
(* shouldn't the CodeZero's raise an exception instead?
No, because I think there are circumstances in which the destructor
code is created even for nullary constructors. *)
fun constrDestruct (test: representations, value: codetree) : codetree =
let
(* Copy out the fields and build a tuple. Used either if we
have a tagged tuple (offset 1) or a tuple that does not
need boxing (because we need to use mkVarField to extract
the fields). *)
fun tupleDestructCode (n, arg, offset) =
mkEval (
mkInlproc (mkTuple (List.tabulate(n, fn i => mkVarField(i+offset, arg1))), 1, "", [], 0),
[arg])
(* Use loadWord not indirect because the optimiser reorders indirections. *)
fun refDestructCode v = mkLoadOperation(LoadStoreMLWord{isImmutable=false}, v, CodeZero)
in
case test of
UnboxedForm 0 => value (* Function - never detupled. *)
| UnboxedForm size => tupleDestructCode(size, value, 0)
| BoxedForm => mkVarField (0, value)
| RefForm => refDestructCode value
| TaggedBox _ => mkVarField (1, value) (* contents is second field of record *)
| TaggedTuple { size, ...} => tupleDestructCode(size, value, 1)
| OnlyOne => value
| EnumForm _ => CodeZero (* To keep optimiser happy. *)
| ShortForm _ => CodeZero (* To keep optimiser happy. *)
| ConstForm _ => CodeZero (* (rather than raising an exception) *)
| UnitForm => CodeZero
end
open ValueConstructor
in
(* Constructors are now represented as run-time values. A nullary constructor is
a pair consisting of a test function and the constructor value. A unary
constructor is a triple: a test function, an injection function and a
projection function.
The above applies to monotypes. If this is a polytype each of these is
actually a function from the base type values to the functions. *)
fun createNullaryConstructor (test, tvs, name): codetree =
let
val numTypes =
if justForEqualityTypes then 0 else List.length tvs
val testFn = mkInlproc(constrMatch(test, arg1), 1, name, [], 0) (* Test function. *)
and constrVal = constrApply(test, CodeZero) (* Value. *)
in
if numTypes = 0
then createNullaryConstr{ testMatch = testFn, constrValue = constrVal }
else createNullaryConstr{
testMatch = mkInlproc(testFn, numTypes, name, [], 0),
constrValue = mkInlproc(constrVal, numTypes, name, [], 0)}
end
fun createUnaryConstructor(test: representations, tvs, name: string): codetree =
let
val numTypes =
if justForEqualityTypes then 0 else List.length tvs
val testMatch = mkInlproc(constrMatch(test, arg1), 1, name, [], 0) (* Test function. *)
and injectValue = mkInlproc(constrApply(test, arg1), 1, name, [], 0) (* Injection function. *)
and projectValue = mkInlproc(constrDestruct(test, arg1), 1, name, [], 0) (* Projection function. *)
in
if numTypes = 0
then createValueConstr{testMatch = testMatch, injectValue = injectValue, projectValue = projectValue }
else createValueConstr{
testMatch = mkInlproc(testMatch, numTypes, name, [], 0),
injectValue = mkInlproc(injectValue, numTypes, name, [], 0),
projectValue = mkInlproc(projectValue, numTypes, name, [], 0)}
end
end
(*
RefForm is used for "ref" (only). We use various representations
of datatype / abstype constructors.
