1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
|
(*
Copyright David C. J. Matthews 2016-19
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 2.1 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
functor X86ICodeToX86Code(
structure X86CODE: X86CODESIG
structure X86OPTIMISE:
sig
type operation
type code
type operations = operation list
type closureRef
val generateCode: {code: code, ops: operations, labelCount: int, resultClosure: closureRef } -> unit
structure Sharing:
sig
type operation = operation
type code = code
type closureRef = closureRef
end
end
structure DEBUG: DEBUGSIG
structure ICODE: ICodeSig
structure IDENTIFY: X86IDENTIFYREFSSIG
structure INTSET: INTSETSIG
structure PRETTY: PRETTYSIG
structure STRONGLY:
sig
val stronglyConnectedComponents: {nodeAddress: 'a -> int, arcs: 'a -> int list } -> 'a list -> 'a list list
end
sharing X86CODE.Sharing = ICODE.Sharing = X86OPTIMISE.Sharing = IDENTIFY.Sharing = INTSET
): X86ICODEGENERATESIG =
struct
open IDENTIFY
open ICODE
open X86CODE
open Address
exception InternalError = Misc.InternalError
fun asGenReg(GenReg r) = r
| asGenReg _ = raise InternalError "asGenReg"
and asFPReg(FPReg r) = r
| asFPReg _ = raise InternalError "asFPReg"
and asXMMReg(XMMReg r) = r
| asXMMReg _ = raise InternalError "asXMMReg"
(* tag a short constant *)
fun tag c = 2 * c + 1
local
val regs =
case targetArch of
Native32Bit => [edi, esi, edx, ecx, ebx, eax]
| Native64Bit => [r14, r13, r12, r11, r10, r9, r8, edi, esi, edx, ecx, ebx, eax]
| ObjectId32Bit => [r14, r13, r12, r11, r10, r9, r8, edi, esi, edx, ecx, eax]
in
val generalRegisters = List.map GenReg regs
end
fun opSizeToMove OpSize32 = Move32 | opSizeToMove OpSize64 = Move64
fun icodeToX86Code{blocks, functionName, stackRequired, debugSwitches, allocatedRegisters, resultClosure, ...} =
let
fun argAsGenReg(RegisterArg(GenReg r)) = r
| argAsGenReg _ = raise InternalError "argAsGenReg"
fun sourceAsGenRegOrMem(RegisterArg(GenReg r)) = RegisterArg r
| sourceAsGenRegOrMem(MemoryArg{offset, base=baseReg, index}) =
MemoryArg{base=baseReg, offset=offset, index=index}
| sourceAsGenRegOrMem(NonAddressConstArg v) = NonAddressConstArg v
| sourceAsGenRegOrMem(AddressConstArg v) = AddressConstArg v
| sourceAsGenRegOrMem _ = raise InternalError "sourceAsGenRegOrMem"
and sourceAsXMMRegOrMem(RegisterArg(XMMReg r)) = RegisterArg r
| sourceAsXMMRegOrMem(MemoryArg{offset, base=baseReg, index}) =
MemoryArg{base=baseReg, offset=offset, index=index}
| sourceAsXMMRegOrMem(NonAddressConstArg v) = NonAddressConstArg v
| sourceAsXMMRegOrMem(AddressConstArg v) = AddressConstArg v
| sourceAsXMMRegOrMem _ = raise InternalError "sourceAsGenRegOrMem"
(* Moves and loads. *)
fun llLoadArgument({ source, dest=GenReg destReg, kind=Move64Bit}, code) =
Move { source=sourceAsGenRegOrMem source, destination=RegisterArg destReg, moveSize=Move64 } :: code
| llLoadArgument({ source=MemoryArg mLoc, dest=GenReg destReg, kind=MoveByte}, code) = (* Load from memory. *)
Move{moveSize=Move8, source=MemoryArg mLoc, destination=RegisterArg destReg} :: code
| llLoadArgument({ source=MemoryArg mLoc, dest=GenReg destReg, kind=Move16Bit}, code) = (* Load from memory. *)
Move{moveSize=Move16, source=MemoryArg mLoc, destination=RegisterArg destReg} :: code
| llLoadArgument({ source, dest=GenReg destReg, kind=Move32Bit}, code) = (* Load from memory. *)
Move { source=sourceAsGenRegOrMem source, destination=RegisterArg destReg, moveSize=Move32 } :: code
(* Load a floating point value. *)
| llLoadArgument({source=MemoryArg{offset, base=baseReg, index}, dest=FPReg fpReg, kind=MoveDouble}, code) =
moveToOutputFP(fpReg,
FPLoadFromMemory{ address={base=baseReg, offset=offset, index=index}, precision=DoublePrecision } :: code)
| llLoadArgument({source=AddressConstArg addrConst, dest=FPReg fpReg, kind=MoveDouble}, code) =
moveToOutputFP(fpReg, FPLoadFromConst{ constant= addrConst, precision=DoublePrecision } :: code)
| llLoadArgument({source=RegisterArg(FPReg fpSrc), dest=FPReg fpDest, kind=MoveDouble}, code) =
(* Moving from one FP reg to another. Even if we are moving from FP0 we still do a load
because FPStoreToFPReg adds one to the register number to account for one value on the
stack. *)
moveToOutputFP(fpDest, FPLoadFromFPReg{source=fpSrc, lastRef=false} :: code)
(* Load or move from an XMM reg. *)
| llLoadArgument({source, dest=XMMReg xmmRegReg, kind=MoveDouble}, code) =
XMMArith { opc= SSE2MoveDouble, source=sourceAsXMMRegOrMem source, output=xmmRegReg } :: code
(* Load a floating point value. *)
| llLoadArgument({source=MemoryArg{offset, base=baseReg, index}, dest=FPReg fpReg, kind=MoveFloat}, code) =
moveToOutputFP(fpReg,
FPLoadFromMemory{ address={ base=baseReg, offset=offset, index=index }, precision=SinglePrecision } :: code)
| llLoadArgument({source=AddressConstArg addrConst, dest=FPReg fpReg, kind=MoveFloat}, code) =
moveToOutputFP(fpReg, FPLoadFromConst{ constant= addrConst, precision=SinglePrecision } :: code)
(* Load or move from an XMM reg. *)
| llLoadArgument({source, dest=XMMReg xmmRegReg, kind=MoveFloat}, code) =
XMMArith { opc= SSE2MoveFloat, source=sourceAsXMMRegOrMem source, output=xmmRegReg } :: code
(* Any other combinations are not allowed. *)
| llLoadArgument _ = raise InternalError "codeGenICode: LoadArgument"
(* Unless the destination is FP0 we need to store and pop. *)
and moveToOutputFP(fpDest, code) =
if fpDest = fp0 then code
else FPStoreToFPReg{output=fpDest, andPop=true} :: code
(* Store to memory *)
fun llStoreArgument{ source=RegisterArg(GenReg sourceReg), base, offset, index, kind=Move64Bit} =
Move{source=RegisterArg sourceReg, destination=MemoryArg {base=base, offset=offset, index=index}, moveSize=opSizeToMove OpSize64}
| llStoreArgument{ source=RegisterArg(GenReg sourceReg), base, offset, index, kind=MoveByte} =
Move{moveSize=Move8, source=RegisterArg sourceReg, destination=MemoryArg {base=base, offset=offset, index=index}}
| llStoreArgument{ source=RegisterArg(GenReg sourceReg), base, offset, index, kind=Move16Bit} =
Move{moveSize=Move16, source=RegisterArg sourceReg, destination=MemoryArg {base=base, offset=offset, index=index}}
| llStoreArgument{ source=RegisterArg(GenReg sourceReg), base, offset, index, kind=Move32Bit} =
Move{source=RegisterArg sourceReg, destination=MemoryArg {base=base, offset=offset, index=index}, moveSize=opSizeToMove OpSize32}
(* Store a short constant to memory *)
| llStoreArgument{ source=NonAddressConstArg srcValue, base, offset, index, kind=Move64Bit} =
Move{source=NonAddressConstArg srcValue, destination=MemoryArg {base=base, offset=offset, index=index}, moveSize=Move64}
| llStoreArgument{ source=NonAddressConstArg srcValue, base, offset, index, kind=Move32Bit} =
Move{source=NonAddressConstArg srcValue, destination=MemoryArg {base=base, offset=offset, index=index}, moveSize=Move32}
| llStoreArgument{ source=NonAddressConstArg srcValue, base, offset, index, kind=MoveByte} =
Move{moveSize=Move8, source=NonAddressConstArg srcValue, destination=MemoryArg{base=base, offset=offset, index=index}}
(* Store a long constant to memory *)
| llStoreArgument{ source=AddressConstArg srcValue, base, offset, index, kind} =
(
(* This Move must be of a polyWord size. *)
case (kind, polyWordOpSize) of
(Move64Bit, OpSize64) => ()
| (Move32Bit, OpSize32) => ()
| _ => raise InternalError "Move of AddressConstArg";
Move{moveSize=opSizeToMove polyWordOpSize, source=AddressConstArg srcValue, destination=MemoryArg {base=base, offset=offset, index=index}}
)
(* Store a floating point value. *)
| llStoreArgument{source=RegisterArg(FPReg fpReg), offset, base=baseReg, index, kind=MoveDouble} =
let
val _ = fpReg = fp0 orelse raise InternalError "llStoreArgument: Store FPReg <> fp0"
in
FPStoreToMemory{ address={ base=baseReg, offset=offset, index=index}, precision=DoublePrecision, andPop=true }
end
| llStoreArgument{source=RegisterArg(XMMReg xmmRegReg), offset, base=baseReg, index, kind=MoveDouble} =
XMMStoreToMemory { toStore=xmmRegReg, address={base=baseReg, offset=offset, index=index}, precision=DoublePrecision }
(* Store a floating point value. *)
| llStoreArgument{source=RegisterArg(FPReg fpReg), offset, base=baseReg, index, kind=MoveFloat} =
let
val _ = fpReg = fp0 orelse raise InternalError "llStoreArgument: Store FPReg <> fp0"
in
FPStoreToMemory{address={ base=baseReg, offset=offset, index=index}, precision=SinglePrecision, andPop=true }
end
| llStoreArgument{source=RegisterArg(XMMReg xmmRegReg), offset, base=baseReg, index, kind=MoveFloat} =
XMMStoreToMemory { toStore=xmmRegReg, address={base=baseReg, offset=offset, index=index}, precision=SinglePrecision }
| llStoreArgument _ = raise InternalError "llStoreArgument: StoreArgument"
val numBlocks = Vector.length blocks
fun getAllocatedReg r = Vector.sub(allocatedRegisters, r)
val getAllocatedGenReg = asGenReg o getAllocatedReg
and getAllocatedFPReg = asFPReg o getAllocatedReg
and getAllocatedXMMReg = asXMMReg o getAllocatedReg
fun codeExtIndex NoMemIndex = NoIndex
| codeExtIndex(MemIndex1(PReg r)) = Index1(getAllocatedGenReg r)
| codeExtIndex(MemIndex2(PReg r)) = Index2(getAllocatedGenReg r)
| codeExtIndex(MemIndex4(PReg r)) = Index4(getAllocatedGenReg r)
| codeExtIndex(MemIndex8(PReg r)) = Index8(getAllocatedGenReg r)
| codeExtIndex ObjectIndex = raise InternalError "codeExtIndex: ObjectIndex"
local
fun codeExtArgument getReg (RegisterArgument(PReg r)) = RegisterArg(getReg r)
| codeExtArgument _ (AddressConstant m) = AddressConstArg m
| codeExtArgument _ (IntegerConstant i) = NonAddressConstArg i
| codeExtArgument _ (MemoryLocation{base=PReg bReg, offset, index=ObjectIndex, cache=NONE}) =
MemoryArg{base=ebx, index=Index4(getAllocatedGenReg bReg), offset=offset}
| codeExtArgument _ (MemoryLocation{base=PReg bReg, offset, index, cache=NONE}) =
MemoryArg{base=getAllocatedGenReg bReg, offset=offset, index=codeExtIndex index}
| codeExtArgument getReg (MemoryLocation{cache=SOME(PReg r), ...}) = RegisterArg(getReg r)
| codeExtArgument _ (StackLocation{wordOffset, cache=NONE, ...}) =
MemoryArg{base=esp, offset=wordOffset*Word.toInt nativeWordSize, index=NoIndex}
| codeExtArgument getReg (StackLocation{cache=SOME(PReg r), ...}) = RegisterArg(getReg r)
| codeExtArgument _ (ContainerAddr _) = raise InternalError "codeExtArgument - ContainerAddr"
in
val codeExtArgument = codeExtArgument getAllocatedReg
and codeExtArgumentAsGenReg = codeExtArgument getAllocatedGenReg
and codeExtArgumentAsFPReg = codeExtArgument getAllocatedFPReg
and codeExtArgumentAsXMMReg = codeExtArgument getAllocatedXMMReg
end
fun codeCallKind Recursive = NonAddressConstArg 0 (* Jump to the start *)
| codeCallKind (ConstantCode v) = AddressConstArg v
| codeCallKind FullCall =
(
case targetArch of
ObjectId32Bit => MemoryArg{base=ebx, index=Index4 edx, offset=0}
| _ => MemoryArg{base=edx, index=NoIndex, offset=0}
)
(* Move unless the registers are the same. *)
fun moveIfNecessary({src, dst, kind}, code) =
if src = dst then code
else llLoadArgument({source=RegisterArg src, dest=dst, kind=kind}, code)
fun opSizeToIMove OpSize64 = Move64Bit
| opSizeToIMove OpSize32 = Move32Bit
datatype llsource =
StackSource of int
| OtherSource of reg regOrMemoryArg
fun sourceToX86Code(OtherSource r) = r
| sourceToX86Code(StackSource wordOffset) = MemoryArg{base=esp, offset=wordOffset*Word.toInt nativeWordSize, index=NoIndex}
local
fun indexRegister NoIndex = NONE
| indexRegister (Index1 r) = SOME r
| indexRegister (Index2 r) = SOME r
| indexRegister (Index4 r) = SOME r
| indexRegister (Index8 r) = SOME r
(* The registers are numbered from 0. Choose values that don't conflict with
the stack addresses. *)
fun regNo r = ~1 - nReg r
type node = {src: llsource, dst: destinations }
fun nodeAddress({dst=RegDest r, ...}: node) = regNo r
| nodeAddress({dst=StackDest a, ...}) = a
fun arcs({src=StackSource wordOffset, ...}: node) = [wordOffset]
| arcs{src=OtherSource(RegisterArg r), ...} = [regNo r]
| arcs{src=OtherSource(MemoryArg{base, index, ...}), ...} =
(case indexRegister index of NONE => [regNo(GenReg base)] | SOME r => [regNo(GenReg base), regNo(GenReg r)])
| arcs _ = []
in
val stronglyConnected = STRONGLY.stronglyConnectedComponents { nodeAddress=nodeAddress, arcs=arcs }
end
(* This is a general function for moving values into registers or to the stack
where it is possible that the source values might also be in use as destinations.
