1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
(*
Copyright (c) 2000
Cambridge University Technical Services Limited
Modified David C. J. Matthews 2009.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*****************************************************************************)
(* TYPETREE exports signature *)
(*****************************************************************************)
signature TYPETREESIG =
sig
type types;
type values;
type typeConstrs;
type typeConstrSet
type typeVarForm
type lexan;
type typeId;
type pretty;
type ptProperties
type location =
{ file: string, startLine: FixedInt.int, startPosition: FixedInt.int,
endLine: FixedInt.int, endPosition: FixedInt.int }
type exportTree = location * ptProperties list
type navigation =
{parent: (unit -> exportTree) option,
next: (unit -> exportTree) option,
previous: (unit -> exportTree) option}
type matchResult
type locationProp
type structVals
type codetree
type printTypeEnv =
{ lookupType: string -> (typeConstrSet * (int->typeId) option) option,
lookupStruct: string -> (structVals * (int->typeId) option) option}
val emptyTypeEnv: printTypeEnv
val mkTypeVar: int * bool * bool * bool -> types
val mkTypeConstruction: string * typeConstrs * types list * locationProp list -> types;
val mkProductType: types list -> types;
val mkFunctionType: types * types -> types;
val mkLabelled: {name: string, typeof: types } list * bool -> types;
val mkLabelEntry: string * types -> {name: string, typeof: types };
val mkOverloadSet: typeConstrs list -> types;
val sortLabels: {name: string, typeof: types } list -> {name: string, typeof: types } list;
val entryNumber: string * types -> int;
val recordNotFrozen: types -> bool;
val recordWidth: types -> int;
val recordFieldMap: (types -> 'a) -> types -> 'a list
val makeEquivalent: typeConstrs * types list -> types;
val firstArg: types -> types;
(* Follow a chain of unified type variables *)
val eventual: types -> types
(* Test for function type and return function argument. *)
val getFnArgType: types -> types option
(* Unify two type variables which would otherwise be non-unifiable. *)
val linkTypeVars: typeVarForm * typeVarForm -> unit;
val setTvarLevel: typeVarForm * int -> unit;
(* Copy a type constructor. *)
val copyTypeConstr:
typeConstrs * (typeId -> typeId option) * (types -> types) * (string -> string) -> typeConstrs
val copyTypeConstrWithCache:
typeConstrs * (typeId -> typeId option) * (types -> types) *
(string -> string) * typeConstrs list -> typeConstrs
(* Copy a type. *)
val copyType: types * (types -> types) * (typeConstrs -> typeConstrs) -> types;
(* Compose two typeId maps. *)
val composeMaps: (int -> typeId) * (int -> typeId) -> (int -> typeId)
(* Print it out prettily *)
val display: types * FixedInt.int * printTypeEnv -> pretty;
val displayWithMap: types * FixedInt.int * printTypeEnv * (int->typeId) option -> pretty;
(* Print out a type constructor. *)
val displayTypeConstrs: typeConstrSet * FixedInt.int * printTypeEnv -> pretty;
val displayTypeConstrsWithMap: typeConstrSet * FixedInt.int * printTypeEnv * (int->typeId) option -> pretty;
(* A list of type variables. *)
val displayTypeVariables: typeVarForm list * FixedInt.int -> pretty list;
(* Returns the preferred type constructor from an overload. *)
val typeConstrFromOverload: types * bool -> typeConstrs;
(* Check a set of mutually recursive datatypes to see which admit equality. *)
val computeDatatypeEqualities: typeConstrSet list * (int -> bool) -> unit;
(* Unify two type structures to give a unified type. *)
val unifyTypes: types * types -> matchResult option
(* Pretty print the error message. *)
val unifyTypesErrorReport: lexan * printTypeEnv * printTypeEnv * string -> matchResult -> pretty
(* Check that a type constructor permits equality. *)
val permitsEquality: typeConstrs -> bool
(* And whether a type admits equality. *)
val typePermitsEquality: types -> bool
(* Generate new copies of all unbound type variables - this is used on all
non-local values or constructors so that, for example, each occurence of
"hd", which has type 'a list -> 'a, can be separately bound to types. *)
val generalise: types -> types * {value: types, equality: bool, printity: bool} list
(* Create an instance of an overloaded type. *)
val generaliseOverload: types * typeConstrs list * bool -> types * types list;
