1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
|
(*
Copyright (c) 2000-7
Cambridge University Technical Services Limited
Further Development Copyright 2009, 2016 David C.J. Matthews.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*
Title: Parse Expressions and Declarations.
Author: Dave Matthews, Cambridge University Computer Laboratory
Copyright Cambridge University 1985
*)
functor PARSE_DEC (
structure SYMBOLS : SymbolsSig
structure SYMSET : SymsetSig
structure LEX : LEXSIG
structure SKIPS :
sig
type sys
type lexan
type symset
type location =
{ file: string, startLine: FixedInt.int, startPosition: FixedInt.int,
endLine: FixedInt.int, endPosition: FixedInt.int }
val getsym: sys * lexan -> unit
val badsyms: sys * lexan -> unit
val notfound: string * lexan -> unit
val skipon: symset * symset * string * lexan -> unit
val getid: symset * symset * lexan -> string * location
val getLabel: symset * lexan -> string * location
val getList: sys * symset * lexan * (unit -> 'a * location) -> 'a list * location;
end;
structure STRUCTVALS : STRUCTVALSIG;
structure TYPETREE : TYPETREESIG;
structure PARSETREE : PARSETREESIG
structure STRUCTURES : STRUCTURESSIG
structure SIGNATURES: SIGNATURESSIG
structure PARSETYPE :
sig
type symset;
type lexan;
type types;
type typeParsetree;
type typeVarForm
type location =
{ file: string, startLine: FixedInt.int, startPosition: FixedInt.int,
endLine: FixedInt.int, endPosition: FixedInt.int }
val parseType: symset * lexan * {lookupTvar:string -> typeVarForm} -> typeParsetree * location;
end;
structure UTILITIES :
sig
type lexan
type location =
{ file: string, startLine: FixedInt.int, startPosition: FixedInt.int,
endLine: FixedInt.int, endPosition: FixedInt.int }
val searchList: unit -> { apply: (string * 'a -> unit) -> unit,
enter: string * 'a -> unit,
lookup: string -> 'a option }
val checkForDots: string * lexan * location -> unit
val noDuplicates: (string * 'a * 'a -> unit) ->
{ apply: (string * 'a -> unit) -> unit,
enter: string * 'a -> unit,
lookup: string -> 'a option };
end;
structure MISC :
sig
val lookupDefault : ('a -> 'b option) -> ('a -> 'b option) -> 'a -> 'b option
end;
sharing STRUCTVALS.Sharing = TYPETREE.Sharing = PARSETREE.Sharing = STRUCTURES.Sharing
= LEX.Sharing = SIGNATURES.Sharing
= UTILITIES
sharing SYMBOLS = SYMSET = SKIPS = LEX.Sharing
sharing type
PARSETYPE.types =
STRUCTVALS.Sharing.types
sharing type
PARSETYPE.typeVarForm =
STRUCTVALS.Sharing.typeVarForm
sharing type
PARSETYPE.typeParsetree =
TYPETREE.typeParsetree
sharing type
SYMSET.symset
= PARSETYPE.symset
sharing type
LEX.lexan
= PARSETYPE.lexan
) :
(*****************************************************************************)
(* PARSEDEC export signature *)
(*****************************************************************************)
sig
type lexan;
type symset;
type fixStatus;
type program
val parseDec: symset * lexan * { enterFix: string * fixStatus -> unit,
lookupFix: string -> fixStatus option } -> program;
end =
(*****************************************************************************)
(* PARSEDEC functor body *)
(*****************************************************************************)
struct
open MISC;
open SYMBOLS
open SYMSET; infix 9 ++; infix 4 inside;
open LEX;
open SKIPS;
open STRUCTVALS;
open TYPETREE;
open PARSETREE;
open STRUCTURES;
open PARSETYPE;
open UTILITIES;
open SIGNATURES
(* constant sets defined here to reduce run-time garbage SPF 24/9/94 *)
val structureLocalSy = structureSy ++ localSy;
val structureLocalStartDecSy = structureSy ++ localSy ++ startDecSys;
val commaRightCurlySy = comma ++ rightCurly;
val declarableVarOpSy = declarableVarSys ++ opSy;
val declarableVarLetSy = declarableVarSys ++ letSy;
val startTypeDeclarableVarOpSy = startTypeSys ++ declarableVarOpSy;
val startDecStructureSy = startDecSys ++ structureSy;
val ofVerticalBarSy = ofSy ++ verticalBar;
val semicolonStartDecSy = semicolon ++ startDecSys;
val semicolonStartDecStructureSy = semicolonStartDecSy ++ structureSy;
val commaRightBrackSy = comma ++ rightBrack;
val rightParenCommaSy = rightParen ++ comma;
val rightParenSemicolonSy = rightParen ++ semicolon;
val rightParenSemicolonCommaSy = rightParenSemicolonSy ++ comma;
val rightParenEqualsSignSy = rightParen ++ equalsSign;
val colonAsSy = colon ++ asSy;
val colonEqualsSignSy = colon ++ colonGt ++ equalsSign;
val thenStartExpressionSy = thenSy ++ startExpressionSys;
val elseStartExpressionSy = elseSy ++ startExpressionSys;
val ofStartMatchSy = ofSy ++ startMatchSys;
val semicolonEndSy = semicolon ++ endSy
val andalsoColonSy = andalsoSy ++ colon;
val withTypeWithSy = withtypeSy ++ withSy;
val ofEqualsSignSy = ofSy ++ equalsSign;
val inEndSy = inSy ++ endSy;
val startSigEndSy = startSigSys ++ endSy;
val startSigEndAndSy = startSigEndSy ++ andSy;
val endAndSy = endSy ++ andSy;
val semicolonStartSigSys = startSigSys ++ semicolon;
val topdecStartSy = functorSy ++ signatureSy ++ structureLocalStartDecSy;
fun mkLocalFixEnv {lookupFix,lookupTvar, ...} =
let
val newFixEnv = searchList ();
in
{
enterFix = #enter newFixEnv,
lookupFix = lookupDefault (#lookup newFixEnv) lookupFix,
lookupTvar = lookupTvar
}
end;
fun mkLocalBodyFixEnv {enterFix,lookupFix,lookupTvar} outerEnterFix =
{
enterFix = fn p => (enterFix p; outerEnterFix p),
lookupFix = lookupFix,
lookupTvar = lookupTvar
}
fun getLongId (kind, fsys, lex): string * location =
getid (kind, fsys, lex);
fun getShortId (kind, fsys, lex): string * location =
let
val idLoc as (iden, location) = getid (kind, fsys, lex);
val () = checkForDots (iden, lex, location);
in
idLoc
end;
(* Attributes of type variables. *)
fun isEqtype name =
size name > 1 andalso String.str(String.sub(name, 1)) = "'";
(* Global declarations *)
fun parseDec (fsys, lex, {enterFix, lookupFix}) : program =
let
(* These procedures to parse type declarations are used in both
signature and expression parsing. *)
fun getTypeVars (isDatatype, {apply,enter,...}) =
let
(* Optional type identifier or sequence of type identifiers. Used
in type and datatype declarations and also in val and fun
declarations. *)
(* The type identifiers must be remembered since they will occur
subsequently in the components. This is the only case where type
variables are actually bound. *)
fun getTypeVar (): typeVarForm * location =
(* Read a type variable and return it. *)
case sy lex of
TypeIdent =>
let
val iden = id lex;
val locn = location lex
(* Each type variable must be distinct. *)
val () =
apply
(fn (nm,_) =>
if nm = iden (* Same name ? *)
then errorMessage (lex, location lex,
nm ^ " has already been used.")
else ()
);
(* Construct a type variable and enter it. Equality is
only set if this is a datatype (or abstype). The type variable
should be non-unifiable to get value-constructor signature
checking right.*)
(* DCJM 11/2/00. isDatatype is now true for tyvarseqs in fun and val.
I don't think it matters what it is set to in datatypes. *)
val isEqtype = isDatatype andalso isEqtype iden;
val tyVar =
makeTv {value=emptyType, level=generalisable, equality=isEqtype, nonunifiable=true, printable=false}
in
enter (iden, tyVar);
insymbol lex;
(tyVar, locn)
end
| _ =>
(
badsyms (SYMBOLS.TypeIdent, lex);
(makeTv {value=emptyType, level=generalisable, equality=true, nonunifiable=true, printable=false},
location lex)
)
in
(* May be one type variable or a bracketed sequence. *)
case sy lex of
TypeIdent => [#1(getTypeVar())] (* One type var. *)
| LeftParen => (* Sequence. *)
(
insymbol lex;
(* There is an awkward parsing problem here if we have either
val (a, b) = ... or fun (a X b) = ... We only know that we
haven't got a tyvarseq once we find a symbol that isn't a
tyvar. The easiest way round this is to push the parenthesis
back into the lex stream and return an empty tyvarseq. *)
case sy lex of
TypeIdent =>
let
val (t, _) = getList (SYMBOLS.Comma, typeIdent, lex, getTypeVar);
in
getsym (SYMBOLS.RightParen, lex);
t
end
| _ => (pushBackSymbol(lex, SYMBOLS.LeftParen); [] )
)
| _ => [] (* None at all. *)
end; (* getTypeVars *)
fun getLongNonInfix opThere sys fsys lex {lookupFix,...} =
let
(* op followed by a (long) variable *)
val idLoc as (id, location) = getLongId (sys, fsys, lex);
val isInfix =
case lookupFix id of
SOME(FixStatus(_, Infix _)) => true
| SOME(FixStatus(_, InfixR _)) => true
| _ => false
in
if isInfix andalso not opThere
then warningMessage (lex, location,
"(" ^ id ^") has infix status but was not preceded by op.")
else ();
idLoc
end;
fun andBindings(fsys, p: symset -> 'a * location) : 'a list * location =
(* Handles a sequence of non-recursive declarations separated by "and".