The stack is used for destinations only for tail recursive calls. *)
fun moveMultipleValues(moves, workReg: reg option, code) =
let
val _ =
if List.exists(fn {dst=StackDest _, ...} => true | _ => false) moves andalso not(isSome workReg) then raise InternalError "no work reg" else ()
fun moveValues ([], code) = code (* We're done. *)
| moveValues (arguments, code) =
let
(* stronglyConnectedComponents does two things. It detects loops where
it's not possible to move items without breaking the loop but more
importantly it orders the dependencies so that if there are no loops we
can load the source and store it in the destination knowing that
we won't overwrite anything we might later need. *)
val ordered = stronglyConnected arguments
fun isFPReg(GenReg _) = false
| isFPReg(XMMReg _) = true
| isFPReg(FPReg _) = true
fun moveEachValue ([], code) = code
| moveEachValue ([{dst=RegDest reg, src as OtherSource(RegisterArg r)}] :: rest, code) =
(* Source and dest are both regs - only move if they're different. *)
if r = reg
then moveEachValue(rest, code)
else moveEachValue(rest,
llLoadArgument({source=sourceToX86Code src, dest=reg, kind=if isFPReg reg then MoveDouble else moveNativeWord}, code))
| moveEachValue ([{dst=RegDest reg, src as StackSource _}] :: rest, code) =
(* If loading from the stack always use native word. The value could be a stack address. *)
moveEachValue(rest, llLoadArgument({source=sourceToX86Code src, dest=reg, kind=moveNativeWord}, code))
| moveEachValue ([{dst=RegDest reg, src}] :: rest, code) =
(* Load from store or a constant. Have to use movePolyWord if it's an address constant. *)
moveEachValue(rest, llLoadArgument({source=sourceToX86Code src, dest=reg, kind=movePolyWord}, code))
| moveEachValue ([{dst=StackDest _, src=OtherSource(MemoryArg _ )}] :: _, _) =
raise InternalError "moveEachValue - MemoryArgument"
| moveEachValue ([{dst=StackDest addr, src as StackSource wordOffset}] :: rest, code) =
(* Copy a stack location - needs a load and store unless the address is the same. *)
if addr = wordOffset
then moveEachValue(rest, code)
else
let
val workReg = valOf workReg
in
moveEachValue(rest,
llStoreArgument{source=RegisterArg workReg, base=esp, index=NoIndex,
offset = addr*Word.toInt nativeWordSize, kind=moveNativeWord} ::
llLoadArgument({source=sourceToX86Code src, dest=workReg, kind=moveNativeWord}, code))
end
| moveEachValue ([{dst=StackDest addr, src}] :: rest, code) =
(* Store from a register or a constant. *)
moveEachValue(rest,
llStoreArgument{
source=sourceToX86Code src, base=esp, index=NoIndex, offset = addr*Word.toInt nativeWordSize, kind=moveNativeWord} :: code)
| moveEachValue((cycle as first :: _ :: _) :: rest, code) =
(* We have a cycle. *)
let
(* We need to exchange some of the arguments. Doing an exchange here will
set the destination with the correct source. However we have to process
every subsequent entry with the swapped registers. That may well mean that
one of those entries becomes trivial. Using XCHG means that we can move
N registers in N-1 exchanges.
We also need to rerun stronglyConnectedComponents on at least the rest of
this cycle. It's easiest to flatten the rest and do everything. *)
(* Try to find either a register-register move or a register-stack move.
If not use the first. If there's a stack-register move there will
also be a register-stack so we don't need to look for both. *)
val {dst=selectDst, src=selectSrc} =
case List.find(fn {src=OtherSource(RegisterArg _), dst=RegDest _} => true | _ => false) cycle of
SOME found => found
| _ =>
(
case List.find(fn {dst=RegDest _, ...} => true | _ => false) cycle of
SOME found => found
| NONE => first
)
(* This includes this entry but after the swap we'll eliminate it. *)
val flattened = List.foldl(fn (a, b) => a @ b) [] (cycle :: rest)
val destAsSource =
case selectDst of
RegDest reg => OtherSource(RegisterArg reg)
| StackDest s => StackSource s
(* Source is not an equality type. We can't currently handle the
situation where the source is a memory location. *)
fun match(OtherSource(RegisterArg r1), OtherSource(RegisterArg r2)) = r1 = r2
| match(StackSource s1, StackSource s2) = s1 = s2
| match(OtherSource(MemoryArg _), _) = raise InternalError "moveEachValue: cycle"
| match _ = false
fun swapSources{src, dst} =
if match(src, selectSrc) then {src=destAsSource, dst=dst}
else if match(src, destAsSource) then {src=selectSrc, dst=dst}
else {src=src, dst=dst}
(* Try to use register to register exchange if we can.
A register-to-memory exchange involves a bus lock and we'd
like to avoid that. *)
val exchangeCode =
case (selectDst, selectSrc) of
(RegDest(GenReg regA), OtherSource(RegisterArg(GenReg regB))) =>
XChng { reg=regA, arg=RegisterArg regB, opSize=nativeWordOpSize } :: code
| (RegDest(XMMReg regA), OtherSource(RegisterArg(XMMReg regB))) =>
(* This is the only case where we can have a cycle with SSE2 regs.
There are various ways of doing it but XORs are probably the easiest. *)
XMMArith{opc=SSE2Xor, source=RegisterArg regA, output=regB} ::
XMMArith{opc=SSE2Xor, source=RegisterArg regB, output=regA} ::
XMMArith{opc=SSE2Xor, source=RegisterArg regA, output=regB} :: code
| (RegDest _, OtherSource(RegisterArg _)) =>
raise InternalError "moveEachValue: invalid register combination"
| (RegDest regA, src as StackSource addr) =>
let
val workReg = valOf workReg
in
llStoreArgument{source=RegisterArg workReg, base=esp, index=NoIndex,
offset = addr*Word.toInt nativeWordSize, kind=moveNativeWord} ::
XChng { reg=asGenReg regA, arg=RegisterArg(asGenReg workReg), opSize=nativeWordOpSize } ::
llLoadArgument({source=sourceToX86Code src, dest=workReg, kind=moveNativeWord}, code)
end
| (StackDest addr, OtherSource(RegisterArg regA)) =>
let
(* This doesn't actually occur because we always find the case above. *)
val workReg = valOf workReg
in
llStoreArgument{source=RegisterArg workReg, base=esp, index=NoIndex,
offset = addr*Word.toInt nativeWordSize, kind=moveNativeWord} ::
XChng { reg=asGenReg regA, arg=RegisterArg (asGenReg workReg), opSize=nativeWordOpSize } ::
llLoadArgument({
source=MemoryArg{base=esp, offset=addr*Word.toInt nativeWordSize, index=NoIndex}, dest=workReg, kind=moveNativeWord}, code)
end
| (StackDest addr1, StackSource addr2) =>
let
val workReg = valOf workReg
(* This can still happen if we have argument registers that need to be
loaded from stack locations and those argument registers happen to
contain the values to be stored into those stack locations.
e.g. ebx => S8; eax => S7; S8 => eax; S7 => eax.
Eliminating the registers results in a cycle.
