1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
(*
Copyright David C. J. Matthews 2018-19
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
functor X86ICodeOptimise(
structure ICODE: ICodeSig
structure INTSET: INTSETSIG
structure IDENTIFY: X86IDENTIFYREFSSIG
structure X86CODE: X86CODESIG (* For invertTest. *)
structure DEBUG: DEBUGSIG
structure PRETTY: PRETTYSIG
sharing ICODE.Sharing = IDENTIFY.Sharing = INTSET = X86CODE
): X86ICODEOPTSIG =
struct
open ICODE
open INTSET
open IDENTIFY
val InternalError = Misc.InternalError
datatype optimise = Changed of basicBlock vector * regProperty vector | Unchanged
(* Optimiser.
This could incorporate optimisations done elsewhere.
IdentifyReferences currently removes instructions that
produce results in registers that are never used.
PushRegisters deals with caching. Caching involves
speculative changes that can be reversed if there is a need
to spill registers.
The optimiser currently deals with booleans and conditions
and with moving memory loads into an instruction operand.
*)
(* This is a rewrite of the last instruction to set a boolean.
This is almost always rewriting the next instruction. The only
possibility is that we have a ResetStackPtr in between. *)
datatype boolRegRewrite =
BRNone
(* BRSetConditionToConstant - we have a comparison of two constant value.
This will usually happen because we've duplicated a branch and
set a register to a constant which we then compare. *)
| BRSetConditionToConstant of
{ srcCC: ccRef, signedCompare: order, unsignedCompare: order }
fun optimiseICode{ code, pregProps, ccCount=_, debugSwitches=_ } =
let
val hasChanged = ref false
val regCounter = ref(Vector.length pregProps)
val regList = ref []
fun newReg kind =
(
regList := kind :: ! regList;
PReg (!regCounter)
) before regCounter := !regCounter + 1
(* If this argument is a register and the register is mapped to a memory location, a constant
or another register replace the value. Memory locations are only replaced if this is
the only use. If there is more than one reference it's better to load it into a
register and retain the register references. *)
fun replaceWithValue(arg as RegisterArgument (preg as PReg pregNo), kill, regMap, instrOpSize) =
(
case List.find(fn {dest, ... } => dest = preg) regMap of
SOME { source as MemoryLocation _, opSize, ...} =>
(
if member(pregNo, kill) andalso opSize = instrOpSize
then ( hasChanged := true; source )
else arg,
(* Filter this from the list. If this is not the last
reference we want to use the register and if it is then
we don't need it any longer. *)
List.filter(fn {dest, ...} => dest <> preg) regMap
)
| SOME { source, ...} =>
(
source,
(* Filter it if it is the last reference. *)
if member(pregNo, kill)
then List.filter(fn {dest, ...} => dest <> preg) regMap
else regMap
)
| NONE => (arg, regMap)
)
| replaceWithValue(arg, _, regMap, _) = (arg, regMap)
fun optimiseBlock processed (block, flow, outCCState) =
let
fun optCode([], brCond, regMap, code) = (code, brCond, regMap)
| optCode({instr=CompareLiteral{arg1, arg2, ccRef=ccRefOut, opSize}, kill, ...} :: rest,
_, regMap, code) =
let
val (repArg1, memRefsOut) = replaceWithValue(arg1, kill, regMap, opSize)
in
case repArg1 of
IntegerConstant test =>
(* CompareLiteral is put in by CodetreeToIcode to test a boolean value. It can also
arise as the result of pattern matching on booleans or even by tests such as = true.