Returns the list plus the spanning location. *)
let
val (item, itemLocn) = p (fsys ++ andSy)
in
case sy lex of
AndSy =>
let
val () = insymbol lex
val (rest, restLocn) = andBindings(fsys, p)
in
(item::rest, locSpan(itemLocn, restLocn))
end
| _ => ([item], itemLocn)
end
fun genTypeVarEnv {lookup,...} =
{
(* All type variables used on the right-hand side of the type
binding must have been declared before the new type constructor *)
lookupTvar =
fn name =>
(case lookup name of
SOME t => t
| NONE =>
(
errorMessage (lex, location lex,
name ^ " has not been declared in type declaration");
makeTv {value=emptyType, level=generalisable, equality=false,
nonunifiable=true, printable=false}
)
)
} (* genTypeVarEnv *);
fun typeBinding (isSpec, isEqtype, _) fsys =
let
val newTVenv = searchList ();
val typeVars = getTypeVars (false, newTVenv);
(* The name of the type *)
val (typeName, idLocn) = getShortId (ident, fsys ++ equalsSign, lex);
(*
val typeVarEnv =
{ lookupTvar = lookupDefault (#lookup newTVenv) lookupTvar }
*)
val typeVarEnv = genTypeVarEnv newTVenv;
val (matchedType, endLocn) =
(* If this is part of a signature we do not need to have an
"= ty" after it. If it is an eqtype we must not have one. *)
if (isSpec andalso (sy lex) <> SYMBOLS.EqualsSign) orelse isEqtype
then (NONE, idLocn)
else
let
val () = getsym (SYMBOLS.EqualsSign, lex);
(* Followed by a type or a sequence of constructors *)
val () = skipon (startTypeSys, fsys, "type", lex);
val (t, l) = parseType (fsys, lex, typeVarEnv)
in
(SOME t, l)
end
val bindLocn = locSpan(idLocn, endLocn)
in
(mkTypeBinding (typeName, typeVars, matchedType, isEqtype, idLocn, bindLocn), bindLocn)
end (* typeBinding *);
fun datatypeDecOrRepl(fsys, env, isSpecification, startLocn) =
(* "datatype" has been read. This may be followed by tycon = datatype ...
if it is a datatype replication or by tyvarseq tycon = vid ... if it
is a datatype binding. We can only distinguish the two when we reach
either the second datatype or an identifier.
This is used both for declarations and for specifications. *)
let
val () = insymbol lex;
val newTVenv = searchList ();
(* The type variables will be empty if this is a replication. *)
val typeVars = getTypeVars (true, newTVenv);
(* The name of the type *)
val (typeName, idLocn) = getShortId (ident, fsys ++ equalsSign, lex);
val () = getsym (SYMBOLS.EqualsSign, lex);
in
case sy lex of
DatatypeSy => (* Replication *)
let
(* Check that the type var sequence was empty. *)
val () =
case typeVars of
[] => ()
| _ => errorMessage (lex, location lex,
"Datatype replication must not contain type variables");
val () = insymbol lex;
val (originalTypeName, repLocn) = getLongId (ident, fsys, lex);
val fullLocn = locSpan(startLocn, repLocn)
in
(mkDatatypeReplication{newType=typeName, oldType=originalTypeName,
newLoc=idLocn, oldLoc=repLocn, location=fullLocn}, fullLocn)
end
| _ => (* Binding *)
let
(* Process the rest of this binding. *)
val (db, dbLocn) =
datatypeBind (fsys ++ withtypeSy ++ andSy,
typeName, typeVars, newTVenv, idLocn, isSpecification);
(* Process any others *)
val (dbs, dbsLocn) =
case sy lex of
AndSy =>
(
insymbol lex;
andBindings
(fsys ++ withtypeSy, datatypeBinding isSpecification)
)
| _ => ([], dbLocn)
val (withtypes, lastLocn) =
case sy lex of
WithtypeSy =>
(
insymbol lex;
andBindings(fsys, typeBinding(false, false, env))
)
| _ => ([], dbsLocn)
val fullLocn = locSpan(startLocn, lastLocn)
in
(mkDatatypeDeclaration (db :: dbs, withtypes, fullLocn), fullLocn)
end
end
and datatypeBind (fsys, typeName, typeVars, newTVenv, idLocn, isSpecification) =
(* Process the rest of a binding. *)
let
(* Followed by a type or a sequence of constructors *)
val () = skipon (startTypeDeclarableVarOpSy, fsys, "type", lex);
(* In ML 90 all type variables on the right hand side of a datbind
had to appear in the tyvarseq on the left. That restriction
appears to have been removed for declarations, but not specifications,
in ML97. This appears, though, to have been a mistake so I'm
reinstating the old behaviour. *)
(*
val typeVarEnv =
{ lookupTvar = lookupDefault (#lookup newTVenv) (#lookupTvar env) }
*)
val typeVarEnv = genTypeVarEnv newTVenv;
fun constrs fsys =
let
val () =
case sy lex of
OpSy =>
(
if isSpecification
then warningMessage (lex, location lex,
"``op'' may not appear before a constructor in a specification.")
else ();
insymbol lex
)
| _ => ()
(* Identifier - name of constructor *)
val (constrName, idLocn) = getShortId (declarableVarSys, fsys ++ ofVerticalBarSy, lex)
(* If there is an "of" after this then the constructor is
a function from the type following the "of" to the type
being declared. Otherwise it is a constant of the type
being declared. *)
val (component, componentLoc) =
case sy lex of
OfSy =>
let
val () = insymbol lex;(* Followed by a type. *)
val (theType,typeLocn) = parseType (fsys ++ verticalBar, lex, typeVarEnv)
in
(mkValueConstr(constrName, SOME theType, idLocn), locSpan(idLocn, typeLocn))
end
| _ => (mkValueConstr(constrName, NONE, idLocn), idLocn);
in
case sy lex of
VerticalBar =>
let
val () = insymbol lex
val (tail, locn) = constrs fsys
in
(component :: tail, locSpan(componentLoc, locn))
end
| _ => ([component], componentLoc)
end
val (constrs, constrsLocn) = constrs fsys
val bindLocn = locSpan(idLocn, constrsLocn)
in
(mkDatatypeBinding (typeName, typeVars, constrs, idLocn, bindLocn), bindLocn)
end
and datatypeBinding isSpecification fsys =
(* Datatype and abstype declarations and datatype specifications. *)
let
val newTVenv = searchList ();
val typeVars = getTypeVars (true, newTVenv);
(* The name of the type *)
val (typeName, idLocn) = getShortId (ident, fsys ++ equalsSign, lex);
val () = getsym (SYMBOLS.EqualsSign, lex);
in
datatypeBind (fsys, typeName, typeVars, newTVenv, idLocn, isSpecification)
end;
(* infix, infixr and nonfix *)
fun fixity (lex, env) =
let
val sym = sy lex
and startLocn = location lex
val () = insymbol lex
fun getPrecedence() =
case sy lex of
IntegerConst => (* Read a precedence number *)
let
val num = valOf(Int.fromString (id lex))
in
if num < 0 orelse num > 9
then errorMessage (lex, location lex,
"Precedence " ^ id lex ^
" not allowed, must be between 0 and 9")
else ();
insymbol lex;
num
end
| _ => 0 (* default is zero *);
val fixForm =
case sym of
NonfixSy => Nonfix
| InfixSy => Infix(getPrecedence())
| InfixrSy => InfixR(getPrecedence())
| _ => raise Misc.InternalError "fixity"
(* Should now be at least one variable. *)
val () = skipon (variableSys, fsys, "Variable", lex);
(* Read the variables and put them in the environ
with their fix status. Qualified names prohibited. *)
fun vars endLoc =
if (sy lex) inside variableSys
then
let
val (iden, idLoc) = getShortId (variableSys, fsys, lex);
val () = #enterFix env (iden, FixStatus(iden, fixForm))
val (tail, endLoc) = vars idLoc
in
(iden :: tail, endLoc)
end
else ([], endLoc);
val (variables, endLoc) = vars startLocn
val fullLocn = locSpan(startLocn, endLoc)
in
(mkDirective (variables, fixForm, fullLocn), fullLocn)
end
fun makeTypeVarEnv() =
(* Make an environment for type variables. A type variable is put into the
environment if it is not already there. Type variables are always put into
the most local scope first and then tidied up in the second pass. *)
let
val {enter,lookup,apply} = searchList ();
(* Type variables used here should go in the scope of the
most local val or fun. *)
fun lookupT name =
let
(* These type variables are not unifiable until they are generalised. *)
val newTypeVar =
makeTv {value=emptyType, level=generalisable, equality=isEqtype name,
nonunifiable=true, printable=false}
val () = enter (name, newTypeVar);
in
newTypeVar
end;
in
{ lookupTvar = fn s => case lookup s of SOME t => t | NONE => lookupT s,