Nullary constructors are represented as:
UnitForm (if it's the only constructor in the datatype)
EnumForm (if all the constructors are nullary)
ShortForm (if there's one unary constructor)
ConstForm (otherwise)
Unary constructors are represented as:
OnlyOne (if it's the only constructor in the datatype)
UnboxedForm (if it's the only unary constructor and the argument is always a tuple e.g. list)
TaggedTuple (if it's not the only unary constructor, applied to a tuple)
BoxedForm (if it's the only unary constructor and the argument may not be a tuple e.g. SOME)
TaggedBox (otherwise)
Note that we use ConstForm, not EnumForm, for nullary constructors
when the unary constructors are represented as TaggedTuple/TaggedBox
because that allows the TaggedBox test to be:
fn w => wordEq (loadWord (w,0), tag)
rather than:
fn w => not (isShort w) andalso wordEq (loadWord (w,0), tag)
*)
datatype constructorKind =
Nullary (* a nullary constructor *)
| UnaryGeneric (* a normal unary constructor *)
| UnaryFunction (* unary constructor applied to a function *)
| UnaryTupled of int (* a unary constructor applied to a tuple of size n *)
;
fun getTupleKind t =
case t of
(* We cannot have flexible records here. All the fields must be listed. *)
LabelledType {recList = [{typeof=t', ...}], ...} =>
(* Singleton records are always represented simply by the value. *)
getTupleKind t'
| LabelledType {recList, ...} =>
UnaryTupled (length recList)
| FunctionType _ =>
UnaryFunction
| TypeConstruction {constr, args, ...} =>
(
(* We may have a type equivalence or this may be a datatype. *)
if tcIsAbbreviation constr
then getTupleKind (makeEquivalent(constr, args))
else if sameTypeId (tcIdentifier constr, tcIdentifier refConstr)
then UnaryGeneric (* A tuple ref is NOT the same as the tuple. *)
else (* Datatype. For the moment we only consider datatypes with a
single constructor since we want to find the width of the
tuple. At present we simply return UnaryGeneric for all
other cases but it might be helpful to return a special
result when we have a datatype which we know will always
be boxed. *)
(* case tcConstructors constr of
[Value{typeOf, class=Constructor{nullary=false, ...}, ...}] =>
(* This may be a polymorphic datatype in which case
we have to invert the constructor to find the base type.
e.g. we may have an instance (int*int) t where t was
declared as datatype 'a t = X of 'a .*)
getTupleKind(constructorResult(typeOf, args))
| _ => UnaryGeneric
*) UnaryGeneric
)
| _ =>
UnaryGeneric
(* This now creates the functions as well as choosing the representation. *)
(* N.B. The representation for the "context" and "pretty" datatypes is defined in Pretty.sml.
Any changes here that may affect the representation of a datatype may require
changes there as well. *)
fun chooseConstrRepr(cs, tvs: types list) =
let
fun checkArgKind (name, EmptyType) = (Nullary, name)
| checkArgKind (name, argType) = (getTupleKind argType, name)
val kinds = map checkArgKind cs;
fun chooseRepr [(Nullary, name)] = [createNullaryConstructor(UnitForm, tvs, name)]
| chooseRepr [(UnaryGeneric, name)] = [createUnaryConstructor(OnlyOne, tvs, name)]
| chooseRepr [(UnaryFunction, name)] = [createUnaryConstructor(OnlyOne, tvs, name)]
| chooseRepr [(UnaryTupled _, name)] = [createUnaryConstructor(OnlyOne, tvs, name)]
| chooseRepr l =
let
val unaryCount = List.foldl(fn((Nullary, _), n) => n | (_,n) => n+1) 0 l
