1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
|
(*
Copyright (c) 2000
Cambridge University Technical Services Limited
Further development copyright David C.J. Matthews 2016-18,2020
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*
Title: Generate interpretable code for Poly system from the code tree.
Author: Dave Matthews, Cambridge University Computer Laboratory
Copyright Cambridge University 1985
*)
(* This generates byte-code that is interpreted by the run-time system. It
is now used as a fall-back to allow Poly/ML to run on non-X86 architectures.
Early versions were used as a porting aid while a native code-generator
was being developed and the "enter-int" instructions that were needed
for that have been retained although they no longer actually generate code. *)
functor INTGCODE (
structure CODECONS : INTCODECONSSIG
structure BACKENDTREE: BackendIntermediateCodeSig
structure CODE_ARRAY: CODEARRAYSIG
sharing CODECONS.Sharing = BACKENDTREE.Sharing = CODE_ARRAY.Sharing
) : GENCODESIG =
struct
open CODECONS
open Address
open BACKENDTREE
open Misc
open CODE_ARRAY
val word0 = toMachineWord 0;
val DummyValue : machineWord = word0; (* used as result of "raise e" etc. *)
type caseForm =
{
cases : (backendIC * word) list,
test : backendIC,
caseType: caseType,
default : backendIC
}
(* Where the result, if any, should go *)
datatype whereto =
NoResult (* discard result *)
| ToStack (* Need a result but it can stay on the pseudo-stack *);
(* Are we at the end of the function. *)
datatype tail =
EndOfProc
| NotEnd
(* Code generate a function or global declaration *)
fun codegen (pt, cvec, resultClosure, numOfArgs, localCount, parameters) =
let
datatype decEntry =
StackAddr of int
| Empty
val decVec = Array.array (localCount, Empty)
(* Count of number of items on the stack. *)
val realstackptr = ref 1 (* The closure ptr is already there *)
(* Maximum size of the stack. *)
val maxStack = ref 1
(* Exited - set to true if we have jumped out. *)
val exited = ref false;
(* Push a value onto the stack. *)
fun incsp () =
(
realstackptr := !realstackptr + 1;
if !realstackptr > !maxStack
then maxStack := !realstackptr
else ()
)
(* An entry has been removed from the stack. *)
fun decsp () = realstackptr := !realstackptr - 1;
fun pushLocalStackValue addr = ( genLocal(!realstackptr + addr, cvec); incsp() )
(* Loads a local, argument or closure value; translating local
stack addresses to real stack offsets. *)
fun locaddr(BICLoadArgument locn) = pushLocalStackValue (numOfArgs-locn)
| locaddr(BICLoadLocal locn) =
(
(* positive address - on the stack. *)
case Array.sub (decVec, locn) of
StackAddr n => pushLocalStackValue (~ n)
| _ => (* Should be on the stack, not a function. *)
raise InternalError "locaddr: bad stack address"
)
| locaddr(BICLoadClosure locn) = (* closure-pointer relative *)
(
pushLocalStackValue ~1; (* The closure itself. *)
genIndirect (locn+1, cvec) (* The value in the closure. +1 because first item is code addr. *)
)
| locaddr BICLoadRecursive =
pushLocalStackValue ~1 (* The closure itself - first value on the stack. *)
(* generates code from the tree *)
fun gencde (pt : backendIC, whereto : whereto, tailKind : tail, loopAddr) : unit =
let
(* Save the stack pointer value here. We may want to reset the stack. *)
val oldsp = !realstackptr;
(* Load the address and index value for byte operations.
For ML memory operations the base is the address of an ML heap cell
whereas for C operations it is a large-word box containing an
address in C memory. That doesn't affect this code but the interpreter
has to deal with these differently. *)
fun genByteAddress{base, index, offset} =
(
gencde (base, ToStack, NotEnd, loopAddr);
(* Because the index and offset are both byte counts we can just add
them if we need both. *)
case (index, offset) of
(NONE, offset) => (pushConst (toMachineWord offset, cvec); incsp())
| (SOME indexVal, 0w0) => gencde (indexVal, ToStack, NotEnd, loopAddr)
| (SOME indexVal, offset) =>
(
gencde (indexVal, ToStack, NotEnd, loopAddr);
pushConst (toMachineWord offset, cvec);
genOpcode(opcode_wordAdd, cvec)
)
)
(* Load the address, index value and offset for non-byte operations.