If the source register is now a constant we want to propagate the constant
condition. *)
let
(* This comparison reduces to a constant. *)
val _ = hasChanged := true
(* Put in a replacement so that if we were previously testing ccRefOut
we should instead test ccRef. *)
val repl =
BRSetConditionToConstant{srcCC=ccRefOut, signedCompare=LargeInt.compare(test, arg2),
(* Unsigned tests. We converted the values from Word to LargeInt. We can therefore
turn the tests back to Word for the unsigned comparisons. *)
unsignedCompare=Word.compare(Word.fromLargeInt test, Word.fromLargeInt arg2)}
val _ = isSome outCCState andalso raise InternalError "optCode: CC exported"
in
optCode(rest, repl, memRefsOut, code)
end
| repArg1 =>
optCode(rest, BRNone, memRefsOut,
CompareLiteral{arg1=repArg1, arg2=arg2, ccRef=ccRefOut, opSize=opSize}::code)
end
| optCode({instr=LoadArgument{dest, source, kind=Move64Bit}, kill, ...} :: rest, inCond, regMap, code) =
let
val (repSource, mapAfterReplace) = replaceWithValue(source, kill, regMap, OpSize64)
(* If the value is a constant or memory after replacement we include this. *)
val mapOut =
if (case repSource of MemoryLocation _ => true | IntegerConstant _ => true | _ => false)
then {dest=dest, source=repSource, opSize=OpSize64} :: mapAfterReplace
else mapAfterReplace
val outInstr = LoadArgument{dest=dest, source=repSource, kind=Move64Bit}
in
optCode(rest, inCond, mapOut, outInstr::code)
end
| optCode({instr=LoadArgument{dest, source, kind=Move32Bit}, kill, ...} :: rest, inCond, regMap, code) =
let
val (repSource, mapAfterReplace) = replaceWithValue(source, kill, regMap, OpSize32)
val mapOut =
if (case repSource of MemoryLocation _ => true | IntegerConstant _ => true | _ => false)
then {dest=dest, source=repSource, opSize=OpSize32} :: mapAfterReplace
else mapAfterReplace
val outInstr = LoadArgument{dest=dest, source=repSource, kind=Move32Bit}
in
optCode(rest, inCond, mapOut, outInstr::code)
end
| optCode({instr as LoadArgument{dest, source as MemoryLocation _, kind} , ...} :: rest, inCond, regMap, code) =
let
(* If we load a memory location add it to the list in case we can use it later. *)
val memRefsOut =
case kind of
Move64Bit => {dest=dest, source=source, opSize=OpSize64} :: regMap
| Move32Bit => {dest=dest, source=source, opSize=OpSize32} :: regMap
| _ => regMap
in
optCode(rest, inCond, memRefsOut, instr::code)
end
| optCode({instr as StoreArgument _, ...} :: rest, inCond, _, code) =
(* This may change a value in memory. For safety remove everything. *)
optCode(rest, inCond, [], instr::code)
| optCode({instr as FunctionCall _, ...} :: rest, _, _, code) =
optCode(rest, BRNone, [], instr::code)
| optCode({instr as BeginLoop, ...} :: rest, _, _, code) =
(* Any register value from outside the loop are not valid inside. *)
optCode(rest, BRNone, [], instr::code)
| optCode({instr as JumpLoop _, ...} :: rest, _, _, code) =
(* Likewise at the end of the loop. Not sure if this is essential. *)
optCode(rest, BRNone, [], instr::code)
(* These instructions could take memory operands. This isn't the full set but the others are
rare or only take memory operands that refer to boxed memory. *)
| optCode({instr=WordComparison{arg1, arg2, ccRef, opSize}, kill, ...} :: rest, _, regMap, code) =
let
(* Replace register reference with memory if possible. *)
val (source, memRefsOut) = replaceWithValue(arg2, kill, regMap, opSize)
in
(* This affects the CC. *)
optCode(rest, BRNone, memRefsOut, WordComparison{arg1=arg1, arg2=source, ccRef=ccRef, opSize=opSize}::code)
end
| optCode({instr=ArithmeticFunction{oper, resultReg, operand1, operand2, ccRef, opSize}, kill, ...} :: rest, _, regMap, code) =
let
(* Replace register reference with memory if possible. *)
val (source, memRefsOut) = replaceWithValue(operand2, kill, regMap, opSize)
in
(* This affects the CC. *)
optCode(rest, BRNone, memRefsOut,
ArithmeticFunction{oper=oper, resultReg=resultReg, operand1=operand1,
operand2=source, ccRef=ccRef, opSize=opSize}::code)
end
| optCode({instr as TestTagBit{arg, ccRef}, kill, ...} :: rest, _, regMap, code) =