in
case unaryCount of
0 => (* All are nullary. *)
let
val maxTag = Word.fromInt(List.length l)-0w1 (* Largest no is length-1 *)
fun createRepr(_, []) = []
| createRepr(n, (_, name) :: t) =
createNullaryConstructor(EnumForm{tag=n, maxTag=maxTag}, tvs, name) :: createRepr (n + 0w1, t)
in
createRepr(0w0, l)
end
| 1 =>
let
(* We use this version if all the constructors are nullary (i.e. constants)
except one. The unary constructor is represented
by the boxed value and the nullary constructors by untagged integers. *)
(* Note that "UnaryTupled 0" (which would arise as a result of a declaration of the
form datatype t = A of () | ... ) can't be represented as "UnboxedForm"
because "{}" is represented as a short (unboxed) integer. *)
fun chooseOptimisedRepr1(_, _, []) = []
| chooseOptimisedRepr1(n, tvs, (Nullary, name) :: t) =
createNullaryConstructor(ShortForm n, tvs, name) :: chooseOptimisedRepr1 (n + 0w1, tvs, t)
| chooseOptimisedRepr1(n, tvs, (UnaryGeneric, name) :: t) =
createUnaryConstructor(BoxedForm, tvs, name) :: chooseOptimisedRepr1(n, tvs, t)
| chooseOptimisedRepr1(n, tvs, (UnaryFunction, name) :: t) =
createUnaryConstructor(UnboxedForm 0, tvs, name) :: chooseOptimisedRepr1(n, tvs, t)
| chooseOptimisedRepr1(n, tvs, (UnaryTupled 0, name) :: t) =
createUnaryConstructor(BoxedForm, tvs, name) :: chooseOptimisedRepr1(n, tvs, t)
| chooseOptimisedRepr1(n, tvs, (UnaryTupled s, name) :: t) =
createUnaryConstructor(UnboxedForm s, tvs, name) :: chooseOptimisedRepr1(n, tvs, t)
in
chooseOptimisedRepr1(0w0, tvs, l) (* can save the box *)
end
| _ =>
let
(* We use this version there's more than 1 unary constructor. *)
(* With this representation constructors of small tuples make tuples of
size n+1 whose first word is the tag. Nullary constructors are represented
by single word objects containing the tag. *)
val maxTag = Word.fromInt(List.length l) - 0w1 (* Largest no is length - 1 *)
fun chooseOptimisedRepr2(_, _, []) = []
| chooseOptimisedRepr2(n, tvs, h :: t) =
let
val repr =
case h of
(Nullary, name) =>
let
(* Make an object with the appropriate tag. Doing it here means we
only do it once for this object. *)
fun genConstForm (n :word) : representations =
let
val vec : address = allocWordData (0w1, F_words, toMachineWord n)
(* The new call does not require locking but the old code still
sets the F_mutable bit. *)
val _ = if isMutable vec then lock vec else ()
in
ConstForm{value=toMachineWord vec, maxTag=maxTag}
end
in
createNullaryConstructor(genConstForm n, tvs, name)
end
| (UnaryGeneric, name) => createUnaryConstructor(TaggedBox{tag=n, maxTag=maxTag}, tvs, name)
| (UnaryFunction, name) => createUnaryConstructor(TaggedBox{tag=n, maxTag=maxTag}, tvs, name)
| (UnaryTupled i, name) =>
createUnaryConstructor(
if i <= 4 (*!maxPacking*)
then TaggedTuple {tag=n, size=i, maxTag=maxTag}
else TaggedBox{tag=n, maxTag=maxTag}, tvs, name)
in
repr :: chooseOptimisedRepr2(n + 0w1, tvs, t)
end;
in
chooseOptimisedRepr2(0w0, tvs, l) (* can use tagged tuples *)
end
end;
fun makeFun c = mkInlproc(c, List.length tvs, "boxed/size", [], 0)
val (boxed, size) =
case tvs of
[] => (* Monotype *) (TypeValue.boxedEither, TypeValue.singleWord)
| _ => (* Polytype *) (makeFun TypeValue.boxedEither, makeFun TypeValue.singleWord)
in
{ constrs = chooseRepr kinds, boxed = boxed, size = size }
end;
(* RefForm, NilForm and ConsForm are only used for built-in types *)