lookup = lookup,
apply = apply,
enter = enter }
end (* makeTypeVarEnv *);
fun dec (fsys, lex, decOnly, env as {enterFix,...}): parsetree * location =
let
(* Sequence of declarations optionally separated by semicolons. *)
fun decSequence(fsys, env) : parsetree list =
if (sy lex) = SYMBOLS.Semicolon
then (* Semicolons are optional. *)
(insymbol lex; decSequence(fsys, env))
else if (sy lex) inside startDecSys
then
#1(dec(fsys ++ semicolonStartDecSy, lex, true, env)) :: decSequence(fsys, env)
else (* May be empty *) [];
(* Constraints *)
fun constraint (exp, expLoc) fsys (env as {lookupTvar, ...}) =
case sy lex of
Colon =>
let
val () = insymbol lex
val (constrType, typeLoc) = parseType (fsys ++ colon, lex, {lookupTvar=lookupTvar})
val locs = locSpan(expLoc, typeLoc)
in
constraint (mkConstraint (exp, constrType, locs), locs) fsys env
end
| _ =>(exp, expLoc);
fun getConstant mkConst =
let
(* Return the string. *)
val data = id lex; (* Save it before insymbol. *)
val loc = location lex
in
insymbol lex;
mkConst(data, loc)
end;
fun parseInfix fsys opSys startSys atomic{lookupFix: string -> fixStatus option, ... } =
let
(* Infix operators have a precedence value associated with them,
the larger the value the more tightly they bind. *)
val opStartSy = opSy ++ startSys;
fun parseApplication fsys (funExp, funLoc) : parsetree * location =
(* Applies a function to an argument and then tries to apply
that to the next expression/pattern. *)
if (sy lex) inside startSys
then (* Read an argument and apply the constructor *)
if (sy lex) inside opSys andalso
(
(* It is infix if we find it and it has been declared
as infix. If it hasn't been declared then it isn't
infix. *)
case lookupFix(id lex) of
SOME (FixStatus(_, Infix _)) => true
| SOME (FixStatus(_, InfixR _)) => true
| _ => false
)
then (* it's an infix operator - don't treat it as an arg. *)
(funExp, funLoc)
else
let
val (arg, argLoc) = atomic (fsys ++ startSys)
val appLoc = locSpan(funLoc, argLoc)
in
parseApplication fsys (mkApplic (funExp, arg, appLoc, false), appLoc)
end
else (funExp, funLoc); (* end parseApplication *)
fun readNextOps () =
(* Gets the operand and the following operator (if any) *)
let
val express = (* function applications *)
parseApplication (fsys ++ opSys) (atomic (fsys ++ opStartSy));
val (operator, loc, fix) =
if (sy lex) inside opSys
then
let
val (id, loc) = getLongId (opSys, fsys, lex)
val FixStatus(_, fixity) = valOf(lookupFix id)
in
(id, loc, fixity)
end
else ("", nullLocation, Nonfix);
val (preclevl, right) = (* ~1 if not infix or infixr *)
case fix of
Infix prec => (prec, false)
| InfixR prec => (prec, true)
| Nonfix => (~1, false) (* Not infix *);
in
{express=express,operator=(operator,loc),preclevl=preclevl,right=right}
end;
fun nextLevel {express: parsetree*location,operator: string*location,preclevl,right}
(returnLevel, lastRight, lastOp) =
let
val next = readNextOps(); (* get the next operator and operand.*)
(* In ML97 two operators of the same precedence must both be
left associative or both right associative.
We actually have to check this in two different places depending
on whether these are consecutive operators or there is a higher precedence
operator in the middle. *)
fun checkAssociativity(op1, op2 (* Type includes unused express field. *)) =
if #preclevl op1 = #preclevl op2 andalso #right op1 <> #right op2
then errorMessage (lex, location lex,
concat["Operators \"", #1(#operator op1), "\" and \"", #1 (#operator op2),
"\" have the same precedence but \"", #1(#operator op1), "\" is ",
if #right op1 then "right" else "left", "-associative while \"",
#1 (#operator op2), "\" is ",
if #right op2 then "right" else "left", "-associative."])
else ();
val () = checkAssociativity({right=right, operator=operator, preclevl=preclevl}, next)
val rightOp =
if #preclevl next > preclevl orelse
(* next operator is more binding-it must be processed first *)
right andalso #preclevl next = preclevl
then nextLevel next (preclevl, right, operator)
else next;
(* At this point we are either at the end of the expression or
``rightOp'' contains an operator which is as weak or weaker
than the ``previous''. We can therefore apply the previous
operator to the previous operand and the ``rightOp''
operand. *)
val oper = mkIdent operator;
val appLocn = locSpan(#2 express, #2 (#express rightOp))
val applied =
{ express = (mkApplic (oper, mkTupleTree([#1 express, #1 (#express rightOp)], appLocn), appLocn, true), appLocn),
operator = #operator rightOp,
preclevl = #preclevl rightOp,
right = #right rightOp };
(* If the right operator is stronger than the ``returnLimit''
(i.e. stronger than the operator before this series) then
repeat else return this result. *)
in
checkAssociativity({right=lastRight, operator=lastOp, preclevl=returnLevel}, rightOp);
if #preclevl rightOp > returnLevel orelse
#preclevl rightOp = returnLevel andalso lastRight
then nextLevel applied (returnLevel, lastRight, lastOp)
else applied
end (* nextLevel *);
(* parseInfix *)
val ops = readNextOps (); (* Get the first item. *)
in
if #preclevl ops < 0 (* no operator *)
then #express ops
else #express (nextLevel ops (~1, false, ("", nullLocation)))
end (* parseInfix *);
fun pattern fsys lex env =
(* Parse a pattern or a fun name apat ... apat sequence. *)
let
fun constraintOrLayered (pat, patLoc) fsys =
let
val isVar = isIdent pat;
val (constr, constrLoc) = constraint (pat, patLoc) (fsys ++ asSy) env;
in
case sy lex of
AsSy =>
let (* Layered pattern *)
val () = insymbol lex
val () =
if not isVar
then errorMessage (lex, location lex,
"Expected id or id:ty before `as'")
else ();
val (lPatt, lPattLoc) = pattern fsys lex env
val layeredLoc = locSpan(patLoc, lPattLoc)
in
(mkLayered (constr, lPatt, layeredLoc), layeredLoc)
end
| _ => (constr, constrLoc)
end
fun atomicPattern fsys: parsetree * location =
let
val sym = sy lex;
val startLocn = location lex
in
case sym of
Underline (* wild card *) =>
( insymbol lex; (wildCard startLocn, startLocn) )
| LeftBrack (* list - may be empty *) =>
let
val () = insymbol lex;
val p =
case sy lex of
RightBrack => [] (* may be empty *)
| _ =>
let
fun varsList() =
let
val (p, _) = pattern (fsys ++ commaRightBrackSy) lex env
in
case sy lex of
Comma => (insymbol lex; p :: varsList())
| _ => [p]
end
in
varsList()
end
val locs = locSpan(startLocn, location lex)
val () = getsym (SYMBOLS.RightBrack, lex);
in
(mkList(p, locs), locs)
end
(* bracketed pattern or unit value. *)
| LeftParen =>
let
val () = insymbol lex;
val p =
case sy lex of
RightParen => (* unit *) unit(locSpan(startLocn, location lex))
| _ =>
let
val (first,_) = pattern (fsys ++ rightParenCommaSy) lex env;
(* May be a tuple *)
in
case sy lex of
Comma =>
let
val () = insymbol lex
(* It is a tuple - read the other patterns
and make the tuple. *)
fun tuples () =
let
val (p, _) = pattern (fsys ++ rightParenCommaSy) lex env
in
case sy lex of
Comma => (insymbol lex; p :: tuples())
| _ => [p]
end
in
mkTupleTree (first :: tuples(), locSpan(startLocn, location lex))
end
| _ => (* just one *)
mkParenthesised(first, locSpan(startLocn, location lex))
end
val locs = locSpan(startLocn, location lex)
val () = getsym (SYMBOLS.RightParen, lex);
in
(p, locs)
end
(* Either a labelled record or unit. *)
| LeftCurly =>
let
val () = insymbol lex;
val posEnd = location lex
in
case sy lex of
RightCurly => (* Empty brackets denote unit *)
let val () = insymbol lex val locs = locSpan(startLocn, posEnd) in (unit locs, locs) end
| _ =>
let (* lab1 = pat1, __ , labn = patn <<, ... >>*)
(* The same label name should not be used more than once. *)
fun reportDup (name, newLoc, _) =
errorMessage(lex, newLoc, "Label (" ^ name ^ ") appears more than once.")