Because the offset has already been scaled by the size of the operand
we have to load the index and offset separately. *)
fun genNonByteAddress{base, index, offset} =
(
gencde (base, ToStack, NotEnd, loopAddr);
case index of
NONE => (pushConst (toMachineWord 0, cvec); incsp())
| SOME indexVal => gencde (indexVal, ToStack, NotEnd, loopAddr);
pushConst (toMachineWord offset, cvec); incsp()
)
val () =
case pt of
BICEval evl => genEval (evl, tailKind)
| BICExtract ext =>
(* This may just be being used to discard a value which isn't
used on this branch. *)
if whereto = NoResult then () else locaddr ext
| BICField {base, offset} =>
(gencde (base, ToStack, NotEnd, loopAddr); genIndirect (offset, cvec))
| BICLoadContainer {base, offset} =>
(gencde (base, ToStack, NotEnd, loopAddr); genIndirect (offset, cvec))
| BICLambda lam => genProc (lam, false, fn () => ())
| BICConstnt(w, _) =>
let
val () = pushConst (w, cvec);
in
incsp ()
end
| BICCond (testPart, thenPart, elsePart) =>
genCond (testPart, thenPart, elsePart, whereto, tailKind, loopAddr)
| BICNewenv(decls, exp) =>
let
(* Processes a list of entries. *)
(* Mutually recursive declarations. May be either lambdas or constants. Recurse down
the list pushing the addresses of the closure vectors, then unwind the
recursion and fill them in. *)
fun genMutualDecs [] = ()
| genMutualDecs ({lambda, addr, ...} :: otherDecs) =
genProc (lambda, true,
fn() =>
(
Array.update (decVec, addr, StackAddr (! realstackptr));
genMutualDecs (otherDecs)
))
fun codeDecls(BICRecDecs dl) = genMutualDecs dl
| codeDecls(BICDecContainer{size, addr}) =
(
(* If this is a container we have to process it here otherwise it
will be removed in the stack adjustment code. *)
genContainer(size, cvec); (* Push the address of this container. *)
realstackptr := !realstackptr + size + 1; (* Pushes N words plus the address. *)
Array.update (decVec, addr, StackAddr(!realstackptr))
)
| codeDecls(BICDeclar{value, addr, ...}) =
(
gencde (value, ToStack, NotEnd, loopAddr);
Array.update (decVec, addr, StackAddr(!realstackptr))
)
| codeDecls(BICNullBinding exp) = gencde (exp, NoResult, NotEnd, loopAddr)
in
List.app codeDecls decls;
gencde (exp, whereto, tailKind, loopAddr)
end
| BICBeginLoop {loop=body, arguments} =>
(* Execute the body which will contain at least one Loop instruction.
There will also be path(s) which don't contain Loops and these
will drop through. *)
let
val args = List.map #1 arguments
(* Evaluate each of the arguments, pushing the result onto the stack. *)
fun genLoopArg ({addr, value, ...}) =
(
gencde (value, ToStack, NotEnd, loopAddr);
Array.update (decVec, addr, StackAddr (!realstackptr));
!realstackptr (* Return the posn on the stack. *)
)
val argIndexList = map genLoopArg args;
val startSp = ! realstackptr; (* Remember the current top of stack. *)
val startLoop = createLabel ()
val () = setLabel(startLoop, cvec) (* Start of loop *)
in
(* Process the body, passing the jump-back address down for the Loop instruction(s). *)
gencde (body, whereto, tailKind, SOME(startLoop, startSp, argIndexList))
(* Leave the arguments on the stack. They can be cleared later if needed. *)
end
| BICLoop argList => (* Jump back to the enclosing BeginLoop. *)
let
val (startLoop, startSp, argIndexList) =
case loopAddr of
SOME l => l
| NONE => raise InternalError "No BeginLoop for Loop instr"
(* Evaluate the arguments. First push them to the stack because evaluating
an argument may depend on the current value of others. Only when we've
evaluated all of them can we overwrite the original argument positions. *)
fun loadArgs ([], []) = !realstackptr - startSp (* The offset of all the args. *)
| loadArgs (arg:: argList, _ :: argIndexList) =
let
(* Evaluate all the arguments. *)
val () = gencde (arg, ToStack, NotEnd, NONE);
val argOffset = loadArgs(argList, argIndexList);
in
genSetStackVal(argOffset, cvec); (* Copy the arg over. *)
decsp(); (* The argument has now been popped. *)
argOffset
end
| loadArgs _ = raise InternalError "loadArgs: Mismatched arguments";
val _: int = loadArgs(List.map #1 argList, argIndexList)
in
if !realstackptr <> startSp
then resetStack (!realstackptr - startSp, false, cvec) (* Remove any local variables. *)
else ();
(* Jump back to the start of the loop. *)
putBranchInstruction(Jump, startLoop, cvec)
end
| BICRaise exp =>
let
val () = gencde (exp, ToStack, NotEnd, loopAddr)
val () = genRaiseEx cvec;
in
exited := true
end
| BICHandle {exp, handler, exPacketAddr} =>
let
(* Save old handler *)
val () = genPushHandler cvec
val () = incsp ()
val handlerLabel = createLabel()
val () = putBranchInstruction (SetHandler, handlerLabel, cvec)
val () = incsp()
(* Code generate the body; "NotEnd" because we have to come back
to remove the handler; "ToStack" because delHandler needs
a result to carry down. *)
val () = gencde (exp, ToStack, NotEnd, loopAddr)
(* Now get out of the handler and restore the old one. *)
val () = genOpcode(opcode_deleteHandler, cvec)
val skipHandler = createLabel()
val () = putBranchInstruction (Jump, skipHandler, cvec)
(* Now process the handler itself. First we have to reset the stack.