(*****************************************************************************)
(* Standard values and exceptions. *)
(*****************************************************************************)
(* Build a datatype within the basis. *)
fun buildBasisDatatype(tcName, tIdPath, tyVars, isEqType: bool,
mkValConstrs: typeConstrs -> (values * codetree) list * codetree * codetree) =
let
(* Create a temporary datatype. The "name" we put in here is usually the
same as the type constructor name except for datatypes in the PolyML structure
which have the PolyML prefix. *)
val arity = List.length tyVars
val description = basisDescription tIdPath
val id =
makeBoundId(arity, Local{addr = ref ~1, level = ref baseLevel}, 0 (* IdNumber*),
isEqType, true, description)
val dtype = makeTypeConstructor (tcName, tyVars, id, [DeclaredAt inBasis]);
(* Build the constructors. *)
val (valConstrsAndDecs, boxedCode, sizeCode) = mkValConstrs dtype
(* The constructors have to be ordered as in genValueConstrs in PARSE_TREE. *)
fun leq (Value{name=xname, ...}, _) (Value{name=yname, ...}, _) = xname < yname;
val sortedConstrs = quickSort leq valConstrsAndDecs;
val initialTypeSet = TypeConstrSet(dtype, (List.map #1 valConstrsAndDecs))
val addrs = ref 0
fun mkAddrs n = ! addrs before (addrs := !addrs+n)
fun declConstr(Value{access=Local{addr, level}, ...}, repr) =
let
val newAddr = mkAddrs 1
in
addr := newAddr;
level := baseLevel;
(mkDec(newAddr, repr), mkLoadLocal newAddr)
end
| declConstr _ = raise InternalError "declConstr: not local"
val (declConstrs, loadConstrs) = ListPair.unzip(List.map declConstr sortedConstrs)
val defMap = TypeVarMap.defaultTypeVarMap(mkAddrs, baseLevel)
(* Create the datatype. Sets the address of the local in "id". *)
val dtCode =
createDatatypeFunctions(
[{typeConstr=initialTypeSet, eqStatus=isEqType, boxedCode=boxedCode, sizeCode=sizeCode}],
mkAddrs, baseLevel, defMap, true)
(* Compile and execute the code to build the functions and extract the result. *)
val globalCode =
genCode(
mkEnv(
declConstrs @ TypeVarMap.getCachedTypeValues defMap @ dtCode, mkTuple(codeId(id, baseLevel) :: loadConstrs)),
[], !addrs)()
val newId = makeFreeId(arity, Global(mkInd(0, globalCode)), isEqType, description)
(* Get the value constructors out as globals. *)
fun mkGlobal((Value{name, typeOf, class, locations, ...}, _), (decs, offset)) =
(decs @ [Value{name=name, typeOf=typeOf, class=class, locations=locations, references=NONE,
instanceTypes=NONE, access=Global(mkInd(offset, globalCode))}], offset+1)
val (gConstrs, _) = List.foldl mkGlobal ([], 1 (* Offset 0 is the type ID *)) sortedConstrs
(* Finally copy the datatype to put in the code. *)
in
fullCopyDatatype(TypeConstrSet(dtype, gConstrs), fn 0 => newId | _ => raise Subscript, "")
end
(* Nil and :: are used in parsetree for lists constructed
using [ ... ] and are also used for initialisation. *)
local
fun makeConsAndNil listType =
let
val listTypeVars = tcTypeVars listType;
val alpha = TypeVar(hd listTypeVars);
val alphaList = mkTypeConstruction ("list", listType, [alpha], [DeclaredAt inBasis]);
val consType = mkFunctionType (mkProductType [alpha, alphaList], alphaList);
val nilConstructor =
makeValueConstr ("nil", alphaList, true, 2, Local{addr=ref ~1, level=ref baseLevel}, [DeclaredAt inBasis])
val consConstructor =
makeValueConstr ("::", consType, false, 2, Local{addr=ref ~1, level=ref baseLevel}, [DeclaredAt inBasis])
