1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
|
(*
Copyright (c) 2016-19 David C.J. Matthews
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
functor X86ICodeIdentifyReferences(
structure ICODE: ICodeSig
structure DEBUG: DEBUGSIG
structure INTSET: INTSETSIG
): X86IDENTIFYREFSSIG =
struct
open ICODE
open INTSET
type regState =
{
active: int, refs: int, pushState: bool, prop: regProperty
}
(* CC states before and after. The instruction may use the CC or ignore it. The only
instructions to use the CC is X87FPGetCondition. Conditional branches
are handled at the block level.
The result of executing the instruction may be to set the condition code to a
defined state, an undefined state or leave it unchanged.
N.B. Some "instructions" may involve a stack reset that could affect the CC. *)
datatype outCCState = CCSet of ccRef | CCIndeterminate | CCUnchanged
and inCCState = CCNeeded of ccRef | CCUnused
datatype extendedBasicBlock =
ExtendedBasicBlock of
{
block: {instr: x86ICode, current: intSet, active: intSet, kill: intSet } list,
flow: controlFlow,
locals: intSet, (* Defined and used entirely within the block. *)
imports: intSet, (* Defined outside the block, used inside it, but not needed afterwards. *)
exports: intSet, (* Defined within the block, possibly used inside, but used outside. *)
passThrough: intSet, (* Active throughout the block. May be referred to by it but needed afterwards. *)
loopRegs: intSet, (* Destination registers for a loop. They will be updated by this block. *)
initialStacks: intSet, (* Stack items required at the start i.e. imports+passThrough for stack items. *)
inCCState: ccRef option, (* The state this block assumes. If SOME _ all predecessors must set it. *)
outCCState: ccRef option (* The condition code set by this block. SOME _ if at least one successor needs it. *)
}
exception InternalError = Misc.InternalError
(* Return the list of blocks that are the immediate successor of this. *)
fun blockSuccessors(BasicBlock{flow, ...}) = successorBlocks flow
(* Find the registers from an argument. *)
fun argRegs(RegisterArgument rarg) = [rarg]
| argRegs(MemoryLocation { base, index, cache=SOME cr, ...}) = cr :: base :: argIndex index
| argRegs(MemoryLocation { base, index, cache=NONE, ...}) = base :: argIndex index
| argRegs(StackLocation { cache=SOME rarg, ...}) = [rarg]
| argRegs _ = []
and argIndex NoMemIndex = []
| argIndex(MemIndex1 arg) = [arg]
| argIndex(MemIndex2 arg) = [arg]
| argIndex(MemIndex4 arg) = [arg]
| argIndex(MemIndex8 arg) = [arg]
| argIndex ObjectIndex = []
fun argStacks(StackLocation { container, ...}) = [container]
| argStacks(ContainerAddr { container, ...}) = [container]
| argStacks _ = []
(* Return the set of registers used by the instruction.
sources are registers that must have values after the instruction.
dests are registers that are given values or modified by the instruction. *)
fun getInstructionState(LoadArgument { source, dest, ...}) =
{ sources=argRegs source, dests=[dest], sStacks=argStacks source, dStacks=[], ccIn=CCUnused, ccOut=CCUnchanged }
| getInstructionState(StoreArgument{ source, base, index, ...}) =
{ sources=argRegs source @ [base] @ argIndex index, dests=[], sStacks=argStacks source, dStacks=[], ccIn=CCUnused, ccOut=CCUnchanged }
| getInstructionState(LoadMemReg { dest, ...}) =
{ sources=[], dests=[dest], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCUnchanged }
| getInstructionState(BeginFunction {regArgs, stackArgs, ...}) =
{ sources=[], dests=map #1 regArgs, sStacks=[], dStacks=stackArgs, ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(FunctionCall{regArgs, stackArgs, dest, ...}) =
let
(* Non-tail-recursive. Behaves as a normal reference to sources. *)
fun getSources argSource =
let
val stackSources = List.foldl(fn (arg, srcs) => argSource arg @ srcs) [] stackArgs
fun regSource((arg, _), srcs) = argSource arg @ srcs
in
List.foldl regSource stackSources regArgs
end
in
{ sources=getSources argRegs, dests=[dest], sStacks=getSources argStacks, dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
end
| getInstructionState(TailRecursiveCall{regArgs, stackArgs, workReg, ...}) =
let
(* Tail recursive call. References the argument sources but exits. *)
fun getSources argSource =
let
val stackSources = List.foldl(fn ({src, ...}, srcs) => argSource src @ srcs) [] stackArgs
fun regSource((arg, _), srcs) = argSource arg @ srcs
in
