1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
(*
Copyright (c) 2016-18 David C.J. Matthews
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
functor X86FOREIGNCALL(
structure X86CODE: X86CODESIG
structure X86OPTIMISE:
sig
type operation
type code
type operations = operation list
type closureRef
(* Optimise and code-generate. *)
val generateCode: {code: code, ops: operations, labelCount: int, resultClosure: closureRef} -> unit
structure Sharing:
sig
type operation = operation
type code = code
type closureRef = closureRef
end
end
structure DEBUG: DEBUGSIG
structure CODE_ARRAY: CODEARRAYSIG
sharing X86CODE.Sharing = X86OPTIMISE.Sharing = CODE_ARRAY.Sharing
): FOREIGNCALLSIG
=
struct
open X86CODE
open Address
open CODE_ARRAY
val memRegSize = 0
val (polyWordOpSize, nativeWordOpSize) =
case targetArch of
Native32Bit => (OpSize32, OpSize32)
| Native64Bit => (OpSize64, OpSize64)
| ObjectId32Bit => (OpSize32, OpSize64)
(* Ebx/Rbx is used for the second argument on the native architectures but
is replaced by esi on the object ID arch because ebx is used as the
global base register. *)
val mlArg2Reg = case targetArch of ObjectId32Bit => esi | _ => ebx
exception InternalError = Misc.InternalError
fun opSizeToMove OpSize32 = Move32 | opSizeToMove OpSize64 = Move64
val pushR = PushToStack o RegisterArg
fun moveRR{source, output, opSize} =
Move{source=RegisterArg source, destination=RegisterArg output, moveSize=opSizeToMove opSize}
fun loadMemory(reg, base, offset, opSize) =
Move{source=MemoryArg{base=base, offset=offset, index=NoIndex}, destination=RegisterArg reg, moveSize=opSizeToMove opSize}
and storeMemory(reg, base, offset, opSize) =
Move{source=RegisterArg reg, destination=MemoryArg {base=base, offset=offset, index=NoIndex}, moveSize=opSizeToMove opSize}
val loadHeapMemory =
case targetArch of
ObjectId32Bit =>
(
fn (reg, base, offset, opSize) =>
Move{source=MemoryArg{base=ebx, offset=offset, index=Index4 base},
destination=RegisterArg reg, moveSize=opSizeToMove opSize}
)
| _ => loadMemory
fun createProfileObject _ (*functionName*) =
let
(* The profile object is a single mutable with the F_bytes bit set. *)
open Address
val profileObject = RunCall.allocateByteMemory(0w1, Word.fromLargeWord(Word8.toLargeWord(Word8.orb(F_mutable, F_bytes))))
fun clear 0w0 = ()
| clear i = (assignByte(profileObject, i-0w1, 0w0); clear (i-0w1))
val () = clear wordSize
in
toMachineWord profileObject
end
val makeEntryPoint: string -> machineWord = RunCall.rtsCallFull1 "PolyCreateEntryPointObject"
datatype abi = X86_32 | X64Win | X64Unix
local
(* Get the ABI. On 64-bit Windows and Unix use different calling conventions. *)
val getABICall: unit -> int = RunCall.rtsCallFast0 "PolyGetABI"
in
fun getABI() =
case getABICall() of
0 => X86_32
| 1 => X64Unix
| 2 => X64Win
| n => raise InternalError ("Unknown ABI type " ^ Int.toString n)
end
val noException = 1
(* Full RTS call version. An extra argument is passed that contains the thread ID.
This allows the taskData object to be found which is needed if the code allocates
any ML memory or raises an exception. It also saves the stack and heap pointers
in case of a GC. *)
fun rtsCallFull (functionName, nArgs (* Not counting the thread ID *), debugSwitches) =
let
val entryPointAddr = makeEntryPoint functionName
(* Get the ABI. On 64-bit Windows and Unix use different calling conventions. *)
val abi = getABI()
(* Branch to check for exception. *)
val exLabel = Label{labelNo=0} (* There's just one label in this function. *)
(* Unix X64. The first six arguments are in rdi, rsi, rdx, rcx, r8, r9.
The rest are on the stack.