val nilRepresentation = createNullaryConstructor(EnumForm{tag=0w0, maxTag=0w0}, [alpha], "nil")
val consRepresentation = createUnaryConstructor(UnboxedForm 2, [alpha], "::")
in
([(nilConstructor, nilRepresentation), (consConstructor, consRepresentation)],
mkInlproc(TypeValue.boxedEither, 1, "boxed-list", [], 0),
mkInlproc(TypeValue.singleWord, 1, "size-list", [], 0))
end
in
val listConstr =
buildBasisDatatype("list", "list",
[makeTv {value=EmptyType, level=generalisable, nonunifiable=false,
equality=false, printable=false}],
true, makeConsAndNil)
val (nilConstructor, consConstructor) =
case listConstr of
TypeConstrSet(_, [consC as Value{name="::", ...}, nilC as Value{name="nil", ...}]) =>
(nilC, consC)
| _ => raise InternalError "nil and cons in wrong order"
end
local
fun makeNoneAndSome optionType =
let
val optionTypeVars = tcTypeVars optionType;
val alpha = TypeVar(hd optionTypeVars);
val alphaOption = mkTypeConstruction ("option", optionType, [alpha], [DeclaredAt inBasis]);
val someType = mkFunctionType (alpha, alphaOption);
val noneConstructor =
makeValueConstr ("NONE", alphaOption, true, 2, Local{addr=ref ~1, level=ref baseLevel}, [DeclaredAt inBasis]);
val someConstructor =
makeValueConstr ("SOME", someType, false, 2, Local{addr=ref ~1, level=ref baseLevel}, [DeclaredAt inBasis]);
val noneRepresentation = createNullaryConstructor(EnumForm{tag=0w0, maxTag=0w0}, [alpha], "NONE")
and someRepresentation = createUnaryConstructor(BoxedForm, [alpha], "SOME")
in
([(noneConstructor, noneRepresentation), (someConstructor, someRepresentation)],
mkInlproc(TypeValue.boxedEither, 1, "boxed-option", [], 0),
mkInlproc(TypeValue.singleWord, 1, "size-option", [], 0))
end
in
val optionConstr=
buildBasisDatatype("option", "option",
[makeTv {value=EmptyType, level=generalisable, nonunifiable=false,
equality=false, printable=false}], true, makeNoneAndSome)
val (noneConstructor, someConstructor) =
case optionConstr of
TypeConstrSet(_, [noneC as Value{name="NONE", ...}, someC as Value{name="SOME", ...}]) => (noneC, someC)
| _ => raise InternalError "NONE and SOME in wrong order"
end
local
fun listConstruct (base : types) : types =
let
val TypeConstrSet(listCons, _) = listConstr
in
mkTypeConstruction ("list", listCons, [base], [DeclaredAt inBasis])
end;
val intTypeConstr = TYPESTRUCT.fixedIntType
val stringTypeConstr = TYPESTRUCT.stringType
val boolTypeConstr = TYPESTRUCT.boolType
in
local
val fields =
[
mkLabelEntry("file", stringTypeConstr), mkLabelEntry("startLine", intTypeConstr),
mkLabelEntry("startPosition", intTypeConstr), mkLabelEntry("endLine", intTypeConstr),
mkLabelEntry("endPosition", intTypeConstr)
]
in
val locationCons =
makeTypeConstructor("location", [],
makeTypeFunction(basisDescription "PolyML.location", ([], mkLabelled(sortLabels fields, true))),
[DeclaredAt inBasis])
val locationConstr = TypeConstrSet(locationCons, [])
end
local
(* Pretty print context information. *)
fun makeConstructors typeconstr =
let
val contextType = mkTypeConstruction ("context", typeconstr, [], [DeclaredAt inBasis])
val locationType = mkTypeConstruction ("location", locationCons, [], [DeclaredAt inBasis])
val constrs =
[ ("ContextLocation", locationType),
("ContextProperty", mkProductType[stringTypeConstr, stringTypeConstr])];
(* The representation of this datatype is given in Pretty.sml and must be the same