List.foldl regSource stackSources regArgs
end
in
{ sources=getSources argRegs, dests=[workReg], sStacks=getSources argStacks, dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
end
| getInstructionState(AllocateMemoryOperation{dest, ...}) =
{ sources=[], dests=[dest], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(AllocateMemoryVariable{size, dest, ...}) =
{ sources=[size], dests=[dest], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(InitialiseMem{size, addr, init}) =
{ sources=[size, addr, init], dests=[], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCUnchanged }
| getInstructionState(InitialisationComplete) =
(* This is just a marker. It doesn't actually generate any code. *)
{ sources=[], dests=[], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(BeginLoop) =
(* This is just a marker. It doesn't actually generate any code. *)
{ sources=[], dests=[], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(JumpLoop{regArgs, stackArgs, workReg, ...}) =
let
fun getSources argSource =
let
val regSourceAsRegs =
List.foldl(fn ((source, _), srcs) => argSource source @ srcs) [] regArgs
in
List.foldl(fn ((source, _, _), srcs) => argSource source @ srcs) regSourceAsRegs stackArgs
end
val dests = case workReg of SOME r => [r] | NONE => []
in
{ sources=getSources argRegs, dests=dests, sStacks=getSources argStacks, dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
end
| getInstructionState(RaiseExceptionPacket{packetReg}) =
{ sources=[packetReg], dests=[], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(ReserveContainer{container, ...}) =
{ sources=[], dests=[], sStacks=[], dStacks=[container], ccIn=CCUnused, ccOut=CCUnchanged }
| getInstructionState(IndexedCaseOperation{testReg, workReg, ...}) =
{ sources=[testReg], dests=[workReg], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(LockMutable{addr}) =
{ sources=[addr], dests=[], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(WordComparison{arg1, arg2, ccRef, ...}) =
{ sources=arg1 :: argRegs arg2, dests=[], sStacks=argStacks arg2, dStacks=[], ccIn=CCUnused, ccOut=CCSet ccRef }
| getInstructionState(CompareLiteral{arg1, ccRef, ...}) =
{ sources=argRegs arg1, dests=[], sStacks=argStacks arg1, dStacks=[], ccIn=CCUnused, ccOut=CCSet ccRef }
| getInstructionState(CompareByteMem{arg1={base, index, ...}, ccRef, ...}) =
{ sources=base :: argIndex index, dests=[], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCSet ccRef }
| getInstructionState(PushExceptionHandler{workReg, ...}) =
{ sources=[], dests=[workReg], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(PopExceptionHandler{ workReg }) =
{ sources=[], dests=[workReg], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(BeginHandler{ workReg, packetReg, ...}) =
{ sources=[], dests=[packetReg, workReg], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(ReturnResultFromFunction{resultReg, ...}) =
{ sources=[resultReg], dests=[], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(ArithmeticFunction{resultReg, operand1, operand2, ccRef, ...}) =
{ sources=operand1 :: argRegs operand2, dests=[resultReg],
sStacks=argStacks operand2, dStacks=[], ccIn=CCUnused, ccOut=CCSet ccRef }
| getInstructionState(TestTagBit{arg, ccRef, ...}) =
{ sources=argRegs arg, dests=[], sStacks=argStacks arg, dStacks=[], ccIn=CCUnused, ccOut=CCSet ccRef }
| getInstructionState(PushValue {arg, container, ...}) =
{ sources=argRegs arg, dests=[], sStacks=argStacks arg, dStacks=[container], ccIn=CCUnused, ccOut=CCUnchanged }
| getInstructionState(CopyToCache{source, dest, ...}) =
{ sources=[source], dests=[dest], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCUnchanged}
| getInstructionState(ResetStackPtr{preserveCC, ...}) =
{ sources=[], dests=[], sStacks=[], dStacks=[], ccIn=CCUnused,
ccOut=if preserveCC then CCUnchanged else CCIndeterminate }
| getInstructionState(StoreToStack {source, container, ...}) =
(* Although this stores into the container it must already exist. *)
{ sources=argRegs source, dests=[], sStacks=container :: argStacks source, dStacks=[], ccIn=CCUnused, ccOut=CCUnchanged }
| getInstructionState(TagValue{source, dest, ...}) =
{ sources=[source], dests=[dest], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCUnchanged }
| getInstructionState(UntagValue{source, dest, cache, ...}) =
{ sources=case cache of NONE => [source] | SOME cr => [cr, source], dests=[dest], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(LoadEffectiveAddress{base, index, dest, ...}) =