Windows X64. The first four arguments are in rcx, rdx, r8 and r9. The rest are
on the stack. The caller must ensure the stack is aligned on 16-byte boundary
and must allocate 32-byte save area for the register args.
rbx, rbp, rdi, rsi, rsp, r12-r15 are saved by the called function.
X86/32. Arguments are pushed to the stack.
ebx, edi, esi, ebp and esp are saved by the called function.
We use esi to hold the argument data pointer and edi to save the ML stack pointer
Our ML conventions use eax, ebx for the first two arguments in X86/32,
rax, ebx, r8, r9, r10 for the first five arguments in X86/64 and
rax, rsi, r8, r9 and r10 for the first five arguments in X86/64-32 bit.
*)
(* Previously the ML stack pointer was saved in a callee-save register. This works
in almost all circumstances except when a call to the FFI code results in a callback
and the callback moves the ML stack. Instead the RTS callback handler adjusts the value
in memRegStackPtr and we reload the ML stack pointer from there. *)
val entryPtrReg = if targetArch <> Native32Bit then r11 else ecx
val stackSpace =
case abi of
X64Unix => memRegSize
| X64Win => memRegSize + 32 (* Requires 32-byte save area. *)
| X86_32 =>
let
(* GCC likes to keep the stack on a 16-byte alignment. *)
val argSpace = (nArgs+1)*4
val align = argSpace mod 16
in
(* Add sufficient space so that esp will be 16-byte aligned *)
if align = 0
then memRegSize
else memRegSize + 16 - align
end
(* The RTS functions expect the real address of the thread Id. *)
fun loadThreadId toReg =
if targetArch <> ObjectId32Bit
then [loadMemory(toReg, ebp, memRegThreadSelf, nativeWordOpSize)]
else [loadMemory(toReg, ebp, memRegThreadSelf, polyWordOpSize),
LoadAddress{output=toReg, offset=0, base=SOME ebx, index=Index4 toReg, opSize=nativeWordOpSize}]
val code =
[
Move{source=AddressConstArg entryPointAddr, destination=RegisterArg entryPtrReg, moveSize=opSizeToMove polyWordOpSize}, (* Load the entry point ref. *)
loadHeapMemory(entryPtrReg, entryPtrReg, 0, nativeWordOpSize)(* Load its value. *)
] @
(
(* Save heap ptr. This is in r15 in X86/64 *)
if targetArch <> Native32Bit then [storeMemory(r15, ebp, memRegLocalMPointer, nativeWordOpSize)] (* Save heap ptr *)
else []
) @
(
if abi = X86_32 andalso nArgs >= 3
then [moveRR{source=esp, output=edi, opSize=nativeWordOpSize}] (* Needed if we have to load from the stack. *)
else []
) @
[
(* Have to save the stack pointer to the arg structure in case we need to scan the stack for a GC. *)
storeMemory(esp, ebp, memRegStackPtr, nativeWordOpSize), (* Save ML stack and switch to C stack. *)
loadMemory(esp, ebp, memRegCStackPtr, nativeWordOpSize), (*moveRR{source=ebp, output=esp},*) (* Load the saved C stack pointer. *)
(* Set the stack pointer past the data on the stack. For Windows/64 add in a 32 byte save area *)
ArithToGenReg{opc=SUB, output=esp, source=NonAddressConstArg(LargeInt.fromInt stackSpace), opSize=nativeWordOpSize}
] @
(
case (abi, nArgs) of (* Set the argument registers. *)
(X64Unix, 0) => loadThreadId edi
| (X64Unix, 1) => moveRR{source=eax, output=esi, opSize=polyWordOpSize} :: loadThreadId edi
| (X64Unix, 2) =>
moveRR{source=mlArg2Reg, output=edx, opSize=polyWordOpSize} ::
moveRR{source=eax, output=esi, opSize=polyWordOpSize} :: loadThreadId edi
| (X64Unix, 3) =>
moveRR{source=mlArg2Reg, output=edx, opSize=polyWordOpSize} :: moveRR{source=eax, output=esi, opSize=polyWordOpSize} ::