Note that we have to use "ToStack" again to be consistent with
the stack-handling in the body-part. If we actually wanted "NoResult",
the stack adjustment code at the end of gencde will take care
of this. This means that I don't want to do any clever "end-of-function"
optimisation either. SPF 6/1/97
*)
val () = realstackptr := oldsp
val () = exited := false
val () = setLabel (handlerLabel, cvec)
(* If we were executing machine code we must re-enter the interpreter. *)
val () = genEnterIntCatch cvec
(* Push the exception packet and set the address. *)
val () = genLdexc cvec
val () = incsp ()
val () = Array.update (decVec, exPacketAddr, StackAddr(!realstackptr))
val () = gencde (handler, ToStack, NotEnd, loopAddr)
(* Have to remove the exception packet. *)
val () = resetStack(1, true, cvec)
val () = decsp()
(* Finally fix-up the jump around the handler *)
val () = setLabel (skipHandler, cvec)
in
exited := false
end
| BICCase ({cases, test, default, firstIndex, ...}) =>
let
val () = gencde (test, ToStack, NotEnd, loopAddr)
(* Label to jump to at the end of each case. *)
val exitJump = createLabel()
val () =
if firstIndex = 0w0 then ()
else
( (* Subtract lower limit. Don't check for overflow. Instead
allow large value to wrap around and check in "case" instruction. *)
pushConst(toMachineWord firstIndex, cvec);
genOpcode(opcode_wordSub, cvec)
)
(* Generate the case instruction followed by the table of jumps. *)
val nCases = List.length cases
val caseLabels = genCase (nCases, cvec)
val () = decsp ()
(* The default case, if any, follows the case statement. *)
(* If we have a jump to the default set it to jump here. *)
local
fun fixDefault(NONE, defCase) = setLabel(defCase, cvec)
| fixDefault(SOME _, _) = ()
in
val () = ListPair.appEq fixDefault (cases, caseLabels)
end
val () = gencde (default, whereto, tailKind, loopAddr);
val () = exited := false;
fun genCases(SOME body, label) =
(
(* First exit from the previous case or the default if
this is the first. *)
if !exited then () else putBranchInstruction(Jump, exitJump, cvec);
(* Remove the result - the last case will leave it. *)
case whereto of ToStack => decsp () | NoResult => ();
(* Fix up the jump to come here. *)
setLabel(label, cvec);
exited := false;
gencde (body, whereto, tailKind, loopAddr)
)
| genCases(NONE, _) = ()
val () = ListPair.appEq genCases (cases, caseLabels)
(* Finally set the exit jump to come here. *)
val () = setLabel (exitJump, cvec)
in
exited := false
end
| BICTuple recList =>
let
val size = List.length recList
in
(* Move the fields into the vector. *)
List.app(fn v => gencde (v, ToStack, NotEnd, loopAddr)) recList;
genTuple (size, cvec);
realstackptr := !realstackptr - (size - 1)
end
| BICSetContainer{container, tuple, filter} =>
(* Copy the contents of a tuple into a container. If the tuple is a
Tuple instruction we can avoid generating the tuple and then
unpacking it and simply copy the fields that make up the tuple
directly into the container. *)
(
case tuple of
BICTuple cl =>
(* Simply set the container from the values. *)
let
(* Load the address of the container. *)
val _ = gencde (container, ToStack, NotEnd, loopAddr);
fun setValues([], _, _) = ()
| setValues(v::tl, sourceOffset, destOffset) =
if sourceOffset < BoolVector.length filter andalso BoolVector.sub(filter, sourceOffset)
then
(
gencde (v, ToStack, NotEnd, loopAddr);
(* Move the entry into the container. This instruction
pops the value to be moved but not the destination. *)
genMoveToVec(destOffset, cvec);
decsp();
setValues(tl, sourceOffset+1, destOffset+1)
)
else setValues(tl, sourceOffset+1, destOffset)
in
setValues(cl, 0, 0)
(* The container address is still on the stack. *)
end
| _ =>
let (* General case. *)
(* First the target tuple, then the container. *)
val () = gencde (tuple, ToStack, NotEnd, loopAddr)
val () = gencde (container, ToStack, NotEnd, loopAddr)
val last = BoolVector.foldli(fn (i, true, _) => i | (_, false, n) => n) ~1 filter
fun copy (sourceOffset, destOffset) =
if BoolVector.sub(filter, sourceOffset)
then
(
(* Duplicate the tuple address . *)
genLocal(1, cvec);
genIndirect(sourceOffset, cvec);
genMoveToVec(destOffset, cvec);
if sourceOffset = last
then ()
else copy (sourceOffset+1, destOffset+1)
)
else copy(sourceOffset+1, destOffset)
in
copy (0, 0)
(* The container and tuple addresses are still on the stack. *)
end
)
| BICTagTest { test, tag, ... } =>
(
(* Convert this into a simple equality function. *)
gencde (test, ToStack, NotEnd, loopAddr);
pushConst (toMachineWord tag, cvec);
genOpcode(opcode_equalWord, cvec)
)
| BICGetThreadId =>
(
genOpcode(opcode_getThreadId, cvec);