let
val bRegs =
case base of SOME bReg => [bReg] | _ => []
val iRegs = argIndex index
in
{ sources=bRegs @ iRegs, dests=[dest], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCUnchanged }
end
| getInstructionState(ShiftOperation{resultReg, operand, shiftAmount, ccRef, ...}) =
{ sources=operand :: argRegs shiftAmount, dests=[resultReg],
sStacks=argStacks shiftAmount, dStacks=[], ccIn=CCUnused, ccOut=CCSet ccRef }
| getInstructionState(Multiplication{resultReg, operand1, operand2, ccRef, ...}) =
{ sources=operand1 :: argRegs operand2, dests=[resultReg],
sStacks=argStacks operand2, dStacks=[], ccIn=CCUnused, ccOut=CCSet ccRef }
| getInstructionState(Division{dividend, divisor, quotient, remainder, ...}) =
{ sources=dividend :: argRegs divisor, dests=[quotient, remainder],
sStacks=argStacks divisor, dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(AtomicExchangeAndAdd{base, source}) =
{ sources=[base, source], dests=[], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(BoxValue{source, dest, ...}) =
{ sources=[source], dests=[dest], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(CompareByteVectors{vec1Addr, vec2Addr, length, ccRef, ...}) =
{ sources=[vec1Addr, vec2Addr, length], dests=[], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCSet ccRef }
| getInstructionState(BlockMove{srcAddr, destAddr, length, ...}) =
{ sources=[srcAddr, destAddr, length], dests=[], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(X87Compare{arg1, arg2, ccRef, ...}) =
{ sources=arg1 :: argRegs arg2, dests=[], sStacks=argStacks arg2,
dStacks=[], ccIn=CCUnused, ccOut=CCSet ccRef }
| getInstructionState(SSE2Compare{arg1, arg2, ccRef, ...}) =
{ sources=arg1 :: argRegs arg2, dests=[], sStacks=argStacks arg2,
dStacks=[], ccIn=CCUnused, ccOut=CCSet ccRef }
| getInstructionState(X87FPGetCondition{dest, ccRef, ...}) =
{ sources=[], dests=[dest], sStacks=[], dStacks=[], ccIn=CCNeeded ccRef, ccOut=CCIndeterminate }
| getInstructionState(X87FPArith{resultReg, arg1, arg2, ...}) =
{ sources=arg1 :: argRegs arg2, dests=[resultReg],
sStacks=argStacks arg2, dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(X87FPUnaryOps{dest, source, ...}) =
{ sources=[source], dests=[dest], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(X87Float{dest, source}) =
{ sources=argRegs source, dests=[dest], sStacks=argStacks source, dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(SSE2Float{dest, source}) =
{ sources=argRegs source, dests=[dest], sStacks=argStacks source, dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(SSE2FPUnary{resultReg, source, ...}) =
{ sources=argRegs source, dests=[resultReg],
sStacks=argStacks source, dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(SSE2FPBinary{resultReg, arg1, arg2, ...}) =
{ sources=arg1 :: argRegs arg2, dests=[resultReg],
sStacks=argStacks arg2, dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(TagFloat{source, dest, ...}) =
{ sources=[source], dests=[dest], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(UntagFloat{source, dest, cache, ...}) =
{ sources=case cache of NONE => argRegs source | SOME cr => cr :: argRegs source, dests=[dest],
sStacks=argStacks source, dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(GetSSE2ControlReg{dest}) =
{ sources=[], dests=[dest], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(SetSSE2ControlReg{source}) =
{ sources=[source], dests=[], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(GetX87ControlReg{dest}) =
{ sources=[], dests=[dest], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(SetX87ControlReg{source}) =
{ sources=[source], dests=[], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(X87RealToInt{ source, dest }) =
{ sources=[source], dests=[dest], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(SSE2RealToInt{ source, dest, ... }) =
{ sources=argRegs source, dests=[dest], sStacks=argStacks source, dStacks=[], ccIn=CCUnused, ccOut=CCIndeterminate }
| getInstructionState(SignExtend32To64{ source, dest }) =
{ sources=argRegs source, dests=[dest], sStacks=argStacks source, dStacks=[], ccIn=CCUnused, ccOut=CCUnchanged }
| getInstructionState(TouchArgument{source}) =
{ sources=[source], dests=[], sStacks=[], dStacks=[], ccIn=CCUnused, ccOut=CCUnchanged }
(* These instructions can be eliminated if their register sources are not used.