(* The same as generalise but with a function that looks up types. *)
val generaliseWithMap:
types * (typeVarForm -> types option) ->
types * {value: types, equality: bool, printity: bool} list
(* Return the type variables that would be generalised at this point. *)
val getPolyTypeVars: types * (typeVarForm -> types option) -> typeVarForm list
(* Release type variables at this nesting level. Updates the type to the
generalised version. *)
val allowGeneralisation: types * int * bool *
lexan * location * (unit -> pretty) * printTypeEnv -> unit
(* Check for a local datatype "escaping". Added for ML97. *)
val checkForEscapingDatatypes: types * (string -> unit) -> unit
(* Check for free type variables. Added for ML97. *)
val checkForFreeTypeVariables: string * types * lexan * (unit->codetree) -> unit;
val constructorResult: types * types list -> types;
val identical: types * types -> bool;
val boolConstr: typeConstrs;
val fixedIntConstr:typeConstrs
val intInfConstr: typeConstrs
val charConstr: typeConstrs;
val stringConstr: typeConstrs;
val wordConstr: typeConstrs;
val realConstr: typeConstrs;
val refConstr: typeConstrs;
val arrayConstr: typeConstrs;
val array2Constr: typeConstrs;
val byteArrayConstr: typeConstrs;
val unitConstr: typeConstrs;
val exnConstr: typeConstrs;
val undefConstr: typeConstrs;
val boolType: types;
val fixedIntType: types
val intInfType: types
val charType: types;
val stringType: types;
val realType: types;
val unitType: types;
val exnType: types;
val wordType: types;
val badType: types;
val isPointerEqType: typeId -> bool
val isFloatingPt: types -> bool
val isUndefinedTypeConstr: typeConstrs -> bool
val isBadType: types -> bool
val sameTypeVar : types * types -> bool;
(* If this is simply giving a new name to a type constructor returns the
type identifier of the constructor that is being rebound. *)
val typeNameRebinding: typeVarForm list * types -> typeId option
val leastGeneral: types list -> types
(* Parse tree operations. *)
type typeParsetree
val ParseTypeBad: typeParsetree
val makeParseTypeConstruction:
(string * location) * (typeParsetree list * location) * location -> typeParsetree
val makeParseTypeProduct: typeParsetree list * location -> typeParsetree
val makeParseTypeFunction: typeParsetree * typeParsetree * location -> typeParsetree
val makeParseTypeLabelled:
((string * location) * typeParsetree * location) list * bool * location -> typeParsetree
val makeParseTypeId: typeVarForm * location -> typeParsetree
val unitTree: location -> typeParsetree
val displayTypeParse: typeParsetree * FixedInt.int * printTypeEnv -> pretty;
(* Fill in the values of type variables and make checks. *)
val assignTypes: typeParsetree * (string * location -> typeConstrSet) * lexan -> types;
(* Check the value we're discarding in an expression sequence or a let binding
and return a string if it's not appropriate. *)
val checkDiscard: types * lexan -> string option
val typeExportTree: navigation * typeParsetree -> exportTree
val setPreferredInt: typeConstrs -> unit
structure TypeValue:
sig
val extractEquality: codetree -> codetree
and extractPrinter: codetree -> codetree
and extractBoxed: codetree -> codetree
and extractSize: codetree -> codetree
val boxedNever: codetree
and boxedAlways: codetree
and boxedEither: codetree
val isBoxedNever: codetree
and isBoxedAlways: codetree
and isBoxedEither: codetree
val singleWord: codetree
val createTypeValue:
{eqCode: codetree, printCode: codetree, boxedCode: codetree, sizeCode: codetree} -> codetree
end
structure ValueConstructor:
sig
val extractTest: codetree -> codetree
val extractInjection: codetree -> codetree
val extractProjection: codetree -> codetree
val createValueConstr:
{ testMatch: codetree, injectValue: codetree, projectValue: codetree } -> codetree
val createNullaryConstr:
{ testMatch: codetree, constrValue: codetree } -> codetree
end
(* Types that can be shared. *)
structure Sharing:
sig
type types = types
and values = values
and typeId = typeId
and structVals = structVals
and typeConstrs= typeConstrs
and typeConstrSet=typeConstrSet
and typeParsetree = typeParsetree
and locationProp = locationProp
and pretty = pretty
and lexan = lexan
and ptProperties = ptProperties
and typeVarForm = typeVarForm
and codetree = codetree
and matchResult = matchResult
end
end;
|