It may be possible to avoid this by excluding the argument
registers (eax; ebx; r8; r9; r10) from holding values in the
area to be overwritten. *)
in
llStoreArgument{source=RegisterArg workReg, base=esp, index=NoIndex,
offset = addr1*Word.toInt nativeWordSize, kind=moveNativeWord} ::
XChng { reg=asGenReg workReg,
arg=MemoryArg{base=esp, offset=addr2*Word.toInt nativeWordSize, index=NoIndex},
opSize=nativeWordOpSize } ::
llLoadArgument({
source=MemoryArg{base=esp, offset=addr1*Word.toInt nativeWordSize, index=NoIndex}, dest=workReg, kind=moveNativeWord}, code)
end
| _ => raise InternalError "moveEachValue: cycle"
in
moveValues(List.map swapSources flattened, exchangeCode)
end
| moveEachValue(([]) :: _, _) = (* This should not happen - avoid warning. *)
raise InternalError "moveEachValue - empty set"
in
moveEachValue(ordered, code)
end
in
moveValues(moves, code)
end
(* Where we have multiple specific registers as either source or
destination there is the potential that a destination register
if currently in use as a source. *)
fun moveMultipleRegisters(regPairList, code) =
let
val regPairsAsDests =
List.map(fn {src, dst} => {src=OtherSource(RegisterArg src), dst=RegDest dst}) regPairList
in
moveMultipleValues(regPairsAsDests, NONE, code)
end
val outputLabelCount = ref 0
val blockToLabelMap = Array.array(numBlocks, ~1)
fun makeLabel() = Label{labelNo = ! outputLabelCount} before outputLabelCount := !outputLabelCount + 1
fun getBlockLabel blockNo =
case Array.sub(blockToLabelMap, blockNo) of
~1 =>
let
val label as Label{labelNo} = makeLabel()
val () = Array.update(blockToLabelMap, blockNo, labelNo)
in label end
| n => Label{labelNo=n}
(* The profile object is a single mutable with the F_bytes bit set. *)
local
val v = RunCall.allocateByteMemory(0w1, Word.fromLargeWord(Word8.toLargeWord(Word8.orb(F_mutable, F_bytes))))
fun clear 0w0 = ()
| clear i = (assignByte(v, i-0w1, 0w0); clear (i-0w1))
val () = clear wordSize
in
val profileObject = toMachineWord v
end
(* Switch to indicate if we want to trace where live data has been allocated. *)
val addAllocatingFunction =
DEBUG.getParameter DEBUG.profileAllocationTag debugSwitches = 1
fun llAllocateMemoryOperation ({ size, flags, dest, saveRegs}, code) =
let
val toReg = asGenReg dest
val preserve = saveRegs
(* Allocate memory. N.B. Instructions are in reverse order. *)
fun allocStore{size, flags, output, preserve} =
if targetArch = Native64Bit andalso flags <> 0w0
then
[Move{moveSize=Move8, source=NonAddressConstArg(Word8.toLargeInt flags), destination=MemoryArg {offset= ~1, base=output, index=NoIndex}},
Move{source=NonAddressConstArg(LargeInt.fromInt size),
destination=MemoryArg {offset= ~ (Word.toInt wordSize), base=output, index=NoIndex},
moveSize=opSizeToMove polyWordOpSize},
AllocStore{size=size, output=output, saveRegs=preserve}]
else
let
val lengthWord = IntInf.orb(IntInf.fromInt size, IntInf.<<(Word8.toLargeInt flags, 0w24))
in
[Move{source=NonAddressConstArg lengthWord, destination=MemoryArg {offset= ~ (Word.toInt wordSize), base=output, index=NoIndex},
moveSize=opSizeToMove polyWordOpSize},
AllocStore{size=size, output=output, saveRegs=preserve}]
end
val allocCode =
(* If we need to add the profile object *)
if addAllocatingFunction
then
allocStore {size=size+1, flags=Word8.orb(flags, Address.F_profile), output=toReg, preserve=preserve} @
[Move{moveSize=opSizeToMove polyWordOpSize, source=AddressConstArg profileObject,
destination=MemoryArg {base=toReg, offset=size*Word.toInt wordSize, index=NoIndex}}]
else allocStore {size=size, flags=flags, output=toReg, preserve=preserve}
(* Convert to an object index if necessary. *)
val convertToObjId =
if targetArch = ObjectId32Bit
then [ ShiftConstant{ shiftType=SHR, output=toReg, shift=0w2, opSize=OpSize64 },
ArithToGenReg{ opc=SUB, output=toReg, source=RegisterArg ebx, opSize=nativeWordOpSize } ]
else []
in
convertToObjId @ allocCode @ code
end
(* Check the stack limit "register". This is used both at the start of a function for genuine
stack checking but also in a loop to check for an interrupt. We need to save the registers
even across an interrupt because it can be used if another thread wants a GC. *)
fun testRegAndTrap(reg, entryPt, saveRegs) =
let
(* Normally we won't have a stack overflow so we will skip the check. *)
val skipCheckLab = makeLabel()
in
(* Need it in reverse order. *)
[
JumpLabel skipCheckLab,
CallRTS{rtsEntry=entryPt, saveRegs=saveRegs},
ConditionalBranch{test=JNB, label=skipCheckLab},
ArithToGenReg{ opc=CMP, output=reg, source=MemoryArg{offset=memRegStackLimit, base=ebp, index=NoIndex}, opSize=nativeWordOpSize }
]
end
local
val numRegisters = Vector.length allocatedRegisters
val uses = Array.array(numRegisters, false)
fun used(PReg r) = Array.update(uses, r, true)
fun isUsed(PReg r) = Array.sub(uses, r)
(* Set the registers used by the sources. This differs from getInstructionState in that we don't set
the base register of a memory location to "used" if we can use the cache. *)
fun argUses(RegisterArgument rarg) = used rarg
| argUses(MemoryLocation { cache=SOME cr, ...}) = used cr
| argUses(MemoryLocation { base, index, cache=NONE, ...}) = (used base; indexUses index)
| argUses(StackLocation { cache=SOME rarg, ...}) = used rarg
| argUses _ = ()
and indexUses NoMemIndex = ()
| indexUses(MemIndex1 arg) = used arg
| indexUses(MemIndex2 arg) = used arg
| indexUses(MemIndex4 arg) = used arg
| indexUses(MemIndex8 arg) = used arg
| indexUses ObjectIndex = ()
(* LoadArgument, TagValue, CopyToCache, UntagValue and BoxValue are eliminated if their destination
is not used. In that case their source are not used either. *)
fun instructionUses(LoadArgument { source, dest, ...}) = if isUsed dest then argUses source else ()
| instructionUses(StoreArgument{ source, base, index, ...}) = (argUses source; used base; indexUses index)
| instructionUses(LoadMemReg _) = ()
| instructionUses(BeginFunction _) = ()
| instructionUses(FunctionCall{regArgs, stackArgs, ...}) = (List.app(argUses o #1) regArgs; List.app argUses stackArgs)
| instructionUses(TailRecursiveCall{regArgs, stackArgs, ...}) = (List.app(argUses o #1) regArgs; List.app(argUses o #src) stackArgs)
| instructionUses(AllocateMemoryOperation _) = ()
| instructionUses(AllocateMemoryVariable{size, ...}) = used size
| instructionUses(InitialiseMem{size, addr, init}) = (used size; used addr; used init)
| instructionUses(InitialisationComplete) = ()
| instructionUses(BeginLoop) = ()
| instructionUses(JumpLoop{regArgs, stackArgs, ...}) = (List.app(argUses o #1) regArgs; List.app(argUses o #1) stackArgs)
| instructionUses(RaiseExceptionPacket{packetReg}) = used packetReg
| instructionUses(ReserveContainer _) = ()
| instructionUses(IndexedCaseOperation{testReg, ...}) = used testReg
| instructionUses(LockMutable{addr}) = used addr
| instructionUses(WordComparison{arg1, arg2, ...}) = (used arg1; argUses arg2)
| instructionUses(CompareLiteral{arg1, ...}) = argUses arg1
| instructionUses(CompareByteMem{arg1={base, index, ...}, ...}) = (used base; indexUses index)
| instructionUses(PushExceptionHandler _) = ()
| instructionUses(PopExceptionHandler _) = ()
| instructionUses(BeginHandler _) = ()
| instructionUses(ReturnResultFromFunction{resultReg, ...}) = used resultReg
| instructionUses(ArithmeticFunction{operand1, operand2, ...}) = (used operand1; argUses operand2)
| instructionUses(TestTagBit{arg, ...}) = argUses arg
| instructionUses(PushValue {arg, ...}) = argUses arg
| instructionUses(CopyToCache{source, dest, ...}) = if isUsed dest then used source else ()
| instructionUses(ResetStackPtr _) = ()
| instructionUses(StoreToStack {source, ...}) = argUses source
| instructionUses(TagValue{source, dest, ...}) = if isUsed dest then used source else ()
| instructionUses(UntagValue{dest, cache=SOME cacheR, ...}) = if isUsed dest then used cacheR else ()
| instructionUses(UntagValue{source, dest, cache=NONE, ...}) = if isUsed dest then used source else ()
| instructionUses(LoadEffectiveAddress{base, index, ...}) = (case base of SOME bReg => used bReg | NONE => (); indexUses index)
| instructionUses(ShiftOperation{operand, shiftAmount, ...}) = (used operand; argUses shiftAmount)
| instructionUses(Multiplication{operand1, operand2, ...}) = (used operand1; argUses operand2)
| instructionUses(Division{dividend, divisor, ...}) = (used dividend; argUses divisor)
| instructionUses(AtomicExchangeAndAdd{base, source}) = (used base; used source)
| instructionUses(BoxValue{source, dest, ...}) = if isUsed dest then used source else ()
| instructionUses(CompareByteVectors{vec1Addr, vec2Addr, length, ...}) = (used vec1Addr; used vec2Addr; used length)
| instructionUses(BlockMove{srcAddr, destAddr, length, ...}) = (used srcAddr; used destAddr; used length)
| instructionUses(X87Compare{arg1, arg2, ...}) = (used arg1; argUses arg2)
| instructionUses(SSE2Compare{arg1, arg2, ...}) = (used arg1; argUses arg2)
| instructionUses(X87FPGetCondition _) = ()
| instructionUses(X87FPArith{arg1, arg2, ...}) = (used arg1; argUses arg2)
| instructionUses(X87FPUnaryOps{source, ...}) = used source
| instructionUses(X87Float{source, ...}) = argUses source
| instructionUses(SSE2Float{source, ...}) = argUses source
| instructionUses(SSE2FPUnary{source, ...}) = argUses source
| instructionUses(SSE2FPBinary{arg1, arg2, ...}) = (used arg1; argUses arg2)
| instructionUses(TagFloat{source, dest, ...}) = if isUsed dest then used source else ()
| instructionUses(UntagFloat{dest, cache=SOME cacheR, ...}) = if isUsed dest then used cacheR else ()
| instructionUses(UntagFloat{source, dest, cache=NONE, ...}) = if isUsed dest then argUses source else ()
| instructionUses(GetSSE2ControlReg _) = ()
| instructionUses(SetSSE2ControlReg{source}) = used source
| instructionUses(GetX87ControlReg _) = ()
| instructionUses(SetX87ControlReg{source}) = used source
| instructionUses(X87RealToInt{source, ...}) = used source
| instructionUses(SSE2RealToInt{source, ...}) = argUses source
| instructionUses(SignExtend32To64{source, dest}) = if isUsed dest then argUses source else ()
| instructionUses(TouchArgument{source}) = used source
(* Depth-first scan. *)
val visited = Array.array(numBlocks, false)
fun processBlocks blockNo =
if Array.sub(visited, blockNo)
then () (* Done or currently being done. *)
else
let
val () = Array.update(visited, blockNo, true)
val ExtendedBasicBlock { flow, block,...} = Vector.sub(blocks, blockNo)
val () =
(* Process the dependencies first. *)
case flow of
ExitCode => ()
| Unconditional m => processBlocks m
| Conditional {trueJump, falseJump, ...} =>
(processBlocks trueJump; processBlocks falseJump)
| IndexedBr cases => List.app processBlocks cases
| SetHandler{ handler, continue } =>
(processBlocks handler; processBlocks continue)
| UnconditionalHandle _ => ()
| ConditionalHandle { continue, ...} => processBlocks continue
(* Now this block. *)
in
List.foldr(fn ({instr, ...}, ()) => instructionUses instr) () block
end
in
val () = processBlocks 0
val isUsed = isUsed
end
(* Return the register part of a cached item. *)
fun decache(StackLocation{cache=SOME r, ...}) = RegisterArgument r
| decache(MemoryLocation{cache=SOME r, ...}) = RegisterArgument r
| decache arg = arg
(* Only get the registers that are actually used. *)
val getSaveRegs = List.mapPartial(fn (reg as PReg r) => if isUsed reg then SOME(getAllocatedGenReg r) else NONE)
fun codeExtended _ ({instr=LoadArgument{source, dest as PReg dreg, kind}, ...}, code) =
if not (isUsed dest)
then code
else
let
val realDestReg = getAllocatedReg dreg
in
case source of
RegisterArgument(PReg sreg) =>
(* Register to register move. Try to use the same register for the source as the destination
to eliminate the instruction. *)
(* If the source is the same as the destination we don't need to do anything. *)
moveIfNecessary({src=getAllocatedReg sreg, dst=realDestReg, kind=kind}, code)
| MemoryLocation{cache=SOME(PReg sreg), ...} =>
(* This is also a register to register move but because the original load is from
memory it could be a byte or short precision value. *)
let
val moveKind =
case kind of
Move64Bit => Move64Bit
| MoveByte => Move32Bit
| Move16Bit => Move32Bit
| Move32Bit => Move32Bit
| MoveFloat => MoveFloat
| MoveDouble => MoveDouble
in
moveIfNecessary({src=getAllocatedReg sreg, dst=realDestReg, kind=moveKind}, code)
end
(* TODO: Isn't this covered by codeExtArgument? It looks like it was added in the
32-in-64 changes. *)
| StackLocation{cache=SOME(PReg sreg), ...} =>
moveIfNecessary({src=getAllocatedReg sreg, dst=realDestReg, kind=kind}, code)
| source as StackLocation _ => (* Always use native loads from the stack. *)
llLoadArgument({source=codeExtArgument source, dest=realDestReg, kind=moveNativeWord}, code)
| source => (* Loads of constants or from an address. *)
llLoadArgument({source=codeExtArgument source, dest=realDestReg, kind=kind}, code)
end
| codeExtended _ ({instr=StoreArgument{ source, base=PReg bReg, offset, index, kind, ... }, ...}, code) =
let
val (baseReg, indexVal) =
case index of
ObjectIndex => (ebx, Index4(getAllocatedGenReg bReg))
| _ => (getAllocatedGenReg bReg, codeExtIndex index)
in
case (decache source, kind) of
(RegisterArgument(PReg sReg), MoveByte) =>
if targetArch <> Native32Bit
then
llStoreArgument{
source=codeExtArgument source, base=baseReg, offset=offset, index=indexVal, kind=MoveByte} :: code
else
(* This is complicated on X86/32. We can't use edi or esi for the store registers. Instead
we reserve ecx (see special case in "identify") and use that if we have to. *)
let
val realStoreReg = getAllocatedReg sReg
val (moveCode, storeReg) =
if realStoreReg = GenReg edi orelse realStoreReg = GenReg esi
then (moveIfNecessary({src=realStoreReg, dst=GenReg ecx, kind=moveNativeWord}, code), GenReg ecx)
else (code, realStoreReg)
in
llStoreArgument{
source=RegisterArg storeReg, base=baseReg, offset=offset, index=indexVal, kind=MoveByte} ::
moveCode
end
| _ =>
llStoreArgument{
source=codeExtArgument source, base=baseReg, offset=offset, index=indexVal, kind=kind} :: code
end
| codeExtended _ ({instr=LoadMemReg { offset, dest=PReg pr}, ...}, code) =
(* Load from the "memory registers" pointed at by ebp. *)
(* Currently only used to load the thread Id which is a Poly word. *)
llLoadArgument({source=MemoryArg{base=ebp, offset=offset, index=NoIndex}, dest=getAllocatedReg pr, kind=movePolyWord}, code)
| codeExtended _ ({instr=BeginFunction{regArgs, ...}, ...}, code) =
let
val minStackCheck = 20
val saveRegs = List.mapPartial(fn (_, GenReg r) => SOME r | _ => NONE) regArgs
val preludeCode =
if stackRequired >= minStackCheck
then
let
(* Compute the necessary amount in edi and compare that. *)
val stackByteAdjust = ~ (Word.toInt nativeWordSize) * stackRequired
val testEdiCode =
testRegAndTrap (edi, StackOverflowCallEx, saveRegs)
in
(* N.B. In reverse order. *)
testEdiCode @ [LoadAddress{output=edi, base=SOME esp, index=NoIndex, offset=stackByteAdjust, opSize=nativeWordOpSize}]
end
else testRegAndTrap (esp, StackOverflowCall, saveRegs)
val usedRegs = List.filter (isUsed o #1) regArgs
fun mkPair(PReg pr, rr) = {src=rr,dst=getAllocatedReg pr}
val regPairs = List.map mkPair usedRegs
in
moveMultipleRegisters(regPairs, preludeCode @ code)
end
| codeExtended _ ({instr=TailRecursiveCall{callKind, regArgs=oRegArgs, stackArgs=oStackArgs, stackAdjust, currStackSize, workReg=PReg wReg}, ...}, code) =
let
val regArgs = List.map (fn (arg, reg) => (decache arg, reg)) oRegArgs
and stackArgs = List.map(fn {src, stack } => {src=decache src, stack=stack}) oStackArgs
val workReg = getAllocatedReg wReg
(* We must leave stack entries as stack entries for the moment. *)
fun codeArg(StackLocation{wordOffset, cache=NONE, ...}) = StackSource wordOffset
| codeArg arg = OtherSource(codeExtArgument arg)
val extStackArgs = map (fn {stack, src} => {dst=StackDest(stack+currStackSize), src=codeArg src}) stackArgs
val extRegArgs = map (fn (a, r) => {src=codeArg a, dst=RegDest r}) regArgs
(* Tail recursive calls are complicated because we generally have to overwrite the existing stack.