There may be other cases. *)
fun eliminateable(LoadArgument _) = true
| eliminateable(TagValue _) = true
| eliminateable(UntagValue _) = true
| eliminateable(LoadEffectiveAddress _) = true
| eliminateable(BoxValue _) = true
| eliminateable(CopyToCache _) = true
| eliminateable(LoadMemReg _) = true
| eliminateable _ = false
fun identifyRegs(blockVector, pregProps): extendedBasicBlock vector * regState vector =
let
val maxPRegs = Vector.length pregProps
val vectorLength = Vector.length blockVector
(* Initial arrays - declarationArray is the set of registers given
values by the block, importArray is the set of registers referenced by
the block and not declared locally. *)
val declarationArray = Array.array(vectorLength, emptySet)
and importArray = Array.array(vectorLength, emptySet)
val stackDecArray = Array.array(vectorLength, emptySet)
and stackImportArray = Array.array(vectorLength, emptySet)
and localLoopRegArray = Array.array(vectorLength, emptySet)
(* References - this is used locally to see if a register is ever
actually used and also included in the result which uses it as
part of the choice of which register to spill. *)
val regRefs = Array.array(maxPRegs, 0)
(* Registers that must be pushed because they are required after
a function call. For cache registers this means "discard". *)
and requirePushOrDiscard = Array.array(maxPRegs, false)
fun incrRef r = Array.update(regRefs, r, Array.sub(regRefs, r)+1)
(* Contains the, possibly filtered, code for each block. *)
val resultCode = Array.array(vectorLength, NONE)
val ccInStates = Array.array(vectorLength, CCUnused)
and ccOutStates = Array.array(vectorLength, CCIndeterminate)
(* First pass - for each block build up the sets of registers defined and
used in the block. We do this depth-first so that we can use "refs" to
see if a register is used. If this is an instruction that can be eliminated
we don't need to generate it and can ignore any references it makes. *)
local
fun blockScan blockNo =
if isSome(Array.sub(resultCode, blockNo)) then ()
else
let
val () = Array.update(resultCode, blockNo, SOME []) (* Prevent looping. *)
val thisBlock as BasicBlock { block, flow, ...} = Vector.sub(blockVector, blockNo)
val successors = blockSuccessors thisBlock
(* Visit everything reachable first. *)
val () = List.app blockScan successors
fun scanCode(instr, original as { code, decs, refs, sDecs, sRefs, occIn, occOut, loopRegs, ... }) =
let
val { sources, dests, sStacks=stackSrcs, dStacks=stackDests, ccIn, ccOut, ... } =
getInstructionState instr
fun regNo(PReg i) = i
and stackNo(StackLoc{rno, ...}) = rno
val destRegNos = map regNo dests
and sourceRegNos = map regNo sources
val stackDestRegNos = map stackNo stackDests
and stackSourceRegNos = map stackNo stackSrcs
(* If this instruction requires a cc i.e. is SetToCondition or X87FPGetCondition we
need to set this as a requirement earlier. If this sets the CC and it is the condition
we've been expecting we've satisfied it and can set the previous condition to Unused.
We could use this to decide if a comparison is no longer required. That can only
happen in very specific circumstances e.g. some tests in Test176.ML so it's
not worthwhile. *)
val newInCC =
case (ccIn, ccOut, occIn) of
(cc as CCNeeded _, _, _) => cc (* This instr needs a particular cc. *)
| (CCUnused, CCSet _, _) => CCUnused
| (CCUnused, _, occIn) => occIn
(* If this instruction modifies the CC check to see if it is setting an requirement. *)
val _ =
case (occIn, ccOut) of
(CCNeeded ccRIn, CCSet ccRout) =>
if ccRIn = ccRout then () else raise InternalError "CCCheck failed"
| (CCNeeded _, CCIndeterminate) => raise InternalError "CCCheck failed"
| _ => ()
(* The output CC is the last CC set. Tail instructions that don't change
the CC state are ignored until we reach an instruction that sets it. *)
val newOutCC = case occOut of CCUnchanged => ccOut | _ => occOut
val instrLoopRegs =
case instr of
JumpLoop{regArgs, ...} => listToSet (map (regNo o #2) regArgs)
| _ => emptySet
in
if eliminateable instr andalso
List.all(fn dReg => Array.sub(regRefs, dReg) = 0) destRegNos
then original (* Don't include this instruction. *)
else
let
(* Only mark the sources as referred after we know we're going to need this.
In that way we may eliminate the instruction that created this source. *)
val () = List.app incrRef sourceRegNos
in
{ code = instr :: code, decs = union(listToSet destRegNos, decs), refs = union(listToSet sourceRegNos, refs),
sDecs = union(listToSet stackDestRegNos, sDecs), sRefs = union(listToSet stackSourceRegNos, sRefs),
occIn = newInCC, occOut = newOutCC, loopRegs = union(loopRegs, instrLoopRegs)}
end
end
(* If we have a conditional branch at the end we need the condition code. It should either
be set here or in a preceding block. *)
val inCC = case flow of Conditional { ccRef, ...} => CCNeeded ccRef | _ => CCUnused
val { code, decs, refs, sDecs, sRefs, occIn, occOut, loopRegs, ... } =
List.foldr scanCode
{code=[], decs=emptySet, refs=emptySet, sDecs=emptySet, sRefs=emptySet, occIn=inCC, occOut=CCUnchanged, loopRegs=emptySet} block
in
Array.update(declarationArray, blockNo, decs);
(* refs includes local declarations. Remove before adding to the result. *)
Array.update(importArray, blockNo, minus(refs, decs));
Array.update(localLoopRegArray, blockNo, loopRegs);
Array.update(stackDecArray, blockNo, sDecs);
Array.update(stackImportArray, blockNo, minus(sRefs, sDecs));
Array.update(resultCode, blockNo, SOME code);
Array.update(ccInStates, blockNo, occIn);
Array.update(ccOutStates, blockNo, occOut)
end
in
val () = blockScan 0 (* Start with the root block. *)
end
(* Second phase - Propagate reference information between the blocks.