val dupCheck = noDuplicates reportDup
fun getLabels () =
case sy lex of
ThreeDots => (insymbol lex; {frozen = false, result = []})
| _ =>
let
val fsys = fsys ++ commaRightCurlySy;
val (ident, idLoc) = getLabel (fsys ++ equalsSign, lex);
val () = #enter dupCheck (ident, idLoc) (* Check for dups. *)
val (patt, pattLoc) =
case sy lex of
EqualsSign => (* Simple case -- lab = pat *)
(insymbol lex; pattern fsys lex env)
| _ =>(* sugared form - label is also identifier *)
(
(* Sugared form not allowed for numeric labels. *)
if 0 < size ident
andalso String.str(String.sub(ident, 0)) >= "1"
andalso String.str(String.sub(ident, 0)) <= "9"
then errorMessage (lex, location lex,
" = pat expected after numeric label")
else ();
(* May have constraint and/or be layered. *)
constraintOrLayered (mkIdent (ident, idLoc), idLoc) fsys
)
val labEntry = mkLabelRecEntry(ident, idLoc, patt, locSpan(idLoc, pattLoc))
in
case sy lex of
Comma =>
let
val () = insymbol lex
val getRest = getLabels ();
in
{frozen = #frozen getRest, result = labEntry :: #result getRest}
end
| _ => (* Finished. *)
{frozen = true, result = [labEntry]}
end (* getLabels *)
val {frozen, result} = getLabels ();
val locs = locSpan(startLocn, location lex)
val () = getsym (SYMBOLS.RightCurly, lex);
in
(mkLabelledTree (result, frozen, locs), locs)
end
end
(* Constants *)
| StringConst => (getConstant mkString, startLocn)
| IntegerConst => (getConstant mkInt, startLocn)
| RealConst =>
(
(* Real literals were allowed in patterns in ML90. *)
errorMessage (lex, location lex,
"Real constants not allowed in patterns");
(getConstant mkReal, startLocn)
)
| CharConst => (getConstant mkChar, startLocn)
| WordConst => (getConstant mkWord, startLocn)
| _ => if (sy lex) inside declarableVarOpSy (* Identifiers *)
then
let
val opThere = (sy lex) = SYMBOLS.OpSy;
val () = if opThere then insymbol lex else ();
val idLoc as (_, endLoc) = getLongNonInfix opThere declarableVarSys fsys lex env
in
(mkIdent idLoc, locSpan(startLocn, endLoc))
end
else (skipon (empty, fsys, "Pattern", lex); (emptyTree, startLocn))
end (* atomicPattern *);
(* pattern *)
val () = skipon (startPatternSys, fsys, "Pattern", lex);
val patAndLoc =
constraintOrLayered
(parseInfix (fsys ++ colonAsSy) declarableVarSys
startPatternSys atomicPattern env)
fsys;
val () = skipon (fsys, empty, "End of pattern", lex);
in
patAndLoc
end (* pattern *);
fun expression fsys env: parsetree * location =
(* Parse an expression *)
let
fun expressionList(fsys, separator, env): parsetree list =
(* Sequence of expressions separated by semicolons or commas. Returns the list and strips
the locations. *)
#1 (getList (separator, empty, lex, fn () => expression fsys env));
fun match fsys: matchtree list * location =
(* vs1.exp1 | .. | vsn.expn *)
let
val () = skipon (startMatchSys, fsys, "Match", lex);
(* Read the pattern. *)
val (vars, varLoc) = pattern (fsys ++ thickArrow) lex env;
val () =
(* We expect to get a => here but a common problem is to confuse
matches with fun declarations and use a = here. We report it as
an error but swallow it as though it was what we wanted. *)
case sy lex of
ThickArrow => insymbol lex
| _ =>
(
notfound ("=>", lex);
if (sy lex) = SYMBOLS.EqualsSign then insymbol lex else ()
)
(* And now the expression. *)
val (exp, expLoc) = expression (fsys ++ verticalBar) env;
(* Construct this node, and append any more. *)
val thisLocn = locSpan(varLoc, expLoc)
val thisMatch = mkMatchTree (vars, exp, thisLocn)
val res =
case sy lex of
VerticalBar =>
let
val () = insymbol lex
val (m, mloc) = match fsys
in
(thisMatch :: m, locSpan(thisLocn, mloc))
end
| _ => ([thisMatch], thisLocn)
in
skipon (fsys, empty, "End of match", lex);
res
end (* end match *);
fun atomicExpression fsys: parsetree * location =
let
val startSym = sy lex and startLocn = location lex
in
case startSym of
LeftBrack =>
let
val () = insymbol lex;
val p =
if sy lex <> SYMBOLS.RightBrack (* may be empty *)
then expressionList (fsys ++ commaRightBrackSy, SYMBOLS.Comma, env)
else [];
val locs = locSpan(startLocn, location lex)
val () = getsym (SYMBOLS.RightBrack, lex);
in
(mkList(p, locs), locs)
end
(* A parenthesised expression, a tuple, a sequence or a unit value *)
| LeftParen =>
let
val () = insymbol lex;
val posEnd = location lex
in
case sy lex of
RightParen => (* Empty parentheses denote unit *)
let val () = insymbol lex val locs = locSpan(startLocn, posEnd) in (unit locs, locs) end
| _ =>
let
val (firstExp, _) = expression (fsys ++ rightParenSemicolonCommaSy) env;
val (exps, fullLocn) =
case sy lex of
Comma => (* Tuple *)
let
val () = insymbol lex
val expressions =
firstExp :: expressionList (fsys ++ rightParenCommaSy, SYMBOLS.Comma, env)
val locs = locSpan(startLocn, location lex)
in
(mkTupleTree (expressions, locs), locs)
end
| Semicolon => (* Expression sequence. *)
let
val () = insymbol lex
val expressions =
firstExp :: expressionList (fsys ++ rightParenSemicolonSy, SYMBOLS.Semicolon, env)
val locs = locSpan(startLocn, location lex)
in
(mkExpseq (expressions, locs), locs)
end
| _ => (* Only one *)
let
val locs = locSpan(startLocn, location lex)
in
(mkParenthesised(firstExp, locs), locs)
end;
val () = getsym (SYMBOLS.RightParen, lex);
in
(exps, fullLocn)
end
end
(* Either a labelled record or unit. *)
| LeftCurly =>
let
val () = insymbol lex;
val posEnd = location lex
in
case sy lex of
RightCurly => (* Empty brackets denote unit *)
let val () = insymbol lex val locs = locSpan(startLocn, posEnd) in (unit locs, locs) end
| _ =>
let (* lab1 = exp1, __ , labn = expn *)
(* The same label name should not be used more than once. *)
fun reportDup (name, newLoc, _) =
errorMessage(lex, newLoc, "Label (" ^ name ^ ") appears more than once.")