That means storing the arguments in the right order to avoid overwriting a
value that we are using for a different argument. *)
fun codeTailCall(arguments: {dst: destinations, src: llsource} list, stackAdjust, code) =
if stackAdjust < 0
then
let
(* If the function we're calling takes more arguments on the stack than the
current function we will have to extend the stack. Do that by pushing the
argument whose offset is at -1. Then adjust all the offsets and repeat. *)
val {src=argM1, ...} = valOf(List.find(fn {dst=StackDest ~1, ...} => true | _ => false) arguments)
fun renumberArgs [] = []
| renumberArgs ({dst=StackDest ~1, ...} :: args) = renumberArgs args (* Remove the one we've done. *)
| renumberArgs ({dst, src} :: args) =
let
val newDest = case dst of StackDest d => StackDest(d+1) | regDest => regDest
val newSrc =
case src of
StackSource wordOffset => StackSource(wordOffset+1)
| other => other
in
{dst=newDest, src=newSrc} :: renumberArgs args
end
in
codeTailCall(renumberArgs arguments, stackAdjust+1,
PushToStack(sourceAsGenRegOrMem(sourceToX86Code argM1)) :: code)
end
else
let
val loadArgs = moveMultipleValues(arguments, SOME workReg, code)
in
if stackAdjust = 0
then loadArgs
else ResetStack{numWords=stackAdjust, preserveCC=false} :: loadArgs
end
in
JumpAddress(codeCallKind callKind) ::
codeTailCall(extStackArgs @ extRegArgs, stackAdjust+currStackSize, code)
end
| codeExtended _ ({instr=FunctionCall{callKind, regArgs=oRegArgs, stackArgs=oStackArgs, dest=PReg dReg, realDest, saveRegs}, ...}, code) =
let
val regArgs = List.map (fn (arg, reg) => (decache arg, reg)) oRegArgs
and stackArgs = List.map decache oStackArgs
val destReg = getAllocatedReg dReg
fun pushStackArgs ([], _, code) = code
| pushStackArgs (ContainerAddr {stackOffset, ...} ::args, argNum, code) =
let
val adjustedAddr = stackOffset+argNum
(* If there is an offset relative to rsp we need to add this in. *)
val addOffset =
if adjustedAddr = 0
then []
else [ArithMemConst{opc=ADD, address={offset=0, base=esp, index=NoIndex},
source=LargeInt.fromInt(adjustedAddr*Word.toInt nativeWordSize), opSize=nativeWordOpSize}]
in
pushStackArgs(args, argNum+1, addOffset @ PushToStack(RegisterArg esp) :: code)
end
| pushStackArgs (StackLocation {wordOffset, container, field, ...} ::args, argNum, code) =
let
(* Have to adjust the offsets of stack arguments. *)
val adjusted =
StackLocation{wordOffset=wordOffset+argNum, container=container, field=field+argNum,
cache=NONE}
in
pushStackArgs(args, argNum+1, PushToStack(codeExtArgumentAsGenReg adjusted) :: code)
end
| pushStackArgs (arg::args, argNum, code) =
pushStackArgs(args, argNum+1, PushToStack(codeExtArgumentAsGenReg arg) :: code)
val pushedArgs = pushStackArgs(stackArgs, 0, code (* Initial code *))
(* We have to adjust any stack offset to account for the arguments we've pushed. *)
val numStackArgs = List.length stackArgs
(* We don't currently allow the arguments to be memory locations and instead
force them into registers. That may be simpler especially if we can get the
values directly into the required register. *)
fun getRegArgs(RegisterArgument(PReg pr), reg) =
SOME{dst=reg, src=getAllocatedReg pr}
| getRegArgs(StackLocation {cache=SOME(PReg pr), ...}, reg) =
SOME{dst=reg, src=getAllocatedReg pr}
| getRegArgs(MemoryLocation _, _) = raise InternalError "FunctionCall - MemoryLocation"
| getRegArgs _ = NONE
val loadRegArgs =
moveMultipleRegisters(List.mapPartial getRegArgs regArgs, pushedArgs)
(* These are all items we can load without requiring a source register.
That includes loading from the stack. *)
fun getConstArgs((AddressConstant m, reg), code) =
llLoadArgument({source=AddressConstArg m, dest=reg, kind=movePolyWord}, code)
| getConstArgs((IntegerConstant i, reg), code) =
llLoadArgument({source=NonAddressConstArg i, dest=reg, kind=movePolyWord}, code)
| getConstArgs((StackLocation { cache=SOME _, ...}, _), code) = code
| getConstArgs((StackLocation { wordOffset, ...}, reg), code) =
llLoadArgument({source=MemoryArg{offset=(wordOffset+numStackArgs)*Word.toInt nativeWordSize, base=esp, index=NoIndex},
dest=reg, kind=moveNativeWord}, code)
| getConstArgs((ContainerAddr {stackOffset, ...}, reg), code) =
if stackOffset+numStackArgs = 0
then llLoadArgument({source=RegisterArg(GenReg esp), dest=reg, kind=moveNativeWord}, code)
else LoadAddress{ output=asGenReg reg, offset=(stackOffset+numStackArgs)*Word.toInt nativeWordSize, base=SOME esp,
index=NoIndex, opSize=nativeWordOpSize } :: code
| getConstArgs((RegisterArgument _, _), code) = code
| getConstArgs((MemoryLocation _, _), code) = code
val loadConstArgs = List.foldl getConstArgs loadRegArgs regArgs
(* Push the registers before the call and pop them afterwards. *)
fun makeSaves([], code) = CallAddress(codeCallKind callKind) :: code
| makeSaves(PReg reg::regs, code) =
let
val areg = getAllocatedGenReg reg
val _ = areg = eax andalso raise InternalError "codeExtended: eax in save regs"
val _ = if List.exists(fn (_, r) => r = GenReg areg) regArgs then raise InternalError "codeExtended: arg reg in save regs" else ()
in
PopR areg :: makeSaves(regs, PushToStack(RegisterArg areg) :: code)
end
in
moveIfNecessary({dst=destReg, src=realDest, kind=case realDest of GenReg _ => moveNativeWord | _ => MoveDouble},
makeSaves(saveRegs, loadConstArgs))
end
| codeExtended _ ({instr=AllocateMemoryOperation{ size, flags, dest=PReg dReg, saveRegs}, ...}, code) =
let
val preserve = getSaveRegs saveRegs
in
llAllocateMemoryOperation({ size=size, flags=flags, dest=getAllocatedReg dReg, saveRegs=preserve}, code)
end
| codeExtended _ ({instr=AllocateMemoryVariable{size=PReg size, dest=PReg dest, saveRegs}, ...}, code) =
let
(* Simple case - no initialiser. *)
val saveRegs = getSaveRegs saveRegs
val sReg = getAllocatedGenReg size and dReg = getAllocatedGenReg dest
val _ = sReg <> dReg
orelse raise InternalError "codeGenICode-AllocateMemoryVariable"
val allocCode =
[
(* Store it as the length field. *)
Move{source=RegisterArg sReg, moveSize=opSizeToMove polyWordOpSize,
destination=MemoryArg {base=dReg, offset= ~ (Word.toInt wordSize), index=NoIndex}},
(* Untag the length *)
ShiftConstant{ shiftType=SHR, output=sReg, shift=0w1, opSize=polyWordOpSize},
(* Allocate the memory *)
AllocStoreVariable{ size=sReg, output=dReg, saveRegs=saveRegs}
]
(* Convert to an object index if necessary. *)
val convertToObjId =
if targetArch = ObjectId32Bit
then [ ShiftConstant{ shiftType=SHR, output=dReg, shift=0w2, opSize=OpSize64 },
ArithToGenReg{ opc=SUB, output=dReg, source=RegisterArg ebx, opSize=nativeWordOpSize } ]
else []
in
convertToObjId @ allocCode @ code
end
| codeExtended _ ({instr=InitialiseMem{size=PReg sReg, addr=PReg aReg, init=PReg iReg}, ...}, code) =
(* We are going to use rep stosl/q to set the memory.