We need to consider loops here. Do a depth-first scan marking each
block. If we find a loop we save the import information we've used.
If when we come to process that block we find the import information
is different we need to reprocess. *)
(* Pass through array - values used in other blocks after this that
are not declared in this block. *)
val passThroughArray = Array.array(vectorLength, emptySet)
val stackPassThroughArray = Array.array(vectorLength, emptySet)
(* Exports - those of our declarations that are used in other blocks. *)
val exportArray = Array.array(vectorLength, emptySet)
val stackExportArray = Array.array(vectorLength, emptySet)
(* Loop registers. This contains the registers that are not exported
from or passed through this block but are used subsequently as
loop registers. *)
val loopRegArray = Array.array(vectorLength, emptySet)
val () = Array.copy{src=localLoopRegArray, dst=loopRegArray, di=0}
(* If any one of the successors requires the CC then this is set.
Otherwise we leave it as Unused. *)
val ccRequiredOut = Array.array(vectorLength, CCUnused)
local
datatype loopData =
Unprocessed | Processing | Processed
| Looped of { regSet: intSet, loopSet: intSet, stackSet: intSet, ccState: inCCState }
fun reprocessLoop () =
let
val reprocess = ref false
val loopArray = Array.array(vectorLength, Unprocessed)
fun processBlocks blockNo =
case Array.sub(loopArray, blockNo) of
Processed => (* Already seen this by a different route. *)
{
regSet = union(Array.sub(passThroughArray, blockNo), Array.sub(importArray, blockNo)),
stackSet = union(Array.sub(stackPassThroughArray, blockNo), Array.sub(stackImportArray, blockNo)),
ccState = Array.sub(ccInStates, blockNo),
loopSet = Array.sub(loopRegArray, blockNo)
}
| Looped s => s (* We've already seen this in a loop. *)
| Processing => (* We have a loop. *)
let
(* Use the existing input array. *)
val inputs =
{
regSet = union(Array.sub(passThroughArray, blockNo), Array.sub(importArray, blockNo)),
stackSet = union(Array.sub(stackPassThroughArray, blockNo), Array.sub(stackImportArray, blockNo)),
ccState = Array.sub(ccInStates, blockNo),
loopSet = Array.sub(loopRegArray, blockNo)
}
val () = Array.update(loopArray, blockNo, Looped inputs)
in
inputs
end
| Unprocessed => (* Normal case - not visited yet. *)
let
val () = Array.update(loopArray, blockNo, Processing)
val thisBlock = Vector.sub(blockVector, blockNo)
val ourDeclarations = Array.sub(declarationArray, blockNo)
and ourStackDeclarations = Array.sub(stackDecArray, blockNo)
and ourLocalLoopRegs = Array.sub(localLoopRegArray, blockNo)
val successors = blockSuccessors thisBlock
fun addSuccessor b =
let
val {regSet=theirImports, stackSet=theirStackImports, ccState=theirInState, loopSet=theirLoops} = processBlocks b
(* Remove loop regs from the imports if they are actually given new
values by this block. We don't want to pass the old loop regs through here. *)
val theirImports = minus(theirImports, ourLocalLoopRegs)
(* Split the imports. If a register is a local declaration then
it becomes an export. If it is not it becomes part of our
passThrough. *)
val (addToExp, addToImp) =
INTSET.partition (fn i => member(i, ourDeclarations)) theirImports
val (addToStackExp, addToStackImp) =
INTSET.partition (fn i => member(i, ourStackDeclarations)) theirStackImports
(* Merge the input states from each of the successors. *)
val () =
case (theirInState, Array.sub(ccRequiredOut, blockNo)) of
(CCNeeded ts, CCNeeded req) =>
if ts = req then () else raise InternalError "Mismatched states"
| (ts as CCNeeded _, _) => Array.update(ccRequiredOut, blockNo, ts)
| _ => ()
(* Add loop registers to the set if they are not declared here. The
only place they are declared is at the entry to the loop so that
stops them being propagated further. *)
val addToLoops = minus(theirLoops, ourDeclarations)
in
Array.update(exportArray, blockNo,
union(Array.sub(exportArray, blockNo), addToExp));
Array.update(passThroughArray, blockNo,
union(Array.sub(passThroughArray, blockNo), addToImp));
Array.update(stackExportArray, blockNo,
union(Array.sub(stackExportArray, blockNo), addToStackExp));
Array.update(stackPassThroughArray, blockNo,
union(Array.sub(stackPassThroughArray, blockNo), addToStackImp));
Array.update(loopRegArray, blockNo,
union(Array.sub(loopRegArray, blockNo), addToLoops))
end
val () = List.app addSuccessor successors
val ourInputs =
union(Array.sub(passThroughArray, blockNo), Array.sub(importArray, blockNo))
val ourStackInputs =
union(Array.sub(stackPassThroughArray, blockNo), Array.sub(stackImportArray, blockNo))
in
(* Check that we supply the required state. *)
case (Array.sub(ccRequiredOut, blockNo), Array.sub(ccOutStates, blockNo)) of
(CCNeeded ccReq, CCSet ccSet) =>
if ccReq = ccSet then () else raise InternalError "Mismatched cc states"
| (CCNeeded _, CCIndeterminate) => raise InternalError "Mismatched cc states"
| (cc as CCNeeded needOut, CCUnchanged) =>
(