incsp()
)
| BICUnary { oper, arg1 } =>
let
open BuiltIns
val () = gencde (arg1, ToStack, NotEnd, loopAddr)
in
case oper of
NotBoolean => genOpcode(opcode_notBoolean, cvec)
| IsTaggedValue => genOpcode(opcode_isTagged, cvec)
| MemoryCellLength => genOpcode(opcode_cellLength, cvec)
| MemoryCellFlags => genOpcode(opcode_cellFlags, cvec)
| ClearMutableFlag => genOpcode(opcode_clearMutable, cvec)
| AtomicIncrement => genOpcode(opcode_atomicIncr, cvec)
| AtomicDecrement => genOpcode(opcode_atomicDecr, cvec)
| AtomicReset => genOpcode(opcode_atomicReset, cvec)
| LongWordToTagged => genOpcode(opcode_longWToTagged, cvec)
| SignedToLongWord => genOpcode(opcode_signedToLongW, cvec)
| UnsignedToLongWord => genOpcode(opcode_unsignedToLongW, cvec)
| RealAbs PrecDouble => genOpcode(opcode_realAbs, cvec)
| RealNeg PrecDouble => genOpcode(opcode_realNeg, cvec)
| RealFixedInt PrecDouble => genOpcode(opcode_fixedIntToReal, cvec)
| RealAbs PrecSingle => genOpcode(opcode_floatAbs, cvec)
| RealNeg PrecSingle => genOpcode(opcode_floatNeg, cvec)
| RealFixedInt PrecSingle => genOpcode(opcode_fixedIntToFloat, cvec)
| FloatToDouble => genOpcode(opcode_floatToReal, cvec)
| DoubleToFloat rnding => genDoubleToFloat(rnding, cvec)
| RealToInt (PrecDouble, rnding) => genRealToInt(rnding, cvec)
| RealToInt (PrecSingle, rnding) => genFloatToInt(rnding, cvec)
| TouchAddress => resetStack(1, false, cvec) (* Discard this *)
end
| BICBinary { oper, arg1, arg2 } =>
let
open BuiltIns
val () = gencde (arg1, ToStack, NotEnd, loopAddr)
val () = gencde (arg2, ToStack, NotEnd, loopAddr)
in
case oper of
WordComparison{test=TestEqual, ...} => genOpcode(opcode_equalWord, cvec)
| WordComparison{test=TestLess, isSigned=true} => genOpcode(opcode_lessSigned, cvec)
| WordComparison{test=TestLessEqual, isSigned=true} => genOpcode(opcode_lessEqSigned, cvec)
| WordComparison{test=TestGreater, isSigned=true} => genOpcode(opcode_greaterSigned, cvec)
| WordComparison{test=TestGreaterEqual, isSigned=true} => genOpcode(opcode_greaterEqSigned, cvec)
| WordComparison{test=TestLess, isSigned=false} => genOpcode(opcode_lessUnsigned, cvec)
| WordComparison{test=TestLessEqual, isSigned=false} => genOpcode(opcode_lessEqUnsigned, cvec)
| WordComparison{test=TestGreater, isSigned=false} => genOpcode(opcode_greaterUnsigned, cvec)
| WordComparison{test=TestGreaterEqual, isSigned=false} => genOpcode(opcode_greaterEqUnsigned, cvec)
| WordComparison{test=TestUnordered, ...} => raise InternalError "WordComparison: TestUnordered"
| FixedPrecisionArith ArithAdd => genOpcode(opcode_fixedAdd, cvec)
| FixedPrecisionArith ArithSub => genOpcode(opcode_fixedSub, cvec)
| FixedPrecisionArith ArithMult => genOpcode(opcode_fixedMult, cvec)
| FixedPrecisionArith ArithQuot => genOpcode(opcode_fixedQuot, cvec)
| FixedPrecisionArith ArithRem => genOpcode(opcode_fixedRem, cvec)
| FixedPrecisionArith ArithDiv => raise InternalError "TODO: FixedPrecisionArith ArithDiv"
| FixedPrecisionArith ArithMod => raise InternalError "TODO: FixedPrecisionArith ArithMod"
| WordArith ArithAdd => genOpcode(opcode_wordAdd, cvec)
| WordArith ArithSub => genOpcode(opcode_wordSub, cvec)
| WordArith ArithMult => genOpcode(opcode_wordMult, cvec)
| WordArith ArithDiv => genOpcode(opcode_wordDiv, cvec)
| WordArith ArithMod => genOpcode(opcode_wordMod, cvec)
| WordArith _ => raise InternalError "WordArith - unimplemented instruction"
| WordLogical LogicalAnd => genOpcode(opcode_wordAnd, cvec)
| WordLogical LogicalOr => genOpcode(opcode_wordOr, cvec)
| WordLogical LogicalXor => genOpcode(opcode_wordXor, cvec)
| WordShift ShiftLeft => genOpcode(opcode_wordShiftLeft, cvec)
| WordShift ShiftRightLogical => genOpcode(opcode_wordShiftRLog, cvec)
| WordShift ShiftRightArithmetic => genOpcode(opcode_wordShiftRArith, cvec)
| AllocateByteMemory => genOpcode(opcode_allocByteMem, cvec)
| LargeWordComparison TestEqual => genOpcode(opcode_lgWordEqual, cvec)
| LargeWordComparison TestLess => genOpcode(opcode_lgWordLess, cvec)
| LargeWordComparison TestLessEqual => genOpcode(opcode_lgWordLessEq, cvec)
| LargeWordComparison TestGreater => genOpcode(opcode_lgWordGreater, cvec)
| LargeWordComparison TestGreaterEqual => genOpcode(opcode_lgWordGreaterEq, cvec)
| LargeWordComparison TestUnordered => raise InternalError "LargeWordComparison: TestUnordered"
| LargeWordArith ArithAdd => genOpcode(opcode_lgWordAdd, cvec)
| LargeWordArith ArithSub => genOpcode(opcode_lgWordSub, cvec)
| LargeWordArith ArithMult => genOpcode(opcode_lgWordMult, cvec)
| LargeWordArith ArithDiv => genOpcode(opcode_lgWordDiv, cvec)
| LargeWordArith ArithMod => genOpcode(opcode_lgWordMod, cvec)