let
(* Replace register reference with memory. In some circumstances it can try to
replace it with a constant. Since we don't code-generate that case we
need to filter it out and retain the original register. *)
val (source, memRefsOut) = replaceWithValue(arg, kill, regMap, polyWordOpSize)
val resultInstr =
case source of
IntegerConstant _ => instr (* Use original *)
| AddressConstant _ => instr
| _ => TestTagBit{arg=source, ccRef=ccRef}
in
(* This affects the CC. *)
optCode(rest, BRNone, memRefsOut, resultInstr::code)
end
| optCode({instr=UntagFloat{source, dest, cache=_}, kill, ...} :: rest, _, regMap, code) =
let
(* Replace register reference with memory if possible. *)
val (source, memRefsOut) = replaceWithValue(source, kill, regMap, polyWordOpSize)
in
(* Not sure if this affects the CC but assume it might. *)
optCode(rest, BRNone, memRefsOut, UntagFloat{source=source, dest=dest, cache=NONE}::code)
end
| optCode({instr, ...} :: rest, inCond, regMap, code) =
let
(* If this instruction affects the CC the cached SetToCondition will no longer be valid. *)
val afterCond =
case getInstructionCC instr of
CCUnchanged => inCond
| _ => BRNone
in
optCode(rest, afterCond, regMap, instr::code)
end
val (blkCode, finalRepl, finalMap) = optCode(block, BRNone, [], processed)
in
case (flow, finalRepl) of
(* We have a Condition and a change to the condition. *)
(flow as Conditional{ccRef, condition, trueJump, falseJump},
BRSetConditionToConstant({srcCC, signedCompare, unsignedCompare, ...})) =>
if srcCC = ccRef
then
let
val testResult =
case (condition, signedCompare, unsignedCompare) of
(JE, EQUAL, _) => true
| (JE, _, _) => false
| (JNE, EQUAL, _) => false
| (JNE, _, _) => true
| (JL, LESS, _) => true
| (JL, _, _) => false
| (JG, GREATER,_) => true
| (JG, _, _) => false
| (JLE, GREATER,_) => false
| (JLE, _, _) => true
| (JGE, LESS, _) => false
| (JGE, _, _) => true
| (JB, _, LESS ) => true
| (JB, _, _) => false
| (JA, _,GREATER) => true
| (JA, _, _) => false
| (JNA, _,GREATER) => false
| (JNA, _, _) => true
| (JNB, _, LESS ) => false
| (JNB, _, _) => true
(* The overflow and parity checks should never occur. *)
| _ => raise InternalError "getCondResult: comparison"
val newFlow =
if testResult
then Unconditional trueJump
else Unconditional falseJump
val() = hasChanged := true
in
BasicBlock{flow=newFlow, block=List.rev blkCode}
end
else BasicBlock{flow=flow, block=List.rev blkCode}
| (flow as Unconditional jmp, _) =>
let
val ExtendedBasicBlock{block=targetBlck, locals, exports, flow=targetFlow, outCCState=targetCC, ...} =
Vector.sub(code, jmp)
(* If the target is empty or is simply one or more Resets or a Return we're
better off merging this in rather than doing the jump. We allow a single
Load e.g. when loading a constant or moving a register.
If we have a CompareLiteral and we're comparing with a register in the map
that has been set to a constant we include that because the comparison will
then be reduced to a constant. *)
fun isSimple([], _, _) = true
| isSimple ({instr=ResetStackPtr _, ...} :: instrs, moves, regMap) = isSimple(instrs, moves, regMap)
| isSimple ({instr=ReturnResultFromFunction _, ...} :: instrs, moves, regMap) = isSimple(instrs, moves, regMap)
| isSimple ({instr=RaiseExceptionPacket _, ...} :: instrs, moves, regMap) = isSimple(instrs, moves, regMap)
| isSimple ({instr=LoadArgument{source=RegisterArgument preg, dest, kind=Move64Bit}, ...} :: instrs, moves, regMap) =
let
(* We frequently have a move of the original register into a new register before the test. *)
val newMap =
case List.find(fn {dest, ... } => dest = preg) regMap of
SOME {source, ...} => {dest=dest, source=source, opSize=OpSize64} :: regMap
| NONE => regMap
in
moves = 0 andalso isSimple(instrs, moves+1, newMap)
end
| isSimple ({instr=LoadArgument{source=RegisterArgument preg, dest, kind=Move32Bit}, ...} :: instrs, moves, regMap) =
let
(* We frequently have a move of the original register into a new register before the test. *)
val newMap =