(* We pass through the state. If we don't use the state then we
need to set this as the input. If we do use the state it must be
the same. *)
case Array.sub(ccInStates, blockNo) of
CCUnused => Array.update(ccInStates, blockNo, cc)
| CCNeeded needIn =>
if needOut = needIn then () else raise InternalError "Mismatched cc states"
)
| _ => ();
(* Was this block used in a loop? If so we should not be requiring a CC. *)
case Array.sub(loopArray, blockNo) of
Looped {regSet, stackSet, ...} =>
(
case Array.sub(ccInStates, blockNo) of
CCNeeded _ => raise InternalError "Looped state needs cc" | _ => ();
if setToList regSet = setToList ourInputs andalso
setToList stackSet = setToList ourStackInputs
then ()
else reprocess := true
)
| _ => ();
Array.update(loopArray, blockNo, Processed);
{ regSet = ourInputs, stackSet = ourStackInputs,
ccState = Array.sub(ccInStates, blockNo), loopSet=Array.sub(loopRegArray, blockNo)}
end
in
reprocess := false;
processBlocks 0;
if !reprocess then reprocessLoop () else ()
end
in
val () = reprocessLoop ()
end
(* Third pass - Build the result list with the active registers for each
instruction. We don't include registers in the passThrough set since
they are active throughout the block. *)
local
(* Number of instrs for which this is active. We use this to try to select a
register to push to the stack if we have too many. Registers that have
only a short lifetime are less likely to be pushed than those that are
active longer. *)
val regActive = Array.array(maxPRegs, 0)
fun addActivity n r = Array.update(regActive, r, Array.sub(regActive, r)+n)
fun createResultInstrs (passThrough, stackPassThrough)
(instr, (tail, activeAfterThis, stackActiveAfterThis)) =
let
val { sources, dests, sStacks=stackSrcs, dStacks=stackDests, ... } = getInstructionState instr
in
(* Eliminate instructions if their results are not required. The earlier check for this
will remove most cases but if we have duplicated a block we may have a register that
is required elsewhere but not in this particular branch. *)
if not(List.exists(fn PReg d => member(d, activeAfterThis)) dests) andalso eliminateable instr
then (tail, activeAfterThis, stackActiveAfterThis)
else
let
fun regNo(PReg i) = i
fun stackNo(StackLoc{rno, ...}) = rno
val destRegNos = map regNo dests
and sourceRegNos = map regNo sources
val destSet = listToSet destRegNos
(* Remove any sources that are present in passThrough since
they are going to be active throughout the block. *)
and sourceSet = minus(listToSet sourceRegNos, passThrough)
val stackDestRegNos = map stackNo stackDests
and stackSourceRegNos = map stackNo stackSrcs
val stackDestSet = listToSet stackDestRegNos
and stackSourceSet = minus(listToSet stackSourceRegNos, stackPassThrough)
(* To compute the active set for the PREVIOUS instruction (we're processing from the
end back to the start) we remove any registers that have been given values in this
instruction and add anything that we are using in this instruction since they will
now need to have values. *)
val afterRemoveDests = minus(activeAfterThis, destSet)
val stackAfterRemoveDests = minus(stackActiveAfterThis, stackDestSet)
val activeForPrevious = union(sourceSet, afterRemoveDests)
val stackActiveForPrevious = union(stackSourceSet, stackAfterRemoveDests)
(* The "active" set is the set of registers that need to be active DURING the
instruction. It includes destinations, which will usually be in
"activeAfterThis", because there may be destinations that are not actually used
subsequently but still need a register. That will also include work registers.
Usually sources aren't included if this is the last use but the
AllocateMemoryVariable "instruction" can't set the size after the memory is
allocated so the active set includes the source(s). *)
val activeForInstr =
case instr of
FunctionCall _ => sourceSet (* Is this still needed? *)
| TailRecursiveCall _ =>
(* Set the active set to the total set of registers we require including
the work register. This ensures that we will spill as many registers
as we require when we look at the size of the active set. *)
union(sourceSet, destSet)
| AllocateMemoryVariable _ => (* We can only set the size after the memory is allocated. *)
union(activeAfterThis, union(sourceSet, destSet))
| BoxValue _ => (* We can only store the value in the box after the box is allocated. *)
union(activeAfterThis, union(sourceSet, destSet))
| _ => union(activeAfterThis, destSet)
val () = List.app(addActivity 1) (setToList activeForInstr)
local
(* If we are allocating memory we have to save the current registers if
they could contain an address. We mustn't push untagged registers
and we mustn't push the destination. *)
fun getSaveSet dReg =
let
val activeAfter = union(activeAfterThis, passThrough)
(* Remove any registers marked - must-not-push. These are
registers holding non-address values. They will actually
be saved by the RTS across any GC but not checked or
modified by the GC.