| LargeWordArith _ => raise InternalError "LargeWordArith - unimplemented instruction"
| LargeWordLogical LogicalAnd => genOpcode(opcode_lgWordAnd, cvec)
| LargeWordLogical LogicalOr => genOpcode(opcode_lgWordOr, cvec)
| LargeWordLogical LogicalXor => genOpcode(opcode_lgWordXor, cvec)
| LargeWordShift ShiftLeft => genOpcode(opcode_lgWordShiftLeft, cvec)
| LargeWordShift ShiftRightLogical => genOpcode(opcode_lgWordShiftRLog, cvec)
| LargeWordShift ShiftRightArithmetic => genOpcode(opcode_lgWordShiftRArith, cvec)
| RealComparison (TestEqual, PrecDouble) => genOpcode(opcode_realEqual, cvec)
| RealComparison (TestLess, PrecDouble) => genOpcode(opcode_realLess, cvec)
| RealComparison (TestLessEqual, PrecDouble) => genOpcode(opcode_realLessEq, cvec)
| RealComparison (TestGreater, PrecDouble) => genOpcode(opcode_realGreater, cvec)
| RealComparison (TestGreaterEqual, PrecDouble) => genOpcode(opcode_realGreaterEq, cvec)
| RealComparison (TestUnordered, PrecDouble) => genOpcode(opcode_realUnordered, cvec)
| RealComparison (TestEqual, PrecSingle) => genOpcode(opcode_floatEqual, cvec)
| RealComparison (TestLess, PrecSingle) => genOpcode(opcode_floatLess, cvec)
| RealComparison (TestLessEqual, PrecSingle) => genOpcode(opcode_floatLessEq, cvec)
| RealComparison (TestGreater, PrecSingle) => genOpcode(opcode_floatGreater, cvec)
| RealComparison (TestGreaterEqual, PrecSingle) => genOpcode(opcode_floatGreaterEq, cvec)
| RealComparison (TestUnordered, PrecSingle) => genOpcode(opcode_floatUnordered, cvec)
| RealArith (ArithAdd, PrecDouble) => genOpcode(opcode_realAdd, cvec)
| RealArith (ArithSub, PrecDouble) => genOpcode(opcode_realSub, cvec)
| RealArith (ArithMult, PrecDouble) => genOpcode(opcode_realMult, cvec)
| RealArith (ArithDiv, PrecDouble) => genOpcode(opcode_realDiv, cvec)
| RealArith (ArithAdd, PrecSingle) => genOpcode(opcode_floatAdd, cvec)
| RealArith (ArithSub, PrecSingle) => genOpcode(opcode_floatSub, cvec)
| RealArith (ArithMult, PrecSingle) => genOpcode(opcode_floatMult, cvec)
| RealArith (ArithDiv, PrecSingle) => genOpcode(opcode_floatDiv, cvec)
| RealArith _ => raise InternalError "RealArith - unimplemented instruction"
;
decsp() (* Removes one item from the stack. *)
end
| BICAllocateWordMemory {numWords as BICConstnt(length, _), flags as BICConstnt(flagByte, _), initial } =>
if isShort length andalso toShort length = 0w1 andalso isShort flagByte andalso toShort flagByte = 0wx40
then (* This is a very common case. *)
(
gencde (initial, ToStack, NotEnd, loopAddr);
genOpcode(opcode_alloc_ref, cvec)
)
else
let
val () = gencde (numWords, ToStack, NotEnd, loopAddr)
val () = gencde (flags, ToStack, NotEnd, loopAddr)
val () = gencde (initial, ToStack, NotEnd, loopAddr)
in
genOpcode(opcode_allocWordMemory, cvec);
decsp(); decsp()
end
| BICAllocateWordMemory { numWords, flags, initial } =>
let
val () = gencde (numWords, ToStack, NotEnd, loopAddr)
val () = gencde (flags, ToStack, NotEnd, loopAddr)
val () = gencde (initial, ToStack, NotEnd, loopAddr)
in
genOpcode(opcode_allocWordMemory, cvec);
decsp(); decsp()
end
| BICLoadOperation { kind=LoadStoreMLWord _, address={base, index=NONE, offset}} =>
(
(* If the index is a constant, frequently zero, we can use indirection.
The offset is a byte count so has to be divided by the word size but
it should always be an exact multiple. *)
gencde (base, ToStack, NotEnd, loopAddr);
offset mod wordSize = 0w0 orelse raise InternalError "gencde: BICLoadOperation - not word multiple";
genIndirect (Word.toInt(offset div wordSize), cvec)
)
| BICLoadOperation { kind=LoadStoreMLWord _, address={base, index=SOME indexVal, offset}} =>
let
(* Variable index. *)
val () = gencde (base, ToStack, NotEnd, loopAddr)
val () = gencde (indexVal, ToStack, NotEnd, loopAddr)
val () = (pushConst (toMachineWord offset, cvec); incsp())
in
genOpcode(opcode_loadMLWord, cvec);
decsp(); decsp()
end
| BICLoadOperation { kind=LoadStoreMLByte _, address} =>
(
genByteAddress address;
genOpcode(opcode_loadMLByte, cvec);
decsp()
)
| BICLoadOperation { kind=LoadStoreC8, address} =>
(
genByteAddress address;
genOpcode(opcode_loadC8, cvec);
decsp()
)
| BICLoadOperation { kind=LoadStoreC16, address} =>
(
genNonByteAddress address;
genOpcode(opcode_loadC16, cvec);
decsp(); decsp()
)
| BICLoadOperation { kind=LoadStoreC32, address} =>
(
genNonByteAddress address;
genOpcode(opcode_loadC32, cvec);
decsp(); decsp()
)
| BICLoadOperation { kind=LoadStoreC64, address} =>
(
wordSize = 0w8 orelse raise InternalError "LoadStoreC64 but not 64-bit mode";
genNonByteAddress address;
genOpcode(opcode_loadC64, cvec);
decsp(); decsp()