val dupCheck = noDuplicates reportDup
fun getEntry () =
let
val (ident, idLoc) = getLabel (fsys ++ equalsSign, lex);
val () = #enter dupCheck (ident, idLoc) (* Check for dups. *)
val () = getsym (SYMBOLS.EqualsSign, lex);
val (labExp, labLoc) = expression (fsys ++ commaRightCurlySy) env
val locs = locSpan(idLoc, labLoc)
in
(mkLabelRecEntry(ident, idLoc, labExp, locs), locs)
end
val (labs, _) = getList (SYMBOLS.Comma, empty, lex, getEntry)
val locs = locSpan(startLocn, location lex) (* Include brackets. *)
val labelled = mkLabelledTree (labs, true (* always frozen *), locs)
val () = getsym (SYMBOLS.RightCurly, lex);
in
(labelled, locs)
end
end
(* local declaration *)
| LetSy =>
let
val () = insymbol lex;
val newEnv = mkLocalFixEnv env
val decs = decSequence (fsys ++ inSy, newEnv);
val () = getsym (SYMBOLS.InSy, lex);
val exp = expressionList (fsys ++ semicolonEndSy, SYMBOLS.Semicolon, newEnv);
val locs = locSpan(startLocn, location lex)
val () = getsym (SYMBOLS.EndSy, lex);
val () = skipon (fsys, empty, "End of let expression", lex);
in
(mkLocalDeclaration (decs, exp, locs, false) (* "let" rather than "local"*), locs)
end
(* ordinary expression - qualified names allowed *)
| _ =>
let
val opThere = startSym = SYMBOLS.OpSy;
val () = if opThere then insymbol lex else ();
val sym = sy lex;
val symLoc = location lex
in
case sym of
HashSign (* Selector. *) =>
let
val () = insymbol lex;
val (lab, labLoc) = getLabel (fsys, lex)
val locs = locSpan(startLocn, labLoc)
in
(mkSelector(lab, locs), locs)
end
| StringConst => (getConstant mkString, locSpan(startLocn, symLoc))
| IntegerConst => (getConstant mkInt, locSpan(startLocn, symLoc))
| RealConst => (getConstant mkReal, locSpan(startLocn, symLoc))
| WordConst => (getConstant mkWord, locSpan(startLocn, symLoc))
| CharConst => (getConstant mkChar, locSpan(startLocn, symLoc))
| _ =>
if sym inside variableSys
then
let
val (ident, idLoc) = getLongNonInfix opThere variableSys fsys lex env
in
(mkIdent (ident, idLoc), locSpan(startLocn, idLoc))
end
else (* Expected something e.g. an identifier. *)
(badsyms (SYMBOLS.Ident, lex); (emptyTree, symLoc))
end
end(* end atomicExpression *);
fun keyWordExp fsys: parsetree * location =
(* Expressions introduced by keywords, atomic expressions or
infixed expressions. Expressions introduced by keywords (e.g. if)
swallow all of the rest of the expression but they can appear
within other keyword expressions or after "andalso" and "orelse". *)
let
val sym = sy lex;
val startLocn = location lex
in
(* if expression *)
case sym of
IfSy =>
let
val () = insymbol lex;
val (test, _) = expression (fsys ++ thenStartExpressionSy) env;
val () = getsym (SYMBOLS.ThenSy, lex);
val (thenPt, _) = expression (fsys ++ elseStartExpressionSy) env;
val () = getsym (SYMBOLS.ElseSy, lex);
val (elsePt, elseLocn) = expression fsys env;
val locs = locSpan(startLocn, elseLocn)
in
(mkCond (test, thenPt, elsePt, locs), locs)
end
(* while expression *)
| WhileSy =>
let
val () = insymbol lex;
val (test, testLocn) = expression (fsys ++ doSy) env;
in
if (sy lex) = SYMBOLS.DoSy
then
let
val () = insymbol lex;
val (doExp, doLocn) = expression fsys env
val locs = locSpan(startLocn, doLocn)
in
(mkWhile (test, doExp, locs), locs)
end
else (badsyms (SYMBOLS.DoSy, lex); (test, testLocn))
end
(* case expression *)
| CaseSy =>
let
val () = insymbol lex;
val (exp, _) = expression (fsys ++ ofStartMatchSy) env;
val () = getsym (SYMBOLS.OfSy, lex);
val (m, matchLoc) = match (fsys ++ semicolon)
val locs = locSpan(startLocn, matchLoc)
in
(mkCase (exp, m, locs, matchLoc), locs)
end
(* raise exception *)
| RaiseSy =>
let
val () = insymbol lex;
val (exp, expLoc) = expression fsys env
val locs = locSpan(startLocn, expLoc)
in
(mkRaise (exp, locs), locs)
end
(* fn expression *)
| FnSy =>
let
val () = insymbol lex;
val (m, matchLoc) = match (fsys ++ semicolon)
val locs = locSpan(startLocn, matchLoc)
in
(mkFn (m, locs), locs)
end
(* type constraint, or similar *)
| _ =>
let
val exp = parseInfix (fsys ++ andalsoColonSy) variableSys startAtomicSys atomicExpression env
in
constraint exp (fsys ++ andalsoSy) env
end
end (* keyWordExp *);
fun parseAndalso fsys =
(* EXP1 andalso EXP2 = if EXP1 then EXP2 else false *)
let
val (first, firstLoc) = keyWordExp (fsys ++ andalsoSy);
(* N.B. If the expression had been introduced by a keyword (e.g. if)
then the "else" part would have swallowed any "andalso". *)
in
case sy lex of
AndalsoSy =>
let
val () = insymbol lex;
val (right, rightLoc) = parseAndalso fsys
val locs = locSpan(firstLoc, rightLoc)
in
(mkAndalso (first, right, locs), locs)
end
| _ => (first, firstLoc)
end;
fun parseOrelse fsys =
(* EXP1 orelse EXP2 = if EXP1 then true else EXP2 *)
let
val (first, firstLoc) = parseAndalso (fsys ++ orelseSy);
in
case sy lex of
OrelseSy =>
let
val () = insymbol lex;
val (right, rightLoc) = parseOrelse fsys
val locs = locSpan(firstLoc, rightLoc)
in
(mkOrelse (first, right, locs), locs)
end
| _ => (first, firstLoc)
end;
in
skipon (startExpressionSys, fsys, "Expression", lex);
if (sy lex) inside startExpressionSys
then
let
val (exp, expLoc) = parseOrelse (fsys ++ handleSy);
in
case sy lex of
HandleSy =>
let
val () = insymbol lex; (* Remove "handle" *)
val (m, mLoc) = match fsys
val locs = locSpan(expLoc, mLoc)
in
(mkHandleTree (exp, m, locs, mLoc), locs)
end
| _ => (exp, expLoc)
end
else (emptyTree (* No expression *), location lex)
end; (* expression *)
in
(* One declaration. "decOnly" is true if the derived form exp => val it = exp is not allowed here. *)
if decOnly orelse (sy lex) inside startDecSys
then
let
val sym = sy lex;
val startLocn = location lex
in
case sym of
ValSy =>
let
val () = insymbol lex;
(* Create two different scopes, for explicitly declared
type variables and those implicitly declared. *)
val implicitTvars = makeTypeVarEnv()
and explicitTvars = makeTypeVarEnv();
val newEnv = {enterFix = #enterFix env,
lookupFix = #lookupFix env,
lookupTvar =
(* Look up type variables in the explicit
environment, otherwise look them up and
add them to the implicit environment. *)
fn s => case #lookup explicitTvars s of
SOME t => t | NONE => #lookupTvar implicitTvars s};
(* Tyvarseq *)
val _ = getTypeVars(true,
{ enter = #enter explicitTvars,
lookup = #lookup explicitTvars,
apply = #apply explicitTvars});
(* Processes a value binding. *)
(* We check for qualified names in the second pass *)
fun valB(fsys, isRec) =
case sy lex of
RecSy => (insymbol lex; valB(fsys, true))
| _ =>
let
(* Pattern *)
val (vars, varLoc) = pattern (fsys ++ equalsSign) lex newEnv;
(* = *)
val () = getsym (SYMBOLS.EqualsSign, lex);
(* expression *)
val (exp, expLoc) = expression fsys newEnv;
(* Other declarations. *)
val (tail, tailLocn) =
case sy lex of
AndSy => (insymbol lex; valB(fsys, isRec))
| _ => ([], expLoc)
in
(mkValBinding (vars, exp, isRec, locSpan(varLoc, expLoc)) :: tail, tailLocn)
end
val (bindings, bindLocns) = valB (fsys ++ andSy, false)
val fullLocn = locSpan(startLocn, bindLocns)
in
(mkValDeclaration (bindings,
{lookup= #lookup explicitTvars, apply= #apply explicitTvars},
{lookup= #lookup implicitTvars, apply= #apply implicitTvars},
fullLocn),
fullLocn)
end
| FunSy =>
let
val () = insymbol lex;
(* Create two different scopes, for explicitly declared
type variables and those implicitly declared. *)
val implicitTvars = makeTypeVarEnv()
and explicitTvars = makeTypeVarEnv();
val newEnv = {enterFix = #enterFix env,
lookupFix = #lookupFix env,
lookupTvar =
fn s => case #lookup explicitTvars s of
SOME t => t | NONE => #lookupTvar implicitTvars s};
(* Tyvarseq *)
val _ = getTypeVars(true,