moveRR{source=r8, output=ecx, opSize=polyWordOpSize} :: loadThreadId edi
| (X64Win, 0) => loadThreadId ecx
| (X64Win, 1) => moveRR{source=eax, output=edx, opSize=polyWordOpSize} :: loadThreadId ecx
| (X64Win, 2) =>
moveRR{source=eax, output=edx, opSize=polyWordOpSize} ::
moveRR{source=mlArg2Reg, output=r8, opSize=polyWordOpSize} :: loadThreadId ecx
| (X64Win, 3) =>
moveRR{source=eax, output=edx, opSize=polyWordOpSize} :: moveRR{source=r8, output=r9, opSize=polyWordOpSize} ::
moveRR{source=mlArg2Reg, output=r8, opSize=polyWordOpSize} :: loadThreadId ecx
| (X86_32, 0) => [ PushToStack(MemoryArg{base=ebp, offset=memRegThreadSelf, index=NoIndex}) ]
| (X86_32, 1) => [ pushR eax, PushToStack(MemoryArg{base=ebp, offset=memRegThreadSelf, index=NoIndex}) ]
| (X86_32, 2) => [ pushR mlArg2Reg, pushR eax, PushToStack(MemoryArg{base=ebp, offset=memRegThreadSelf, index=NoIndex}) ]
| (X86_32, 3) =>
[
(* We need to move an argument from the ML stack. *)
PushToStack(MemoryArg{base=edi, offset=4, index=NoIndex}), pushR mlArg2Reg, pushR eax,
PushToStack(MemoryArg{base=ebp, offset=memRegThreadSelf, index=NoIndex})
]
| _ => raise InternalError "rtsCall: Abi/argument count not implemented"
) @
[
CallAddress(RegisterArg entryPtrReg), (* Call the function *)
loadMemory(esp, ebp, memRegStackPtr, nativeWordOpSize) (* Restore the ML stack pointer. *)
] @
(
if targetArch <> Native32Bit then [loadMemory(r15, ebp, memRegLocalMPointer, nativeWordOpSize) ] (* Copy back the heap ptr *)
else []
) @
[
ArithMemConst{opc=CMP, address={offset=memRegExceptionPacket, base=ebp, index=NoIndex}, source=noException, opSize=polyWordOpSize},
ConditionalBranch{test=JNE, label=exLabel},
(* Remove any arguments that have been passed on the stack. *)
ReturnFromFunction(Int.max(case abi of X86_32 => nArgs-2 | _ => nArgs-5, 0)),
JumpLabel exLabel, (* else raise the exception *)
loadMemory(eax, ebp, memRegExceptionPacket, polyWordOpSize),
RaiseException { workReg=ecx }
]
val profileObject = createProfileObject functionName
val newCode = codeCreate (functionName, profileObject, debugSwitches)
val closure = makeConstantClosure()
val () = X86OPTIMISE.generateCode{code=newCode, labelCount=1(*One label.*), ops=code, resultClosure=closure}
in
closureAsAddress closure
end
(* This is a quicker version but can only be used if the RTS entry does
not allocated ML memory, raise an exception or need to suspend the thread. *)
datatype fastArgs = FastArgFixed | FastArgDouble | FastArgFloat
fun rtsCallFastGeneral (functionName, argFormats, (*resultFormat*) _, debugSwitches) =
let
val entryPointAddr = makeEntryPoint functionName
(* Get the ABI. On 64-bit Windows and Unix use different calling conventions. *)
val abi = getABI()
val (entryPtrReg, saveMLStackPtrReg) =
if targetArch <> Native32Bit then (r11, r13) else (ecx, edi)
val stackSpace =
case abi of
X64Unix => memRegSize
| X64Win => memRegSize + 32 (* Requires 32-byte save area. *)
| X86_32 =>
let
(* GCC likes to keep the stack on a 16-byte alignment. *)
val argSpace = List.foldl(fn (FastArgDouble, n) => n+8 | (_, n) => n+4) 0 argFormats
val align = argSpace mod 16
in
(* Add sufficient space so that esp will be 16-byte aligned *)
if align = 0
then memRegSize
else memRegSize + 16 - align
end
(* The number of ML arguments passed on the stack. *)