That requires the length to be in ecx, the initialiser to be in eax and
the destination to be edi. *)
RepeatOperation (if polyWordOpSize = OpSize64 then STOS64 else STOS32)::
moveIfNecessary({src=getAllocatedReg iReg, dst=GenReg eax, kind=moveNativeWord},
moveIfNecessary({src=getAllocatedReg aReg, dst=GenReg edi, kind=moveNativeWord},
moveIfNecessary({src=getAllocatedReg sReg, dst=GenReg ecx, kind=moveNativeWord}, code)))
| codeExtended _ ({instr=InitialisationComplete, ...}, code) = StoreInitialised :: code
| codeExtended _ ({instr=BeginLoop, ...}, code) = code
| codeExtended _ ({instr=JumpLoop{regArgs, stackArgs, checkInterrupt, workReg}, ...}, code) =
let
val workReg = Option.map (fn PReg r => getAllocatedReg r) workReg
(* TODO: Make the sources and destinations "friends". *)
(* We must leave stack entries as stack entries for the moment as with TailCall. *)
fun codeArg(StackLocation{wordOffset, ...}) = StackSource wordOffset
| codeArg arg = OtherSource(codeExtArgument arg)
val extStackArgs = map (fn (src, stack, _) => {dst=StackDest stack, src=codeArg src}) stackArgs
val extRegArgs = map (fn (a, PReg r) => {src=codeArg a, dst=RegDest(getAllocatedReg r)}) regArgs
val checkCode =
case checkInterrupt of
NONE => []
| SOME saveRegs => testRegAndTrap (esp, StackOverflowCall, getSaveRegs saveRegs)
in
checkCode @ moveMultipleValues(extStackArgs @ extRegArgs, workReg, code)
end
| codeExtended _ ({instr=RaiseExceptionPacket{ packetReg=PReg preg }, ...}, code) =
let
(* The argument must be put into rax. *)
val _ = getAllocatedGenReg preg = eax orelse raise InternalError "codeExtended: RaiseExceptionPacket"
in
(* We need a work register here. It can be any register other than eax since
we don't preserve registers across calls. *)
RaiseException { workReg=ecx } :: code
end
| codeExtended _ ({instr=ReserveContainer{size, ...}, ...}, code) =
(* The memory must be cleared in case we have a GC. *)
List.tabulate(size, fn _ => PushToStack(NonAddressConstArg(tag 0))) @ code
| codeExtended {flow} ({instr=IndexedCaseOperation{testReg=PReg tReg, workReg=PReg wReg}, ...}, code) =
let
val testReg = getAllocatedReg tReg
val workReg = getAllocatedReg wReg
val _ = testReg <> workReg orelse raise InternalError "IndexedCaseOperation - same registers"
val rReg = asGenReg testReg and wReg = asGenReg workReg
val _ = rReg <> wReg orelse raise InternalError "IndexedCaseOperation - same registers"
(* This should only be within a block with an IndexedBr flow type. *)
val cases =
case flow of IndexedBr cases => cases | _ => raise InternalError "codeGenICode: IndexedCaseOperation"
val caseLabels = map getBlockLabel cases
val startJumpTable = makeLabel()
(* Compute the jump address. The index is a tagged
integer so it is already multiplied by 2. We need to
multiply by four to get the correct size. Subtract off the
shifted tag. *)
val jumpSize = ref JumpSize8
in
JumpTable{cases=caseLabels, jumpSize=jumpSize} :: JumpLabel startJumpTable :: JumpAddress(RegisterArg wReg) ::
IndexedJumpCalc{ addrReg=wReg, indexReg=rReg, jumpSize=jumpSize } ::
LoadLabelAddress{label=startJumpTable, output=wReg} :: code
end
| codeExtended _ ({instr=LockMutable{addr=PReg pr}, ...}, code) =
let
val (bReg, index) =
if targetArch = ObjectId32Bit
then (ebx, Index4(asGenReg(getAllocatedReg pr)))
else (asGenReg(getAllocatedReg pr), NoIndex)
in
(* Mask off the mutable bit. *)
ArithByteMemConst{opc=AND, address={base=bReg, offset= ~1, index=index}, source=0wxff - F_mutable} :: code
end
| codeExtended _ ({instr=WordComparison{ arg1=PReg pr, arg2, opSize, ... }, ...}, code) =
ArithToGenReg {opc=CMP, output=asGenReg(getAllocatedReg pr), source=codeExtArgumentAsGenReg arg2, opSize=opSize} :: code
| codeExtended _ ({instr=CompareLiteral{ arg1, arg2, opSize, ... }, ...}, code) =
(
case decache arg1 of (* N.B. We MUST decache since we're assuming that the base reg is not used. *)
RegisterArgument(PReg pr) =>
ArithToGenReg {opc=CMP, output=asGenReg(getAllocatedReg pr), source=NonAddressConstArg arg2, opSize=opSize} :: code
| MemoryLocation{base=PReg br, offset, index=ObjectIndex, ...} =>
ArithMemConst{ opc=CMP,
address={offset=offset, base=ebx, index=Index4(asGenReg(getAllocatedReg br))}, source=arg2, opSize=opSize } :: code
| MemoryLocation{base=PReg br, index, offset, ...} =>
ArithMemConst{ opc=CMP,
address={offset=offset, base=asGenReg(getAllocatedReg br), index=codeExtIndex index}, source=arg2, opSize=opSize } :: code
| StackLocation{wordOffset, ...} =>
ArithMemConst{ opc=CMP, address={offset=wordOffset*Word.toInt nativeWordSize, base=esp, index=NoIndex}, source=arg2, opSize=opSize } :: code
| _ => raise InternalError "CompareLiteral"
)
| codeExtended _ ({instr=CompareByteMem{ arg1={base=PReg br, offset, index}, arg2, ... }, ...}, code) =
let
val (bReg, index) =
case index of
ObjectIndex => (ebx, Index4(asGenReg(getAllocatedReg br)))
| _ => (asGenReg(getAllocatedReg br), codeExtIndex index)
in
ArithByteMemConst{ opc=CMP, address={offset=offset, base=bReg, index=index}, source=arg2 } :: code
end
(* Set up an exception handler. *)
| codeExtended {flow} ({instr=PushExceptionHandler{workReg=PReg hReg}, ...}, code) =
let (* Set up an exception handler. *)
val workReg=getAllocatedReg hReg
(* Although we're pushing this to the stack we need to use LEA on the
X86/64 and some arithmetic on the X86/32. We need a work reg for that. *)
val handleReg = asGenReg workReg
(* This should only be within a block with a SetHandler flow type. *)
val handleLabel =
case flow of
SetHandler{ handler, ...} => handler
| _ => raise InternalError "codeGenICode: PushExceptionHandler"
val labelRef = getBlockLabel handleLabel
(* Set up the handler by pushing the old handler to the stack, pushing the
entry point and setting the handler address to the current stack pointer. *)
in
(
Move{source=RegisterArg esp, destination=MemoryArg {offset=memRegHandlerRegister, base=ebp, index=NoIndex},
moveSize=opSizeToMove nativeWordOpSize} ::
PushToStack(RegisterArg handleReg) ::
LoadLabelAddress{ label=labelRef, output=handleReg} ::
PushToStack(MemoryArg{base=ebp, offset=memRegHandlerRegister, index=NoIndex}) :: code)
end
(* Pop an exception handler at the end of a handled section. Executed if no exception has been raised.
This removes items from the stack. *)
| codeExtended _ ({instr=PopExceptionHandler{workReg=PReg wReg, ...}, ...}, code) =
let
val workReg = getAllocatedReg wReg
val wReg = asGenReg workReg
in
(* The stack pointer has been adjusted to just above the two words that were stored
in PushExceptionHandler. *)
(
Move{source=RegisterArg wReg, destination=MemoryArg {offset=memRegHandlerRegister, base=ebp, index=NoIndex},
moveSize=opSizeToMove nativeWordOpSize} ::
PopR wReg ::
ResetStack{numWords=1, preserveCC=false} :: code)
end
(* Start of a handler. Sets the address associated with PushExceptionHandler and
provides a register for the packet.*)
| codeExtended _ ({instr=BeginHandler{packetReg=PReg pReg, workReg=PReg wReg}, ...}, code) =
let
(* The exception packet is in rax. *)
val realPktReg = getAllocatedReg pReg
val realWorkreg = getAllocatedGenReg wReg
(* The code here is almost the same as PopExceptionHandler. The only real difference
is that PopExceptionHandler needs to pass the result of executing the handled code
which could be in any register. This code needs to transmit the exception packet
and that is always in rax. *)
val beginHandleCode =
Move{source=RegisterArg realWorkreg, destination=MemoryArg {offset=memRegHandlerRegister, base=ebp, index=NoIndex},
moveSize=opSizeToMove nativeWordOpSize} ::
PopR realWorkreg :: ResetStack{numWords=1, preserveCC=false} ::
Move{ source=MemoryArg{base=ebp, offset=memRegHandlerRegister, index=NoIndex},
destination=RegisterArg esp, moveSize=opSizeToMove nativeWordOpSize } :: code
in
moveIfNecessary({src=GenReg eax, dst=realPktReg, kind=moveNativeWord }, beginHandleCode)
end
| codeExtended _ ({instr=ReturnResultFromFunction { resultReg=PReg resReg, realReg, numStackArgs }, ...}, code) =
let
val resultReg = getAllocatedReg resReg
(* If for some reason it's not in the right register we have to move it there. *)
in
ReturnFromFunction numStackArgs :: moveIfNecessary({src=resultReg, dst=realReg, kind=moveNativeWord}, code)
end
| codeExtended _ ({instr=ArithmeticFunction{oper=SUB, resultReg=PReg resReg, operand1=PReg op1Reg,
operand2, opSize, ...}, ...}, code) =
(* Subtraction - this is special because it can only be done one way round. The first argument must
be in a register. *)
let
val realDestReg = getAllocatedReg resReg
val realOp1Reg = getAllocatedReg op1Reg
in
ArithToGenReg { opc=SUB, output=asGenReg realDestReg, source=codeExtArgumentAsGenReg operand2, opSize=opSize } ::
moveIfNecessary({src=realOp1Reg, dst=realDestReg, kind=opSizeToIMove opSize}, code)
end
| codeExtended _ ({instr=ArithmeticFunction{oper, resultReg=PReg resReg, operand1=PReg op1Reg, operand2, opSize, ...}, ...}, code) =
(
case decache operand2 of
RegisterArgument(PReg op2Reg) =>
(* Arithmetic operation with both arguments as registers. These operations are all symmetric so
we can try to put either argument into the result reg and then do the operation on the other arg. *)
let
val realDestReg = getAllocatedGenReg resReg
val realOp1Reg = getAllocatedGenReg op1Reg
and realOp2Reg = getAllocatedGenReg op2Reg
val (operandReg, moveInstr) =
if realOp1Reg = realDestReg
then (realOp2Reg, code)
else if realOp2Reg = realDestReg
then (realOp1Reg, code)
else (realOp2Reg, Move{source=RegisterArg realOp1Reg, destination=RegisterArg realDestReg, moveSize=opSizeToMove opSize} :: code)
in
ArithToGenReg { opc=oper, output=realDestReg, source=RegisterArg operandReg, opSize=opSize } :: moveInstr
end
| operand2 =>
(* Arithmetic operation with the first argument in a register and the second a constant or memory location. *)
let
val realDestReg = getAllocatedReg resReg
val realOp1Reg = getAllocatedReg op1Reg
val op2Arg = codeExtArgumentAsGenReg operand2
(* If we couldn't put it in the result register we have to copy it there. *)
in
ArithToGenReg { opc=oper, output=asGenReg realDestReg, source=op2Arg, opSize=opSize } ::
moveIfNecessary({src=realOp1Reg, dst=realDestReg, kind=opSizeToIMove opSize}, code)
end
)
| codeExtended _ ({instr=TestTagBit{arg, ...}, ...}, code) =
TestByteBits{arg=codeExtArgumentAsGenReg arg, bits=0w1} :: code
| codeExtended _ ({instr=PushValue {arg, ...}, ...}, code) = PushToStack(codeExtArgumentAsGenReg arg) :: code
| codeExtended _ ({instr=CopyToCache{source=PReg sreg, dest as PReg dreg, kind}, ...}, code) =
if not (isUsed dest)
then code
else
let
val realDestReg = getAllocatedReg dreg
(* Get the source register using the current destination as a preference. *)
val realSrcReg = getAllocatedReg sreg
in
(* If the source is the same as the destination we don't need to do anything. *)
moveIfNecessary({src=realSrcReg, dst=realDestReg, kind=kind}, code)
end
| codeExtended _ ({instr=ResetStackPtr {numWords, preserveCC}, ...}, code) =
(
numWords >= 0 orelse raise InternalError "codeGenICode: ResetStackPtr - negative offset";
ResetStack{numWords=numWords, preserveCC=preserveCC} :: code
)
| codeExtended _ ({instr=StoreToStack{ source, stackOffset, ... }, ...}, code) =
llStoreArgument{
source=codeExtArgument source, base=esp, offset=stackOffset*Word.toInt nativeWordSize, index=NoIndex, kind=moveNativeWord} :: code
| codeExtended _ ({instr=TagValue{source=PReg srcReg, dest as PReg dReg, opSize, ...}, ...}, code) =
if not (isUsed dest)
then code
else
let
val regResult = asGenReg(getAllocatedReg dReg)
val realSReg = asGenReg(getAllocatedReg srcReg)