{ enter = #enter explicitTvars,
lookup = #lookup explicitTvars,
apply = #apply explicitTvars});
fun funB fsys =
(* Processes a fun binding. *)
(* We check for qualified names in the second pass *)
let
fun bindings soFar =
let
(* Pattern - This isn't really a pattern but we can parse it as
that initially. That results in accepting some invalid syntax
so we need to check the parsed code. *)
val (vars, varLoc) = pattern (fsys ++ equalsSign) lex newEnv;
(* Get the name and number of args. *)
val (funPattern, funName, argCount) = mkFunPattern(vars, lex)
val () =
case soFar of
SOME(prevName, prevCount) =>
(
if prevName = funName
then ()
else errorMessage (lex, location lex,
"This clause defines function ``" ^ funName ^
"'' but previous clause(s) defined ``" ^
prevName ^ "''");
if prevCount = argCount
then ()
else errorMessage (lex, location lex,
"This clause has " ^ Int.toString argCount ^
" arguments but previous clause(s) had " ^
Int.toString prevCount)
)
| NONE => () (* This was first. *)
(* = *)
(* We expect an equals sign here but a common problem is
to confuse fun declarations with matches and use a =>
here. Report the error but swallow the =>. *)
val () =
case sy lex of
EqualsSign => insymbol lex
| _ =>
(
notfound ("=", lex);
case sy lex of ThickArrow => insymbol lex | _ => ()
)
(* expression *)
val (exp, expLoc) = expression (fsys ++ verticalBar) newEnv;
val bind = mkClause (funPattern, exp, locSpan(varLoc, expLoc));
(* Followed by a vertical bar and another binding ? *)
val (rest, endLoc) =
case sy lex of
VerticalBar =>
(insymbol lex; bindings(SOME(funName, argCount)))
| _ => ([], expLoc)
in
(bind :: rest, locSpan(varLoc, endLoc))
end;
val (bindings, bindLocns) = bindings NONE
in
(mkClausal (bindings, bindLocns), bindLocns)
end (* funB *);
val (bindings, bindLocns) = andBindings(fsys, funB);
val fullLocn = locSpan(startLocn, bindLocns)
in
(mkFunDeclaration (bindings,
{lookup= #lookup explicitTvars, apply= #apply explicitTvars},
{lookup= #lookup implicitTvars, apply= #apply implicitTvars},
fullLocn),
fullLocn)
end
| TypeSy =>
let
val () = insymbol lex;
val (bindings, bindLocns) = andBindings(fsys, typeBinding(false, false, env))
val fullLocn = locSpan(startLocn, bindLocns)
in
(mkTypeDeclaration (bindings, fullLocn), fullLocn)
end
| DatatypeSy => datatypeDecOrRepl(fsys, env, false, startLocn)
| AbstypeSy =>
let
val () = insymbol lex;
val (tb, _) =
andBindings (fsys ++ withTypeWithSy, datatypeBinding false);
val (withtypes, _) =
case sy lex of
WithtypeSy =>
(
insymbol lex;
andBindings (fsys ++ withSy, typeBinding(false, false, env))
)
| _ => ([], startLocn);
val () = getsym (SYMBOLS.WithSy, lex);
val decs = decSequence (fsys ++ endSy, env);
val fullLocn = locSpan(startLocn, location lex)
in
getsym (SYMBOLS.EndSy, lex);
(mkAbstypeDeclaration (tb, withtypes, decs, fullLocn), fullLocn)
end
| ExceptionSy =>
let
(* Declares exception identifiers and their types. *)
val () = insymbol lex;
(* Get an exception binding. Qualified names prohibited. *)
fun exceptionBinding fsys =
let
(* Allow an "op" here but don't produce a warning if it's absent. *)
val () = if (sy lex) = SYMBOLS.OpSy then insymbol lex else ()
(* First the identifier. *)
val (iden, idLoc) = getShortId (variableSys, fsys ++ ofEqualsSignSy, lex);
in
(* Either excon of ty or excon = excon' *)
case sy lex of
OfSy =>
let
val () = insymbol lex
val (theType, typeLocn) =
parseType (fsys ++ equalsSign, lex, {lookupTvar= #lookupTvar env})
val fullLoc = locSpan(idLoc, typeLocn)
in
(mkExBinding (iden, emptyTree, SOME theType, idLoc, fullLoc), fullLoc)
end
| EqualsSign =>
let (* Must be = excon' *)
val () = insymbol lex
(* Allow an "op" here but don't produce a warning if it's absent. *)
val () = if (sy lex) = SYMBOLS.OpSy then insymbol lex else ()
val (oldIden, oldIdenLoc) = getLongId (variableSys, fsys, lex);
val fullLoc = locSpan(idLoc, oldIdenLoc)
in
(mkExBinding (iden, mkIdent(oldIden, oldIdenLoc), NONE, idLoc, fullLoc), fullLoc)
end
| _ => (mkExBinding (iden, emptyTree, NONE, idLoc, idLoc), idLoc)
end;
val (bindings, bindLocns) = andBindings(fsys, exceptionBinding)
val fullLocn = locSpan(startLocn, bindLocns)
in
(mkExDeclaration (bindings, fullLocn), fullLocn)
end
| LocalSy =>
let
val () = insymbol lex;
(* Infix status have this scope. Type-variables have the scope of the enclosing val or fun. *)
val newEnv = mkLocalFixEnv env
(* The local declaration *)
val ins = decSequence (fsys ++ inEndSy, newEnv);
val () = getsym (SYMBOLS.InSy, lex);
(* Decs are added to both the local and surrounding environment. *)
val resultEnv = mkLocalBodyFixEnv newEnv enterFix
val body = decSequence (fsys ++ endSy, resultEnv)
val locs = locSpan(startLocn, location lex)
in
getsym (SYMBOLS.EndSy, lex);
(mkLocalDeclaration (ins, body, locs, true), (*"local" rather than "let"*) locs)
end
| InfixSy => fixity(lex, env)
| InfixrSy => fixity(lex, env)
| NonfixSy => fixity(lex, env)
(* "open" declaration - qualified names allowed *)
| OpenSy =>
let
val () = insymbol lex
fun vars endLoc =
if (sy lex) inside variableSys
then
let
val (id, idLoc) = getLongId (variableSys, fsys, lex);
val (tail, tailLoc) = vars idLoc
in
(mkStructureIdent(id, idLoc) :: tail, tailLoc)
end
else ([], endLoc);
in
if (sy lex) inside variableSys
then
let
val (vars, varLocns) = vars startLocn
val fullLocn = locSpan(startLocn, varLocns)
in
(mkOpenTree(vars, fullLocn), fullLocn)
end
else (* Identifier missing. *)
(badsyms (SYMBOLS.Ident, lex); (emptyTree, startLocn))
end
| _ => (emptyTree, startLocn) (* Empty declaration. *)
end
else
let (* Single expression allowed - short for val it = exp *)
val newTvars = makeTypeVarEnv();
val explicitTvars = makeTypeVarEnv();(* This will always be empty. *)
val newEnv = {enterFix = #enterFix env,
lookupFix = #lookupFix env,
lookupTvar = #lookupTvar newTvars};
val (exp, expLoc) = expression fsys newEnv
in
(mkValDeclaration ([mkValBinding (mkIdent ("it", nullLocation), exp, false, expLoc)],
{lookup= #lookup explicitTvars,apply= #apply explicitTvars},
{lookup= #lookup newTvars,apply= #apply newTvars},
expLoc), expLoc)
end
end (* dec *);
(* Parses a signature. *)
fun parseSignature (fsys : symset) (lex : lexan) env : sigs * location =
let (* May be either a signature name or a sig spec .. spec end seq
followed by multiple where type expressions. *)
val () = skipon (declarableVarSys ++ sigSy, fsys, "Start of signature", lex)
val startLocn = location lex
val sigexp : sigs * location =
case sy lex of
SigSy =>
let (* sig *)
val () = insymbol lex
val sigs = signatureSpec (fsys ++ endSy ++ whereSy ++ semicolon) lex env
val locs = locSpan(startLocn, location lex)
in
getsym (SYMBOLS.EndSy, lex);
(mkSig (sigs, locs), locs)
end
| Ident =>
let
val ident as (_, locs) = getShortId (declarableVarSys, fsys ++ whereSy, lex)
in
(mkSigIdent ident, locs)
end
| _ => (* Only if parse error which will have been reported in skipon. *)
(mkSigIdent("error", location lex), location lex);
fun getWhereTypes(sigexp, sigLoc) =
let
(* This is similar to a type binding but with the possibility
that the type is a longtycon. *)
val () = getsym(SYMBOLS.TypeSy, lex);
val newTVenv = searchList ();
val typeVars = getTypeVars (false, newTVenv);
val (typeName, nameLoc) = getLongId (ident, fsys ++ equalsSign, lex);
val typeVarEnv = genTypeVarEnv newTVenv;
val () = getsym (SYMBOLS.EqualsSign, lex);
(* Followed by a type or a sequence of constructors *)
val () = skipon (startTypeSys, fsys, "type", lex);
val (theType, typeLoc) = parseType (fsys ++ whereSy ++ andSy, lex, typeVarEnv)
val constrainedSig =
(mkWhereType(sigexp, typeVars, typeName, theType, nameLoc),