val mlArgsOnStack =
Int.max(case abi of X86_32 => List.length argFormats - 2 | _ => List.length argFormats - 5, 0)
val code =
[
Move{source=AddressConstArg entryPointAddr, destination=RegisterArg entryPtrReg, moveSize=opSizeToMove polyWordOpSize}, (* Load the entry point ref. *)
loadHeapMemory(entryPtrReg, entryPtrReg, 0, nativeWordOpSize),(* Load its value. *)
moveRR{source=esp, output=saveMLStackPtrReg, opSize=nativeWordOpSize}, (* Save ML stack and switch to C stack. *)
loadMemory(esp, ebp, memRegCStackPtr, nativeWordOpSize),
(* Set the stack pointer past the data on the stack. For Windows/64 add in a 32 byte save area *)
ArithToGenReg{opc=SUB, output=esp, source=NonAddressConstArg(LargeInt.fromInt stackSpace), opSize=nativeWordOpSize}
] @
(
case (abi, argFormats) of (* Set the argument registers. *)
(_, []) => []
| (X64Unix, [FastArgFixed]) => [ moveRR{source=eax, output=edi, opSize=polyWordOpSize} ]
| (X64Unix, [FastArgFixed, FastArgFixed]) =>
(* Since mlArgs2Reg is esi on 32-in-64 this is redundant. *)
[ moveRR{source=mlArg2Reg, output=esi, opSize=polyWordOpSize}, moveRR{source=eax, output=edi, opSize=polyWordOpSize} ]
| (X64Unix, [FastArgFixed, FastArgFixed, FastArgFixed]) =>
[ moveRR{source=mlArg2Reg, output=esi, opSize=polyWordOpSize}, moveRR{source=eax, output=edi, opSize=polyWordOpSize},
moveRR{source=r8, output=edx, opSize=polyWordOpSize} ]
| (X64Unix, [FastArgFixed, FastArgFixed, FastArgFixed, FastArgFixed]) =>
[ moveRR{source=mlArg2Reg, output=esi, opSize=polyWordOpSize}, moveRR{source=eax, output=edi, opSize=polyWordOpSize},
moveRR{source=r8, output=edx, opSize=polyWordOpSize}, moveRR{source=r9, output=ecx, opSize=polyWordOpSize} ]
| (X64Win, [FastArgFixed]) => [ moveRR{source=eax, output=ecx, opSize=polyWordOpSize} ]
| (X64Win, [FastArgFixed, FastArgFixed]) => [ moveRR{source=eax, output=ecx, opSize=polyWordOpSize}, moveRR{source=mlArg2Reg, output=edx, opSize=polyWordOpSize} ]
| (X64Win, [FastArgFixed, FastArgFixed, FastArgFixed]) =>
[ moveRR{source=eax, output=ecx, opSize=polyWordOpSize}, moveRR{source=mlArg2Reg, output=edx, opSize=polyWordOpSize} (* Arg3 is already in r8. *) ]
| (X64Win, [FastArgFixed, FastArgFixed, FastArgFixed, FastArgFixed]) =>
[ moveRR{source=eax, output=ecx, opSize=polyWordOpSize}, moveRR{source=mlArg2Reg, output=edx, opSize=polyWordOpSize} (* Arg3 is already in r8 and arg4 in r9. *) ]
| (X86_32, [FastArgFixed]) => [ pushR eax ]
| (X86_32, [FastArgFixed, FastArgFixed]) => [ pushR mlArg2Reg, pushR eax ]
| (X86_32, [FastArgFixed, FastArgFixed, FastArgFixed]) =>
[
(* We need to move an argument from the ML stack. *)
loadMemory(edx, saveMLStackPtrReg, 4, polyWordOpSize), pushR edx, pushR mlArg2Reg, pushR eax
]
| (X86_32, [FastArgFixed, FastArgFixed, FastArgFixed, FastArgFixed]) =>
[
(* We need to move an arguments from the ML stack. *)
loadMemory(edx, saveMLStackPtrReg, 4, polyWordOpSize), pushR edx,
loadMemory(edx, saveMLStackPtrReg, 8, polyWordOpSize), pushR edx,
pushR mlArg2Reg, pushR eax
]
(* One "double" argument. The value needs to be unboxed. *)
| (X86_32, [FastArgDouble]) =>
(* eax contains the address of the value. This must be unboxed onto the stack. *)
[
FPLoadFromMemory{address={base=eax, offset=0, index=NoIndex}, precision=DoublePrecision},
ArithToGenReg{ opc=SUB, output=esp, source=NonAddressConstArg 8, opSize=nativeWordOpSize},