case List.find(fn {dest, ... } => dest = preg) regMap of
SOME {source, ...} => {dest=dest, source=source, opSize=OpSize32} :: regMap
| NONE => regMap
in
moves = 0 andalso isSimple(instrs, moves+1, newMap)
end
| isSimple ({instr=LoadArgument _, ...} :: instrs, moves, regMap) = moves = 0 andalso isSimple(instrs, moves+1, regMap)
| isSimple ({instr=CompareLiteral{arg1=RegisterArgument preg, ...}, ...} :: instrs, moves, regMap) =
let
val isReplace = List.find(fn {dest, ... } => dest = preg) regMap
in
case isReplace of
SOME {source=IntegerConstant _, ...} => isSimple(instrs, moves, regMap)
| _ => false
end
| isSimple _ = false
in
(* Merge trivial blocks. This previously also tried to merge non-trivial blocks if
they only had one reference but this ends up duplicating non-trivial code. If we
have a trivial block that has multiple references but is the only reference to
a non-trivial block we can merge the non-trivial block into it. That would
be fine except that at the same time we may merge this trivial block elsewhere. *)
(* The restriction that a block must only export "merge" registers is unfortunate
but necessary to avoid the situation where a non-merge register is defined at
multiple points and cannot be pushed to the stack. This really isn't an issue
with blocks with unconditional branches but there are cases where we have
successive tests of the same condition and that results in local registers
being defined and then exported. This occurs in, for example,
fun f x = if x > "abcde" then "yes" else "no"; *)
if isSimple(targetBlck, 0, finalMap) andalso
List.all (fn i => Vector.sub(pregProps, i) = RegPropMultiple) (setToList exports)
then
let
(* Copy the block, creating new registers for the locals. *)
val localMap = List.map (fn r => (PReg r, newReg(Vector.sub(pregProps, r)))) (setToList locals)
fun mapReg r = case List.find (fn (s, _) => r = s) localMap of SOME(_, s) => s | NONE => r
fun mapIndex(MemIndex1 r) = MemIndex1(mapReg r)
| mapIndex(MemIndex2 r) = MemIndex2(mapReg r)
| mapIndex(MemIndex4 r) = MemIndex4(mapReg r)
| mapIndex(MemIndex8 r) = MemIndex8(mapReg r)
| mapIndex index = index
fun mapArg(RegisterArgument r) = RegisterArgument(mapReg r)
| mapArg(MemoryLocation{base, offset, index, ...}) =
MemoryLocation{base=mapReg base, offset=offset, index=mapIndex index, cache=NONE}
| mapArg arg = arg
fun mapInstr(instr as ResetStackPtr _) = instr
| mapInstr(ReturnResultFromFunction{resultReg, realReg, numStackArgs}) =
ReturnResultFromFunction{resultReg=mapReg resultReg, realReg=realReg, numStackArgs=numStackArgs}
| mapInstr(RaiseExceptionPacket{packetReg}) =
RaiseExceptionPacket{packetReg=mapReg packetReg}
| mapInstr(LoadArgument{source, dest, kind}) =
LoadArgument{source=mapArg source, dest=mapReg dest, kind=kind}
| mapInstr(CompareLiteral{arg1, arg2, opSize, ccRef}) =
CompareLiteral{arg1=mapArg arg1, arg2=arg2, opSize=opSize, ccRef=ccRef}
| mapInstr _ = raise InternalError "mapInstr: other instruction"
fun mapRegNo i = case(mapReg(PReg i)) of PReg r => r
(* Map the instructions and the sets although we only use the kill set. *)
fun mapCode{instr, current, active, kill} =
{instr=mapInstr instr, current=listToSet(map mapRegNo (setToList current)),
active=listToSet(map mapRegNo (setToList active)), kill=listToSet(map mapRegNo (setToList kill))}
in
hasChanged := true;
optimiseBlock blkCode(map mapCode targetBlck, targetFlow, targetCC)
end
else BasicBlock{flow=flow, block=List.rev blkCode}
end
| (flow, _) => BasicBlock{flow=flow, block=List.rev blkCode}
end
fun optBlck(ExtendedBasicBlock{block, flow, outCCState, ...}) = optimiseBlock [] (block, flow, outCCState)
val resVector = Vector.map optBlck code
in
if !hasChanged
then
let
val extraRegs = List.rev(! regList)
val props =
if null extraRegs
then pregProps
else Vector.concat[pregProps, Vector.fromList extraRegs]
in
Changed(resVector, props)
end
else Unchanged
end
structure Sharing =
struct
type extendedBasicBlock = extendedBasicBlock
and basicBlock = basicBlock
and regProperty = regProperty
and optimise = optimise
end
end;
|