locSpan(sigLoc, typeLoc))
in
case sy lex of
WhereSy => (* Recurse to handle any other wheres. *)
(insymbol lex; getWhereTypes constrainedSig)
| AndSy =>
(
insymbol lex;
(* There are two possibilities here. It may be the start of another
type abbreviation or it may be the start of another signature. *)
case sy lex of
TypeSy => getWhereTypes constrainedSig
| _ => (* Push the "and" back into the lexer so it can be picked out later. *)
(
pushBackSymbol(lex, SYMBOLS.AndSy);
constrainedSig
)
)
| _ => constrainedSig
end
in
case sy lex of
WhereSy => (insymbol lex; getWhereTypes sigexp)
| _ => sigexp
end (* parseSignature *)
(* Sequence of "specs" *)
and signatureSpec (fsys : symset) (lex : lexan) (env as {lookupTvar, ...}) : specs list =
let
val signatureTvars = makeTypeVarEnv();
fun parseSigEntries () : specs list =
let
val () = skipon (fsys ++ semicolonStartSigSys, fsys, "Signature", lex)
val sym = sy lex and startLocn = location lex
val thisSig =
case sym of
DatatypeSy =>
let
val startLocn = location lex
val sys = fsys ++ startSigEndSy
val newenv =
{enterFix = #enterFix env, lookupFix = #lookupFix env,
(* All type variables on the right hand side of a datatype
specification must appear on the left. *)
lookupTvar =
fn name =>
(
errorMessage (lex, location lex,
name ^ " has not been declared in type declaration");
badType
)
}
in
[mkCoreType (datatypeDecOrRepl(sys, newenv, true, startLocn))]
end
| TypeSy =>
(* It isn't obvious whether specifications of the form
type s and t = int * int (i.e. mixed specifications and
abbreviations) are allowed. For the moment allow them. *)
let
val sys = fsys ++ startSigEndSy
val () = insymbol lex;
val (bindings, bindLocns) = andBindings(sys, typeBinding(true, false, env))
in
[mkCoreType (mkTypeDeclaration(bindings, bindLocns), locSpan(startLocn, bindLocns))]
end
| EqtypeSy =>
let
val sys = fsys ++ startSigEndSy
val () = insymbol lex;
val (bindings, bindLocns) = andBindings(sys, typeBinding(true, true, env))
in
[mkCoreType (mkTypeDeclaration(bindings, bindLocns), locSpan(startLocn, bindLocns))]
end
| ValSy =>
let
val () = insymbol lex
fun doVal () =
let
val idAndLoc as (_, idLoc) = getShortId (declarableVarSys, fsys ++ colon, lex);
val () = getsym (SYMBOLS.Colon, lex);
val (ty, tyLoc) =
parseType (fsys ++ startSigEndAndSy, lex,
{lookupTvar = #lookupTvar signatureTvars});
val locs = locSpan(idLoc, tyLoc)
in
(mkValSig (idAndLoc, ty, locs), locs)
end
in
#1 (getList (SYMBOLS.AndSy, empty, lex, doVal))
end (* val *)
| ExceptionSy =>
let(* exception id1 of ty1 and _ and idn of tyn *)
val () = insymbol lex
fun doEx () =
let
val idAndLoc as (_, idLoc) = getShortId (variableSys, fsys ++ ofSy, lex)
val (ty, locs) =
case sy lex of
OfSy =>
let
val () = insymbol lex
val (types, tyLoc) =
parseType (fsys ++ startSigEndAndSy, lex, {lookupTvar = lookupTvar})
in
(SOME types, locSpan(idLoc, tyLoc))
end
| _ => (* Nullary *) (NONE, idLoc);
in
(mkExSig (idAndLoc, ty, locs), locs)
end
in
#1 (getList (SYMBOLS.AndSy, empty, lex, doEx))
end (* exception *)
| StructureSy =>
let
val () = insymbol lex
fun doStructure () =
let
val idAndLoc as (_, idLoc) = getShortId (variableSys, empty, lex)
val () = getsym (SYMBOLS.Colon, lex)
val (sgn, sgnLoc) = parseSignature (fsys ++ startSigEndAndSy) lex env
val locs = locSpan(idLoc, sgnLoc)
in
(mkStructureSigBinding (idAndLoc, (sgn, false, sgnLoc), locs), locs)
end
in
[mkStructureSig(getList(SYMBOLS.AndSy, empty, lex, doStructure))]
end
| IncludeSy =>
let
(* In ML 97 we can have "include sigexp" but in addition as
a derived form we can have "include ident...ident".
Presumably this is for backwards compatibility.
sigexp may be a single identifier but could
also be an identifier with a "where type" constraint.
I hate this sort of inconsistency.
The simplest way to deal with this is to parse the
first one as a general signature and then allow multiple
identifiers. That is rather more general than the syntax
allows and perhaps we should check that the first signature
was simply an identifier. *)
val () = insymbol lex
val () =
skipon (declarableVarSys ++ sigSy, fsys, "Start of signature", lex)
val (firstSig, firstLoc) =
parseSignature (fsys ++ startSigEndSy ++ declarableVarSys) lex env
fun sigids locs =
case sy lex of
Ident =>
let
val nameLoc as (_, loc) = getShortId (declarableVarSys, fsys, lex)
val (rest, lastLoc) = sigids loc
in
(mkSigIdent nameLoc :: rest, lastLoc)
end
| _ => ([], locs)
val (otherSigs, finalLoc) = sigids firstLoc
in
[mkInclude (firstSig :: otherSigs, locSpan(startLocn, finalLoc))]
end
| SharingSy =>
let (* sharing *)
val startLocn = location lex
val () = insymbol lex
val isType = case sy lex of TypeSy => (insymbol lex; true) | _ => false
fun getShare () =
let
val (id, loc) = getLongId (declarableVarSys, fsys ++ rightParenEqualsSignSy, lex)
in
(* We want to include the location in the list as well as in the result here. *)
((id, loc), loc)
end
val (shares, _) = getShare ()
val () = getsym (SYMBOLS.EqualsSign, lex)
val (shareRest, shareLocn) = getList (SYMBOLS.EqualsSign, ident, lex, getShare)
val fullLoc = locSpan(startLocn, shareLocn)
val share = mkSharing (isType, shares :: shareRest, fullLoc)
in
[share]
end
| _ => [] (* Empty. *)
(* end of parse of thisSig *)
(* continue until the `end' *)
val () = case sy lex of Semicolon => insymbol lex | _ => ()
in
if (sy lex) inside semicolonStartSigSys
then thisSig @ parseSigEntries ()
else thisSig
end (* parseSigEntries *)
in
parseSigEntries ()
end (* signatureSpec *);
fun signatureDec (fsys : symset) (lex : lexan) env : topdec =
let
val startLocn = location lex
val () = insymbol lex
fun doSigDec () =
let
val idAndLoc as (_, idLoc) = getShortId (variableSys, empty, lex);
val () = getsym (SYMBOLS.EqualsSign, lex)
val (sgn, sigLoc) = parseSignature (fsys ++ endAndSy) lex env
val locs = locSpan(idLoc, sigLoc)
in
(mkSignatureBinding (idAndLoc, sgn, locs), locs)
end
val (sigs, sigLoc) = getList (SYMBOLS.AndSy, empty, lex, doSigDec)
in
mkSignatureDec (sigs, locSpan(startLocn, sigLoc))
end
fun structVal (fsys : symset) (lex : lexan) env : structValue * location =
let
(* Series of declarations inside struct...end or (...) in functor
application. *)
val () = skipon (structSy ++ declarableVarLetSy,
fsys, "struct or functor application", lex);
val fsysPcolon = fsys ++ colon ++ colonGt
val startLocn = location lex
val strExp =
case sy lex of
StructSy =>
let(* It's a new structure *)
val () = insymbol lex
(* Infix declarations are local to struct ... end. *)
val structEnv = mkLocalFixEnv env
val str = strDec (fsysPcolon ++ endSy) lex structEnv
val locs = locSpan(startLocn, location lex)
val () = getsym (SYMBOLS.EndSy, lex)
in
(mkStruct(str, locs), locs)
end
| LetSy =>
let
val () = insymbol lex
(* Fixity is local. *)
val newEnv = mkLocalFixEnv env
(* The local declaration *)
val ins = strDec (fsysPcolon ++ inEndSy) lex newEnv
val () = getsym (SYMBOLS.InSy, lex)
val body = #1 (structVal (fsysPcolon ++ endSy) lex newEnv)
val endLoc = location lex
val () = getsym (SYMBOLS.EndSy, lex)
val locs = locSpan(startLocn, endLoc)
in
(mkLetdec (ins, body, locs), locs)
end
| _ =>
let (* Either a structure path or a functor application *)
val (iden, idLoc) = getLongId (declarableVarSys, fsysPcolon ++ leftParen, lex);
val startLoc = location lex
in
case sy lex of
LeftParen =>
let (* functor application *)
val () = insymbol lex
(* Functor names must not be qualified. *)
val () = checkForDots (iden, lex, idLoc);
val parameter =
case sy lex of
RightParen => (* Empty parameter list *)
mkStruct([], locSpan(startLoc, location lex))
| _ =>
let