FPStoreToMemory{ address={base=esp, offset=0, index=NoIndex}, precision=DoublePrecision, andPop=true }
]
| (_, [FastArgDouble]) => [ (* Already in xmm0 *) ]
| (X86_32, [FastArgDouble, FastArgDouble]) =>
(* eax and ebx contain the addresses of the values. They must be unboxed onto the stack. *)
[
FPLoadFromMemory{address={base=ebx, offset=0, index=NoIndex}, precision=DoublePrecision},
ArithToGenReg{ opc=SUB, output=esp, source=NonAddressConstArg 8, opSize=nativeWordOpSize},
FPStoreToMemory{ address={base=esp, offset=0, index=NoIndex}, precision=DoublePrecision, andPop=true },
FPLoadFromMemory{address={base=eax, offset=0, index=NoIndex}, precision=DoublePrecision},
ArithToGenReg{ opc=SUB, output=esp, source=NonAddressConstArg 8, opSize=nativeWordOpSize},
FPStoreToMemory{ address={base=esp, offset=0, index=NoIndex}, precision=DoublePrecision, andPop=true }
]
(* X64 on both Windows and Unix take the first arg in xmm0 and the second in xmm1. They are already there. *)
| (_, [FastArgDouble, FastArgDouble]) => [ ]
(* X64 on both Windows and Unix take the first arg in xmm0. On Unix the integer argument is treated
as the first argument and goes into edi. On Windows it's treated as the second and goes into edx.
N.B. It's also the first argument in ML so is in rax. *)
| (X64Unix, [FastArgDouble, FastArgFixed]) => [ moveRR{source=eax, output=edi, opSize=nativeWordOpSize} ]
| (X64Win, [FastArgDouble, FastArgFixed]) => [ moveRR{source=eax, output=edx, opSize=nativeWordOpSize} ]
| (X86_32, [FastArgDouble, FastArgFixed]) =>
(* ebx must be pushed to the stack but eax must be unboxed.. *)
[
pushR ebx,
FPLoadFromMemory{address={base=eax, offset=0, index=NoIndex}, precision=DoublePrecision},
ArithToGenReg{ opc=SUB, output=esp, source=NonAddressConstArg 8, opSize=nativeWordOpSize},
FPStoreToMemory{ address={base=esp, offset=0, index=NoIndex}, precision=DoublePrecision, andPop=true }
]
(* One "float" argument. The value needs to be untagged on X86/64 but unboxed on X86/32. *)
| (X86_32, [FastArgFloat]) =>
(* eax contains the address of the value. This must be unboxed onto the stack. *)
[
FPLoadFromMemory{address={base=eax, offset=0, index=NoIndex}, precision=SinglePrecision},
ArithToGenReg{ opc=SUB, output=esp, source=NonAddressConstArg 4, opSize=nativeWordOpSize},
FPStoreToMemory{ address={base=esp, offset=0, index=NoIndex}, precision=SinglePrecision, andPop=true }
]
| (_, [FastArgFloat]) => []
(* Two float arguments. Untag them on X86/64 but unbox on X86/32 *)
| (X86_32, [FastArgFloat, FastArgFloat]) =>
(* eax and ebx contain the addresses of the values. They must be unboxed onto the stack. *)
[
FPLoadFromMemory{address={base=ebx, offset=0, index=NoIndex}, precision=SinglePrecision},
ArithToGenReg{ opc=SUB, output=esp, source=NonAddressConstArg 4, opSize=nativeWordOpSize},
FPStoreToMemory{ address={base=esp, offset=0, index=NoIndex}, precision=SinglePrecision, andPop=true },
FPLoadFromMemory{address={base=eax, offset=0, index=NoIndex}, precision=SinglePrecision},
ArithToGenReg{ opc=SUB, output=esp, source=NonAddressConstArg 4, opSize=nativeWordOpSize},
FPStoreToMemory{ address={base=esp, offset=0, index=NoIndex}, precision=SinglePrecision, andPop=true }
]
| (_, [FastArgFloat, FastArgFloat]) => [] (* Already in xmm0 and xmm1 *)
(* One float argument and one fixed. *)
| (X64Unix, [FastArgFloat, FastArgFixed]) => [moveRR{source=mlArg2Reg, output=edi, opSize=polyWordOpSize} ]