in
(* N.B. Using LEA with a base register and an index multiplier of 1 is shorter than
using no base register and a multiplier of two. *)
(* TODO: If the value we're tagging is a byte or a 16-bit value we can use OpSize32 and possibly
save the Rex byte. *)
LoadAddress{ output=regResult, offset=1, base=SOME realSReg, index=Index1 realSReg, opSize=opSize } :: code
end
| codeExtended _ ({instr=UntagValue{dest as PReg dReg, cache=SOME(PReg cacheReg), opSize, ...}, ...}, code) =
if not (isUsed dest)
then code
else moveIfNecessary({src=getAllocatedReg cacheReg, dst=getAllocatedReg dReg, kind=opSizeToIMove opSize}, code)
| codeExtended _ ({instr=UntagValue{source=PReg sReg, dest as PReg dReg, isSigned, opSize, ...}, ...}, code) =
if not (isUsed dest)
then code
else
let
val regResult = getAllocatedReg dReg
val realSReg = getAllocatedReg sReg
in
(* For most cases we're going to be using a 32-bit word if this is 32-in-64. The exception
is when converting a word to a signed large-word. *)
ShiftConstant{ shiftType=if isSigned then SAR else SHR, output=asGenReg regResult, shift=0w1, opSize=opSize } ::
moveIfNecessary({src=realSReg, dst=regResult, kind=opSizeToIMove opSize}, code)
end
| codeExtended _ ({instr=LoadEffectiveAddress{base, offset, index=ObjectIndex, dest=PReg dReg, opSize}, ...}, code) =
let
val destReg = asGenReg(getAllocatedReg dReg)
val bReg =
case base of
SOME(PReg br) => asGenReg(getAllocatedReg br)
| NONE => raise InternalError "LoadEffectiveAddress - ObjectIndex but no base"
in
LoadAddress{ output=destReg, offset=offset, base=SOME ebx, index=Index4 bReg, opSize=opSize } :: code
end
| codeExtended _ ({instr=LoadEffectiveAddress{base, offset, index, dest=PReg dReg, opSize}, ...}, code) =
let
val destReg = asGenReg(getAllocatedReg dReg)
val bReg =
case base of
SOME(PReg br) => SOME(asGenReg(getAllocatedReg br))
| NONE => NONE
val indexR = codeExtIndex index
in
LoadAddress{ output=destReg, offset=offset, base=bReg, index=indexR, opSize=opSize } :: code
end
| codeExtended _ ({instr=ShiftOperation{shift, resultReg=PReg resReg, operand=PReg operReg, shiftAmount=IntegerConstant i, opSize, ...}, ...}, code) =
let
val realDestReg = getAllocatedReg resReg
val realOpReg = getAllocatedReg operReg
in
ShiftConstant{ shiftType=shift, output=asGenReg realDestReg, shift=Word8.fromLargeInt i, opSize=opSize } ::
moveIfNecessary({src=realOpReg, dst=realDestReg, kind=opSizeToIMove opSize}, code)
end
| codeExtended _ ({instr=ShiftOperation{shift, resultReg=PReg resReg, operand=PReg operReg,
shiftAmount=RegisterArgument(PReg shiftReg), opSize, ...}, ...}, code) =
let
val realDestReg = getAllocatedReg resReg
val realShiftReg = getAllocatedReg shiftReg
val realOpReg = getAllocatedReg operReg
(* We want the shift in ecx. We may not have got it there but the register
should be free. The shift is masked to 5 or 6 bits so we have to
check for larger shift values at a higher level.*)
in
ShiftVariable{ shiftType=shift, output=asGenReg realDestReg, opSize=opSize } ::
moveIfNecessary({src=realOpReg, dst=realDestReg, kind=opSizeToIMove opSize},
moveIfNecessary({src=realShiftReg, dst=GenReg ecx, kind=Move32Bit (* < 64*)}, code))
end
| codeExtended _ ({instr=ShiftOperation _, ...}, _) = raise InternalError "codeExtended - ShiftOperation"
| codeExtended _ ({instr=
Multiplication{resultReg=PReg resReg, operand1=PReg op1Reg,
operand2, opSize, ...}, ...}, code) =
(
case decache operand2 of
RegisterArgument(PReg op2Reg) =>
let
(* Treat exactly the same as ArithmeticFunction. *)
val realDestReg = getAllocatedGenReg resReg
val realOp1Reg = getAllocatedGenReg op1Reg
and realOp2Reg = getAllocatedGenReg op2Reg
val (operandReg, moveInstr) =
if realOp1Reg = realDestReg
then (realOp2Reg, code)
else if realOp2Reg = realDestReg
then (realOp1Reg, code)
else (realOp2Reg, Move{source=RegisterArg realOp1Reg, destination=RegisterArg realDestReg, moveSize=opSizeToMove opSize} :: code)
in
MultiplyR { source=RegisterArg operandReg, output=realDestReg, opSize=opSize } :: moveInstr
end
| operand2 =>
(* Multiply operation with the first argument in a register and the second a constant or memory location. *)
let
val realDestReg = getAllocatedReg resReg
val realOp1Reg = getAllocatedReg op1Reg
val op2Arg = codeExtArgumentAsGenReg operand2
in
MultiplyR { output=asGenReg realDestReg, source=op2Arg, opSize=opSize } ::
moveIfNecessary({src=realOp1Reg, dst=realDestReg, kind=opSizeToIMove opSize}, code)
end
)
| codeExtended _ ({instr=Division{isSigned, dividend=PReg regDivid, divisor, quotient=PReg regQuot,
remainder=PReg regRem, opSize}, ...}, code) =
let
(* TODO: This currently only supports the dividend in a register. LargeWord division will
generally load the argument from a box so we could support a memory argument for that
case. Word and integer values will always have to be detagged. *)
(* Division is specific as to the registers. The dividend must be eax, quotient is
eax and the remainder is edx. *)
val realDiviReg = getAllocatedReg regDivid
val realQuotReg = getAllocatedReg regQuot
val realRemReg = getAllocatedReg regRem
val divisorArg = codeExtArgument divisor
val divisorReg = argAsGenReg divisorArg
val _ = divisorReg <> eax andalso divisorReg <> edx orelse raise InternalError "codeGenICode: Division"
(* rdx needs to be set to the high order part of the dividend. For signed
division that means sign-extending rdx, for unsigned division we clear it.
We only need a 32-bit clear since the top 32-bits are cleared anyway. *)
val setRDX =
if isSigned then SignExtendForDivide opSize
else ArithToGenReg{ opc=XOR, output=edx, source=RegisterArg edx, opSize=OpSize32 }
in
(* We may need to move one or more of the registers although normally that
won't be necessary. Almost certainly only either the remainder or the
quotient will actually be used. *)
moveMultipleRegisters([{src=GenReg eax, dst=realQuotReg}, {src=GenReg edx, dst=realRemReg}],
DivideAccR {arg=divisorReg, isSigned=isSigned, opSize=opSize} :: setRDX ::
moveIfNecessary({src=realDiviReg, dst=GenReg eax, kind=opSizeToIMove opSize}, code))
end
| codeExtended _ ({instr=AtomicExchangeAndAdd{base=PReg bReg, source=PReg sReg}, ...}, code) =
let
val baseReg = asGenReg (getAllocatedReg bReg) and outReg = asGenReg (getAllocatedReg sReg)
val address =
if targetArch = ObjectId32Bit
then {base=ebx, index=Index4 baseReg, offset=0}
else {base=baseReg, index=NoIndex, offset=0}
in
AtomicXAdd{address=address, output=outReg, opSize=polyWordOpSize} :: code
end
| codeExtended _ ({instr=BoxValue{boxKind, source=PReg sReg, dest as PReg dReg, saveRegs}, ...}, code) =
if not (isUsed dest)
then code
else
let
val preserve = getSaveRegs saveRegs
val (srcReg, boxSize, moveKind) =
case boxKind of
BoxLargeWord => (getAllocatedReg sReg, Word.toInt(nativeWordSize div wordSize), moveNativeWord)
| BoxX87Double => (getAllocatedReg sReg, Word.toInt(0w8 div wordSize), MoveDouble)
| BoxX87Float => (getAllocatedReg sReg, Word.toInt(0w4 div wordSize), MoveFloat)
| BoxSSE2Double => (getAllocatedReg sReg, Word.toInt(0w8 div wordSize), MoveDouble)
| BoxSSE2Float => (getAllocatedReg sReg, Word.toInt(0w4 div wordSize), MoveFloat)
val dstReg = getAllocatedReg dReg
val (bReg, index) =
if targetArch = ObjectId32Bit
then (ebx, Index4(asGenReg dstReg))
else (asGenReg dstReg, NoIndex)
in
StoreInitialised ::
llStoreArgument{ source=RegisterArg srcReg, offset=0, base=bReg, index=index, kind=moveKind} ::
llAllocateMemoryOperation({ size=boxSize, flags=0wx1, dest=dstReg, saveRegs=preserve}, code)
end
| codeExtended _ ({instr=CompareByteVectors{vec1Addr=PReg v1Reg, vec2Addr=PReg v2Reg, length=PReg lReg, ...}, ...}, code) =
(* There's a complication here. CompareByteVectors generates REPE CMPSB to compare
the vectors but the condition code is only set if CMPSB is executed at least
once. If the value in RCX/ECX is zero it will never be executed and the
condition code will be unchanged. We want the result to be "equal" in that
case so we need to ensure that is the case. It's quite possible that the
condition code has just been set by shifting RCX/ECX to remove the tag in which
case it will have set "equal" if the value was zero. We use CMP R/ECX,R/ECX which
is two bytes in 32-bit.
If we knew the length was non-zero (e.g. a constant) we could avoid this. *)
RepeatOperation CMPS8 :: ArithToGenReg {opc=CMP, output=ecx, source=RegisterArg ecx, opSize=OpSize32} ::
moveIfNecessary({src=getAllocatedReg v1Reg, dst=GenReg esi, kind=moveNativeWord},
moveIfNecessary({src=getAllocatedReg v2Reg, dst=GenReg edi, kind=moveNativeWord},
moveIfNecessary({src=getAllocatedReg lReg, dst=GenReg ecx, kind=moveNativeWord}, code)))
| codeExtended _ ({instr=BlockMove{srcAddr=PReg sReg, destAddr=PReg dReg, length=PReg lReg, isByteMove}, ...}, code) =
(* We may need to move these into the appropriate registers. They have been reserved but it's
still possible the values could be in something else. *)
RepeatOperation(if isByteMove then MOVS8 else if polyWordOpSize = OpSize64 then MOVS64 else MOVS32) ::
moveIfNecessary({src=getAllocatedReg sReg, dst=GenReg esi, kind=moveNativeWord},
moveIfNecessary({src=getAllocatedReg dReg, dst=GenReg edi, kind=moveNativeWord},
moveIfNecessary({src=getAllocatedReg lReg, dst=GenReg ecx, kind=moveNativeWord}, code)))
| codeExtended _ ({instr=X87Compare{arg1=PReg argReg, arg2, isDouble, ...}, ...}, code) =
let
val fpReg = getAllocatedFPReg argReg
val _ = fpReg = fp0 orelse raise InternalError "codeGenICode: CompareFloatingPt not fp0"
(* This currently pops the value. *)
val precision = if isDouble then DoublePrecision else SinglePrecision
in
case codeExtArgumentAsFPReg arg2 of
RegisterArg fpReg2 => FPArithR{opc=FCOMP, source=fpReg2} :: code
| MemoryArg{offset, base=baseReg, index=NoIndex} =>
FPArithMemory{opc=FCOMP, base=baseReg, offset=offset, precision=precision} :: code
| AddressConstArg const =>
FPArithConst{opc=FCOMP, source = const, precision=precision} :: code
| _ => raise InternalError "codeGenICode: CompareFloatingPt: TODO"
end
| codeExtended _ ({instr=SSE2Compare{arg1=PReg argReg, arg2, isDouble, ...}, ...}, code) =
let
val xmmReg = getAllocatedXMMReg argReg
val arg2Code = codeExtArgumentAsXMMReg arg2
in
XMMArith { opc= if isDouble then SSE2CompDouble else SSE2CompSingle, output=xmmReg, source=arg2Code} :: code
end
| codeExtended _ ({instr=X87FPGetCondition{dest=PReg dReg, ...}, ...}, code) =
moveIfNecessary({src=GenReg eax, dst=getAllocatedReg dReg, kind=Move32Bit},
FPStatusToEAX :: code)
| codeExtended _ ({instr=X87FPArith{opc, resultReg=PReg resReg, arg1=PReg op1Reg, arg2, isDouble}, ...}, code) =
let
val realDestReg = getAllocatedFPReg resReg
val realOp1Reg = getAllocatedFPReg op1Reg
val _ = realDestReg = fp0 orelse raise InternalError "codeGenICode: FloatingPointArith not fp0"
val _ = realOp1Reg = fp0 orelse raise InternalError "codeGenICode: FloatingPointArith not fp0"
val op2Arg = codeExtArgumentAsFPReg arg2
val precision = if isDouble then DoublePrecision else SinglePrecision
in
case op2Arg of
MemoryArg{offset, base=baseReg, index=NoIndex} =>
FPArithMemory{opc=opc, base=baseReg, offset=offset, precision=precision} :: code
| AddressConstArg const =>
FPArithConst{opc=opc, source = const, precision=precision} :: code
| _ => raise InternalError "codeGenICode: X87FPArith: TODO"
end
| codeExtended _ ({instr=X87FPUnaryOps{fpOp, dest=PReg resReg, source=PReg op1Reg}, ...}, code) =
let
val realDestReg = getAllocatedFPReg resReg
val realOp1Reg = getAllocatedFPReg op1Reg
val _ = realDestReg = fp0 orelse raise InternalError "codeGenICode: X87FPUnaryOps not fp0"