Exclude the result register. *)
fun getSave i =
if i = dReg
then NONE
else case Vector.sub(pregProps, i) of
RegPropGeneral => SOME(PReg i)
| RegPropCacheTagged => SOME(PReg i)
| RegPropUntagged => NONE
| RegPropStack _ => NONE
| RegPropCacheUntagged => NONE
| RegPropMultiple => raise InternalError "getSave: RegPropMultiple"
in
List.mapPartial getSave (setToList activeAfter)
end
in
(* Sometimes we need to modify the instruction e.g. to include the set
of registers to save. *)
val convertedInstr =
case instr of
AllocateMemoryOperation{size, flags, dest, saveRegs=_} =>
AllocateMemoryOperation{size=size, flags=flags, dest=dest,
saveRegs=getSaveSet(regNo dest)}
| AllocateMemoryVariable{size, dest, saveRegs=_} =>
AllocateMemoryVariable{size=size, dest=dest, saveRegs=getSaveSet(regNo dest)}
| BoxValue{source, dest, boxKind, saveRegs=_} =>
BoxValue{source=source, dest=dest, boxKind=boxKind,
saveRegs=getSaveSet(regNo dest)}
| JumpLoop{regArgs, stackArgs, checkInterrupt = SOME _, workReg, ...} =>
let
(* If we have to check for interrupts we must preserve registers across
the RTS call. *)
fun getSave i =
case Vector.sub(pregProps, i) of
RegPropGeneral => SOME(PReg i)
| RegPropCacheTagged => SOME(PReg i)
| RegPropUntagged => NONE
| RegPropStack _ => NONE
| RegPropCacheUntagged => NONE
| RegPropMultiple => raise InternalError "getSave: RegPropMultiple"
val currentRegs = union(activeAfterThis, passThrough)
(* Have to include the loop registers. These were previously included
automatically because they were part of the import set. *)
val check = List.mapPartial getSave (map (regNo o #2) regArgs @ setToList currentRegs)
in
JumpLoop{regArgs=regArgs, stackArgs=stackArgs, checkInterrupt=SOME check, workReg=workReg}
end
| FunctionCall{regArgs, stackArgs=[], dest, realDest, callKind as ConstantCode m, saveRegs=_} =>
(* If this is arbitrary precision push the registers rather than marking them as "save".
stringOfWord returns 'CODE "PolyAddArbitrary"' etc. *)
if (String.isSubstring "Arbitrary\"" (Address.stringOfWord m))
then FunctionCall{regArgs=regArgs, stackArgs=[], callKind=callKind, dest=dest,
realDest=realDest, saveRegs=getSaveSet(regNo dest) }
else instr
| instr as LoadArgument{dest=PReg dreg, ...} =>
(
if member(dreg, activeAfterThis)
then ()
else print("Register " ^ Int.toString dreg ^ " inactive-" ^ PolyML.makestring instr ^ "\n");
instr
)
| _ => instr
end
(* FunctionCall must mark all registers as "push". *)
local
fun pushRegisters () =
let
val activeAfter = union(activeAfterThis, passThrough)
fun pushAllButDests i =
if List.exists(fn j => i=j) destRegNos
then ()
else case Vector.sub(pregProps, i) of
RegPropCacheTagged => raise InternalError "pushRegisters: cache reg"
| RegPropCacheUntagged => raise InternalError "pushRegisters: cache reg"
| _ => Array.update(requirePushOrDiscard, i, true)
in
(* We need to push everything active after this
except the result register. *)
List.app pushAllButDests (setToList activeAfter)
end
in
val () =
case instr of
FunctionCall{ stackArgs=[], callKind=ConstantCode m, ...} =>
if (String.isSubstring "Arbitrary\"" (Address.stringOfWord m))
then ()
else pushRegisters ()
| FunctionCall _ => pushRegisters ()
(* It should no longer be necessary to push across a handler but
there still seem to be cases that need it. *)
| BeginHandler _ => pushRegisters ()
| CopyToCache {source=PReg srcReg, dest=PReg dstReg, ...} =>
(* If the source is a cache register marked as "must push" i.e. discard,
the destination must also be discarded i.e. not available.