| (X64Win, [FastArgFloat, FastArgFixed]) => [moveRR{source=mlArg2Reg, output=edx, opSize=polyWordOpSize}]
| (X86_32, [FastArgFloat, FastArgFixed]) =>
(* ebx must be pushed to the stack but eax must be unboxed.. *)
[
pushR ebx,
FPLoadFromMemory{address={base=eax, offset=0, index=NoIndex}, precision=SinglePrecision},
ArithToGenReg{ opc=SUB, output=esp, source=NonAddressConstArg 4, opSize=nativeWordOpSize},
FPStoreToMemory{ address={base=esp, offset=0, index=NoIndex}, precision=SinglePrecision, andPop=true }
]
| _ => raise InternalError "rtsCall: Abi/argument count not implemented"
) @
[
CallAddress(RegisterArg entryPtrReg), (* Call the function *)
moveRR{source=saveMLStackPtrReg, output=esp, opSize=nativeWordOpSize}, (* Restore the ML stack pointer *)
(* Since this is an ML function we need to remove any ML stack arguments. *)
ReturnFromFunction mlArgsOnStack
]
val profileObject = createProfileObject functionName
val newCode = codeCreate (functionName, profileObject, debugSwitches)
val closure = makeConstantClosure()
val () = X86OPTIMISE.generateCode{code=newCode, labelCount=0, ops=code, resultClosure=closure}
in
closureAsAddress closure
end
fun rtsCallFast (functionName, nArgs, debugSwitches) =
rtsCallFastGeneral (functionName, List.tabulate(nArgs, fn _ => FastArgFixed), FastArgFixed, debugSwitches)
(* RTS call with one double-precision floating point argument and a floating point result. *)
fun rtsCallFastRealtoReal (functionName, debugSwitches) =
rtsCallFastGeneral (functionName, [FastArgDouble], FastArgDouble, debugSwitches)
(* RTS call with two double-precision floating point arguments and a floating point result. *)
fun rtsCallFastRealRealtoReal (functionName, debugSwitches) =
rtsCallFastGeneral (functionName, [FastArgDouble, FastArgDouble], FastArgDouble, debugSwitches)
(* RTS call with one double-precision floating point argument, one fixed point argument and a
floating point result. *)
fun rtsCallFastRealGeneraltoReal (functionName, debugSwitches) =
rtsCallFastGeneral (functionName, [FastArgDouble, FastArgFixed], FastArgDouble, debugSwitches)
(* RTS call with one general (i.e. ML word) argument and a floating point result.
This is used only to convert arbitrary precision values to floats. *)
fun rtsCallFastGeneraltoReal (functionName, debugSwitches) =
rtsCallFastGeneral (functionName, [FastArgFixed], FastArgDouble, debugSwitches)
(* Operations on Real32.real values. *)
fun rtsCallFastFloattoFloat (functionName, debugSwitches) =
rtsCallFastGeneral (functionName, [FastArgFloat], FastArgFloat, debugSwitches)
fun rtsCallFastFloatFloattoFloat (functionName, debugSwitches) =
rtsCallFastGeneral (functionName, [FastArgFloat, FastArgFloat], FastArgFloat, debugSwitches)
(* RTS call with one double-precision floating point argument, one fixed point argument and a
floating point result. *)
fun rtsCallFastFloatGeneraltoFloat (functionName, debugSwitches) =
rtsCallFastGeneral (functionName, [FastArgFloat, FastArgFixed], FastArgFloat, debugSwitches)
(* RTS call with one general (i.e. ML word) argument and a floating point result.
This is used only to convert arbitrary precision values to floats. *)
fun rtsCallFastGeneraltoFloat (functionName, debugSwitches) =
rtsCallFastGeneral (functionName, [FastArgFixed], FastArgFloat, debugSwitches)
end;
|