)
| BICLoadOperation { kind=LoadStoreCFloat, address} =>
(
genNonByteAddress address;
genOpcode(opcode_loadCFloat, cvec);
decsp(); decsp()
)
| BICLoadOperation { kind=LoadStoreCDouble, address} =>
(
genNonByteAddress address;
genOpcode(opcode_loadCDouble, cvec);
decsp(); decsp()
)
| BICLoadOperation { kind=LoadStoreUntaggedUnsigned, address} =>
(
genNonByteAddress address;
genOpcode(opcode_loadUntagged, cvec);
decsp(); decsp()
)
| BICStoreOperation { kind=LoadStoreMLWord _, address={base, index=NONE, offset}, value } =>
let
(* No index. We could almost use move_to_vec here except that it leaves
the destination address on the stack instead of replacing it with "unit". *)
val () = gencde (base, ToStack, NotEnd, loopAddr)
val () = pushConst (toMachineWord 0, cvec)
val () = incsp()
val () = pushConst (toMachineWord offset, cvec)
val () = incsp()
val () = gencde (value, ToStack, NotEnd, loopAddr)
in
genOpcode(opcode_storeMLWord, cvec);
decsp(); decsp(); decsp()
end
| BICStoreOperation { kind=LoadStoreMLWord _, address={base, index=SOME indexVal, offset}, value } =>
let
(* Variable index *)
val () = gencde (base, ToStack, NotEnd, loopAddr)
val () = gencde (indexVal, ToStack, NotEnd, loopAddr)
val () = pushConst (toMachineWord offset, cvec)
val () = incsp()
val () = gencde (value, ToStack, NotEnd, loopAddr)
in
genOpcode(opcode_storeMLWord, cvec);
decsp(); decsp(); decsp()
end
| BICStoreOperation { kind=LoadStoreMLByte _, address, value } =>
(
genByteAddress address;
gencde (value, ToStack, NotEnd, loopAddr);
genOpcode(opcode_storeMLByte, cvec);
decsp(); decsp()
)
| BICStoreOperation { kind=LoadStoreC8, address, value} =>
(
genByteAddress address;
gencde (value, ToStack, NotEnd, loopAddr);
genOpcode(opcode_storeC8, cvec);
decsp(); decsp()
)
| BICStoreOperation { kind=LoadStoreC16, address, value} =>
(
genNonByteAddress address;
gencde (value, ToStack, NotEnd, loopAddr);
genOpcode(opcode_storeC16, cvec);
decsp(); decsp(); decsp()
)
| BICStoreOperation { kind=LoadStoreC32, address, value} =>
(
genNonByteAddress address;
gencde (value, ToStack, NotEnd, loopAddr);
genOpcode(opcode_storeC32, cvec);
decsp(); decsp(); decsp()
)
| BICStoreOperation { kind=LoadStoreC64, address, value} =>
(
genNonByteAddress address;
gencde (value, ToStack, NotEnd, loopAddr);
genOpcode(opcode_storeC64, cvec);
decsp(); decsp(); decsp()
)
| BICStoreOperation { kind=LoadStoreCFloat, address, value} =>
(
genNonByteAddress address;
gencde (value, ToStack, NotEnd, loopAddr);
genOpcode(opcode_storeCFloat, cvec);
decsp(); decsp(); decsp()
)
| BICStoreOperation { kind=LoadStoreCDouble, address, value} =>
(
genNonByteAddress address;
gencde (value, ToStack, NotEnd, loopAddr);
genOpcode(opcode_storeCDouble, cvec);
decsp(); decsp(); decsp()
)
| BICStoreOperation { kind=LoadStoreUntaggedUnsigned, address, value} =>
(
genNonByteAddress address;
gencde (value, ToStack, NotEnd, loopAddr);
genOpcode(opcode_storeUntagged, cvec);
decsp(); decsp(); decsp()
)
| BICBlockOperation { kind=BlockOpMove{isByteMove=true}, sourceLeft, destRight, length } =>
(
genByteAddress sourceLeft;
genByteAddress destRight;
gencde (length, ToStack, NotEnd, loopAddr);
genOpcode(opcode_blockMoveByte, cvec);
decsp(); decsp(); decsp(); decsp()
)
| BICBlockOperation { kind=BlockOpMove{isByteMove=false}, sourceLeft, destRight, length } =>
(
genNonByteAddress sourceLeft;
genNonByteAddress destRight;
gencde (length, ToStack, NotEnd, loopAddr);
genOpcode(opcode_blockMoveWord, cvec);
decsp(); decsp(); decsp(); decsp(); decsp(); decsp()
)
| BICBlockOperation { kind=BlockOpEqualByte, sourceLeft, destRight, length } =>
(
genByteAddress sourceLeft;
genByteAddress destRight;
gencde (length, ToStack, NotEnd, loopAddr);
genOpcode(opcode_blockEqualByte, cvec);
decsp(); decsp(); decsp(); decsp()
)
| BICBlockOperation { kind=BlockOpCompareByte, sourceLeft, destRight, length } =>
(
genByteAddress sourceLeft;
genByteAddress destRight;
gencde (length, ToStack, NotEnd, loopAddr);
genOpcode(opcode_blockCompareByte, cvec);
decsp(); decsp(); decsp(); decsp()
)
| BICArbitrary { longCall, ... } =>
(* Just use the long-precision case in the interpreted version. *)
(
gencde (longCall, whereto, tailKind, loopAddr)
)
in (* body of gencde *)
(* This ensures that there is precisely one item on the stack if
whereto = ToStack and no items if whereto = NoResult.
There are two points to note carefully here:
(1) Negative stack adjustments are legal if we have exited.
This is because matchFailFn can cut the stack back too
far for its immediately enclosing expression. This is
harmless because the code actually exits that expression.