Note: the source could be a non-cache register marked for pushing. *)
(
case (Vector.sub(pregProps, srcReg), Array.sub(requirePushOrDiscard, srcReg)) of
(RegPropCacheTagged, true) => Array.update(requirePushOrDiscard, dstReg, true)
| (RegPropCacheUntagged, true) => Array.update(requirePushOrDiscard, dstReg, true)
| _ => ()
)
| _ => ()
end
(* Which entries are active in this instruction but not afterwards? *)
val kill = union(minus(stackSourceSet, stackActiveAfterThis), minus(sourceSet, activeAfterThis))
in
({instr=convertedInstr, active=activeForInstr, current=activeAfterThis, kill=kill} :: tail, activeForPrevious,
stackActiveForPrevious)
end
end
fun createResult blockNo =
let
val BasicBlock{ flow, ...} = Vector.sub(blockVector, blockNo)
val declSet = Array.sub(declarationArray, blockNo)
and importSet = Array.sub(importArray, blockNo)
and passSet = Array.sub(passThroughArray, blockNo)
and loopSet = Array.sub(loopRegArray, blockNo)
and exportSet = Array.sub(exportArray, blockNo)
and stackPassSet = Array.sub(stackPassThroughArray, blockNo)
and stackImportSet = Array.sub(stackImportArray, blockNo)
and stackExportSet = Array.sub(stackExportArray, blockNo)
val filteredCode = getOpt(Array.sub(resultCode, blockNo), [])
(* At the end of the block we should have the exports active. *)
val (resultInstrs, _, _) = List.foldr (createResultInstrs (passSet, stackPassSet)) ([], exportSet, stackExportSet) filteredCode
(* Set the active count for the pass through. *)
val instrCount = List.length filteredCode
val () = List.app(addActivity instrCount) (setToList passSet)
val inCCState =
case Array.sub(ccInStates, blockNo) of CCNeeded s => SOME s | CCUnused => NONE
val outCCState =
case Array.sub(ccRequiredOut, blockNo) of CCNeeded s => SOME s | CCUnused => NONE
in
ExtendedBasicBlock {
block = resultInstrs,
flow=flow,
locals = minus(declSet, exportSet),
imports = importSet,
exports = exportSet,
passThrough = passSet,
loopRegs = loopSet,
initialStacks = union(stackPassSet, stackImportSet),
inCCState = inCCState,
outCCState = outCCState
}
end
in
val resultBlocks = Vector.tabulate(vectorLength, createResult)
val regActive = regActive
end
val registerState: regState vector =
Vector.tabulate(maxPRegs,
fn i => {
active = Array.sub(regActive, i),
refs = Array.sub(regRefs, i),
pushState = Array.sub(requirePushOrDiscard, i),
prop = Vector.sub(pregProps, i)
}
)
in
(resultBlocks, registerState)
end
(* Exported function. First filter out unreferenced blocks then process the
registers themselves. *)
fun identifyRegisters(blockVector, pregProps) =
let
val vectorLength = Vector.length blockVector
val mapArray = Array.array(vectorLength, NONE)
and resArray = Array.array(vectorLength, NONE)
val count = ref 0
fun setReferences label =
case Array.sub(mapArray, label) of
NONE => (* Not yet visited *)
let
val BasicBlock{flow, block} = Vector.sub(blockVector, label)
(* Create a new entry for it. *)
val newLabel = ! count before count := !count + 1
(* Add it to the map. Any other references will use this
without reprocessing. *)
val () = Array.update(mapArray, label, SOME newLabel)
val newFlow =
case flow of
Unconditional l => Unconditional(setReferences l)
| Conditional{trueJump, falseJump, ccRef, condition} =>
Conditional{trueJump=setReferences trueJump, falseJump=setReferences falseJump,
ccRef=ccRef, condition=condition}
| ExitCode => ExitCode
| IndexedBr list => IndexedBr(map setReferences list)
| SetHandler{handler, continue} =>
SetHandler{handler=setReferences handler, continue=setReferences continue}
| UnconditionalHandle l => UnconditionalHandle(setReferences l)
| ConditionalHandle{handler, continue} =>
ConditionalHandle{handler=setReferences handler, continue=setReferences continue}
val () = Array.update(resArray, newLabel, SOME(BasicBlock{flow=newFlow, block=block}))
in
newLabel
end
| SOME lab => lab
val _ = setReferences 0
val newBlockVector =
Vector.tabulate(!count, fn i => valOf(Array.sub(resArray, i)))
in
identifyRegs(newBlockVector, pregProps)
end
(* Exported for use in GetConflictSets *)
fun getInstructionRegisters instr =
let
val {sources, dests, ...} = getInstructionState instr
in
{sources=sources, dests=dests}
end
(* Exported for use in ICodeOptimise *)
val getInstructionCC = #ccOut o getInstructionState
structure Sharing =
struct
type x86ICode = x86ICode
and reg = reg
and preg = preg
and intSet = intSet
and basicBlock = basicBlock
and extendedBasicBlock = extendedBasicBlock
and controlFlow = controlFlow
and argument = argument
and memoryIndex = memoryIndex
and regProperty = regProperty
and ccRef = ccRef
and outCCState = outCCState
end
end;
|