val tsys = fsysPcolon ++ rightParenCommaSy
in
(* May be either a structure value or a sequence
of declarations. *)
if (sy lex) inside startDecStructureSy
then (* implied struct...end *)
let
val structEnv = mkLocalFixEnv env
val str = strDec tsys lex structEnv
val locs = locSpan(startLoc, location lex)
in
mkStruct(str, locs)
end
else #1 (structVal tsys lex env)
end
val endPos = location lex
val () = getsym (SYMBOLS.RightParen, lex)
val locs = locSpan(idLoc, endPos)
in
(mkFunctorAppl (iden, parameter, idLoc, locs), locs)
end
| _ => (mkStructIdent (iden, idLoc), idLoc)
end
(* We may have one or more constraints. *)
fun doConstraints (strExp, strExpLoc) =
case sy lex of
Colon =>
let
val () = insymbol lex
val (sign, sigLoc) = parseSignature fsysPcolon lex env
in
doConstraints(mkSigConstraint(strExp, sign, false, sigLoc), locSpan(strExpLoc, sigLoc))
end
| ColonGt =>
let
val () = insymbol lex
val (sign, sigLoc) = parseSignature fsysPcolon lex env
in
doConstraints(mkSigConstraint(strExp, sign, true, sigLoc), locSpan(strExpLoc, sigLoc))
end
| _ => (strExp, strExpLoc)
in
doConstraints strExp
end (* structVal *)
and structureDec (fsys : symset) (lex : lexan) (env as {enterFix, ...}) : structDec =
let
val startLocn = location lex
in
case sy lex of
StructureSy =>
let
val () = insymbol lex
fun doStrDec () =
let (* Read strId <<: sig>> = str *)
(* First the identifier *)
val idAndLoc as (_, idLoc) = getShortId (declarableVarSys, fsys ++ colonEqualsSignSy, lex);
(* Next the signature if there is one. *)
val sgn =
case sy lex of
Colon =>
let
val () = insymbol lex
val (sign, sigLoc) = parseSignature (fsys ++ equalsSign) lex env
in
SOME (sign, false, sigLoc)
end
| ColonGt =>
let
val () = insymbol lex
val (sign, sigLoc) = parseSignature (fsys ++ equalsSign) lex env
in
SOME (sign, true, sigLoc)
end
| _ => NONE
(* Now the equals sign *)
val () = getsym (SYMBOLS.EqualsSign, lex)
val (strVal, strLoc) = structVal fsys lex env
val locs = locSpan(idLoc, strLoc)
in
(* And finally the structure value. *)
(mkStructureBinding (idAndLoc, sgn, strVal, locs), locs)
end
val (strs, strLocs) = getList (SYMBOLS.AndSy, structSy, lex, doStrDec)
in
mkStructureDec (strs, locSpan(startLocn, strLocs))
end
| _ =>
let
val () = getsym (SYMBOLS.LocalSy, lex)
val startLoc = location lex
val newEnv = mkLocalFixEnv env
(* The local declaration *)
val ins = strDec (fsys ++ inEndSy) lex newEnv
val () = getsym (SYMBOLS.InSy, lex)
(* Decs are added to both the local and surrounding environment. *)
val resultEnv = mkLocalBodyFixEnv newEnv enterFix
val body = strDec (fsys ++ endSy) lex resultEnv
val endLoc = location lex
val () = getsym (SYMBOLS.EndSy, lex)
in
mkLocaldec (ins, body, locSpan(startLoc, endLoc))
end
end (* end of structureDec *)
(* Functor declarations. *)
and functorDec (fsys : symset) (lex : lexan) env : topdec =
let
val startLocn = location lex
val () = insymbol lex; (* remove ``functor'' *)
fun doFunctDec () : functorBind * location =
let (* Read fncId (<<paramSpec>> ) <<: sig>> = str *)
(* First the identifier *)
val (strId, idLocn) = getShortId (declarableVarSys, fsys ++ colonEqualsSignSy, lex);
val () = getsym (SYMBOLS.LeftParen, lex);
(* Now the parameters *)
val tsys = fsys ++ rightParenCommaSy;
val parameter = (* empty | name:sigexp | spec *)
if (sy lex) = SYMBOLS.RightParen
(* empty *)
then mkFormalArg ("", mkSig([], location lex))
else if (sy lex) inside startSigSys
(* spec *)
then
let
val startLocn = location lex
val sigs = signatureSpec tsys lex env
in
mkFormalArg ("", mkSig (sigs, locSpan(startLocn, location lex)))
end
(* name : sigexp *)
else
let
val (strId, _) = getShortId (declarableVarSys, tsys ++ colon, lex);
val () = getsym (SYMBOLS.Colon, lex)
(* Next the signature. *)
val (sgn, _) = parseSignature (tsys ++ sharingSy) lex env
in
mkFormalArg (strId, sgn)
end (* parameter *)
val () = getsym (SYMBOLS.RightParen, lex)
(* Next the signature if there is one. *)
val sigOpt =
case sy lex of
Colon =>
let
val () = insymbol lex
val (sign, sigLoc) = parseSignature (fsys ++ equalsSign) lex env
in
SOME(sign, false, sigLoc)
end
| ColonGt =>
let
val () = insymbol lex
val (sign, sigLoc) = parseSignature (fsys ++ equalsSign) lex env
in
SOME(sign, true, sigLoc)
end
| _ => NONE
(* Now the equals sign *)
val () = getsym (SYMBOLS.EqualsSign, lex)
(* And finally the functor value. *)
val (strVal, strLoc) = structVal fsys lex env
val locs = locSpan(idLocn, strLoc)
in
(mkFunctorBinding (strId, idLocn, sigOpt, strVal, parameter, locs), locs)
end (* doFunctDec *)
val (functs, functLoc) = getList (SYMBOLS.AndSy, structSy, lex, doFunctDec)
in
mkFunctorDec (functs, locSpan(startLocn, functLoc))
end (* functorDec *)
and strDec (fsys : symset) (lex : lexan) env : structDec list =
(* A sequence of declarations, optionally separated by semicolons. *)
let
fun getDecs () : structDec list =
let
val tsys = fsys ++ semicolonStartDecStructureSy;
in
(* Semicolons are optional. *)
if (sy lex) = SYMBOLS.Semicolon
then
let
val () = insymbol lex
in
getDecs ()
end
else if (sy lex) inside structureLocalSy
then (structureDec tsys lex env) :: getDecs()
else if (sy lex) inside startDecSys
then (mkCoreLang (dec(tsys, lex, true, env))) :: getDecs()
else (* May be empty *) []
end (* getDecs *)
in
(* Return the declarations. *)
getDecs ()
end (* strDec *);
val globalEnv =
(* Extend the fixity environment with a type var environment which traps
top-level type variables in exceptions. *)
{ enterFix = enterFix,
lookupFix = lookupFix,
lookupTvar =
fn _ =>
let
val () =
errorMessage (lex, location lex, "Free type variables not allowed");
in
makeTv {value=emptyType, level=generalisable, equality=false, nonunifiable=true, printable=false}
end}
(* May be structure/functor dec, signature dec or top-level dec. Treat
"local" as a structure dec even if it is actually declaring a value
or type. *)
val tsys = fsys ++ startTopSys;
fun parseTopDecs (_ : symset) : topdec list * location =
let
val startSym = sy lex and startLoc = location lex;
in
if startSym = SYMBOLS.Semicolon orelse
startSym = SYMBOLS.AbortParse
then ([], startLoc)
else if startSym inside topdecStartSy
then
let
val (aDec : topdec, newOkStartSet : symset) =
case startSym of
FunctorSy => (functorDec tsys lex globalEnv, functorSy)
| SignatureSy => (signatureDec tsys lex globalEnv, signatureSy)
| StructureSy => (mkTopDec(structureDec tsys lex globalEnv), structureLocalStartDecSy)
(* Local declarations are ambiguous; we treat them as strDecs *)
| LocalSy => (mkTopDec(structureDec tsys lex globalEnv), structureLocalStartDecSy)
(* let, val, fun etc. *)
| _ => (mkTopDec(mkCoreLang (dec(tsys, lex, true, globalEnv))), structureLocalStartDecSy);
val (rest, locRest) = parseTopDecs newOkStartSet
in
(aDec :: rest, locSpan(startLoc, locRest))
end
else (notfound (";", lex); ([], startLoc))
end; (* parseTopDecs *)
in (* body of parseDec *)
(* topdecs are either fundecs, sigdecs, strDecs (including decs) or a
single expression.
We now handle everything except the single expression in "parseTopDecs".
This makes it easier to produce warning messages for missing semi-colons
that the ML Standard requires between different kinds of topdec.
SPF 18/7/96
*)
if (sy lex) inside topdecStartSy
then mkProgram(parseTopDecs topdecStartSy)
else
let (* expression - only one allowed. *)
val startLoc = location lex;
val aDec = mkCoreLang (dec(tsys, lex, false, globalEnv));
val () =
if (sy lex) <> SYMBOLS.Semicolon andalso
(sy lex) <> SYMBOLS.AbortParse
then notfound (";", lex)
else ()
in
mkProgram([mkTopDec aDec], locSpan(startLoc, location lex))
end
end; (* parseDec *)
end (* PARSEDEC *);
|