(2) A stack adjustment of ~1 is legal if we're generating
a declaration in "ToStack" mode, because not all declarations
actually generate the dummy value that we expect. This
used to be handled in resetStack itself, but it's more
transparent to do it here. (In addition, there was a bug in
resetStack - it accumulated the stack resets, but didn't
correctly accumulate these "~1" dummy value pushes.)
It's all much better now.
SPF 9/1/97
*)
case whereto of
ToStack =>
let
val newsp = oldsp + 1;
val adjustment = !realstackptr - newsp
val () =
if !exited orelse adjustment = 0
then ()
else if adjustment < ~1
then raise InternalError ("gencde: bad adjustment " ^ Int.toString adjustment)
(* Hack for declarations that should push values, but don't *)
else if adjustment = ~1
then pushConst (DummyValue, cvec)
else resetStack (adjustment, true, cvec)
in
realstackptr := newsp
end
| NoResult =>
let
val adjustment = !realstackptr - oldsp
val () =
if !exited orelse adjustment = 0
then ()
else if adjustment < 0
then raise InternalError ("gencde: bad adjustment " ^ Int.toString adjustment)
else resetStack (adjustment, false, cvec)
in
realstackptr := oldsp
end
end (* gencde *)
(* doNext is only used for mutually recursive functions where a
function may not be able to fill in its closure if it does not have
all the remaining declarations. *)
(* TODO: This always creates the closure on the heap even when makeClosure is false. *)
and genProc ({ closure=[], localCount, body, argTypes, name, ...}: bicLambdaForm, mutualDecs, doNext: unit -> unit) : unit =
let
(* Create a one word item for the closure. This is returned for recursive references
and filled in with the address of the code when we've finished. *)
val closure = makeConstantClosure()
val newCode : code = codeCreate(name, parameters);
(* Code-gen function. No non-local references. *)
val () =
codegen (body, newCode, closure, List.length argTypes, localCount, parameters);
val () = pushConst(closureAsAddress closure, cvec);
val () = incsp();
in
if mutualDecs then doNext () else ()
end
| genProc ({ localCount, body, name, argTypes, closure, ...}, mutualDecs, doNext) =
let (* Full closure required. *)
val resClosure = makeConstantClosure()
val newCode = codeCreate (name, parameters)
(* Code-gen function. *)
val () = codegen (body, newCode, resClosure, List.length argTypes, localCount, parameters)
val sizeOfClosure = List.length closure + 1;
in
if mutualDecs
then
let (* Have to make the closure now and fill it in later. *)
(* This previously used genGetStore which at one time was widely used. *)
val () = pushConst(toMachineWord sizeOfClosure, cvec) (* Length *)
val () = pushConst(toMachineWord F_mutable, cvec) (* Flags *)
val () = pushConst(toMachineWord 0, cvec) (* Initialise to zero. *)
val () = genOpcode(opcode_allocWordMemory, cvec) (* Allocate the memory. *)
val () = incsp ()
(* Put code address into closure *)
val () = pushConst(codeAddressFromClosure resClosure, cvec)
val () = genMoveToVec(0, cvec)
val entryAddr : int = !realstackptr
val () = doNext () (* Any mutually recursive functions. *)
(* Push the address of the vector - If we have processed other
closures the vector will no longer be on the top of the stack. *)
val () = pushLocalStackValue (~ entryAddr)
(* Load items for the closure. *)
fun loadItems ([], _) = ()
| loadItems (v :: vs, addr : int) =
let
(* Generate an item and move it into the vector *)
val () = gencde (BICExtract v, ToStack, NotEnd, NONE)
val () = genMoveToVec(addr, cvec)
val () = decsp ()
in
loadItems (vs, addr + 1)
end
val () = loadItems (closure, 1)
val () = genLock cvec (* Lock it. *)
(* Remove the extra reference. *)
val () = resetStack (1, false, cvec)
in
realstackptr := !realstackptr - 1
end
else
let
(* Put it on the stack. *)
val () = pushConst (codeAddressFromClosure resClosure, cvec)
val () = incsp ()
val () = List.app (fn pt => gencde (BICExtract pt, ToStack, NotEnd, NONE)) closure
val () = genTuple (sizeOfClosure, cvec)
in
realstackptr := !realstackptr - (sizeOfClosure - 1)
end
end
and genCond (testCode, thenCode, elseCode, whereto, tailKind, loopAddr) =
let
val () = gencde (testCode, ToStack, NotEnd, loopAddr)
val toElse = createLabel() and exitJump = createLabel()
val () = putBranchInstruction(JumpFalse, toElse, cvec)
val () = decsp()
val () = gencde (thenCode, whereto, tailKind, loopAddr)
(* Get rid of the result from the stack. If there is a result then the
``else-part'' will push it. *)
val () = case whereto of ToStack => decsp () | NoResult => ()
val thenExited = !exited
val () = if thenExited then () else putBranchInstruction (Jump, exitJump, cvec)
(* start of "else part" *)
val () = setLabel (toElse, cvec)
val () = exited := false
val () = gencde (elseCode, whereto, tailKind, loopAddr)
val elseExited = !exited
val () = setLabel (exitJump, cvec)
in
exited := (thenExited andalso elseExited) (* Only exited if both sides did. *)
end (* genCond *)
and genEval (eval, tailKind : tail) : unit =
let
val argList : backendIC list = List.map #1 (#argList eval)