val _ = realOp1Reg = fp0 orelse raise InternalError "codeGenICode: X87FPUnaryOps not fp0"
in
FPUnary fpOp :: code
end
| codeExtended _ ({instr=X87Float{dest=PReg resReg, source}, ...}, code) =
let
val intSource = codeExtArgumentAsGenReg source
val fpReg = getAllocatedFPReg resReg
val _ = fpReg = fp0 orelse raise InternalError "codeGenICode: FloatFixedInt not fp0"
in
(* This is complicated. The integer value has to be in memory not in a
register so we have to push it to the stack and then make sure it is
popped afterwards. Because it is untagged it is unsafe to leave it. *)
ResetStack{numWords=1, preserveCC=false} :: FPLoadInt{ base=esp, offset=0, opSize=polyWordOpSize } :: PushToStack intSource :: code
end
| codeExtended _ ({instr=SSE2Float{dest=PReg resReg, source}, ...}, code) =
let
val xmmResReg = getAllocatedXMMReg resReg
val srcReg = case codeExtArgumentAsGenReg source of RegisterArg srcReg => srcReg | _ => raise InternalError "FloatFixedInt: not reg"
in
XMMConvertFromInt{ output=xmmResReg, source=srcReg, opSize=polyWordOpSize} :: code
end
| codeExtended _ ({instr=SSE2FPUnary{opc, resultReg=PReg resReg, source}, ...}, code) =
let
val realDestReg = getAllocatedXMMReg resReg
val opArg = codeExtArgumentAsXMMReg source
val sse2Op =
case opc of
SSE2UDoubleToFloat => SSE2DoubleToFloat
| SSE2UFloatToDouble => SSE2FloatToDouble
in
XMMArith{ opc=sse2Op, output=realDestReg, source=opArg} :: code
end
| codeExtended _ ({instr=SSE2FPBinary{opc, resultReg=PReg resReg, arg1=PReg op1Reg, arg2}, ...}, code) =
let
val realDestReg = getAllocatedXMMReg resReg
val realOp1Reg = getAllocatedXMMReg op1Reg
val op2Arg = codeExtArgumentAsXMMReg arg2
(* xorpd and andpd require 128-bit arguments with 128-bit alignment. *)
val _ =
case (opc, op2Arg) of
(SSE2BXor, RegisterArg _) => ()
| (SSE2BXor, _) => raise InternalError "codeGenICode - SSE2Xor not in register"
| (SSE2BAnd, RegisterArg _) => ()
| (SSE2BAnd, _) => raise InternalError "codeGenICode - SSE2And not in register"
| _ => ()
val doMove =
if realDestReg = realOp1Reg
then code
else XMMArith { opc=SSE2MoveDouble, source=RegisterArg realOp1Reg, output=realDestReg } :: code
val sse2Op =
case opc of
SSE2BAddDouble => SSE2AddDouble
| SSE2BSubDouble => SSE2SubDouble
| SSE2BMulDouble => SSE2MulDouble
| SSE2BDivDouble => SSE2DivDouble
| SSE2BAddSingle => SSE2AddSingle
| SSE2BSubSingle => SSE2SubSingle
| SSE2BMulSingle => SSE2MulSingle
| SSE2BDivSingle => SSE2DivSingle
| SSE2BXor => SSE2Xor
| SSE2BAnd => SSE2And
in
XMMArith{ opc=sse2Op, output=realDestReg, source=op2Arg} :: doMove
end
| codeExtended _ ({instr=TagFloat{source=PReg srcReg, dest as PReg dReg, ...}, ...}, code) =
if not (isUsed dest)
then code
else
let
val _ = targetArch = Native64Bit orelse raise InternalError "TagFloat: not 64-bit"
(* Copy the value from an XMM reg into a general reg and tag it. *)
val regResult = asGenReg(getAllocatedReg dReg)
val realSReg = getAllocatedXMMReg srcReg
in
ArithToGenReg { opc=ADD, output=regResult, source=NonAddressConstArg 1, opSize=polyWordOpSize } ::
ShiftConstant{ shiftType=SHL, output=regResult, shift=0w32, opSize=OpSize64} ::
MoveXMMRegToGenReg { source = realSReg, output = regResult } :: code
end
| codeExtended _ ({instr=UntagFloat{dest as PReg dReg, cache=SOME(PReg cacheReg), ...}, ...}, code) =
if not (isUsed dest)
then code
else moveIfNecessary({src=getAllocatedReg cacheReg, dst=getAllocatedReg dReg, kind=MoveFloat}, code)
| codeExtended _ ({instr=UntagFloat{source, dest as PReg dReg, ...}, ...}, code) =
if not (isUsed dest)
then code
else
let
val regResult = getAllocatedXMMReg dReg
in
case codeExtArgumentAsGenReg source of
RegisterArg realSReg =>
XMMShiftRight{ output=regResult, shift=0w4 (* Bytes - not bits *) } ::
MoveGenRegToXMMReg {source=realSReg, output=regResult} :: code
| MemoryArg{base, offset, index} =>
(* If the value is in memory we can just load the high order word. *)
XMMArith { opc=SSE2MoveFloat, source=MemoryArg{base=base, offset=offset+4, index=index}, output=regResult } :: code
| NonAddressConstArg ic =>
(* Shift down and then load from the non-constant area. *)
XMMArith { opc=SSE2MoveFloat, source=NonAddressConstArg(IntInf.~>>(ic, 0w32)), output=regResult } :: code
| _ => raise InternalError "UntagFloat - not register or memory"
end
| codeExtended _ ({instr=GetSSE2ControlReg{dest=PReg dReg}, ...}, code) =
let
(* This has to work through memory. Reserve one word on the stack, get the
MXCSR register into it and pop it to the register. *)
val regResult = getAllocatedGenReg dReg
in
PopR regResult ::
XMMStoreCSR{base=esp, offset=0, index=NoIndex } ::
PushToStack(NonAddressConstArg 0) :: code
end
| codeExtended _ ({instr=SetSSE2ControlReg{source=PReg sReg}, ...}, code) =
let
(* This has to work through memory. Push the register to the stack,
store the value into the control register and remove it from the stack. *)
val sourceReg = getAllocatedGenReg sReg
in
ResetStack{ numWords=1, preserveCC=false } ::
XMMLoadCSR{base=esp, offset=0, index=NoIndex } ::
PushToStack(RegisterArg sourceReg) :: code
end
| codeExtended _ ({instr=GetX87ControlReg{dest=PReg dReg}, ...}, code) =
let
(* This has to work through memory. Reserve one word on the stack, get the
X87 control register into it and pop it to the register. *)
val regResult = getAllocatedGenReg dReg
in
PopR regResult ::
FPStoreCtrlWord{base=esp, offset=0, index=NoIndex } ::
PushToStack(NonAddressConstArg 0) :: code
end
| codeExtended _ ({instr=SetX87ControlReg{source=PReg sReg}, ...}, code) =
let
(* This has to work through memory. Push the register to the stack,
store the value into the control register and remove it from the stack. *)
val sourceReg = getAllocatedGenReg sReg
in
ResetStack{ numWords=1, preserveCC=false } ::
FPLoadCtrlWord{base=esp, offset=0, index=NoIndex } ::
PushToStack(RegisterArg sourceReg) :: code
end
| codeExtended _ ({instr=X87RealToInt{source=PReg sReg, dest=PReg dReg}, ...}, code) =
let
(* This has to work through memory. Reserve one word on the stack,
convert the value into it and pop it to the register. *)
val regResult = getAllocatedGenReg dReg
val fpReg = getAllocatedFPReg sReg
val _ = fpReg = fp0 orelse raise InternalError "codeGenICode: CompareFloatingPt not fp0"
(* This currently pops the value. *)
in
PopR regResult ::
FPStoreInt{base=esp, offset=0, index=NoIndex } ::
PushToStack(NonAddressConstArg 0) :: code
end
| codeExtended _ ({instr=SSE2RealToInt{source, dest=PReg dReg, isDouble, isTruncate}, ...}, code) =
let
(* The source is either an XMM register or memory. *)
val regResult = getAllocatedGenReg dReg
val opArg = codeExtArgumentAsXMMReg source
in
XMMStoreInt {
source=opArg, precision=if isDouble then DoublePrecision else SinglePrecision,
output = regResult, isTruncate=isTruncate } :: code
end
| codeExtended _ ({instr=SignExtend32To64{source, dest=PReg dReg}, ...}, code) =
let
val regResult = getAllocatedGenReg dReg
val opArg = codeExtArgumentAsGenReg source
in
Move{moveSize=Move32X, source=opArg, destination=RegisterArg regResult } :: code
end
| codeExtended _ ({instr=TouchArgument _, ...}, code) = code (* Don't need to do anything. *)
val newCode = codeCreate (functionName, profileObject, debugSwitches)
local
(* processed - set to true when a block has been processed. *)
val processed = Array.array(numBlocks, false)
fun haveProcessed n = Array.sub(processed, n)
(* Find the blocks that reference this one. This isn't essential but
allows us to try to generate blocks in the order of the control
flow. This in turn may allow us to use short branches rather
than long ones. *)
val labelRefs = Array.array(numBlocks, [])
datatype flowCode =
FlowCodeSimple of int
| FlowCodeCMove of {code: operation list, trueJump: int, falseJump: int}
(* Process this recursively to set the references. If we have
unreachable blocks, perhaps because they've been merged, we
don't want to include them in the reference counting.
This shouldn't happen now that IdentifyReferences removes
unreferenced blocks. *)
fun setReferences fromLabel toLabel =
case Array.sub(labelRefs, toLabel) of
[] => (* Not yet visited at all. *)
let
val ExtendedBasicBlock{ flow, ...} = Vector.sub(blocks, toLabel)
val refs =
case flow of
ExitCode => []
| Unconditional lab => [lab]
| Conditional{trueJump, falseJump, ... } => [trueJump, falseJump]
| IndexedBr labs => labs
| SetHandler { handler, continue } => [handler, continue]
| UnconditionalHandle _ => []
| ConditionalHandle { continue, ...} => [continue]
val () =
if fromLabel >= 0 then Array.update(labelRefs, toLabel, [fromLabel]) else ()
in
List.app (setReferences toLabel) refs
end
| refs =>
(* We've visiting this at least once. Just add us to the list. *)
Array.update(labelRefs, toLabel, fromLabel :: refs)
val _ = setReferences 0 0
(* Process the blocks. We keep the "stack" explicit rather than using recursion
because this allows us to select both arms of a conditional branch sooner. *)
fun genCode(toDo, lastFlow, code) =
case List.filter (not o haveProcessed) toDo of
[] =>
let
(* There's nothing left to do. We may need to add a final branch to the end. *)
val finalBranch =
case lastFlow of
ExitCode => []
| IndexedBr _ => []
| Unconditional dest => [UncondBranch(getBlockLabel dest)]
| Conditional { condition, trueJump, falseJump, ...} =>
[
UncondBranch(getBlockLabel falseJump),
ConditionalBranch{test=condition, label=getBlockLabel trueJump}
]
| SetHandler { continue, ...} => [UncondBranch(getBlockLabel continue)]
| UnconditionalHandle _ => []
| ConditionalHandle { continue, ...} => [UncondBranch(getBlockLabel continue)]
in
finalBranch @ code (* Done. *)
end
| stillToDo as head :: _ =>
let
local
(* Check the references. If all the sources that lead up to this have
already been we won't have any backward jumps. *)
fun available dest = List.all haveProcessed (Array.sub(labelRefs, dest))
val continuation =
case lastFlow of
ExitCode => NONE
| IndexedBr _ => NONE (* We could put the last branch in here. *)
| Unconditional dest =>
if not (haveProcessed dest) andalso available dest
then SOME(FlowCodeSimple dest)
else NONE
| Conditional {trueJump, falseJump, condition, ...} =>
let
(* Can we replace this with a SETCC or CMOV? If both arms simply set
a register to a value and either return or jump to the same location
we can use a SETCC or a CMOV. *)
val ExtendedBasicBlock { flow=tFlow, block=tBlock, ...} = Vector.sub(blocks, trueJump)
and ExtendedBasicBlock { flow=fFlow, block=fBlock, ...} = Vector.sub(blocks, falseJump)
fun cmoveOrSetcc{condition, output, tSource=IntegerConstant trueValue, fSource=IntegerConstant falseValue, kind, code} =
let (* Could use SETCC. Only if we can use LEA for multiplication. The result must be
tagged so we will always have a multiplier. *)
val (multiplier, fValue, testCondition) =
if trueValue >= falseValue
then (trueValue-falseValue, falseValue, condition)
else (falseValue-trueValue, trueValue, invertTest condition)
val destReg = asGenReg output
in
if not (targetArch = Native32Bit andalso (destReg=esi orelse destReg=edi))
(* We can't use Setcc with esi or edi on native 32-bit. *)
andalso (multiplier = 2 orelse multiplier = 4 orelse multiplier = 8)
(* We're using LEA so can only be multiplying by 2, 4 or 8. *)
andalso is32bit fValue (* and we're going to put this in the offset *)
then
let
val effectiveOpSize =
(* We can generally use 32-bit LEA except if the result is negative. *)
if kind = Move32Bit orelse fValue >= 0 andalso fValue+multiplier <= 0x7fffffff
then OpSize32 else OpSize64
val (index, base) =
case multiplier of
2 => (Index1 destReg, SOME destReg)
| 4 => (Index4 destReg, NONE)