as the representation that chooseConstrRepr will use. *)
val numConstrs = List.length constrs
fun makeCons(s,t) =
makeValueConstr(s, mkFunctionType(t, contextType), false, numConstrs,
Local{addr=ref ~1, level=ref baseLevel}, [DeclaredAt inBasis])
val {constrs=constrCode, boxed, size} = chooseConstrRepr(constrs, [])
in
(ListPair.zipEq(List.map makeCons constrs, constrCode), boxed, size)
end
in
val contextConstr =
buildBasisDatatype("context", "PolyML.context", [], false, makeConstructors)
end
local
fun makeConstructors typeconstr =
let
val TypeConstrSet(contextCons, _) = contextConstr
val prettyType = mkTypeConstruction ("pretty", typeconstr, [], [DeclaredAt inBasis])
val contextType = mkTypeConstruction ("context", contextCons, [], [DeclaredAt inBasis])
val constrs =
[ ("PrettyBlock",
mkProductType[intTypeConstr, boolTypeConstr,
listConstruct contextType, listConstruct prettyType]),
("PrettyBreak", mkProductType[intTypeConstr, intTypeConstr]),
("PrettyLineBreak", EmptyType),
("PrettyString", stringTypeConstr),
("PrettyStringWithWidth", mkProductType[stringTypeConstr, intTypeConstr])];
(* The representation of this datatype is given in Pretty.sml and must be the same
as the representation that chooseConstrRepr will use. *)
val numConstrs = List.length constrs
fun makeCons(s,t) =
let
val (ctype, nullary) =
case t of EmptyType => (prettyType, true) | t => (mkFunctionType(t, prettyType), false)
in
makeValueConstr(s, ctype, nullary, numConstrs,
Local{addr=ref ~1, level=ref baseLevel}, [DeclaredAt inBasis])
end
val {constrs=constrCode, ...} = chooseConstrRepr(constrs, [])
in
(ListPair.zipEq(List.map makeCons constrs, constrCode), TypeValue.boxedEither, TypeValue.singleWord)
end
in
val prettyConstr =
buildBasisDatatype("pretty", "PolyML.pretty", [], false, makeConstructors)
end
end
(* The representation of ptProperties is given in ExportTree.sml and must also match. *)
(* Construct an exception identifier - This is a ref (so we can uniquely
identify it) containing a print function for the type. *)
local
(* The exception identifier contains a value of type (exn*int->pretty) option. *)
val TypeConstrSet(optionCons, _) = optionConstr
and TypeConstrSet(prettyCons, _) = prettyConstr
val exnPrinter =
mkTypeConstruction ("option", optionCons,
[
mkFunctionType(
mkProductType[TYPESTRUCT.exnType, TYPESTRUCT.fixedIntType],
mkTypeConstruction ("pretty", prettyCons, [], [DeclaredAt inBasis])
)
],
[DeclaredAt inBasis])
in
fun mkExIden(ty, level, tvMap) =
let
(* Get the constructor tuple, select the constructor operation, apply it to the type. *)
val makeSome =
applyToInstance(
[{value=exnPrinter, equality=false, printity=false}], level, tvMap,
fn _ => mkInd(1, case someConstructor of Value { access, ...} => vaGlobal access))
val makeNone =
applyToInstance(
[{value=exnPrinter, equality=false, printity=false}], level, tvMap,
fn _ => mkInd(1, case noneConstructor of Value { access, ...} => vaGlobal access))
val printerCode =
case ty of
FunctionType { arg, ...} =>
mkEval(makeSome, [printerForType(arg, level, tvMap)])
| _ => makeNone
in
refApplyCode printerCode
end
end
(* Types that can be shared. *)
structure Sharing =
struct
type codetree = codetree
type types = types
type values = values
type typeConstrSet = typeConstrSet
type typeId = typeId
type typeVarForm = typeVarForm
type typeVarMap = typeVarMap
type level = level
end
end;
|