val argsToPass : int = List.length argList;
(* Load arguments *)
fun loadArgs [] = ()
| loadArgs (v :: vs) =
let (* Push each expression onto the stack. *)
val () = gencde(v, ToStack, NotEnd, NONE)
in
loadArgs vs
end;
(* Called after the args and the closure to call have been pushed
onto the stack. *)
fun callClosure () : unit =
case tailKind of
NotEnd => (* Normal call. *) genCallClosure cvec
| EndOfProc => (* Tail recursive call. *)
let
(* Get the return address onto the top of the stack. *)
val () = pushLocalStackValue 0
(* Slide the return address, closure and args over the
old closure, return address and args, and reset the
stack. Then jump to the closure. *)
val () =
genTailCall(argsToPass + 2, !realstackptr - 1 + (numOfArgs - argsToPass), cvec);
(* It's "-1" not "-2", because we didn't bump the realstackptr
when we pushed the return address. SPF 3/1/97 *)
in
exited := true
end
(* Have to guarantee that the expression to return the function
is evaluated before the arguments. *)
(* Returns true if evaluating it later is safe. *)
fun safeToLeave (BICConstnt _) = true
| safeToLeave (BICLambda _) = true
| safeToLeave (BICExtract _) = true
| safeToLeave (BICField {base, ...}) = safeToLeave base
| safeToLeave (BICLoadContainer {base, ...}) = safeToLeave base
| safeToLeave _ = false
val () =
if (case argList of [] => true | _ => safeToLeave (#function eval))
then
let
(* Can load the args first. *)
val () = loadArgs argList
in
gencde (#function eval, ToStack, NotEnd, NONE)
end
else
let
(* The expression for the function is too complicated to
risk leaving. It might have a side-effect and we must
ensure that any side-effects it has are done before the
arguments are loaded. *)
val () = gencde(#function eval, ToStack, NotEnd, NONE);
val () = loadArgs(argList);
(* Load the function again. *)
val () = genLocal(argsToPass, cvec);
in
incsp ()
end
val () = callClosure () (* Call the function. *)
(* Make sure we interpret when we return from the call *)
val () = genEnterIntCall (cvec, argsToPass)
in (* body of genEval *)
realstackptr := !realstackptr - argsToPass (* Args popped by caller. *)
end
(* Generate the function. *)
(* Assume we always want a result. There is otherwise a problem if the
called routine returns a result of type void (i.e. no result) but the
caller wants a result (e.g. the identity function). *)
val () = gencde (pt, ToStack, EndOfProc, NONE)
val () = if !exited then () else genReturn (numOfArgs, cvec);
in (* body of codegen *)
(* Having code-generated the body of the function, it is copied
into a new data segment. *)
copyCode(cvec, !maxStack, resultClosure)
end (* codegen *);
fun gencodeLambda({ name, body, argTypes, localCount, ...}:bicLambdaForm, parameters, closure) =
let
(* make the code buffer for the new function. *)
val newCode : code = codeCreate (name, parameters)
(* This function must have no non-local references. *)
in
codegen (body, newCode, closure, List.length argTypes, localCount, parameters)
end
local
val makeEntryPoint: string -> machineWord = RunCall.rtsCallFull1 "PolyCreateEntryPointObject"
fun rtsCall makeCall (entryName: string, numOfArgs, debugArgs: Universal.universal list): machineWord =
let
open Address
val cvec = codeCreate (entryName, debugArgs)
val entryPointAddr = makeEntryPoint entryName
(* Each argument is at the same offset, essentially we're just shifting them *)
fun genLocals 0 = ()
| genLocals n = (genLocal(numOfArgs +1, cvec); genLocals (n-1))
val () = genLocals numOfArgs
val () = pushConst(entryPointAddr, cvec)
val () = makeCall(numOfArgs, cvec)
val () = genReturn (numOfArgs, cvec)
val closure = makeConstantClosure()
val () = copyCode(cvec, numOfArgs+1, closure)
in
closureAsAddress closure
end
in
structure Foreign =
struct
val rtsCallFast = rtsCall genRTSCallFast
and rtsCallFull = rtsCall genRTSCallFull
fun rtsCallFastRealtoReal(entryName, debugArgs) =
rtsCall (fn (_, c) => genRTSCallFastRealtoReal c) (entryName, 1, debugArgs)
and rtsCallFastRealRealtoReal(entryName, debugArgs) =
rtsCall (fn (_, c) => genRTSCallFastRealRealtoReal c) (entryName, 2, debugArgs)
and rtsCallFastGeneraltoReal(entryName, debugArgs) =
rtsCall (fn (_, c) => genRTSCallFastGeneraltoReal c) (entryName, 1, debugArgs)
and rtsCallFastRealGeneraltoReal(entryName, debugArgs) =
rtsCall (fn (_, c) => genRTSCallFastRealGeneraltoReal c) (entryName, 2, debugArgs)
fun rtsCallFastFloattoFloat(entryName, debugArgs) =
rtsCall (fn (_, c) => genRTSCallFastFloattoFloat c) (entryName, 1, debugArgs)
and rtsCallFastFloatFloattoFloat(entryName, debugArgs) =
rtsCall (fn (_, c) => genRTSCallFastFloatFloattoFloat c) (entryName, 2, debugArgs)
and rtsCallFastGeneraltoFloat(entryName, debugArgs) =
rtsCall (fn (_, c) => genRTSCallFastGeneraltoFloat c) (entryName, 1, debugArgs)
and rtsCallFastFloatGeneraltoFloat(entryName, debugArgs) =
rtsCall (fn (_, c) => genRTSCallFastFloatGeneraltoFloat c) (entryName, 2, debugArgs)
end
end
structure Sharing =
struct
open BACKENDTREE.Sharing
type closureRef = closureRef
end
end;
|