| 8 => (Index8 destReg, NONE)
| _ => (NoIndex, NONE)
(* Try to put the instruction to zero the register before any compare. We can do it
provided the register we're going to zero isn't used in the comparison. *)
fun checkArg(RegisterArg r) = r <> destReg
| checkArg(MemoryArg mem) = checkMem mem
| checkArg _ = true
and checkMem{base, index=NoIndex, ...} = base <> destReg
| checkMem{base, index=Index1 index, ...} = base <> destReg andalso index <> destReg
| checkMem{base, index=Index2 index, ...} = base <> destReg andalso index <> destReg
| checkMem{base, index=Index4 index, ...} = base <> destReg andalso index <> destReg
| checkMem{base, index=Index8 index, ...} = base <> destReg andalso index <> destReg
val zeroReg = ArithToGenReg { opc=XOR, output=destReg, source=RegisterArg destReg, opSize=OpSize32 }
fun addXOR [] = NONE
| addXOR ((instr as ResetStack _) :: tl) =
(* If we can add the XOR before the ResetStack do so. *)
Option.map(fn code => instr :: code) (addXOR tl)
| addXOR ((instr as ArithToGenReg{output, source, ...}) :: tl) =
if output <> destReg andalso checkArg source
then SOME(instr :: zeroReg :: tl)
else NONE
| addXOR ((instr as ArithMemConst{address, ...}) :: tl) =
if checkMem address
then SOME(instr :: zeroReg :: tl)
else NONE
| addXOR ((instr as ArithByteMemConst{address, ...}) :: tl) =
if checkMem address
then SOME(instr :: zeroReg :: tl)
else NONE
| addXOR ((instr as XMMArith{source=MemoryArg mem, ...}) :: tl) =
if checkMem mem
then SOME(instr :: zeroReg :: tl)
else NONE
| addXOR ((instr as XMMArith _) :: tl) = SOME(instr :: zeroReg :: tl)
| addXOR ((instr as TestByteBits{arg, ...}) :: tl) =
if checkArg arg
then SOME(instr :: zeroReg :: tl)
else NONE
| addXOR ((instr as RepeatOperation CMPS8) :: tl) =
(* This uses edi, esi and ecx implicitly *)
if destReg <> esi andalso destReg <> edi andalso destReg <> ecx
then SOME(instr :: zeroReg :: tl)
else NONE
(* This seems to be just a conditional jump as a result of
testing the condition code twice in Real.== *)
| addXOR _ = NONE
(* If we can't put the XOR before the instruction we need to either zero
it using a move which won't affect the CC or we use MOVZB to extend
the byte value to 32/64 bits. *)
val loadAddr = LoadAddress{output=destReg, offset=Int.fromLarge fValue, base=base, index=index, opSize=effectiveOpSize}
and setCond = SetCondition{output=destReg, test=testCondition}
val code =
case addXOR code of
SOME withXOR => loadAddr :: setCond :: withXOR
| NONE =>
loadAddr ::
(* We've already check that we're not using esi/edi on native 32-bits. *)
Move{destination=RegisterArg destReg, source=RegisterArg destReg, moveSize=Move8} :: setCond :: code
in
SOME code
end
else NONE
end
(* If either value is a memory location it isn't safe to load it. The base address
may not be valid if the condition does not hold. *)
| cmoveOrSetcc{tSource=MemoryLocation _, ...} = NONE
| cmoveOrSetcc{fSource=MemoryLocation _, ...} = NONE
| cmoveOrSetcc{condition, output, tSource, fSource, kind, code} =
if targetArch = Native32Bit
then NONE (* CMov doesn't work for constants. *)
else
let
val output = asGenReg output
val codeTrue = codeExtArgumentAsGenReg tSource
and codeFalse = codeExtArgumentAsGenReg fSource
val opSize =
case kind of
Move32Bit => OpSize32
| Move64Bit => OpSize64
| _ => raise InternalError "move size"
(* One argument has to be loaded into a register first and the other
is conditionally moved. *)
val loadFalseCmoveTrue =
if (case codeFalse of RegisterArg regFalse => regFalse = output | _ => false)
then true (* The false value is already in the right register. *)
else if (case codeTrue of RegisterArg regTrue => regTrue = output | _ => false)
then false (* The true value is in the right register - have to reverse. *)
else if (case codeTrue of NonAddressConstArg _ => true | _ => false)
then false (* The true value is a short constant. If we use a CMOV we will have to put that
in the non-constant area and use a PC-relative reference. Try to avoid it. *)
else true
fun cmov{codeLoad, codeMove, condition} =
let
val load =
case codeLoad of
RegisterArg regLoad =>
moveIfNecessary({src=GenReg regLoad, dst=GenReg output, kind=opSizeToIMove opSize}, code)
| codeLoad =>
Move{source=codeLoad, destination=RegisterArg output, moveSize=opSizeToMove opSize} :: code
in
CondMove{test=condition, output=output, source=codeMove, opSize=opSize} :: load
end
in
if loadFalseCmoveTrue
then SOME(cmov{codeLoad=codeFalse, codeMove=codeTrue, condition=condition})
else SOME(cmov{codeLoad=codeTrue, codeMove=codeFalse, condition=invertTest condition})
end
val isPossSetCCOrCmov =
if not (haveProcessed trueJump) andalso available trueJump
andalso not (haveProcessed falseJump) andalso available falseJump
then case (tFlow, fFlow, tBlock, fBlock) of
(ExitCode,
ExitCode,
[{instr=LoadArgument{dest=PReg tReg, source=tSource, kind=kindT}, ...},
{instr=ReturnResultFromFunction{resultReg=PReg resReg, realReg, numStackArgs, ...}, ...}],
[{instr=LoadArgument{dest=PReg fReg, source=fSource, kind=kindF}, ...},
{instr=ReturnResultFromFunction _, ...}]) =>
(* The real register for the two sides should both be rax. *)
let
val realTReg = getAllocatedReg tReg and realFReg = getAllocatedReg fReg
in
if realTReg = realFReg andalso kindT = kindF andalso (kindT = Move32Bit orelse kindT = Move64Bit)
then
(
case cmoveOrSetcc{condition=condition, output=realTReg, tSource=tSource, fSource=fSource,
kind=kindT, code=code} of
SOME code =>
let
val resultReg = getAllocatedReg resReg
val code =
ReturnFromFunction numStackArgs ::
moveIfNecessary({src=resultReg, dst=realReg, kind=moveNativeWord}, code)
in
SOME{code=code, trueJump=trueJump, falseJump=falseJump}
end
| NONE => NONE
)
else NONE
end
| (Unconditional tDest,
Unconditional fDest,
[{instr=LoadArgument{dest=PReg tReg, source=tSource, kind=kindT}, ...}],
[{instr=LoadArgument{dest=PReg fReg, source=fSource, kind=kindF}, ...}]) =>
let
val realTReg = getAllocatedReg tReg and realFReg = getAllocatedReg fReg
in
if tDest = fDest andalso realTReg = realFReg andalso kindT = kindF andalso (kindT = Move32Bit orelse kindT = Move64Bit)
then
(
case cmoveOrSetcc{condition=condition, output=realTReg, tSource=tSource, fSource=fSource,
kind=kindT, code=code} of
SOME code => SOME{code=code, trueJump=trueJump, falseJump=falseJump}
| NONE => NONE
)
else NONE
end
| _ => NONE
else NONE
in
case isPossSetCCOrCmov of
NONE =>
(* We can usually choose either destination and in nearly all cases
it won't matter. The default branch is not to take forward jumps
so if there is reason to believe that one branch is more likely
we should follow that branch now and leave the other. If we
have JO/JNO we assume that overflow is unusual. If one branch
raises an exception we assume that that is unusual. *)
let
val (first, second) =
case (condition, Vector.sub(blocks, falseJump)) of
(JNO, _) => (trueJump, falseJump)
| (_, ExtendedBasicBlock{ flow=ExitCode, block, ...}) =>
if List.exists(fn{instr=RaiseExceptionPacket _, ...} => true | _ => false) block
then (trueJump, falseJump)
else (falseJump, trueJump)
| _ => (falseJump, trueJump)
in
if not (haveProcessed first) andalso available first
then SOME(FlowCodeSimple first)
else if not (haveProcessed second) andalso available second
then SOME(FlowCodeSimple second)
else NONE
end
| SOME args => SOME(FlowCodeCMove args)
end
| SetHandler { continue, ... } =>
(* We want the continuation if possible. We'll need a
branch round the handler so that won't help. *)
if not (haveProcessed continue) andalso available continue
then SOME(FlowCodeSimple continue)
else NONE
| UnconditionalHandle _ => NONE
| ConditionalHandle _ => NONE
in
(* First choice - continue the existing block.
Second choice - the first item whose sources have all been
processed.
Third choice - something from the list. *)
val picked =
case continuation of
SOME c => c
| NONE =>
case List.find available stillToDo of
SOME c => FlowCodeSimple c
| NONE => FlowCodeSimple head
end
in
case picked of
FlowCodeSimple picked =>
let
val () = Array.update(processed, picked, true)
(* Code to terminate the previous block. *)
val startCode =
case lastFlow of
ExitCode => []
| IndexedBr _ => []
| UnconditionalHandle _ => []
| Unconditional dest =>
if dest = picked then [] else [UncondBranch(getBlockLabel dest)]
| ConditionalHandle { continue, ...} =>
if continue = picked then [] else [UncondBranch(getBlockLabel continue)]
| SetHandler { continue, ... } =>
if continue = picked then [] else [UncondBranch(getBlockLabel continue)]
| Conditional { condition, trueJump, falseJump, ...} =>
if picked = falseJump (* Usual case. *)
then [ConditionalBranch{test=condition, label=getBlockLabel trueJump}]
else if picked = trueJump
then (* We have a jump to the true condition. Invert the jump.
This is more than an optimisation. Because this immediately precedes the
true block we're not going to generate a label. *)
[ConditionalBranch{test=invertTest condition, label=getBlockLabel falseJump}]
else
[
UncondBranch(getBlockLabel falseJump),
ConditionalBranch{test=condition, label=getBlockLabel trueJump}
]
(* Code-generate the body with the code we've done so far
at the end. Add a label at the start if necessary. *)
local
(* If the previous block dropped through to this and this was
the only reference then we don't need a label. *)
fun onlyJumpingHere (lab: int) =
if lab <> picked then false
else case Array.sub(labelRefs, picked) of
[singleton] => singleton = lab
| _ => false
val noLabel =
case lastFlow of
ExitCode => picked = 0 (* Unless this was the first block. *)
| Unconditional dest => onlyJumpingHere dest
| Conditional { trueJump, falseJump, ...} =>
onlyJumpingHere trueJump orelse onlyJumpingHere falseJump
| IndexedBr _ => false
| SetHandler _ => false
| UnconditionalHandle _ => false
| ConditionalHandle { continue, ...} => onlyJumpingHere continue
in
val startLabel = if noLabel then [] else [JumpLabel(getBlockLabel picked)]
end
val ExtendedBasicBlock { flow, block, ...} = Vector.sub(blocks, picked)
local
fun genCodeBlock(instr, code) = codeExtended {flow=flow} (instr, code)
in
val bodyCode = List.foldl genCodeBlock (startLabel @ startCode @ code) block
end
val addSet =
case flow of
ExitCode => []
| IndexedBr cases => cases
| Unconditional dest => [dest]
| Conditional {trueJump, falseJump, ...} => [falseJump, trueJump]
| SetHandler { handler, continue } => [handler, continue]
| UnconditionalHandle _ => []
| ConditionalHandle { continue, ...} => [continue]
in
genCode(addSet @ stillToDo, flow, bodyCode)
end
| FlowCodeCMove{code, trueJump, falseJump} =>
let
(* We've generated a conditional move and possibly a return. If the
trueJump and falseJump are only ever referenced from this block
they're done, otherwise we still need to do them. *)
val _ =
case Array.sub(labelRefs, trueJump) of
[_] => Array.update(processed, trueJump, true)
| _ => ()
val _ =
case Array.sub(labelRefs, falseJump) of
[_] => Array.update(processed, falseJump, true)
| _ => ()
val ExtendedBasicBlock { flow, ...} = Vector.sub(blocks, trueJump)
val addSet =
case flow of
ExitCode => []
| Unconditional dest => [dest]
| _ => raise InternalError "FlowCodeCMove"
in
genCode(addSet @ stillToDo, flow, code)
end
end
in
val ops = genCode([0], ExitCode, [])
end
in
X86OPTIMISE.generateCode{code=newCode, ops=List.rev ops,
labelCount= !outputLabelCount, resultClosure=resultClosure}
end
val nGenRegs = List.length generalRegisters
structure Sharing =
struct
type intSet = intSet
and extendedBasicBlock = extendedBasicBlock
and regProperty = regProperty
and reg = reg
and closureRef = closureRef
end
end;
|